1
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Purushothaman S, Lopez Aviña BB, Seifert AW. Sonic hedgehog is Essential for Proximal-Distal Outgrowth of the Limb Bud in Salamanders. Front Cell Dev Biol 2022; 10:797352. [PMID: 35433673 PMCID: PMC9010949 DOI: 10.3389/fcell.2022.797352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The developing forelimb has been a foundational model to understand how specified progenitor cells integrate genetic information to produce the tetrapod limb bauplan. Although the reigning hypothesis is that all tetrapods develop limbs in a similar manner, recent work suggests that urodeles have evolved a derived mode of limb dvelopment. Here, we demonstrate through pharmacological and genetic inactivation of Sonic hedgehog (Shh) signaling in axolotls that Shh directs expansion and survival of limb progenitor cells in addition to patterning the limb across the proximodistal and antero-posterior axis. In contrast to inactivation of Shh in mouse or chick embryos where a humerus, radius, and single digit develop, Shh crispant axolotls completely lack forelimbs. In rescuing limb development by implanting SHH-N protein beads into the nascent limb field of Shh crispants, we show that the limb field is specified in the absence of Shh and that hedgehog pathway activation is required to initiate proximodistal outgrowth. When our results are examined alongside other derived aspects of salamander limb development and placed in a phylogenetic context, a new hypothesis emerges whereby the ability for cells at an amputation plane to activate morphogenesis and regenerate a limb may have evolved uniquely in urodeles.
Collapse
|
3
|
Sato Y, Fujiwara M, Nishino H, Harada R, Kawasaki E, Morimoto R, Ohgo S, Wada N. Normal skeletal pattern formation in chick limb bud with a mesenchymal hole is mediated by adjustment of cellular properties along the anterior-posterior axis in the limb bud. Dev Biol 2021; 483:76-88. [PMID: 34973174 DOI: 10.1016/j.ydbio.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 11/18/2022]
Abstract
The chick limb bud has plasticity to reconstruct a normal skeletal pattern after a part of mesenchymal mass is excised to make a hole in its early stage of development. To understand the details of hole closure and re-establishment of normal limb axes to reconstruct a normal limb skeleton, we focused on cellular and molecular changes during hole repair and limb restoration. We excised a cube-shaped mass of mesenchymal cells from the medial region of chick hindlimb bud (stage 23) and observed the following morphogenesis. The hole had closed by 15 h after excision, followed by restoration of the limb bud morphology, and the cartilage pattern was largely restored by 48 h. Lineage analysis of the mesenchymal cells showed that cells at the anterior and posterior margins of the hole were adjoined at the hole closure site, whereas cells at the proximal and distal margins were not. To investigate cell polarity during hole repair, we analyzed intracellular positioning of the Golgi apparatus relative to the nuclei. We found that the Golgi apparatus tended to be directed toward the hole among cells at the anterior and posterior margins but not among cells at identical positions in normal limb buds or cells at the proximal and distal hole margins. In the manipulated limb buds, the frequency of cell proliferation was maintained compared with the control side. Tbx3 expression, which was usually restricted to anterior and posterior margins of the limb bud, was temporarily expanded medially and then reverted to a normal pattern as limb reconstruction proceeded, with Tbx3 negative cells reappearing in the medial regions of the limb buds. Thus, mesenchymal hole closure and limb reconstruction are mainly mediated by cells at the anterior and posterior hole margins. These results suggest that adjustment of cellular properties along the anteroposterior axis is crucial to restore limb damage and reconstruct normal skeletal patterns.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Momoko Fujiwara
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Haruka Nishino
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Rei Harada
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Eriko Kawasaki
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryo Morimoto
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shiro Ohgo
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
4
|
Aztekin C, Hiscock TW, Marioni JC, Gurdon JB, Simons BD, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science 2019; 364:653-658. [PMID: 31097661 PMCID: PMC6986927 DOI: 10.1126/science.aav9996] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Abstract
Unlike mammals, Xenopus laevis tadpoles have a high regenerative potential. To characterize this regenerative response, we performed single-cell RNA sequencing after tail amputation. By comparing naturally occurring regeneration-competent and -incompetent tadpoles, we identified a previously unrecognized cell type, which we term the regeneration-organizing cell (ROC). ROCs are present in the epidermis during normal tail development and specifically relocalize to the amputation plane of regeneration-competent tadpoles, forming the wound epidermis. Genetic ablation or manual removal of ROCs blocks regeneration, whereas transplantation of ROC-containing grafts induces ectopic outgrowths in early embryos. Transcriptional profiling revealed that ROCs secrete ligands associated with key regenerative pathways, signaling to progenitors to reconstitute lost tissue. These findings reveal the cellular mechanism through which ROCs form the wound epidermis and ensure successful regeneration.
Collapse
Affiliation(s)
- C Aztekin
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - T W Hiscock
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - J C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - B D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, UK
| | - J Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Makanae A, Satoh A. Ectopic Fgf signaling induces the intercalary response in developing chicken limb buds. ZOOLOGICAL LETTERS 2018; 4:8. [PMID: 29721334 PMCID: PMC5907462 DOI: 10.1186/s40851-018-0090-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Intercalary pattern formation is an important regulatory step in amphibian limb regeneration. Amphibian limb regeneration is composed of multiple steps, including wounding, blastema formation, and intercalary pattern formation. Attempts have been made to transfer insights from regeneration-competent animals to regeneration-incompetent animalsat each step in the regeneration process. In the present study, we focused on the intercalary mechanism in chick limb buds. In amphibian limb regeneration, a proximodistal axis is organized as soon as a regenerating blastema is induced. Intermediate structures are subsequently induced (intercalated) between the established proximal and distal identities. Intercalary tissues are derived from proximal tissues. Fgf signaling mediates the intercalary response in amphibian limb regeneration. RESULTS We attempted to transfer insights into intercalary regeneration from amphibian models to the chick limb bud. The zeugopodial part was dissected out, and the distal and proximal parts were conjunct at st. 24. Delivering ectopic Fgf2 + Fgf8 between the distal and proximal parts resulted in induction of zeugopodial elements. Examination of HoxA11 expression, apoptosis, and cell proliferation provides insights to compare with those in the intercalary mechanism of amphibian limb regeneration. Furthermore, the cellular contribution was investigated in both the chicken intercalary response and that of axolotl limb regeneration. CONCLUSIONS We developed new insights into cellular contribution in amphibian intercalary regeneration, and found consistency between axolotl and chicken intercalary responses. Our findings demonstrate that the same principal of limb regeneration functions between regeneration-competent and -incompetent animals. In this context, we propose the feasibility of the induction of the regeneration response in amniotes.
Collapse
Affiliation(s)
- Aki Makanae
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530 Japan
| | - Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530 Japan
| |
Collapse
|
6
|
Dolan CP, Dawson LA, Muneoka K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Transl Med 2018; 7:262-270. [PMID: 29405625 PMCID: PMC5827737 DOI: 10.1002/sctm.17-0236] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Regeneration Biology is the study of organisms with endogenous regenerative abilities, whereas Regenerative Medicine focuses on engineering solutions for human injuries that do not regenerate. While the two fields are fundamentally different in their approach, there is an obvious interface involving mammalian regeneration models. The fingertip is the only part of the human limb that is regeneration-competent and the regenerating mouse digit tip has emerged as a model to study a clinically relevant regenerative response. In this article, we discuss how studies of digit tip regeneration have identified critical components of the regenerative response, and how an understanding of endogenous regeneration can lead to expanding the regenerative capabilities of nonregenerative amputation wounds. Such studies demonstrate that regeneration-incompetent wounds can respond to treatment with individual morphogenetic agents by initiating a multi-tissue response that culminates in structural regeneration. In addition, the healing process of nonregenerative wounds are found to cycle through nonresponsive, responsive and nonresponsive phases, and we call the responsive phase the Regeneration Window. We also find the responsiveness of mature healed amputation wounds can be reactivated by reinjury, thus nonregenerated wounds retain a potential for regeneration. We propose that regeneration-incompetent injuries possess dormant regenerative potential that can be activated by targeted treatment with specific morphogenetic agents. We believe that future Regenerative Medicine-based-therapies should be designed to promote, not replace, regenerative responses. Stem Cells Translational Medicine 2018;7:262-270.
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development 2017; 144:4047-4060. [PMID: 29138288 DOI: 10.1242/dev.152587] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans.
Collapse
Affiliation(s)
- Luigi Maddaluno
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Corinne Urwyler
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell 2017; 165:1598-1608. [PMID: 27315477 DOI: 10.1016/j.cell.2016.05.038] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Recent advances in limb regeneration are revealing the molecular events that integrate growth control, cell fate programming, and positional information to yield the exquisite replacement of the amputated limb. Parallel progress in several invertebrate and vertebrate models has provided a broader context for understanding the mechanisms and the evolution of regeneration. Together, these discoveries provide a foundation for describing the principles underlying regeneration of complex, multi-tissue structures. As such these findings should provide a wealth of ideas for engineers seeking to reconstitute regeneration from constituent parts or to elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Elly M Tanaka
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden Fetscherstrasse 105, 01307 Dresden, GERMANY.
| |
Collapse
|
9
|
Abstract
Development of methods to reawaken the semi-dormant regenerative potential that lies within adult human tissues would hold promise for the restoration of diseased or damaged organs and tissues. While most of the regeneration potential is suppressed in many vertebrates, including humans, during adult life, urodele amphibians (salamanders) retain their regenerative ability throughout adulthood. Studies in newts and axolotls, two salamander models, have provided significant knowledge about adult limb regeneration. In this review, we present a comparative analysis of salamander and mammalian regeneration and discuss how evolutionarily altered properties of the regenerative environment can be exploited to restore full regenerative potential in the human body.
Collapse
Affiliation(s)
- Alessandra Dall'Agnese
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Epigenetics and Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
10
|
Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation. Stem Cell Res 2015; 15:542-553. [DOI: 10.1016/j.scr.2015.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/20/2022] Open
|
11
|
Mahony C, Vargesson N. Molecular analysis of regulative events in the developing chick limb. J Anat 2013; 223:1-13. [PMID: 23678942 DOI: 10.1111/joa.12060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 12/01/2022] Open
Abstract
The developing chick limb has the remarkable ability to regulate for the loss of large amounts of mesenchyme and maintain a normal limb pattern in early (Hamburger and Hamilton Stage 19; E3) limbs. How the limb can regulate for tissue loss and why this ability is lost as development proceeds (after Hamburger and Hamilton Stage 21; E3.5) is unclear. We have investigated the origins of cells involved in regulative processes and, for the first time, the molecular changes occurring, and find striking differences between developmental time points just 0.5 days apart. We demonstrate that subtle changes in cell dispersal and cell proliferation occur in HH St21 limbs but not in HH St19 limbs and also demonstrate that there is no net replacement of removed tissue at either HH St21 or St19. We further show that changes in the Fgf8/Shh/Bmp4/Gremlin signaling pathway together with the appearance of distal Hox gene activation coincide with the limbs' ability to regulate for large tissue loss. We also demonstrate that following small tissue loss, limbs can regulate for missing tissue to produce normal pattern with no net replacement of missing tissue, as seen in limbs following large tissue loss. Our results indicate the regulative ability of the limb is not due to changes in cell proliferation, cell lineage nor replacement of the missing tissue - regulative ability is reliant upon the signaling environment remaining.
Collapse
Affiliation(s)
- Chris Mahony
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | |
Collapse
|
12
|
Özpolat BD, Zapata M, Daniel Frugé J, Coote J, Lee J, Muneoka K, Anderson R. Regeneration of the elbow joint in the developing chick embryo recapitulates development. Dev Biol 2012; 372:229-38. [PMID: 23036343 DOI: 10.1016/j.ydbio.2012.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 01/27/2023]
Abstract
Synovial joints are among the most important structures that give us complex motor abilities as humans. Degenerative joint diseases, such as arthritis, cause loss of normal joint functioning and affect over 40 million people in the USA and approximately 350 million people worldwide. Therapies based on regenerative medicine hold the promise of effectively repairing or replacing damaged joints permanently. Here, for the first time, we introduce a model for synovial joint regeneration utilizing the chick embryo. In this model, a block of tissue that contains the prospective elbow is excised, leaving a window with strips of anterior and posterior tissue intact (window excision, WE). In contrast, we also slice out the same area containing the elbow and the distal piece of the limb is pinned back onto the stump (slice excision, SE). Interestingly, when the elbow is removed via WE, regeneration of the joint takes place, whereas the elbow joint does not regenerate following SE. In order to investigate whether the regeneration response recapitulates the developmental program of forming joints, we used GDF-5 and Autotaxin (Atx) as joint tissue specific markers, and Sox-9 and Col-9 as cartilage markers for in situ hybridization on sections at different time points after WE and SE surgeries. Re-expression of GDF-5 and Atx is observed in the WE samples by 60h after surgery. In contrast, the majority of the samples that underwent SE surgery did not express GDF-5 and Atx. Also, in SE fusion of cartilage elements takes place and the joint interzone does not form. This is indicated by continuous Col-9 expression in SE limbs, whereas Col-9 is downregulated at the joint interzone in the regenerating WE samples. This order and pattern of gene expression observed in regenerates is similar to the development of a joint suggesting that regeneration recapitulates development at the molecular level. This model defines some of the conditions required for inducing joint regeneration in an otherwise nonregenerating environment. This knowledge can be useful for designing new therapeutic approaches for joint loss or for conditions affecting joint integrity in humans.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Makanae A, Satoh A. Early Regulation of Axolotl Limb Regeneration. Anat Rec (Hoboken) 2012; 295:1566-74. [DOI: 10.1002/ar.22529] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/26/2012] [Indexed: 11/11/2022]
|
14
|
Greenow K, Clarke AR. Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways. Physiol Rev 2012; 92:75-99. [PMID: 22298652 DOI: 10.1152/physrev.00040.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the realization that embryonic stem cells are maintained in a pluripotent state through the interplay of a number of key signal transduction pathways, it is becoming increasingly clear that stemness and pluripotency are defined by the complex molecular convergence of these pathways. Perhaps this has most clearly been demonstrated by the capacity to induce pluripotency in differentiated cell types, so termed iPS cells. We are therefore building an understanding of how cells may be maintained in a pluripotent state, and how we may manipulate cells to drive them between committed and pluripotent compartments. However, it is less clear how cells normally pass in and out of the stem cell compartment under normal and diseased physiological states in vivo, and indeed, how important these pathways are in these settings. It is also clear that there is a potential "dark side" to manipulating the stem cell compartment, as deregulation of somatic stem cells is being increasingly implicated in carcinogenesis and the generation of "cancer stem cells." This review explores these relationships, with a particular focus on the role played by key molecular regulators of stemness in tissue repair, and the possibility that a better understanding of this control may open the door to novel repair strategies in vivo. The successful development of such strategies has the potential to replace or augment intervention-based strategies (cell replacement therapies), although it is clear they must be developed with a full understanding of how such approaches might also influence tumorigenesis.
Collapse
Affiliation(s)
- Kirsty Greenow
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
15
|
Roselló-Díez A, Torres M. Regulative patterning in limb bud transplants is induced by distalizing activity of apical ectodermal ridge signals on host limb cells. Dev Dyn 2011; 240:1203-11. [PMID: 21509894 DOI: 10.1002/dvdy.22635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have used the chick limb as a model to gain insight into the longstanding question of regulative vs. mosaic development. To test the influence of signals on limb proximodistal development, distal limb bud tips of several stages were grafted to regions of the embryo known to provide different signaling environments. Of interest, thin grafts (100-micron thick) formed elements more proximal in character when grafted to the proximal limb region than when grafted to other regions. The extra elements were derived from host tissue, presumably distalized and recruited by the graft's apical ectodermal ridge signals. The results of classic and recent experiments have been reinterpreted in light of our conclusions.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro, Madrid, Spain
| | | |
Collapse
|
16
|
Abstract
Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.
Collapse
Affiliation(s)
- Eugen Nacu
- DFG-Center for Regenerative Therapies Dresden, Germany.
| | | |
Collapse
|
17
|
Williams JM, Oh SH, Jorgensen M, Steiger N, Darwiche H, Shupe T, Petersen BE. The role of the Wnt family of secreted proteins in rat oval "stem" cell-based liver regeneration: Wnt1 drives differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2732-42. [PMID: 20413689 DOI: 10.2353/ajpath.2010.080486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To date the molecular signals regulating activation, proliferation, and differentiation of hepatic oval cells are not fully understood. The Wnt family is essential in hepatic embryogenesis and implicated in hepatic carcinogenesis. This study elucidates novel findings implicating Wnt1 in directing oval cell differentiation during the rat 2-acetylaminofluorene (2AAF) and 2/3 partial hepatectomy (PHx) liver regeneration model. Proteins of Wnt family members were predominantly localized in pericentral hepatocytes during liver injury, oval cell activation, and hepatocyte regeneration. In addition, Wnt message increased coinciding with the rise in oval cell number, whereas protein levels peaked immediately after the height of oval cell proliferation. Immunohistochemical analysis demonstrated nuclear translocation of beta-catenin within oval cells throughout the 2AAF/PHx protocol. Furthermore, RNA interference was used in vivo to confirm the physiological requirement of Wnt1 during the oval cell induction. Ultimately, inhibition of Wnt1 resulted in failure of oval cells to differentiate into hepatocytes and alternatively induced atypical ductular hyperplasia. Taken together, these data indicate that in vivo exposure to Wnt1 shRNA inhibited rat oval cell liver regeneration. In the absence of Wnt1 signaling, oval cells failed to differentiate into hepatocytes and underwent atypical ductular hyperplasia, exhibiting epithelial metaplasia and mucin production. Furthermore, changes in Wnt1 levels are required for the efficient regeneration of the liver by oval cells during massive hepatic injury.
Collapse
Affiliation(s)
- Jennifer M Williams
- University of Florida College of Medicine, Department of Pathology, PO Box 100275, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Satoh A, Makanae A, Wada N. The apical ectodermal ridge (AER) can be re-induced by wounding, wnt-2b, and fgf-10 in the chicken limb bud. Dev Biol 2010; 342:157-68. [PMID: 20347761 DOI: 10.1016/j.ydbio.2010.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
Little effort has been made to apply the insights gained from studies of amphibian limb regeneration to higher vertebrates. During amphibian limb regeneration, a functional epithelium called the apical ectodermal cap (AEC) triggers a regenerative response. As long as the AEC is induced, limb regeneration will take place. Interestingly, similar responses have been observed in chicken embryos. The AEC is an equivalent structure to the apical ectodermal ridge (AER) in higher vertebrates. When a limb bud is amputated it does not regenerate; however, if the AER is grafted onto the amputation surface, damage to the amputated limb bud can be repaired. Thus, the AER/AEC is able to induce regenerative responses in both amphibians and higher vertebrates. It is difficult, however, to induce limb regeneration in higher vertebrates. One reason for this is that re-induction of the AER after amputation in higher vertebrates is challenging. Here, we evaluated whether AER re-induction was possible in higher vertebrates. First, we assessed the sequence of events following limb amputation in chick embryos and compared the features of limb development and regeneration in amphibians and chicks. Based on our findings, we attempted to re-induce the AER. When wnt-2b/fgf-10-expressing cells were inserted concurrently with wounding, successful re-induction of the AER occurred. These results open up new possibilities for limb regeneration in higher vertebrates since AER re-induction, which is considered a key factor in limb regeneration, is now possible.
Collapse
Affiliation(s)
- Akira Satoh
- Research Core for Interdisciplinary Science (RCIS), Okayama University, Okayama, Japan.
| | | | | |
Collapse
|
19
|
Yu L, Han M, Yan M, Lee EC, Lee J, Muneoka K. BMP signaling induces digit regeneration in neonatal mice. Development 2010; 137:551-9. [PMID: 20110320 DOI: 10.1242/dev.042424] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regenerating digit tip of mice is a novel epimorphic response in mammals that is similar to fingertip regeneration in humans. Both display restricted regenerative capabilities that are amputation-level dependent. Using this endogenous regeneration model in neonatal mice, we have found that noggin treatment inhibits regeneration, thus suggesting a bone morphogenetic protein (BMP) requirement. Using non-regenerating amputation wounds, we show that BMP7 or BMP2 can induce a regenerative response. BMP-induced regeneration involves the formation of a mammalian digit blastema. Unlike the endogenous regeneration response that involves redifferentiation by direct ossification (evolved regeneration), the BMP-induced response involves endochondral ossification (redevelopment). Our evidence suggests that BMP treatment triggers a reprogramming event that re-initiates digit tip development at the amputation wound. These studies demonstrate for the first time that the postnatal mammalian digit has latent regenerative capabilities that can be induced by growth factor treatment.
Collapse
Affiliation(s)
- Ling Yu
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
20
|
Muneoka K, Allan CH, Yang X, Lee J, Han M. Mammalian regeneration and regenerative medicine. ACTA ACUST UNITED AC 2008; 84:265-80. [DOI: 10.1002/bdrc.20137] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Offen N, Blum N, Meyer A, Begemann G. Fgfr1 signalling in the development of a sexually selected trait in vertebrates, the sword of swordtail fish. BMC DEVELOPMENTAL BIOLOGY 2008; 8:98. [PMID: 18844994 PMCID: PMC2577654 DOI: 10.1186/1471-213x-8-98] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/09/2008] [Indexed: 11/10/2022]
Abstract
Background One of Darwin's chosen examples for his idea of sexual selection through female choice was the "sword", a colourful extension of the caudal fin of male swordtails of the genus Xiphophorus. Platyfish, also members of the genus Xiphophorus, are thought to have arisen from within the swordtails, but have secondarily lost the ability to develop a sword. The sustained increase of testosterone during sexual maturation initiates sword development in male swordtails. Addition of testosterone also induces sword-like fin extensions in some platyfish species, suggesting that the genetic interactions required for sword development may be dormant, rather than lost, within platyfish. Despite considerable interest in the evolution of the sword from a behavioural or evolutionary point of view, little is known about the developmental changes that resulted in the gain and secondary loss of the sword. Up-regulation of msxC had been shown to characterize the development of both swords and the gonopodium, a modified anal fin that serves as an intromittent organ, and prompted investigations of the regulatory mechanisms that control msxC and sword growth. Results By comparing both development and regeneration of caudal fins in swordtails and platyfish, we show that fgfr1 is strongly up-regulated in developing and regenerating sword and gonopodial rays. Characterization of the fin overgrowth mutant brushtail in a platyfish background confirmed that fin regeneration rates are correlated with the expression levels of fgfr1 and msxC. Moreover, brushtail re-awakens the dormant mechanisms of sword development in platyfish and activates fgfr1/msxC-signalling. Although both genes are co-expressed in scleroblasts, expression of msxC in the distal blastema may be independent of fgfr1. Known regulators of Fgf-signalling in teleost fins, fgf20a and fgf24, are transiently expressed only during regeneration and thus not likely to be required in developing swords. Conclusion Our data suggest that Fgf-signalling is involved upstream of msxC in the development of the sword and gonopodium in male swordtails. Activation of a gene regulatory network that includes fgfr1 and msxC is positively correlated with fin ray growth rates and can be re-activated in platyfish to form small sword-like fin extensions. These findings point towards a disruption between the fgfr1/msxC network and its regulation by testosterone as a likely developmental cause for sword-loss in platyfish.
Collapse
Affiliation(s)
- Nils Offen
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
22
|
Stoick-Cooper CL, Moon RT, Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 2007; 21:1292-315. [PMID: 17545465 DOI: 10.1101/gad.1540507] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While all animals have evolved strategies to respond to injury and disease, their ability to functionally recover from loss of or damage to organs or appendages varies widely damage to skeletal muscle, but, unlike amphibians and fish, they fail to regenerate heart, lens, retina, or appendages. The relatively young field of regenerative medicine strives to develop therapies aimed at improving regenerative processes in humans and is predicated on >40 years of success with bone marrow transplants. Further progress will be accelerated by implementing knowledge about the molecular mechanisms that regulate regenerative processes in model organisms that naturally possess the ability to regenerate organs and/or appendages. In this review we summarize the current knowledge about the signaling pathways that regulate regeneration of amphibian and fish appendages, fish heart, and mammalian liver and skeletal muscle. While the cellular mechanisms and the cell types involved in regeneration of these systems vary widely, it is evident that shared signals are involved in tissue regeneration. Signals provided by the immune system appear to act as triggers of many regenerative processes. Subsequently, pathways that are best known for their importance in regulating embryonic development, in particular fibroblast growth factor (FGF) and Wnt/beta-catenin signaling (as well as others), are required for progenitor cell formation or activation and for cell proliferation and specification leading to tissue regrowth. Experimental activation of these pathways or interference with signals that inhibit regenerative processes can augment or even trigger regeneration in certain contexts.
Collapse
Affiliation(s)
- Cristi L Stoick-Cooper
- Department of Pharmacology, Howard Hughes Medical Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
23
|
Abstract
Mammalians have a low potency for limb regeneration compared to that of amphibians. One explanation for the low potency is the deficiency of cells for regenerating amputated limbs in mammals. Amphibians can form a blastema with dedifferentiated cells, but mammals have few such cells. In this paper, we report limb formation, especially bone/cartilage formation in amputated limbs, because bone/cartilage formation is a basic step in limb pattern regeneration. After the amputation of limbs of a neonatal mouse, hypertrophy of the stump bone was observed at the amputation site, which was preceded by cell proliferation and cartilage formation. However, no new elements of bone/cartilage were formed. Thus, we grafted limb buds of mouse embryo into amputated limbs of neonatal mice. When the intact limb bud of a transgenic green fluorescent protein (GFP) mouse was grafted to the limb stump after amputation at the digit joint level, the grafted limb bud grew and differentiated into bone, cartilage and soft tissues, and it formed a segmented pattern that was constituted by bone and cartilage. The skeletal pattern was more complicated when limb buds at advanced stages were used. To examine if the grafted limb bud autonomously develops a limb or interacts with stump tissue to form a limb, the limb bud was dissociated into single cells and reaggregated before grafting. The reaggregated limb bud cells formed similar digit-like bone/cartilage structures. The reaggregated grafts also formed segmented cartilage. When the reaggregates of bone marrow mesenchymal cells were grafted into the stump, these cells formed cartilage, as do limb bud cells. Finally, to examine the potency of new bone formation in the stump tissue without exogenously supplied cells, we grafted gelatin gel containing BMP-7. BMP induced formation of several new bone elements, which was preceded by cartilage formation. The results suggest that the environmental tissues of the stump allow the formation of cartilage and bone at least partially, and that limb formation will be possible by supplying competent cells endogenously or exogenously in the future.
Collapse
Affiliation(s)
- Hideki Masaki
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | |
Collapse
|
24
|
Allan CH, Fleckman P, Fernandes RJ, Hager B, James J, Wisecarver Z, Satterstrom FK, Gutierrez A, Norman A, Pirrone A, Underwood RA, Rubin BP, Zhang M, Ramay HR, Clark JM. Tissue response and Msx1 expression after human fetal digit tip amputation in vitro. Wound Repair Regen 2007; 14:398-404. [PMID: 16939566 DOI: 10.1111/j.1743-6109.2006.00139.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regeneration of mammalian digit tips is well described; however, associated cellular or molecular events have not been studied in humans. We describe an in vitro human fetal model of response to digit tip amputation, and report expression of the transcription repressor Msx1 in the developing and regrowing human digit tip. Human fetal digits from specimens ranging from 53 to 117 days' estimated gestational age (EGA) were cultured in a defined serum-free medium with supplemented oxygen for time periods from 4 days to 4 weeks. Histology and immunohistochemistry were performed on paired control and tip-amputated digits. Regrowing tissue covered the cut end of the distal phalanx in digits up to 80 days' EGA. Msx1 expression was detected beneath the nail field in control digits to at least 70 days' EGA and at the regrowing tip of 57-day digits at 4 and 7 days post-amputation. Our results show that human fetal digits regrow tissue in vitro in response to tip amputation. This process appears spatially associated with Msx1 expression. Msx1 expression appears increased at the regrowing tip of 57-day digits by 4 days after amputation.
Collapse
Affiliation(s)
- Christopher H Allan
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine--Harborview Medical Center, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Beck CW, Christen B, Barker D, Slack JMW. Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mech Dev 2006; 123:674-88. [PMID: 16938438 DOI: 10.1016/j.mod.2006.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic protein (BMP) signalling is necessary for both the development of the tail bud and for tail regeneration in Xenopus laevis tadpoles. Using a stable transgenic line in which expression of the soluble BMP inhibitor noggin is under the control of the temperature inducible hsp70 promoter, we have investigated the timing of the requirement for BMP signalling during tail regeneration. If noggin expression is induced followed by partial amputation of the tail, then wound closure and the formation of the neural ampulla occur normally but outgrowth of the regeneration bud is inhibited. Furthermore, we show that BMP signalling is also necessary for limb bud regeneration, which occurs in Xenopus tadpoles prior to differentiation. When noggin expression is induced, limb bud regeneration fails at an early stage and a stump is formed. The situation appears similar to the tail, with formation of the limb bud blastema occurring but renewed outgrowth inhibited. The transcriptional repressor Msx1, a direct target of BMP signalling with known roles in vertebrate appendage regeneration, fails to be re-expressed in both tail and limb in the presence of noggin. DNA labelling studies show that proliferation in the notochord and spinal cord of the tail, and of the blastema in the limb bud, is significantly inhibited by noggin induction, suggesting that in the context of these regenerating appendages BMP is mainly required, directly or indirectly, as a mitogenic factor.
Collapse
Affiliation(s)
- Caroline W Beck
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | |
Collapse
|
26
|
Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K. Limb regeneration in higher vertebrates: developing a roadmap. ACTA ACUST UNITED AC 2006; 287:14-24. [PMID: 16308860 DOI: 10.1002/ar.b.20082] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We review what is known about amphibian limb regeneration from the prospective of developing strategies for the induction of regeneration in adult mammals. Prominent in urodele amphibian limb regeneration is the formation of a blastema of undifferentiated cells that goes on to reform the limb. The blastema shares many properties with the developing limb bud; thus, the outgrowth phase of regeneration can be thought of as cells going through development again, i.e., redevelopment. Getting to a redevelopment phase in mammals would be a major breakthrough given our extensive understanding of limb development. The formation of the blastema itself represents a transition phase in which limb cells respond to injury by dedifferentiating to become embryonic limb progenitor cells that can undergo redevelopment. During this phase, rapid wound closure is followed by the dedifferentiation of limb cells to form the blastema. Thus, the regeneration process can be divided into a wound-healing/dedifferentiation phase and a redevelopment phase, and we propose that the interface between the wound-healing response and gaining access to developmentally regulated programs (dedifferentiation) lies at the heart of the regeneration problem in mammals. In urodele amphibians, dedifferentiation can occur in all of the tissues of the limb; however, numerous studies lead us to focus on the epidermis, the dermis, and muscle as key regulators of regeneration. Among higher vertebrates, the digit tip in mammals, including humans, is regeneration-competent and offers a unique mammalian model for regeneration. Recent genetic studies in mice identify the Msx1 gene as playing a critical role in the injury response leading to digit tip regeneration. The results from regeneration studies ranging from amphibians to mammals can be integrated to develop a roadmap for mammalian regeneration that has as its focus understanding the phenomenon of dedifferentiation.
Collapse
Affiliation(s)
- Manjong Han
- Developmental Biology Division of the Department of Cell and Molecular Biology at Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
27
|
Gardiner DM. Ontogenetic decline of regenerative ability and the stimulation of human regeneration. Rejuvenation Res 2005; 8:141-53. [PMID: 16144469 DOI: 10.1089/rej.2005.8.141] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although we cannot regenerate our limbs today, it is likely that when we were embryos we could regenerate many of our tissues, including our limbs. Like other vertebrates, our impressive regenerative abilities were lost during embryogenesis, leaving us with a relatively limited ability to repair tissue damage. In contrast, adult salamanders can reactivate the embryonic regeneration response, and thus they provide the opportunity to discover the principles and mechanisms of tissue and organ regeneration. One important lesson we have learned from salamanders is that regeneration occurs in two steps. While the second step shares the mechanisms of growth control and pattern formation with limb development, the first step is unique and leads to the formation of a regeneration blastema. A second lesson is that connective tissue fibroblasts control regeneration, and that the unique regenerative ability of salamanders (the first step of regeneration) is a consequence of the ability of fibroblasts to dedifferentiate and give rise to blastema cells. Since we all developed limbs as embryos, we all possess the genetic program for making a limb (the second step of regeneration). Therefore, the challenge for inducing limb regeneration in humans is to discover how to induce fibroblast dedifferentiation.
Collapse
Affiliation(s)
- David M Gardiner
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California, Irvine, California 92697, USA.
| |
Collapse
|
28
|
Shimizu-Nishikawa K, Takahashi J, Nishikawa A. Intercalary and supernumerary regeneration in the limbs of the frog, Xenopus laevis. Dev Dyn 2003; 227:563-72. [PMID: 12889065 DOI: 10.1002/dvdy.10345] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Anuran amphibians, such as Xenopus laevis, can regenerate their limbs only when they are young tadpoles, whereas urodele amphibians have a regenerative ability throughout their lives. It is still unclear whether anuran and urodele use the same mechanism during regeneration. In the present study, we analyzed intercalary and supernumerary regeneration in Xenopus. In contrast to urodele blastema that induces intercalary regeneration along the proximodistal (PD) axis, intercalation did not occur in the Xenopus limb bud when the presumptive zeugopodium (fibula and tibia) was removed. However, when the limb bud tip (presumptive autopodium) was transplanted to the presumptive stylopodium (femur) with a 180-degree rotation at stage 52, the complete zeugopodium was regenerated. These results were similar to the results of urodele mature limbs, suggesting that Xenopus limb buds are equivalent to the urodele mature limbs but not to the urodele blastemas. We hypothesized that the ability for intercalation depends on the expression pattern of fibroblast growth factor (fgf)-8, because the expression of fgf-8 in the urodele spreads over the whole blastema and is close enough to activate the growth of the stump. To test this hypothesis, an FGF-8-soaked bead was implanted at the boundary between the stump and tip of a Xenopus limb bud. Intercalary regeneration was induced at stages 52 and 53. These results suggest that the Xenopus limb bud possesses the potential for intercalation, but endogenous FGF-8 in the apical ectodermal ridge (AER) does not induce intercalation to the stump because of the long distance between the AER and stump.
Collapse
Affiliation(s)
- Keiko Shimizu-Nishikawa
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan.
| | | | | |
Collapse
|
29
|
Tawk M, Vriz S. [Regeneration of vertebrate appendage: an old experimental model to study stem cells in the adult]. Med Sci (Paris) 2003; 19:465-71. [PMID: 12836220 DOI: 10.1051/medsci/2003194465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The application of stem cell therapy to cure degenerative diseases offers immense possibilities, but the research in this field is the subject of ethical debates raised by the question of destructive research on early human embryos. Stem cells taken in the adult constitute an alternative to human embryonic stem cells, but our knowledge on totipotent or pluripotent cells is currently insufficient. Furthermore, many questions must be solved before selection and differentiation of these cells in a given cellular type can be controlled on a routine basis. What are the molecular characteristics of an adult stem cell? What are the mechanisms involved in cell reprogramming? Which signals control stem cell replication and differentiation? Basic research activities must be carried out in order to clarify all these points. In this context, the regeneration of vertebrate appendages provides a model for this type of research. The regeneration process is defined by both the morphological and functional reconstruction of a part of a living organism, which has previously been destroyed. But why are some vertebrates able to regenerate complex structures and others apparently not? Among most vertebrates, the capacity to regenerate is limited to some tissues. It is however possible to observe the regeneration of appendages (limb, tail, fin, jaw, etc.) among several amphibians and fish. This regeneration leads to re-forming of the amputated part with a complete restoration of its shape, segmentation and function. Why is the amputation of limbs not followed by regeneration in mammals and birds: absence of stem cells, absence of recruitment signals for these cells, or absence of signal receptivity? This review constitutes a report on the current understanding of the basis of on regeneration of legs in tetrapods and of fins in fish with an emphasis in the role of the nervous system in this process.
Collapse
Affiliation(s)
- Marcel Tawk
- UFR de biologie, Université Denis Diderot-Paris 7, Boîte courrier 7041, 2, place Jussieu, 75005 Paris, France
| | | |
Collapse
|
30
|
Galis F, Wagner GP, Jockusch EL. Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals? Evol Dev 2003; 5:208-20. [PMID: 12622738 DOI: 10.1046/j.1525-142x.2003.03028.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The capacity to regenerate limbs is very high in amphibians and practically absent in other tetrapods despite the similarities in developmental pathways and ultimate morphology of tetrapod limbs. We propose that limb regeneration is only possible when the limb develops as a semiautonomous module and is not involved in interactions with transient structures. This hypothesis is based on the following two assumptions: To an important extent, limb development uses the same developmental mechanisms as normal limb development and developmental mechanisms that require interactions with transient structures cannot be recapitulated later. In amniotes limb development is early, shortly after neurulation, and requires inductive interactions with transient structures such as somites. In amphibians limb development is delayed relative to amniotes and has become decoupled from interactions with somites and other transient structures that are no longer present at this stage. The limb develops as a semi-independent module. A comparison of the autonomy and timing of limb development in different vertebrate taxa supports our hypothesis and its assumptions. The data suggest a good correlation between self-organizing and regenerative capacity. Furthermore, they suggest that whatever barriers amphibians overcame in the evolution of metamorphosis, they are the same barriers that need to be overcome to make limb regeneration possible in other taxa.
Collapse
Affiliation(s)
- Frietson Galis
- Institute of Evolutionary and Ecological Sciences, Leiden University, P.O. Box 9516, 2300RA Leiden, The Netherlands.
| | | | | |
Collapse
|
31
|
Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, McMahon AP. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 2003; 17:394-409. [PMID: 12569130 PMCID: PMC195987 DOI: 10.1101/gad.1044903] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formation of the apical ectodermal ridge (AER) is critical for the distal outgrowth and patterning of the vertebrate limb. Recent work in the chick has demonstrated that interplay between the Wnt and Fgf signaling pathways is essential in the limb mesenchyme and ectoderm in the establishment and perhaps the maintenance of the AER. In the mouse, whereas a role for Fgfs for AER establishment and function has been clearly demonstrated, the role of Wnt/beta-catenin signaling, although known to be important, is obscure. In this study, we demonstrate that Wnt3, which is expressed ubiquitously throughout the limb ectoderm, is essential for normal limb development and plays a critical role in the establishment of the AER. We also show that the conditional removal of beta-catenin in the ventral ectodermal cells is sufficient to elicit the mutant limb phenotype. In addition, removing beta-catenin after the induction of the ridge results in the disappearance of the AER, demonstrating the requirement for continued beta-catenin signaling for the maintenance of this structure. Finally, we demonstrate that Wnt/beta-catenin signaling lies upstream of the Bmp signaling pathway in establishment of the AER and regulation of the dorsoventral polarity of the limb.
Collapse
Affiliation(s)
- Jeffery R Barrow
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Lee Niswander
- Howard Hughes Medical Institute, Molecular Biology Programme, Sloan-Kettering Institute, 1275 York Avenue, Box 73, New York, New York 10022, USA.
| |
Collapse
|
33
|
Bushdid PB, Chen CL, Brantley DM, Yull F, Raghow R, Kerr LD, Barnett JV. NF-kappaB mediates FGF signal regulation of msx-1 expression. Dev Biol 2001; 237:107-15. [PMID: 11518509 DOI: 10.1006/dbio.2001.0356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression.
Collapse
Affiliation(s)
- P B Bushdid
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Poleo G, Brown CW, Laforest L, Akimenko MA. Cell proliferation and movement during early fin regeneration in zebrafish. Dev Dyn 2001; 221:380-90. [PMID: 11500975 DOI: 10.1002/dvdy.1152] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell proliferation and cell movement during early regeneration of zebrafish caudal fins were examined by injecting BrdU and Di-I, respectively. In normal fins of adult fish, a small number of proliferating cells are observed in the epidermis only. Shortly following amputation, epithelial cells covered the wound to form the epidermal cap but did not proliferate. However, by 24 hr, epithelial cells proximal to the level of amputation were strongly labeled with BrdU. Label incorporation was also detected in a few mesenchymal cells. Proliferating cells in the basal epithelial layer were first observed at 48 hr at the level of the newly formed lepidotrichia. At 72 hr, proliferating mesenchymal cells were found distal to the plane of amputation whereas more proximal labeled cells included mainly those located between the lepidotrichia and the basal membrane. When BrdU-injected fins were allowed to regenerate for longer periods, labeled cells were observed in the apical epidermal cap, a location where cells are not thought to proliferate. This result is suggestive of cell migration. Epithelial cells, peripheral to the rays or in the tissue between adjacent rays, were labeled with Di-I and were shown to quickly migrate towards the site of amputation, the cells closer to the wound migrating faster. Amputation also triggered migration of cells of the connective tissue located between the hemirays. Although cell movement was induced up to seven segments proximal from the level of amputation, cells located within two segments from the wound provided the main contribution to the blastema. Thus, cell proliferation and migration contribute to the early regeneration of zebrafish fins.
Collapse
Affiliation(s)
- G Poleo
- Departments of Medicine and of Cellular and Molecular Medicine, Ottawa Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
By reciprocal transplantation experiments with regenerative and nonregenerative Xenopus limbs, we recently demonstrated that the regenerative capacity of a Xenopus limb depends on mesenchymal tissue and we suggested that fgf-10 is likely to be involved in this capacity (Yokoyama et al., 2000, Dev. Biol. 219, 18-29). However, the data obtained in that study are not conclusive evidence that FGF-10 is responsible for the regenerative capacity. We therefore investigated the role of FGF-10 in regenerative capacity by directly introducing FGF-10 protein into nonregenerative Xenopus limb stumps. Exogenously applied FGF-10 successfully stimulated the regenerative capacity, resulting in the reinduction of all gene expressions (including shh, msx-1, and fgf-10) that we examined and the regeneration of well-patterned limb structures. We report here for the first time that a certain molecule activates the regenerative capacity of Xenopus limb, and this finding suggests that FGF-10 could be a key molecule in possible regeneration of nonregenerative limbs in higher vertebrates.
Collapse
Affiliation(s)
- H Yokoyama
- Biological Institute, Graduate School of Science, Tohoku University, Aoba-yama, Aoba-ku, Sendai, 980-8578, Japan
| | | | | |
Collapse
|
36
|
Schaller SA, Li S, Ngo-Muller V, Han MJ, Omi M, Anderson R, Muneoka K. Cell biology of limb patterning. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:483-517. [PMID: 11131524 DOI: 10.1016/s0074-7696(01)03014-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Of vertebrate organ systems, the developing limb has been especially well characterized. Morphological studies have yielded a wealth of information describing limb outgrowth and have allowed for the identification of a multitude of important factors. In terms of the latter, key signaling pathways are known to control numerous aspects of limb development, including establishment of the early limb field, determination of limb identity, elongation of the limb bud, specification of digit pattern, and sculpting of the digits. Modification of underlying signaling pathways can thus result in dramatic alterations of the limb phenotype, accounting for many of the diverse limb patterns observed in nature. Given this, it is clear that signaling pathways regulate the highly orchestrated and tightly controlled sequence of cellular events necessary for limb outgrowth; however, exactly how molecular signals interface with the cell biology of limb development remains largely a mystery. In this review we first provide an overview of a number of the morphogenetic signaling pathways that have been identified in the developing limb and then review how a subset of these signals are known to modify cell behaviors important for limb outgrowth.
Collapse
Affiliation(s)
- S A Schaller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Lousiana 70118, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Orestes-Cardoso SM, Nefussi JR, Hotton D, Mesbah M, Orestes-Cardoso MD, Robert B, Berdal A. Postnatal Msx1 expression pattern in craniofacial, axial, and appendicular skeleton of transgenic mice from the first week until the second year. Dev Dyn 2001; 221:1-13. [PMID: 11357189 DOI: 10.1002/dvdy.1120] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phenotypes associated with Msx1 mutations have established the prominent role of this divergent homeogene in skeletal patterning. Previous studies have been achieved during antenatal development in relation with the early death of null mutant mice. Therefore, the present study is devoted to Msx1 homeogene in the postnatal craniofacial, axial, and appendicular skeleton. A knock-in transgenic mouse line was studied from the first postnatal week until 15 months. Whole-mount beta-galactosidase enzymology identified Msx1 protein expression pattern. Maintained expression of Msx1 was observed in growing and adult mice, specifically in the sites where Msx1 plays an early morphogenetic role during initial skeletal patterning. These included the craniofacial sutures, autopodium, mandible, and alveolar bone. Furthermore, active membranous and endochondral bone formation involved Msx1 in the entire skeleton. Histologic sections showed that progenitor as well as differentiating and differentiated cells of all the bone cell lineages could express the Msx1 protein (chondrocytes, osteoblasts, tartrate-resistant acid phosphatase positive osteoclasts and chondroclasts). Recent developments in the genetic and developmental biology of skeletal morphogenesis demonstrate that genes critical for development are jointly expressed in discrete embryonic signalling and growth centers, the enamel knot in teeth, the cranial suture in skull morphogenesis, and the progress zone in the limb buds. The present study suggests that these signalling pathways are jointly important throughout the entire lifetime with an exquisite site-specificity spatially related to early patterning.
Collapse
Affiliation(s)
- S M Orestes-Cardoso
- Laboratoire de Biologie Odontologie, EA 2380, Université Paris 7, IFR 58, Institut Biomédical des Cordeliers, Esc. E-2è ét., Paris, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT. Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 2000; 222:347-58. [PMID: 10837124 DOI: 10.1006/dbio.2000.9722] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Following amputation of a urodele limb or teleost fin, the formation of a blastema is a crucial step in facilitating subsequent regeneration. Using the zebrafish caudal fin regeneration model, we have examined the hypothesis that fibroblast growth factors (Fgfs) initiate blastema formation from fin mesenchyme. We find that fibroblast growth factor receptor 1 (fgfr1) is expressed in mesenchymal cells underlying the wound epidermis during blastema formation and in distal blastemal tissue during regenerative outgrowth. fgfr1 transcripts colocalize with those of msxb and msxc, putative markers for undifferentiated, proliferating cells. A zebrafish Fgf member, designated wfgf, is expressed in the regeneration epidermis during outgrowth. Furthermore, we show that a specific inhibitor of Fgfr1 applied immediately following fin amputation blocks blastema formation, without obvious effects on wound healing. This inhibitor blocks the proliferation of blastemal cells and the onset of msx gene transcription. Inhibition of Fgf signaling during ongoing fin regeneration prevents further outgrowth while downregulating the established expression of blastemal msx genes and epidermal sonic hedgehog. Our findings indicate that zebrafish fin blastema formation and regenerative outgrowth require Fgf signaling.
Collapse
Affiliation(s)
- K D Poss
- Howard Hughes Medical Institute, Eccles Institute of Human Genetics, University of Utah Health Sciences Center, 15N 2030E, Salt Lake City, Utah, 84112, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Xenopus laevis can regenerate an amputated limb completely at early limb bud stages, but the metamorphosed froglet gradually loses this capacity and can regenerate only a spike-like structure. We show that the spike formation in a Xenopus froglet is nerve dependent as is limb regeneration in urodeles, since denervation concomitant with amputation is sufficient to inhibit the initiation of blastema formation and fgf8 expression in the epidermis. Furthermore, in order to determine the cause of the reduction in regenerative capacity, we examined the expression patterns of several key genes for limb patterning during the spike-like structure formation, and we compared them with those in developing and regenerating limb buds that produce a complete limb structure. We cloned Xenopus HoxA13, a marker of the prospective autopodium region, and the expression pattern suggested that the spike-like structure in froglets is accompanied by elongation and patterning along the proximodistal (PD) axis. On the other hand, shh expression was not detected in the froglet blastema, which expresses fgf8 and msx1. Thus, although the wound epidermis probably induces outgrowth of the froglet blastema, the polarizing activity that organizes the anteroposterior (AP) axis formation is likely to be absent there. Our results demonstrate that the lost region in froglet limbs is regenerated along the PD axis and that the failure of organization of the AP pattern gives rise to a spike-like incomplete structure in the froglet, suggesting a relationship between regenerative capacity and AP patterning. These findings lead us to conclude that the spike formation in postometamorphic Xenopus limbs is epimorphic regeneration.
Collapse
Affiliation(s)
- T Endo
- Biological Institute, Graduate School of Science, Tohoku University, Aoba-yama aoba-ku, Sendai, 980-8578, Japan
| | | | | |
Collapse
|
40
|
Yokoyama H, Yonei-Tamura S, Endo T, Izpisúa Belmonte JC, Tamura K, Ide H. Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev Biol 2000; 219:18-29. [PMID: 10677252 DOI: 10.1006/dbio.1999.9587] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A young tadpole of an anuran amphibian can completely regenerate an amputated limb, and it exhibits an ontogenetic decline in the ability to regenerate its limbs. However, whether mesenchymal or epidermal tissue is responsible for this decrease of the capacity remains unclear. Moreover, little is known about the molecular interactions between these two tissues during regeneration. The results of this study showed that fgf-10 expression in the limb mesenchymal cells clearly corresponds to the regenerative capacity and that fgf-10 and fgf-8 are synergistically reexpressed in regenerating blastemas. However, neither fgf-10 nor fgf-8 is reexpressed after amputation of a nonregenerative limb. Nevertheless, nonregenerative epidermal tissue can reexpress fgf-8 under the influence of regenerative mesenchyme, as was demonstrated by experiments using a recombinant limb composed of regenerative limb mesenchyme and nonregenerative limb epidermis. Taken together, our data demonstrate that the regenerative capacity depends on mesenchymal tissue and suggest that fgf-10 is likely to be involved in this capacity.
Collapse
Affiliation(s)
- H Yokoyama
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Muller TL, Ngo-Muller V, Reginelli A, Taylor G, Anderson R, Muneoka K. Regeneration in higher vertebrates: limb buds and digit tips. Semin Cell Dev Biol 1999; 10:405-13. [PMID: 10497097 DOI: 10.1006/scdb.1999.0327] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T L Muller
- Department of Cell and Molecular Biology, Tulane University, New Orleas, LA, 70118, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Experiments have been carried out to investigate the role of the apical ectodermal ridge (AER) and FGF-4 on the control of cell migration during limb bud morphogenesis. By coupling DiI cell labeling with ectopic implantation of FGF-4 microcarrier beads we have found that FGF-4 acts as a potent and specific chemoattractive agent for mesenchymal cells of the limb bud. The response to FGF-4 is dose dependent in both the number of cells stimulated to migrate and the distance migrated. The cell migration response to FGF-4 appears to be independent of the known inductive activity of FGF-4 on Shh gene expression. We investigated the role of the AER in controlling cell migration by characterizing the migration pattern of DiI-labeled subapical cells during normal limb outgrowth and following partial AER removal. Subapical cells within 75 micrometer of the AER migrate to make contact with the AER and are found intermingled with nonlabeled cells. Thus, the progress zone is dynamic with cells constantly altering their neighbor relationships during limb outgrowth. AER removal studies show that cell migration is AER dependent and that subapical cells redirect their path of migration toward a functional AER. These studies indicate that the AER has a chemoattractive function and regulates patterns of cell migration during limb outgrowth. Our results suggest that the chemoattractive activity of the AER is mediated in part by the production of FGF-4.
Collapse
Affiliation(s)
- S Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, 70118, USA
| | | |
Collapse
|
43
|
ENDOSCOPIC EXCISION AND REPAIR OF SIMULATED BILATERAL CLEFT LIPS IN FETAL LAMBS. Plast Reconstr Surg 1999. [DOI: 10.1097/00006534-199906000-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Ng JK, Tamura K, Büscher D, Izpisúa-Belmonte JC. Molecular and cellular basis of pattern formation during vertebrate limb development. Curr Top Dev Biol 1998; 41:37-66. [PMID: 9784972 DOI: 10.1016/s0070-2153(08)60269-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The body plan is generated by cells and tissues that become arranged precisely in the embryo. This process, termed pattern formation, involves cell interactions in which a particular group of cells produce signals that specify new cell types or patterns of differentiation in responding cells. These patterning signals emanate from very discrete centers called "organizer centers," such as the Hensen's node or Spemann organizer, the midbrain-hindbrain junction, the notochord, or in the case of the limb, the zone of polarizing activity (ZPA) or the apical ectodermal ridge (AER). The developing vertebrate limb is an ideal model system for the study of pattern formation because, in addition to surgical manipulations, molecular manipulations are now feasible. In this review we summarize early experiments that established, by means of surgical manipulations, the different organizer centers of the vertebrate limb: the ectoderm covering the limb bud, the apical ectodermal ridge, the zone of polarizing activity, and the distal mesoderm (progress zone) underlying the AER. We then describe the domains of expression of various genes present during the development of the limb and discuss some of the functional approaches (overexpression and lack of function studies) undertaken to ascertain their role in limb outgrowth. The knowledge acquired in the last few years has had an enormous impact not only on our view of how limbs develop (perhaps now one of the most approachable vertebrate model systems) but also in a more general sense of how the embryo is organized in space and time.
Collapse
Affiliation(s)
- J K Ng
- Gene Expression Laboratory, Salk Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
45
|
Merino R, Gañan Y, Macias D, Economides AN, Sampath KT, Hurle JM. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev Biol 1998; 200:35-45. [PMID: 9698454 DOI: 10.1006/dbio.1998.8946] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the final stages of limb morphogenesis, autopodial cells leaving the progress zone differentiate into cartilage or undergo apoptotic cell death, depending on whether they are incorporated into the digital rays or interdigital spaces. Most evidence indicates that these two opposite fates of the autopodial mesoderm are controlled by BMP signaling. However, the molecular basis for these two distinct actions of BMPs, including the receptors involved in the process, is controversial. In this study we have addressed this question by exploring the presence in the developing autopod of diffusible signals able to modulate BMP function and by analyzing the effects of their exogenous administration on the pattern of expression of BMP receptor genes. Our findings show that tgfbeta2 and noggin genes are expressed in the condensing region of the developing digital rays in addition to the well-known distribution in the autopodial tissues of FGFs (apical ectodermal ridge, AER) and BMPs (AER, progress zone mesoderm, and interdigital regions). Exogenous administration of all the factors causes changes in the expression of the bmpR-1b gene which are followed by parallel alterations of the skeletal phenotype: FGFs inhibit the expression of bmpR-1b compatible with their function in the maintenance of the progress zone mesoderm in an undifferentiated state; and TGFbetas induce the expression of bmpR-1b and promote ectopic chondrogenesis, compatible with a function in the establishment of the position of the digital rays. In addition we provide evidence for the occurrence of an interactive loop between BMPs and noggin accounting for the spatial distribution of bmpR-1b which may control the size and shape of the skeletal pieces. In contrast to the bmpR-1b gene, the bmpR-1a gene is expressed at low levels in the autopodial mesoderm and its expression is not modified by any of the tested factors regardless of their effects on chondrogenesis or cell death. Finally, the role of BMPs in programmed cell death is confirmed here by the intense inhibitory effect of noggin on apoptosis, but the lack of correlation between changes in the pattern of cell death induced by treatment with the studied factors and the expression of either bmpR-1a or bmpR-1b genes suggest that a still-unidentified BMP receptor may account for this BMP function.
Collapse
Affiliation(s)
- R Merino
- Facultad de Medicina, Universidad de Cantabria, C/Cardenal Herrera Oria s/n, Santander, 39011, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Gañan Y, Macias D, Basco RD, Merino R, Hurle JM. Morphological diversity of the avian foot is related with the pattern of msx gene expression in the developing autopod. Dev Biol 1998; 196:33-41. [PMID: 9527879 DOI: 10.1006/dbio.1997.8843] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of the digits in amniota embryos is accompanied by apoptotic cell death of the interdigital mesoderm triggered through BMP signaling. Differences in the intensity of this apoptotic process account for the establishment of the different morphological types of feet observed in amniota (i.e., free-digits, webbed digits, lobulated digits). The molecular basis accounting for the differential pattern of interdigital cell death remains uncertain since the reduction of cell death in species with webbed digits is not accompanied by a parallel reduction in the pattern of expression of bmp genes in the interdigital regions. In this study we show that the duck interdigital web mesoderm exhibits an attenuated response to both BMP-induced apoptosis and TGFbeta-induced chondrogenesis in comparison with species with free digits. The attenuated response to these signals is accompanied by a reduced pattern of expression of msx-1 and msx-2 genes. Local application of FGF in the duck interdigit expands the domain of msx-2 expression but not the domain of msx-1 expression. This change in the expression of msx-2 is followed by a parallel increase in spontaneous and exogenous BMP-induced interdigital cell death, while the chondrogenic response to TGFbetas is unchanged. The regression of AER, as deduced by the pattern of extinction of fgf-8 expression, takes place in a similar fashion in the chick and duck regardless of the differences in interdigital cell death and msx gene expression. Implantation of BMP-beads in the distal limb mesoderm induces AER regression in both the chick and duck. This finding suggests an additional role for BMPs in the physiological regression of the AER. It is proposed that the formation of webbed vs free-digit feet in amniota results from a premature differentiation of the interdigital mesoderm into connective tissue caused by a reduced expression of msx genes in the developing autopod.
Collapse
Affiliation(s)
- Y Gañan
- Departamento de Ciencias Morfológicas y Biología Animal y Celular, Universidad de Extremadura, Badajoz, 06071, Spain
| | | | | | | | | |
Collapse
|
47
|
Géraudie J, Ferretti P. Gene expression during amphibian limb regeneration. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 180:1-50. [PMID: 9496633 DOI: 10.1016/s0074-7696(08)61769-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Limb regeneration in adult urodeles is an important phenomenon that poses fundamental questions both in biology and in medicine. In this review, we focus on recent advances in the characterization of the regeneration blastema at cellular and molecular levels and on the current understanding of the molecular basis of limb regeneration and its relationship to development. In particular, we discuss (i) the spatiotemporal distribution of genes and gene products in the mesenchyme and wound epidermis of the regenerating limb, (ii) how growth is controlled in the regeneration blastema, and (iii) molecules that are likely to be involved in patterning the regenerating limb such as homeobox genes and retinoids.
Collapse
Affiliation(s)
- J Géraudie
- Laboratoire de Biologie du Développement, Université Paris, France
| | | |
Collapse
|
48
|
Ros MA, Sefton M, Nieto MA. Slug, a zinc finger gene previously implicated in the early patterning of the mesoderm and the neural crest, is also involved in chick limb development. Development 1997; 124:1821-9. [PMID: 9165129 DOI: 10.1242/dev.124.9.1821] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The great advances made over the last few years in the identification of signalling molecules that pattern the limb bud along the three axes make the limb an excellent model system with which to study developmental mechanisms in vertebrates. The understanding of the signalling networks and their mutual interactions during limb development requires the characterisation of the corresponding downstream genes. In this study we report the expression pattern of Slug, a zinc-finger-containing gene of the snail family, during the development of the limb, and its regulation by distinct axial signalling systems. Slug expression is highly dynamic, and at different stages of limb development can be correlated with the zone of polarizing activity, the progress zone and the interdigital areas. We show that the maintenance of its expression is dependent on signals from the apical ectodermal ridge and independent of Sonic Hedgehog. We also report that, in the interdigit, apoptotic cells lie outside of the domains of Slug expression. The correlation of Slug expression with areas of undifferentiated mesenchyme at stages of tissue differentiation is consistent with its role in early development, in maintaining the mesenchymal phenotype and repressing differentiation processes. We suggest that Slug is involved in the epithelial-mesenchymal interactions that lead to the maintenance of the progress zone.
Collapse
Affiliation(s)
- M A Ros
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
49
|
Ros MA, Piedra ME, Fallon JF, Hurle JM. Morphogenetic potential of the chick leg interdigital mesoderm when diverted from the cell death program. Dev Dyn 1997; 208:406-19. [PMID: 9056644 DOI: 10.1002/(sici)1097-0177(199703)208:3<406::aid-aja11>3.0.co;2-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is evidence that the interdigital mesoderm may be in an undifferentiated state. For example, under experimental manipulation in vivo it may be diverted from cell death to digit formation. In the present work we wanted to analyze the maximum morphogenetic potential of the interdigital cells. To do this we made recombinant limbs of three types, the first using dissociated-reaggregated leg interdigital mesoderm, the second using the same tissue but without dissociation and the third adding a piece of polarizing region to the dissociated interdigit. In all three the massive cell death of the interdigit failed to occur. The first type of recombinant formed a small nodule of cartilage while the other two formed a well-developed digit. Our data indicate that the maximum morphogenetic potential of the interdigital tissue appears constrained to form digits and that dissociation of the tissue decreased this ability; polarizing region restores the ability of dissociated cell recombinants to form a digit. We also analyzed in these recombinants the expression of a battery of genes implicated in interdigital cell death or in digital morphogenesis. The pattern of expression of each gene analyzed was identical in the three types of recombinant limbs. The expression of Msx1 and Msx2 genes was maintained under the ridge indicating a good interaction between the interdigital cells, both dissociated and undissociated, and the apical ridge. The expression of Hoxd-12, Hoxd-13 and Hoxa-13 genes was maintained in the recombinants, indicating that these cells carry information about their autopodial origin, and this correlates well with their distal restricted morphogenetic potential. Finally, the patterns of expression of the Bmp-2, Bmp-4 and Bmp-7 genes indicated that they are independently regulated in the recombinants and that Bmp-4 and Bmp-7 have wider expression domains than the areas of cell death that were only detected under the regressing apical ridge during day 3 of the experiment.
Collapse
Affiliation(s)
- M A Ros
- Department of Anatomy and Cellular Biology, University of Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
50
|
Robertson KE, Tickle C. Recent molecular advances in understanding vertebrate limb development. BRITISH JOURNAL OF PLASTIC SURGERY 1997; 50:109-15. [PMID: 9135427 DOI: 10.1016/s0007-1226(97)91322-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Considerable recent advances have been made in understanding the mechanisms of vertebrate limb development. New information about molecules governing cell interactions in embryonic limbs begins to bridge the gap between the experimental analysis and genetics of congenital limb defects. There are four main stages in vertebrate limb development: initiation, specification of limb pattern, tissue formation accompanied by limb morphogenesis, and growth. Although classical embryology focused on chick embryos and recent molecular analysis centres on limbs of both chickens and mice, most of the fundamental mechanisms that have been uncovered appear to be conserved between vertebrates and are likely to be directly applicable to human limb development.
Collapse
Affiliation(s)
- K E Robertson
- Department of Anatomy and Developmental Biology, University College London, UK
| | | |
Collapse
|