1
|
Napoli E, McLennan YA, Schneider A, Tassone F, Hagerman RJ, Giulivi C. Characterization of the Metabolic, Clinical and Neuropsychological Phenotype of Female Carriers of the Premutation in the X-Linked FMR1 Gene. Front Mol Biosci 2020; 7:578640. [PMID: 33195422 PMCID: PMC7642626 DOI: 10.3389/fmolb.2020.578640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The X-linked FMR1 premutation (PM) is characterized by a 55-200 CGG triplet expansion in the 5'-untranslated region (UTR). Carriers of the PM were originally thought to be asymptomatic; however, they may present general neuropsychiatric manifestations including learning disabilities, depression and anxiety, among others. With age, both sexes may also develop the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Among carriers, females are at higher risk for developing immune disorders, hypertension, seizures, endocrine disorders and chronic pain, among others. Some female carriers younger than 40 years old may develop fragile X-associated primary ovarian insufficiency (FXPOI). To date, no studies have addressed the metabolic footprint - that includes mitochondrial metabolism - of female carriers and its link to clinical/cognitive manifestations. To this end, we performed a comprehensive biochemical assessment of 42 female carriers (24-70 years old) compared to sex-matched non-carriers. By applying a multivariable correlation matrix, a generalized bioenergetics impairment was correlated with diagnoses of the PM, FXTAS and its severity, FXPOI and anxiety. Intellectual deficits were strongly correlated with both mitochondrial dysfunction and with CGG repeat length. A combined multi-omics approach identified a down-regulation of RNA and mRNA metabolism, translation, carbon and protein metabolism, unfolded protein response, and up-regulation of glycolysis and antioxidant response. The suboptimal activation of the unfolded protein response (UPR) and endoplasmic-reticulum-associated protein degradation (ERAD) response challenges and further compromises the PM genetic background to withstand other, more severe forms of stress. Mechanistically, some of the deficits were linked to an altered protein expression due to decreased protein translation, but others seemed secondary to oxidative stress originated from the accumulation of either toxic mRNA or RAN-derived protein products or as a result of a direct toxicity of accumulated metabolites from deficiencies in critical enzymes.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Andrea Schneider
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
2
|
Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology 2019; 44:837-849. [PMID: 29855563 PMCID: PMC6461987 DOI: 10.1038/s41386-018-0090-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
Abstract
Complex I (NADH dehydrogenase, NDU) and complex IV (cytochrome-c-oxidase, COX) of the mitochondrial electron transport chain have been implicated in the pathophysiology of major psychiatric disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ), as well as in neurodegenerative disorders, such as Alzheimer disease (AD) and Parkinson disease (PD). We conducted meta-analyses comparing complex I and IV in each disorder MDD, BD, SZ, AD, and PD, as well as in normal aging. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar, were searched for studies published between 1980 and 2018. Of 2049 screened studies, 125 articles were eligible for the meta-analyses. Complex I and IV were assessed in peripheral blood, muscle biopsy, or postmortem brain at the level of enzyme activity or subunits. Separate meta-analyses of mood disorder studies, MDD and BD, revealed moderate effect sizes for similar abnormality patterns in the expression of complex I with SZ in frontal cortex, cerebellum and striatum, whereas evidence for complex IV alterations was low. By contrast, the neurodegenerative disorders, AD and PD, showed strong effect sizes for shared deficits in complex I and IV, such as in peripheral blood, frontal cortex, cerebellum, and substantia nigra. Beyond the diseased state, there was an age-related robust decline in both complexes I and IV. In summary, the strongest support for a role for complex I and/or IV deficits, is in the pathophysiology of PD and AD, and evidence is less robust for MDD, BD, or SZ.
Collapse
Affiliation(s)
- L Holper
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY, USA.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
3
|
Signorile A, Sgaramella G, Bellomo F, De Rasmo D. Prohibitins: A Critical Role in Mitochondrial Functions and Implication in Diseases. Cells 2019; 8:cells8010071. [PMID: 30669391 PMCID: PMC6356732 DOI: 10.3390/cells8010071] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are ubiquitously expressed, and are present in the nucleus, cytosol, and mitochondria. Depending on the cellular localization, PHB1 and PHB2 have distinctive functions, but more evidence suggests a critical role within mitochondria. In fact, PHB proteins are highly expressed in cells that heavily depend on mitochondrial function. In mitochondria, these two proteins assemble at the inner membrane to form a supra-macromolecular structure, which works as a scaffold for proteins and lipids regulating mitochondrial metabolism, including bioenergetics, biogenesis, and dynamics in order to determine the cell fate, death, or life. PHB alterations have been found in aging and cancer, as well as neurodegenerative, cardiac, and kidney diseases, in which significant mitochondrial impairments have been observed. The molecular mechanisms by which prohibitins regulate mitochondrial function and their role in pathology are reviewed and discussed herein.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Giuseppe Sgaramella
- Water Research Institute (IRSA), National Research Council (CNR), Viale F. De Blasio, 5, 70132 Bari, Italy.
| | - Francesco Bellomo
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children's Hospital, Viale di S. Paolo, 15, 00149 Rome, Italy.
| | - Domenico De Rasmo
- Institute of Biomembrane, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
4
|
Papa S, Capitanio G, Papa F. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (BMSNSO), Section of Medical Biochemistry; University of Bari ‘Aldo Moro’; Piazza G. Cesare 11 70124 Bari Italy
- Institute of Biomembranes and Bioenergetics; National Research Council at BMSNSO; Piazza G. Cesare 11 70124 Bari Italy
| | - Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (BMSNSO), Section of Medical Biochemistry; University of Bari ‘Aldo Moro’; Piazza G. Cesare 11 70124 Bari Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (BMSNSO), Section of Medical Biochemistry; University of Bari ‘Aldo Moro’; Piazza G. Cesare 11 70124 Bari Italy
| |
Collapse
|
5
|
Bok JW, Ishida KI, Griffiths AJF. Ultrastructural changes inNeurosporacells undergoing senescence induced by kalilo plasmids. Mycologia 2017. [DOI: 10.1080/15572536.2004.11833095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Anthony J. F. Griffiths
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, V6T 1Z4 Canada
| |
Collapse
|
6
|
Cugno G, Parreira JR, Ferlizza E, Hernández-Castellano LE, Carneiro M, Renaut J, Castro N, Arguello A, Capote J, Campos AMO, Almeida AM. The Goat (Capra hircus) Mammary Gland Mitochondrial Proteome: A Study on the Effect of Weight Loss Using Blue-Native PAGE and Two-Dimensional Gel Electrophoresis. PLoS One 2016; 11:e0151599. [PMID: 27031334 PMCID: PMC4816393 DOI: 10.1371/journal.pone.0151599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 12/23/2022] Open
Abstract
Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer’s incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15–20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (down-regulated in the Majorera breed) as a consequence of weight loss.
Collapse
Affiliation(s)
- Graziano Cugno
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - José R. Parreira
- IBET – Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB/UNL – Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Enea Ferlizza
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo E. Hernández-Castellano
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mariana Carneiro
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Jenny Renaut
- LIST – Luxemburg Institute of Science and Technology, Belvaux, Luxemburg
| | - Noemí Castro
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Anastasio Arguello
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, Valle Guerra, Tenerife, Spain
| | - Alexandre M. O. Campos
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - André M. Almeida
- IBET – Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB/UNL – Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- CIISA-Centro Interdisciplinar de Investigação em Sanidade Animal, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
7
|
The Effect of Weight Loss on the Muscle Proteome in the Damara, Dorper and Australian Merino Ovine Breeds. PLoS One 2016; 11:e0146367. [PMID: 26828937 PMCID: PMC4734549 DOI: 10.1371/journal.pone.0146367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Seasonal Weight Loss (SWL) is an important constraint, limiting animal production in the Tropics and the Mediterranean. As a result, the study of physiological and biochemical mechanisms by which domestic animal breeds respond to SWL is important to those interested in animal breeding and the improvement thereof. To that end, the study of the proteome has been instrumental in gathering important information on physiological mechanisms, including those underlying SWL. In spite of that, little information is available concerning physiological mechanisms of SWL in production animals. The objective of this study was to determine differential protein expression in the muscle of three different breeds of sheep, the Australian Merino, the Dorper and the Damara, each showing different levels of tolerance to weight loss (low, medium and high, respectively). Per breed, two experimental groups were established, one labeled “Growth” and the other labeled “Restricted.” After forty-two days of dietary treatment, all animals were euthanized. Muscle samples were then taken. Total protein was extracted from the muscle, then quantified and two-dimensional gel electrophoresis were conducted using 24 cm pH 3–10 immobiline dry strips and colloidal coomassie staining. Gels were analyzed using Samespots® software and spots of interest were in-gel digested with trypsin. The isolated proteins were identified using MALDI-TOF/TOF. Results indicated relevant differences between breeds; several proteins are suggested as putative biomarkers of tolerance to weight loss: Desmin, Troponin T, Phosphoglucomutase and the Histidine Triad nucleotide-binding protein 1. This information is of relevance to and of possible use in selection programs aiming towards ruminant animal production in regions prone to droughts and weight loss.
Collapse
|
8
|
Hey-Mogensen M, Gram M, Jensen MB, Lund MT, Hansen CN, Scheibye-Knudsen M, Bohr VA, Dela F. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J Physiol 2015; 593:3991-4010. [PMID: 26096709 DOI: 10.1113/jp270204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Present address: Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, USA
| | - Michael Taulo Lund
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Flemming Dela
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Age modulates Fe3O4 nanoparticles liver toxicity: dose-dependent decrease in mitochondrial respiratory chain complexes activities and coupling in middle-aged as compared to young rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:474081. [PMID: 24949453 PMCID: PMC4032731 DOI: 10.1155/2014/474081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/17/2022]
Abstract
We examined the effects of iron oxide nanoparticles (IONPs) on mitochondrial respiratory chain complexes activities and mitochondrial coupling in young (3 months) and middle-aged (18 months) rat liver, organ largely involved in body iron detoxification. Isolated liver mitochondria were extracted using differential centrifugations. Maximal oxidative capacities (Vmax, complexes I, III, and IV activities), Vsucc (complexes II, III, and IV activities), and Vtmpd, (complex IV activity), together with mitochondrial coupling (Vmax/V0) were determined in controls conditions and after exposure to 250, 300, and 350 μg/ml Fe3O4 in young and middle-aged rats. In young liver mitochondria, exposure to IONPs did not alter mitochondrial function. In contrast, IONPs dose-dependently impaired all complexes of the mitochondrial respiratory chain in middle-aged rat liver: Vmax (from 30 ± 1.6 to 17.9 ± 1.5; P < 0.001), Vsucc (from 33.9 ± 1.7 to 24.3 ± 1.0; P < 0.01), Vtmpd (from 43.0 ± 1.6 to 26.3 ± 2.2 µmol O2/min/g protein; P < 0.001) using Fe3O4 350 µg/ml. Mitochondrial coupling also decreased. Interestingly, 350 μg/ml Fe3O4 in the form of Fe3+ solution did not impair liver mitochondrial function in middle-aged rats. Thus, IONPs showed a specific toxicity in middle-aged rats suggesting caution when using it in old age.
Collapse
|
10
|
Liu D, Sartor MA, Nader GA, Pistilli EE, Tanton L, Lilly C, Gutmann L, IglayReger HB, Visich PS, Hoffman EP, Gordon PM. Microarray analysis reveals novel features of the muscle aging process in men and women. J Gerontol A Biol Sci Med Sci 2013; 68:1035-44. [PMID: 23418191 DOI: 10.1093/gerona/glt015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To develop a global view of muscle transcriptional differences between older men and women and sex-specific aging, we obtained muscle biopsies from the biceps brachii of young and older men and women and profiled the whole-genome gene expression using microarray. A logistic regression-based method in combination with an intensity-based Bayesian moderated t test was used to identify significant sex- and aging-related gene functional groups. Our analysis revealed extensive sex differences in the muscle transcriptome of older individuals and different patterns of transcriptional changes with aging in men and women. In older women, we observed a coordinated transcriptional upregulation of immune activation, extracellular matrix remodeling, and lipids storage; and a downregulation of mitochondrial biogenesis and function and muscle regeneration. The effect of aging results in sexual dimorphic alterations in the skeletal muscle transcriptome, which may modify the risk for developing musculoskeletal and metabolic diseases in men and women.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bronnikov GE, Kulagina TP, Aripovsky AV. Dietary supplementation of old rats with hydrogenated peanut oil restores activities of mitochondrial respiratory complexes in skeletal muscles. BIOCHEMISTRY (MOSCOW) 2010; 75:1491-7. [DOI: 10.1134/s0006297910120102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Abstract
The impact of ageing on mitochondrial function and the deterministic role of mitochondria on senescence continue to be topics of vigorous debate. Many studies report that skeletal muscle mitochondrial content and function are reduced with ageing and metabolic diseases associated with insulin resistance. However, an accumulating body of literature suggests that physical inactivity typical of ageing may be a more important determinant of mitochondrial function than chronological age, per se. Reports of age-related declines in mitochondrial function have spawned a vast body of literature devoted to understanding the underlying mechanisms. These mechanisms include decreased abundance of mtDNA, reduced mRNA levels, as well as decreased synthesis and expression of mitochondrial proteins, ultimately resulting in decreased function of the whole organelle. Effective therapies to prevent, reverse or delay the onset of the aforementioned mitochondrial changes, regardless of their inevitability or precise underlying causes, require an intimate understanding of the processes that regulate mitochondrial biogenesis, which necessitates the coordinated regulation of nuclear and mitochondrial genomes. Herein we review the current thinking on regulation of mitochondrial biogenesis by transcription factors and transcriptional co-activators and the role of hormones and exercise in initiating this process. We review how exercise may help preserve mitochondrial content and functionality across the lifespan, and how physical inactivity is emerging as a major determinant of many age-associated changes at the level of the mitochondrion. We also review evidence that some mitochondrial changes with ageing are independent of exercise or physical activity and appear to be inevitable consequences of old age.
Collapse
Affiliation(s)
- I R Lanza
- Endocrinology Research Unit, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
13
|
Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem Res 2008; 33:2565-74. [PMID: 18473170 DOI: 10.1007/s11064-008-9729-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
In the present study mitochondrial respiratory function of fibroblasts from a patient affected by early-onset parkinsonism carrying the homozygous W437X nonsense mutation in the PINK1 gene has been thoroughly characterized. When compared with normal fibroblasts, the patient's fibroblast mitochondria exhibited a lower respiratory activity and a decreased respiratory control ratio with cellular ATP supply relying mainly on enhanced glycolytic production. The quantity, specific activity and subunit pattern of the oxidative phosphorylation complexes were normal. However, a significant decrease of the cellular cytochrome c content was observed and this correlated with a reduced cytochrome c oxidase in situ-activity. Measurement of ROS revealed in mitochondria of the patient's fibroblasts enhanced O(2)(*-) and H(2)O(2) production abrogated by inhibition of complex I. No change in the glutathione-based redox buffering was, however, observed.
Collapse
|
14
|
Martin I, Grotewiel MS. Oxidative damage and age-related functional declines. Mech Ageing Dev 2006; 127:411-23. [PMID: 16527333 DOI: 10.1016/j.mad.2006.01.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2006] [Indexed: 12/31/2022]
Abstract
Most organisms experience progressive declines in physiological function as they age. Since this senescence of function is thought to underlie the decrease in quality of life in addition to the increase in susceptibility to disease and death associated with aging, identifying the mechanisms involved would be highly beneficial. One of the leading mechanistic theories for aging is the oxidative damage hypothesis. A number of studies in a variety of species support a strong link between oxidative damage and life span determination. The role of oxidative damage in functional senescence has also been investigated, albeit not as comprehensively. Here, we review these investigations. Several studies show that the age-related loss of a number of functions is associated with an accrual of oxidative damage in the tissues mediating those functions. Additionally, treatments that increase the accumulation of oxidative damage with age frequently exacerbate functional losses. Moreover, treatments that reduce the accumulation of oxidative damage often attenuate or delay the loss of function associated with aging. These data provide the foundation for a link between oxidative damage and functional senescence, thereby supporting the oxidative damage hypothesis of aging within the context of age-related functional decline.
Collapse
Affiliation(s)
- Ian Martin
- Department of Human Genetics and Neuroscience Program, Virginia Commonwealth University School of Medicine, Richmond, 23298, USA
| | | |
Collapse
|
15
|
Vázquez-Memije ME, Cárdenas-Méndez MJ, Tolosa A, Hafidi ME. Respiratory chain complexes and membrane fatty acids composition in rat testis mitochondria throughout development and ageing. Exp Gerontol 2005; 40:482-90. [PMID: 15972255 DOI: 10.1016/j.exger.2005.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 01/22/2023]
Abstract
Throughout the maturation of germ cells, a morphological, biochemical and functional differentiation of mitochondria has been shown to occur. Ageing is known to cause changes involved in energy metabolism. These changes have been related to molecular and functional alterations in the properties of biological membranes. Variations in membrane lipid composition and lipid-protein interactions occur with ageing in several tissues. The present paper describes the relationship between these membrane alterations and the activities of lipid-dependent enzymes of isolated testis mitochondria in rats of from 10 days of age to 24 months. The specific activities of these enzymes are lower in preparations from adult and aged rats as compared to those from young rats. Temperature breaks of Arrhenius plots show age-dependent shifts to higher temperatures for the NADH-dehydrogenase, succinate-dehydrogenase, cytochrome c oxidase, and ATPase in senescent animals. Analysis of the membrane fatty acid composition reveals a distinct age-dependent fall in the content of polyunsaturated fatty acids accompanied by an increase in the proportion of saturated fatty acids and a decrease in polyunsaturated fatty acid percentage. The results suggest that during spermatogenesis and the ageing process some changes in the composition of the fatty acids in the surrounding membrane affect the protein-lipid interactions, producing a decrease in mitochondrial enzyme activities.
Collapse
Affiliation(s)
- Martha E Vázquez-Memije
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional Siglo XXI-IMSS. Apdo Postal 73-032, México, DF CP 06725, Mexico.
| | | | | | | |
Collapse
|
16
|
Rimbert V, Boirie Y, Bedu M, Hocquette JF, Ritz P, Morio B. Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity. FASEB J 2004; 18:737-9. [PMID: 14977873 DOI: 10.1096/fj.03-1104fje] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The study aimed at determining whether aging and/or sedentariness impairs muscle fat oxidative capacity (OXFA) and whether this was associated with increased risk to develop insulin resistance. We first examined muscle mitochondrial functions, OXFA and insulin sensitivity (ISI; evaluated during an oral glucose tolerance test) in a cross-sectional study with 32 sedentary (S) and endurance-trained (T), young (Y) and elderly (E) men (24.2+/-2.6 vs. 66.6+/-3.2 yr). As for mitochondrial functions, OXFA was higher in T than in S but similar between age groups (SY 41.8+/-11.3, TY 68.0+/-17.7, SE 40.1+/-14.1, TE 73.1+/-20.1 palmitate x min(-1) x g wet tissue(-1); activity P<0.0001, age P=NS, activity x age P=NS). Similar results were obtained with ISI (SY 6.2+/-2.2, TY 11.4+/-4.4, SE 5.9+/-1.5, TE 11.0+/-3.5, activity P<0.001, age P=NS, activity x age P=NS). Stepwise regression showed that, among body composition, VO2max and muscle biochemical characteristics, OXFA was the main predictor of ISI (r=0.60, P<0.001). We subsequently showed in eight sedentary elderly subjects (63.5+/-3.3 yr) that OXFA and insulin sensitivity (measured using insulin clamp) improved in parallel after 8 weeks of endurance training (r=0.79, P<0.01). We concluded that mitochondrial functions, OXFA and ISI, are not impaired by age but by physical inactivity and are closely correlated.
Collapse
Affiliation(s)
- Virginie Rimbert
- Protein and Energy Metabolism Research Unit, Auvergne University, Human Nutrition Research Centre of Auvergne, Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
17
|
Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, Panelli D, van den Heuvel LP, Smeitink JA, Papa S. Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex. J Biol Chem 2003; 278:44161-7. [PMID: 12944388 DOI: 10.1074/jbc.m307615200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presented is a study of the impact on the structure and function of human complex I of three different homozygous mutations in the NDUFS4 gene coding for the 18-kDa subunit of respiratory complex I, inherited by autosomal recessive mode in three children affected by a fatal neurological Leigh-like syndrome. The mutations consisted, respectively, of a AAGTC duplication at position 466-470 of the coding sequence, a single base deletion at position 289/290, and a G44A nonsense mutation in the first exon of the gene. All three mutations were found to be associated with a defect of the assembly of a functional complex in the inner mitochondrial membrane. In all the mutations, in addition to destruction of the carboxyl-terminal segment of the 18-kDa subunit, the amino-terminal segment of the protein was also missing. In the mutation that was expected to produce a truncated subunit, the disappearance of the protein was associated with an almost complete disappearance of the NDUFS4 transcript. These observations show the essential role of the NDUFS4 gene in the structure and function of complex I and give insight into the pathogenic mechanism of NDUFS4 gene mutations in a severe defect of complex I.
Collapse
Affiliation(s)
- Salvatore Scacco
- Department of Medical Biochemistry and Medical Biology, University of Bari, 70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pipinos II, Sharov VG, Shepard AD, Anagnostopoulos PV, Katsamouris A, Todor A, Filis KA, Sabbah HN. Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease. J Vasc Surg 2003; 38:827-32. [PMID: 14560237 DOI: 10.1016/s0741-5214(03)00602-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Discrete morphologic, enzymatic and functional changes in skeletal muscle mitochondria have been demonstrated in patients with peripheral arterial disease (PAD). We examined mitochondrial respiration in the gastrocnemius muscle of nine patients (10 legs) with advanced PAD and in nine control patients (nine legs) without evidence of PAD. METHODS Mitochondrial respiratory rates were determined with a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles. Muscle samples were obtained from the anteromedial aspect of the gastrocnemius muscle, at a level 10 cm distal to the tibial tuberosity. Mitochondria respiratory rate, calculated as nanoatoms of oxygen consumed per minute per milligram of noncollagen protein, were measured at baseline (V(0)), after addition of substrates (malate and glutamate; (V(SUB)), after addition of adenosine diphosphate (ADP) (V(ADP)), and finally, after adenine nucleotide translocase inhibition with atractyloside (V(AT)). The acceptor control ratio, a sensitive indicator of overall mitochondrial function, was calculated as the ratio of the respiratory rate after the addition of ADP to the respiratory rate after adenine nucleotide translocase inhibition with atractyloside (V(ADP)/ V(AT)). RESULTS Respiratory rate in muscle mitochondria from patients with PAD were not significantly different from control values at baseline (0.31 +/- 0.06 vs 0.55 +/- 0.12; P =.09), but V(sub) was significantly lower in patients with PAD compared with control subjects (0.43 +/- 0.07 vs 0.89 +/- 0.20; P <.05), as was V(ADP) (0.69 +/- 0.13 vs 1.24 +/- 0.20; P <.05). Respiratory rates after atractyloside inhibition in patients with PAD were no different from those in control patients (0.47 +/- 0.07 vs 0.45 +/- P =.08). Compared with control values, mitochondria from patients with PAD had a significantly lower acceptor control ratio (1.41 +/- 0.10 vs 2.90 +/- 0.20; P <.001). CONCLUSION Mitochondrial respiratory activity is abnormal in lower extremity skeletal muscle in patients with PAD. When considered in concert with the ultrastructural and enzymatic abnormalities previously documented in mitochondria of chronically ischemic muscle, these data support the concept of defective mitochondrial function as a pathophysiologic component of PAD.
Collapse
Affiliation(s)
- Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198-3280, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Greco M, Villani G, Mazzucchelli F, Bresolin N, Papa S, Attardi G. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J 2003; 17:1706-8. [PMID: 12958183 DOI: 10.1096/fj.02-1009fje] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An extensive analysis has been carried out of mitochondrial biochemical and bioenergetic properties of fibroblasts, mostly skin-derived, from a large group of subjects ranging in age between 20 wk fetal and 103 yr. A striking age-related change observed in a fundamental process underlying mitochondrial biogenesis and function was the very significant decrease in rate of mitochondrial protein synthesis in individuals above 40 yr. The analysis of endogenous respiration rate revealed a significant decrease in the age range from 40 to 90 yr and a tendency to uncoupling in the samples from subjects above 60 yr. A surprising finding was the occurrence of a subgroup of individuals >or=90 yr old whose skin fibroblasts exhibited an exceptionally high respiration rate. This high rate was not due to respiration uncoupling, rather pointing to a compensatory phenomenon, not involving an increase in mtDNA content, in the corresponding skin fibroblast populations, or, possibly, to a selection of a different cell type secondary to more extensive dermal atrophy. The most important aging-related phenotypic effects observed were those that affected the cell oxidative phosphorylation (OX-PHOS) capacity. These were, in particular, the very significant reduction in the ratio of uncoupled to oligomycin-inhibited endogenous respiration observed in intact fibroblasts, which pointed to a decrease with donor's age in the control of respiration by the mitochondrial membrane potential, the very significant decrease in efficiency of OX-PHOS, as determined by novel in situ measurements of P:O ratios, and, consistent with these results, the very significant reduction in the respiratory control ratios. These findings clearly pointed to a dramatic mitochondrial dysfunction, which would lead to a decrease in ATP synthesis rate, with the observed decline in mitochondrial protein synthesis rate being a likely contributing factor. These observations have important implications for understanding the biology of aging, as well as the pathogenesis of aging-related degenerative diseases.
Collapse
Affiliation(s)
- Marilena Greco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN. Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria. Exp Gerontol 2003; 38:877-86. [PMID: 12915209 DOI: 10.1016/s0531-5565(03)00092-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mitochondrial theory of aging was tested with optimised preparation techniques. Mitochondria were isolated from approximately 90 mg quadriceps muscle from healthy humans at age 70+ and 20+. The content of mitochondrial protein was approximately 10 mg g(-1) muscle and the yields were approximately 40%. The mitochondrial integrity was high as judged from the respiratory control and P/O ratios. No general membrane alterations or changes in the cytochrome contents were observed. BSA decreased the non-phosphorylating rates of respiration equally in both age groups. Thirteen different enzyme activities were assayed and normalised to protein content and citrate synthase activity. Most of the critical levels for detection of declines were <10%. In the 70+ group, the activity for fatty acid oxidation was decreased by approximately 20%. Two inherently low activities associated with oxidation of sarcoplasmic NADH were also decreased, probably related to the age change of fibre types. The remaining activities measured, e.g. those of pyruvate dehydrogenase, tricarboxylic acid cycle, respiratory chain, and ATP synthesis, were not observed to be lowered. Thus, the central bioenergetic systems appeared unaltered with age. The obvious discord with reported age declines of human skeletal muscle mitochondrial function is discussed. It is concluded that the present results are incompatible with the mitochondrial theory of aging.
Collapse
Affiliation(s)
- Ulla F Rasmussen
- Department of Biochemistry, August Krogh Institute, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
21
|
Bakala H, Delaval E, Hamelin M, Bismuth J, Borot-Laloi C, Corman B, Friguet B. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2295-302. [PMID: 12752449 DOI: 10.1046/j.1432-1033.2003.03598.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is accompanied by a gradual deterioration of cell functions. Mitochondrial dysfunction and accumulation of protein damage have been proposed to contribute to this process. The present study was carried out to examine the effects of aging in mitochondrial matrix isolated from rat liver. The activity of Lon protease, an enzyme implicated in the degradation of abnormal matrix proteins, was measured and the accumulation of oxidation and glycoxidation (Nepsilon-carboxymethyllysine, CML) products was monitored using immunochemical assays. The function of isolated mitochondria was assessed by measuring respiratory chain activity. Mitochondria from aged (27 months) rats exhibited the same rate of oxygen consumption as those from adult (10 months) rats without any change in coupling efficiency. At the same time, the ATP-stimulated Lon protease activity, measured as fluorescent peptides released, markedly decreased from 10-month-old rats (1.15 +/- 0.15 FU x micro g protein-1 x h-1) to 27-month-old-rats (0.59 +/- 0.08 FU x micro g protein-1 x h-1). In parallel with this decrease in activity, oxidized proteins accumulated in the matrix upon aging while the CML-modified protein content assessed by ELISA significantly increased by 52% from 10 months (11.71 +/- 0.61 pmol CML x micro g protein-1) to 27 months (17.81 +/- 1.83 pmol CML x micro g protein-1). These results indicate that the accumulation of deleterious oxidized and carboxymethylated proteins in the matrix concomitant with loss of the Lon protease activity may affect the ability of aging mitochondria to respond to additional stress.
Collapse
Affiliation(s)
- Hilaire Bakala
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris7-Denis Diderot, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN. Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch 2003; 446:270-8. [PMID: 12739165 DOI: 10.1007/s00424-003-1022-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 01/27/2003] [Indexed: 12/21/2022]
Abstract
The mitochondrial theory of ageing was tested. Isolated mitochondria from the quadriceps muscle from normal, healthy, young (age 20+ years, n=12) and elderly (70+ years, n=11) humans were studied in respiratory experiments and the data expressed as activities of the muscle. In each group, the subjects exhibited a variation of physical activity but, on average, the groups were representative for their age with maximum O(2) consumption rate of 50+/-9 and 34+/-13 ml min(-1) kg(-1) (mean+/-SD), respectively. Thirteen different activities were assayed. alpha-Glycerophosphate oxidation was lower in the 70+ group (38%, P~0.001), as was the respiratory capacity for fatty acids (19%, P~0.03). The remaining eleven activities, including those of the central bioenergetic reactions, were not lower in the 70+ group. Pyruvate and alpha-ketoglutarate dehydrogenase activities (i.e. the tricarboxylic acid cycle turnover) and the respiratory chain activity could all account for ~14 mmol O(2) min(-1) kg(-1) muscle (37 degrees C). The capacity for aerobic ATP synthesis was ~35 mmol ATP min(-1) kg(-1). The mitochondrial capacities were far in excess of whole-body performance. They were related to physical activity, but not to age. The mitochondrial theory of ageing, which attributes the age-related decline of muscle performance to decreased mitochondrial function, is incompatible with these results.
Collapse
Affiliation(s)
- Ulla F Rasmussen
- Department of Biochemistry, August Krogh Institute, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark. URasmussen @aki.ku.dk
| | | | | | | |
Collapse
|
23
|
Pansarasa O, Felzani G, Vecchiet J, Marzatico F. Antioxidant pathways in human aged skeletal muscle: relationship with the distribution of type II fibers. Exp Gerontol 2002; 37:1069-75. [PMID: 12213557 DOI: 10.1016/s0531-5565(02)00085-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Type II fiber loss and reactive oxygen species (ROS)-induced damage are hallmarks of muscle aging. The aim of this study was to analyze whether there exists a relationship between age-dependent changes in cellular antioxidant capacity and type II fiber loss in aged human skeletal muscles. Forty-five male and female subjects ranging in age from 65 to 90 year-old were divided into +40 and -40% type II fiber groups. We measured both total and Mn superoxide dismutase (total and MnSOD), glutathione peroxidase (GSHPx) and catalase (CAT) activities. We also measured the reduced and oxidized forms of glutathione (GSH and GSSG) and lipid peroxide (LPO) levels. Total SOD activity was lower in the -40% type II fiber group than in the +40% group; MnSOD tended to be lower but data are not statistically consistent. Both GSHPx and CAT activities remained unchanged; as did GSH, GSSG and GSH/GSSG ratio. Finally, muscle samples with -40% type II fibers had a significantly higher LPO content compared to those with +40% type II fibers. In summary, a relationship between human skeletal muscle aging, type II fiber loss and ROS reactions seems to exist.
Collapse
Affiliation(s)
- Orietta Pansarasa
- Department of Physiological and Pharmacological Cellular and Molecular Sciences, Section of Pharmacology and Pharmacological Biotechnologies, University of Pavia, P.zza Botta 11, 27100 Pavia, Italy
| | | | | | | |
Collapse
|
24
|
Capková M, Houstek J, Hansíková H, Hainer V, Kunesová M, Zeman J. Activities of cytochrome c oxidase and citrate synthase in lymphocytes of obese and normal-weight subjects. Int J Obes (Lond) 2002; 26:1110-7. [PMID: 12119577 DOI: 10.1038/sj.ijo.0802055] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 03/12/2002] [Accepted: 03/25/2002] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obesity represents a heterogeneous group of disorders associated with broad spectrum of metabolic and endocrine abnormalities. The metabolic changes in obesity may also concern the efficacy of mitochondrial system of energy provision. The aim of our study was to analyse activities of mitochondrial enzymes cytochrome c oxidase (COX) and citrate synthase (CS) in isolated lymphocytes of obese and normal-weight subjects. RESULTS In the group of 304 non-obese controls, differences between men and women were found neither in the COX and CS activities nor in the COX/CS ratio in isolated lymphocytes. The activity of COX did not change even with age, whereas the activity of CS decreased significantly resulting in age-dependent increase of the COX/CS ratio (P<0.01). In the group of 60 obese patients aged 17-75 y, the COX activity was 1.2-fold higher (P<0.01) and the CS activity was 1.3-fold lower (P<0.01) compared to 151 non-obese healthy age-matched controls. Consequently, the COX/CS ratio became 1.7-fold higher (P<0.01) in the obese patients compared to the non-obese population, which indicates that both the absolute and relative oxidative capacity are increased. CONCLUSION Isolated lymphocytes from peripheral blood contribute very little to the overall metabolic turnover, but they may serve as easily available marker cells for studying the changes of mitochondrial energy converting systems in obesity.
Collapse
Affiliation(s)
- M Capková
- Department of Pediatrics and Centre for Integrated Genomics, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
Atamna H, Walter PB, Ames BN. The role of heme and iron-sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys 2002; 397:345-53. [PMID: 11795893 DOI: 10.1006/abbi.2001.2671] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria decay with age from oxidative damage and loss of protective mechanisms. Resistance, repair, and replacement mechanisms are essential for mitochondrial preservation and maintenance. Iron plays an essential role in the maintenance of mitochondria, through its two major functional forms: heme and iron-sulfur clusters. Both iron-based cofactors are formed and utilized in the mitochondria and then distributed throughout the cell. This is an important function of mitochondria that is not directly related to the production of ATP. Heme and iron-sulfur clusters are important for the normal assembly and for the optimal activity of the electron transfer complexes. Loss of mitochondrial cytochrome c oxidase (complex IV), integrity of mtDNA, and function can result from abnormal homeostasis of iron. We review the physiological role of iron-sulfur clusters and heme in the integrity of the mitochondria and the generation of oxidants.
Collapse
Affiliation(s)
- Hani Atamna
- Department of Molecular and Cell Biology, University of California, Berkeley/CHORI, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA
| | | | | |
Collapse
|
26
|
Toescu EC, Myronova N, Verkhratsky A. Age-related structural and functional changes of brain mitochondria. Cell Calcium 2000; 28:329-38. [PMID: 11115372 DOI: 10.1054/ceca.2000.0167] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Normal ageing is associated with a gradual decline in the capacity of various cell types, including neurones, to respond to metabolic stress and return to the resting state. An important factor in the decrease of this 'homeostatic reserve' is the gradual, age-dependent impairment of mitochondrial function. In this article we review some of the major structural and functional changes in mitochondria associated with ageing. Apart from the increased mutations in mitochondrial DNA and the evidence for increased oxidative stress with ageing, we also discuss, in some detail, the importance of the mitochondrial membrane structure and composition (in particular lipid composition) for mitochondrial function in general and during ageing. Although some of the neurodegenerative diseases are also associated with some degree of mitochondrial dysfunction, it is not yet clear if these changes are due to the underlining process of normal, physiological ageing or due to the specific pathophysiologic agents responsible for the neurodegenerative processes. Furthermore, we are proposing that there are important differences between normal ageing and neurodegeneration.
Collapse
Affiliation(s)
- E C Toescu
- Department of Physiology, Division Medical Sciences, The University of Birmingham, Edgbaston, UK.
| | | | | |
Collapse
|
27
|
Ballinger SW, Patterson C, Yan CN, Doan R, Burow DL, Young CG, Yakes FM, Van Houten B, Ballinger CA, Freeman BA, Runge MS. Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000; 86:960-6. [PMID: 10807868 DOI: 10.1161/01.res.86.9.960] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanisms by which reactive species (RS) participate in the development of atherosclerosis remain incompletely understood. The present study was designed to test the hypothesis that RS produced in the vascular environment cause mitochondrial damage and dysfunction in vitro and, thus, may contribute to the initiating events of atherogenesis. DNA damage was assessed in vascular cells exposed to superoxide, hydrogen peroxide, nitric oxide, and peroxynitrite. In both vascular endothelial and smooth muscle cells, the mitochondrial DNA (mtDNA) was preferentially damaged relative to the transcriptionally inactive nuclear beta-globin gene. Similarly, a dose-dependent decrease in mtDNA-encoded mRNA transcripts was associated with RS treatment. Mitochondrial protein synthesis was also inhibited in a dose-dependent manner by ONOO(-), resulting in decreased cellular ATP levels and mitochondrial redox function. Overall, endothelial cells were more sensitive to RS-mediated damage than were smooth muscle cells. Together, these data link RS-mediated mtDNA damage, altered gene expression, and mitochondrial dysfunction in cell culture and reveal how RS may mediate vascular cell dysfunction in the setting of atherogenesis.
Collapse
Affiliation(s)
- S W Ballinger
- Sealy Center for Molecular Cardiology, Division of Cardiology, Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cortopassi GA, Wong A. Mitochondria in organismal aging and degeneration. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:183-93. [PMID: 10076026 DOI: 10.1016/s0005-2728(98)00166-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several lines of experimentation support the view that the genetic, biochemical and bioenergetic functions of somatic mitochondria deteriorate during normal aging. Deletion mutations of the mitochondrial genome accumulate exponentially with age in nerve and muscle tissue of humans and multiple other species. In muscle, a tissue that undergoes age-related fiber loss and atrophy in humans, there is an exponential rise in the number of cytochrome-oxidase-deficient fibers, which is first detectable in the fourth decile of age. Most biochemical studies of animal mitochondrial activity indicate a decline in electron transport activity with age, as well as decreased bioenergetic capacity with age, as measured by mitochondrial membrane potential. Mitochondrial mutations may be both the result of mitochondrial oxidative stress, and cells bearing pure populations of pathogenic mitochondrial mutations are sensitized to oxidant stress. Oxidant stress to mitochondria is known to induce the mitochondrial permeability transition, which has recently been implicated in the release of cytochrome c and the initiation of apoptosis. Thus several lines of evidence support a contribution of mitochondrial dysfunction to the phenotypic changes associated with aging.
Collapse
Affiliation(s)
- G A Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
29
|
Amicarelli F, Ragnelli AM, Aimola P, Bonfigli A, Colafarina S, Di Ilio C, Miranda M. Age-dependent ultrastructural alterations and biochemical response of rat skeletal muscle after hypoxic or hyperoxic treatments. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:105-14. [PMID: 9989250 DOI: 10.1016/s0925-4439(98)00088-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work deals with the antioxidant enzymatic response and the ultrastructural aspects of the skeletal muscle of young and aged rats kept under hypoxic or hyperoxic normobaric conditions. It is in fact well known that the supply of oxygen at concentrations higher or lower than those occurring under normal conditions can promote oxidative processes that can cause tissue damage. The enzymes investigated were both those directly involved in reactive oxygen species (ROS) scavenging (superoxide dismutase, catalase and selenium-dependent glutathione peroxidase), and those challenged with the detoxication of cytotoxic compounds produced by the action of ROS on biological molecules (glutathione transferase, glyoxalase I, glutathione reductase), in order to obtain a comparative view of the defence strategies used with respect to aging. Our results support the hypothesis that one of the major contributors to the aging process is the oxidative damage produced at least in part by an impairment of the antioxidant enzymatic system. This makes the aged organism particularly susceptible to oxidative stress injury and to the related degenerative diseases, especially in those tissues with high demand for oxidative metabolism.
Collapse
Affiliation(s)
- F Amicarelli
- Dipartimento di Biologia di Base ed Applicata, Università di L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kopsidas G, Kovalenko SA, Kelso JM, Linnane AW. An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutat Res 1998; 421:27-36. [PMID: 9748486 DOI: 10.1016/s0027-5107(98)00150-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Post-mitotic tissues such as skeletal muscle develop a tissue bioenergy mosaic during the process of normal aging that eventually culminates into a bioenergetically diverse tissue containing cells ranging in their oxidative phosphorylation capacity from normal to grossly defective. The mosaic is postulated to develop continuously from birth with the relative proportions of cytochrome c oxidase (COX) proficient (positive) and COX deficient (negative) muscle fibers differing dramatically as a function of age. Generally, young individuals only display the rare fiber deficient in COX activity while aged individuals show a significantly higher proportion of negative fibers. There appears to be a random element governing which cells will be affected. Consequently, adjacent cells within a given tissue may exhibit vastly differing COX activities. Multiple mitochondrial DNA (mtDNA) deletions also appear to accumulate in skeletal muscle, similarly displaying a dramatic disparity as a function of age. Our previous findings have indicated that the accumulation of multiple mtDNA deletions, along with a concurrent decrease in wild-type mtDNA, strongly correlates with the age-associated decrease in COX activity observed in skeletal muscle. Although no definitive associations were established at the cellular level, an important prediction arose from this study. Cells that accumulate large numbers of mitochondrial mutations and have reduced levels of full-length mtDNA would be expected to be severely affected and show reduced COX activity as a consequence. Cells that accumulate fewer mutations or retain adequate amounts of wild-type mtDNA would be predicted to be less affected or even retain normal oxidative metabolism. In order to establish a link associating COX activity to the status of mtDNA within individual fibers, we developed single cell extra-long PCR (XL-PCR). The procedure was used to assess the relative concentration of full-length mtDNA with respect to any mtDNA deletions detected in individual human skeletal muscle fibers of 'pre-established' COX activity. Single cell XL-PCR analysis of COX positive fibers dissected from a 5-year old and 90-year old individual showed that 80% or more of the fibers contained full length mtDNA and few, if any, mtDNA rearrangements. COX deficient or COX intermediate fibers taken from the same individuals, by contrast, depicted a heterogeneous population of rearranged mtDNA species with no detectable full-length mtDNA. The data presented here indicates that COX deficient muscle fibers extracted from individuals, regardless of age, were accompanied by extensive mtDNA rearrangements and reduced levels of full-length mtDNA. This provides compelling evidence linking mtDNA mutations to COX activity decline in skeletal muscle and has important implications when considering the molecular basis of the aging process.
Collapse
Affiliation(s)
- G Kopsidas
- Centre for Molecular Biology and Medicine, Epworth Hospital, 89 Bridge Road, Richmond, Melbourne, Victoria 3121, Australia
| | | | | | | |
Collapse
|
31
|
Allen RG. Oxidative stress and superoxide dismutase in development, aging and gene regulation. AGE 1998; 21:47-76. [PMID: 23604352 PMCID: PMC3455717 DOI: 10.1007/s11357-998-0007-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Free radicals and other reactive oxygen species are produced in the metabolic pathways of aerobic cells and affect a number of biological processes. Oxidation reactions have been postulated to play a role in aging, a number of degenerative diseases, differentiation and development as well as serving as subcellular messengers in gene regulatory and signal transduction pathways. The discovery of the activity of superoxide dismutase is a seminal work in free radical biology, because it established that free radicals were generated by cells and because it made removal of a specific free radical substance possible for the first time, which greatly accelerated research in this area. In this review, the role of reactive oxygen in aging, amyotrophic lateral sclerosis (a neurodegenerative disease), development, differentiation, and signal transduction are discussed. Emphasis is also given to the role of superoxide dismutases in these phenomena.
Collapse
|
32
|
Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ. Human mitochondrial function during cardiac growth and development. Mol Cell Biochem 1998; 179:21-6. [PMID: 9543345 DOI: 10.1023/a:1006839831141] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little information is presently available concerning mitochondrial respiratory and oxidative phosphorylation function in the normal human heart during growth and development. We investigated the levels of specific mitochondrial enzyme activities and content during cardiac growth and development from the early neonatal period (10-20 days) to adulthood (67 years). Biochemical analysis of enzyme specific activities and content and mitochondrial DNA (mtDNA) copy number was performed with left ventricular tissues derived from 30 control individuals. The levels of cytochrome c oxidase (COX) and complex V specific activity, mtDNA copy number and COX subunit II content remained unchanged in contrast to increased citrate synthase (CS) activity and content. The developmental increase in CS activity paralleled increasing CS polypeptide content, but was neither related to overall increases in mitochondrial number nor coordinately regulated with mitochondrial respiratory enzyme activities. Our findings of unchanged levels of cardiac mitochondrial respiratory enzyme activity during the progression from early childhood to older adult contrasts with the age-specific regulation found with CS, a Krebs cycle mitochondrial enzyme.
Collapse
Affiliation(s)
- J Marin-Garcia
- The Molecular Cardiology Institute, Highland Park, NJ 08904, USA
| | | | | |
Collapse
|
33
|
Abstract
During aging, there are qualitative and quantitative modifications of proteins in various tissues. In muscle, myofibrillar and mitochondrial proteins are affected, resulting in a loss of strength and, to a lesser degree, endurance. Mechanisms of sarcopenia remain not well known and probably involve loss of motoneurons, muscle disuse and hormonal alterations. Partial prevention of muscle loss is possible by resistance training. In all tissues, and particularly in the brain, oxidative changes in proteins are likely to alter various functions of proteins.
Collapse
Affiliation(s)
- B Beaufrere
- Laboratoire de Nutrition Humaine, Clermont Ferrand, France.
| | | |
Collapse
|
34
|
Allen RG, Keogh BP, Tresini M, Gerhard GS, Volker C, Pignolo RJ, Horton J, Cristofalo VJ. Development and age-associated differences in electron transport potential and consequences for oxidant generation. J Biol Chem 1997; 272:24805-12. [PMID: 9312077 DOI: 10.1074/jbc.272.40.24805] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We determined the activities of NADH dehydrogenase (ND), succinate dehydrogenase, and cytochrome c oxidase (COX) in 29 skin fibroblast lines established from donors ranging in age from 12 gestational weeks to 94 years. The results of this study demonstrate that all three of the enzyme activities examined are greater in adult-derived fibroblasts than in the fetal cell lines. The ratio of enzyme activities that control electron entry into and exit from the electron transport chain varied directly with lucigenin-detected chemiluminescence (an indicator of .O2- generation) and inversely with H2O2 generation. These results indicate a clear difference in the predominant oxidant species generated during fetal and adult stages of life. We also examined the mRNA abundances of different components of the electron transport chain complexes. We observed higher abundances of mitochondrial encoded mRNAs (COX 1 and ND 4) in cell lines established from adults than in fetal cells. No differences in the mRNA abundances of the nuclear encoded sequences (COX 4 and ND 51) were observed in fetal and postnatal-derived lines. Succinate dehydrogenase mRNA abundance was greater in cell lines established from postnatal donors than in fetal cell lines. No significant differences between cell lines established from young and old adults were detected in any of the parameters examined.
Collapse
Affiliation(s)
- R G Allen
- Center for Gerontological Research, Allegheny University, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A 1996; 93:15364-9. [PMID: 8986817 PMCID: PMC26410 DOI: 10.1073/pnas.93.26.15364] [Citation(s) in RCA: 419] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A progressive decline in muscle performance in the rapidly expanding aging population is causing a dramatic increase in disability and health care costs. A decrease in muscle endurance capacity due to mitochondrial decay likely contributes to this decline in muscle performance. We developed a novel stable isotope technique to measure in vivo rates of mitochondrial protein synthesis in human skeletal muscle using needle biopsy samples and applied this technique to elucidate a potential mechanism for the age-related decline in the mitochondrial content and function of skeletal muscle. The fractional rate of muscle mitochondrial protein synthesis in young humans (24 +/- 1 year) was 0.081 +/- 0.004%.h-1, and this rate declined to 0.047 +/- 0.005%.h-1 by middle age (54 +/- 1 year; P < 0.01). No further decline in the rate of mitochondrial protein synthesis (0.051 +/- 0.004%.h-1) occurred with advancing age (73 +/- 2 years). The mitochondrial synthesis rate was about 95% higher than that of mixed protein in the young, whereas it was approximately 35% higher in the middle-aged and elderly subjects. In addition, decreasing activities of mitochondrial enzymes were observed in muscle homogenates (cytochrome c oxidase and citrate synthase) and in isolated mitochondria (citrate synthase) with increasing age, indicating declines in muscle oxidative capacity and mitochondrial function, respectively. The decrease in the rates of mitochondrial protein synthesis is likely to be responsible for this decline in muscle oxidative capacity and mitochondrial function. These changes in muscle mitochondrial protein metabolism may contribute to the age-related decline in aerobic capacity and muscle performance.
Collapse
Affiliation(s)
- O E Rooyackers
- Endocrine Research Unit, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
36
|
Bouzidi MF, Carrier H, Godinot C. Antimycin resistance and ubiquinol cytochrome c reductase instability associated with a human cytochrome b mutation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1317:199-209. [PMID: 8988236 DOI: 10.1016/s0925-4439(96)00055-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Progressive exercise intolerance was associated with a decreased maximal rate of ubiquinol cytochrome c reductase (complex III) activity in the muscle mitochondria of the studied patient and with a thirty five-fold increase in the I50 for antimycin A. In contrast, myxothiazol sensitivity was not altered. Complex III activity was stable at 37 degrees C, but progressively decreased at 4 degrees C. An heteroplasmic G to A mutation at position 15615 of the mitochondrial DNA, resulting in the replacement of the highly conserved Gly290 in cytochrome b by Asp, was identified. Histochemical studies showed increased cytochrome oxidase and succinate dehydrogenase activities under the sarcolemma of type I fibres. After partial extraction of mitochondria from the muscle, the residual pellet contained a lower percentage of the mutation than did whole muscle, suggesting that the percentage of mutation is higher in the most readily extracted mitochondria, most probably present under the sarcolemma. In the current 8 transmembrane helix model of cytochrome b, Gly290 lies at the end of the sixth transmembrane helix, facing the intermembrane space and close to the presumed sites of interaction between cytochrome b, the iron-sulfur protein and the 9.5 kDa protein. Since immunoblotting experiments showed a relative decrease in the proportions of these three subunits in the patient's mitochondria compared with the other complex III subunits, it is probable that the complex III instability and the relative decrease in these subunits are related to the mutation. The relationship between the decrease in the apparent affinity for antimycin A and the instability of complex III are discussed.
Collapse
Affiliation(s)
- M F Bouzidi
- Centre de Génétique Moléculaire et Cellulaire, UMR 5534, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon I, Villeurbanne, France
| | | | | |
Collapse
|
37
|
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | |
Collapse
|
38
|
Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:87-105. [PMID: 8816944 DOI: 10.1016/0005-2728(96)00077-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy.
| |
Collapse
|