1
|
Luo Q, Yu H, Yu T, Xia J, Zou Y, Li Y, Chen J, Lin X, Peng H. Putamen subregion dysfunction mediates the relationship between childhood maltreatment and major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-02034-8. [PMID: 40493215 DOI: 10.1007/s00406-025-02034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2025] [Indexed: 06/12/2025]
Abstract
Childhood maltreatment is a significant risk factor for the development of major depressive disorder (MDD) and is closely linked to abnormalities in the brain's reward circuitry. Previous studies have observed reward circuitry abnormalities centered around the putamen in MDD patients, treating it as a single core nucleus. However, the putamen is a heterogeneous nucleus composed of different functional subregions, and there is limited research focused on the abnormal functional connectivity (FC) of putamen subregions in MDD with childhood maltreatment. To explore putamen-centered reward circuitry abnormalities in MDD with childhood maltreatment, we conducted static and dynamic functional connectivity (FC) analyses with putamen subregions (including the ventral anterior putamen, dorsal anterior putamen, ventral posterior putamen, and dorsal posterior putamen) as regions of interest. Four groups were included: MDD with childhood maltreatment (n = 48), MDD without childhood maltreatment (n = 30), healthy controls with childhood maltreatment (n = 57), and healthy controls without childhood maltreatment (n = 46). Compared to MDD without childhood maltreatment, MDD with childhood maltreatment exhibited higher dynamic FC between the right dorsal putamen and the right prefrontal gyrus, as well as lower static FC between the right ventral anterior putamen and the left middle frontal gyrus and left anterior cingulate gyrus. A positive correlation was found between these aberrant dynamic FC patterns and childhood maltreatment. Additionally, the abnormal dynamic FC mediated the relationship between childhood neglect and the depression severity. These findings suggest that dysfunctional connectivity within the putamen subregions may serve as a neurobiological marker for MDD in individuals with childhood maltreatment. This study contributes to a better understanding of the underlying neurobiological mechanisms of MDD, with implications for more targeted interventions that take into account the specific brain alterations associated with a history of childhood maltreatment.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Tong Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Jinrou Xia
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Yurong Zou
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Yuhong Li
- Department of Publicity and Health Education, Shenzhen Longhua District Central Hospital, Shenzhen, 518000, China
| | - Juran Chen
- The Zhongshan Torch Hi-tech Industrial Development Zone Community Health Service, Zhongshan, 528437, China
| | - Xiaohui Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China.
| |
Collapse
|
2
|
Bhattacharya A, Chakraborty M, Chanda A, Alqahtani T, Kumer A, Dhara B, Chattopadhyay M. Neuroendocrine and cellular mechanisms in stress resilience: From hormonal influence in the CNS to mitochondrial dysfunction and oxidative stress. J Cell Mol Med 2024; 28:e18220. [PMID: 38509751 PMCID: PMC10955164 DOI: 10.1111/jcmm.18220] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Recent advancements in neuroendocrinology challenge the long-held belief that hormonal effects are confined to perivascular tissues and do not extend to the central nervous system (CNS). This paradigm shift, propelled by groundbreaking research, reveals that synthetic hormones, notably in anti-inflammatory medications, significantly influence steroid psychosis, behavioural, and cognitive impairments, as well as neuropeptide functions. A seminal development in this field occurred in 1968 with McEven's proposal that rodent brains are responsive to glucocorticoids, fundamentally altering the understanding of how anxiety impacts CNS functionality and leading to the identification of glucocorticosteroids and mineralocorticoids as distinct corticotropic receptors. This paper focuses on the intricate roles of the neuroendocrine, immunological, and CNS in fostering stress resilience, underscored by recent animal model studies. These studies highlight active, compensatory, and passive strategies for resilience, supporting the concept that anxiety and depression are systemic disorders involving dysregulation across both peripheral and central systems. Resilience is conceptualized as a multifaceted process that enhances psychological adaptability to stress through adaptive mechanisms within the immunological system, brain, hypothalamo-pituitary-adrenal axis, and ANS Axis. Furthermore, the paper explores oxidative stress, particularly its origin from the production of reactive oxygen species (ROS) in mitochondria. The mitochondria's role extends beyond ATP production, encompassing lipid, heme, purine, and steroidogenesis synthesis. ROS-induced damage to biomolecules can lead to significant mitochondrial dysfunction and cell apoptosis, emphasizing the critical nature of mitochondrial health in overall cellular function and stress resilience. This comprehensive synthesis of neuroendocrinological and cellular biological research offers new insights into the systemic complexity of stress-related disorders and the imperative for multidisciplinary approaches in their study and treatment.
Collapse
Affiliation(s)
- Arghya Bhattacharya
- Department of PharmacologyCalcutta Institute of Pharmaceutical Technology and AHSUluberiaWest BengalIndia
| | - Manas Chakraborty
- Department of Pharmaceutical BiotechnologyCalcutta institute of pharmaceutical technology and AHSUluberiaWest BengalIndia
| | - Ananya Chanda
- Department of Pharmaceutical ScienceAdamas UniversityBarasatWest BengalIndia
| | - Taha Alqahtani
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and Sciences, IUBAT‐International University of Business Agriculture and TechnologyDhakaBangladesh
| | - Bikram Dhara
- Center for Global Health ResearchSaveetha Medical College and Hospital, Saveetha Institute of Medical and Technical SciencesChennaiIndia
- Department of Health SciencesNovel Global Community and Educational FoundationHebershamNew South WalesAustralia
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical TechnologyMaulana Abul Kalam Azad University of TechnologyKolkataWest BengalIndia
| |
Collapse
|
3
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
4
|
Marino S, Jassar H, Kim DJ, Lim M, Nascimento TD, Dinov ID, Koeppe RA, DaSilva AF. Classifying migraine using PET compressive big data analytics of brain's μ-opioid and D2/D3 dopamine neurotransmission. Front Pharmacol 2023; 14:1173596. [PMID: 37383727 PMCID: PMC10294712 DOI: 10.3389/fphar.2023.1173596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: Migraine is a common and debilitating pain disorder associated with dysfunction of the central nervous system. Advanced magnetic resonance imaging (MRI) studies have reported relevant pathophysiologic states in migraine. However, its molecular mechanistic processes are still poorly understood in vivo. This study examined migraine patients with a novel machine learning (ML) method based on their central μ-opioid and dopamine D2/D3 profiles, the most critical neurotransmitters in the brain for pain perception and its cognitive-motivational interface. Methods: We employed compressive Big Data Analytics (CBDA) to identify migraineurs and healthy controls (HC) in a large positron emission tomography (PET) dataset. 198 PET volumes were obtained from 38 migraineurs and 23 HC during rest and thermal pain challenge. 61 subjects were scanned with the selective μ-opioid receptor (μOR) radiotracer [11C]Carfentanil, and 22 with the selective dopamine D2/D3 receptor (DOR) radiotracer [11C]Raclopride. PET scans were recast into a 1D array of 510,340 voxels with spatial and intensity filtering of non-displaceable binding potential (BPND), representing the receptor availability level. We then performed data reduction and CBDA to power rank the predictive brain voxels. Results: CBDA classified migraineurs from HC with accuracy, sensitivity, and specificity above 90% for whole-brain and region-of-interest (ROI) analyses. The most predictive ROIs for μOR were the insula (anterior), thalamus (pulvinar, medial-dorsal, and ventral lateral/posterior nuclei), and the putamen. The latter, putamen (anterior), was also the most predictive for migraine regarding DOR D2/D3 BPND levels. Discussion: CBDA of endogenous μ-opioid and D2/D3 dopamine dysfunctions in the brain can accurately identify a migraine patient based on their receptor availability across key sensory, motor, and motivational processing regions. Our ML-based findings in the migraineur's brain neurotransmission partly explain the severe impact of migraine suffering and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Simeone Marino
- Statistics Online Computational Resource, Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Hassan Jassar
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Dajung J. Kim
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Manyoel Lim
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Thiago D. Nascimento
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ivo D. Dinov
- Statistics Online Computational Resource, Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, United States
| | - Robert A. Koeppe
- Department of Radiology, Division of Nuclear Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexandre F. DaSilva
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Lu F, Cui Q, Chen Y, He Z, Sheng W, Tang Q, Yang Y, Luo W, Yu Y, Chen J, Li D, Deng J, Zeng Y, Chen H. Insular-associated causal network of structural covariance evaluating progressive gray matter changes in major depressive disorder. Cereb Cortex 2023; 33:831-843. [PMID: 35357431 DOI: 10.1093/cercor/bhac105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Morphometric studies demonstrated wide-ranging distribution of brain structural abnormalities in major depressive disorder (MDD). OBJECTIVE This study explored the progressive gray matter volume (GMV) changes pattern of structural network in 108 MDD patients throughout the illness duration by using voxel-based morphometric analysis. METHODS The causal structural covariance network method was applied to map the causal effects of GMV alterations between the original source of structural changes and other brain regions as the illness duration prolonged in MDD. This was carried out by utilizing the Granger causality analysis to T1-weighted data ranked based on the disease progression information. RESULTS With greater illness duration, the GMV reduction was originated from the right insula and progressed to the frontal lobe, and then expanded to the occipital lobe, temporal lobe, dorsal striatum (putamen and caudate) and the cerebellum. Importantly, results revealed that the right insula was the prominent node projecting positive causal influences (i.e., GMV decrease) to frontal lobe, temporal lobe, postcentral gyrus, putamen, and precuneus. While opposite causal effects were detected from the right insula to the angular, parahippocampus, supramarginal gyrus and cerebellum. CONCLUSIONS This work may provide further information and vital evidence showing that MDD is associated with progressive brain structural alterations.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiaxin Deng
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuhong Zeng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Ai H, Van Dam NT, Qian L, Hou G, Xu P. Microstructural deficits of the thalamus in major depressive disorder. Brain Commun 2022; 4:fcac236. [PMID: 36196087 PMCID: PMC9525011 DOI: 10.1093/braincomms/fcac236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macroscopic structural abnormalities in the thalamus and thalamic circuits have been implicated in the neuropathology of major depressive disorder. However, cytoarchitectonic properties underlying these macroscopic abnormalities remain unknown. Here, we examined systematic deficits of brain architecture in depression, from structural brain network organization to microstructural properties. A multi-modal neuroimaging approach including diffusion, anatomical and quantitative MRI was used to examine structural-related alternations in 56 patients with depression compared with 35 age- and sex-matched controls. The seed-based probabilistic tractography showed multiple alterations of structural connectivity within a set of subcortical areas and their connections to cortical regions in patients with depression. These subcortical regions included the putamen, thalamus and caudate, which are predominantly involved in the limbic-cortical-striatal-pallidal-thalamic network. Structural connectivity was disrupted within and between large-scale networks, including the subcortical network, default-mode network and salience network. Consistently, morphometric measurements, including cortical thickness and voxel-based morphometry, showed widespread volume reductions of these key regions in patients with depression. A conjunction analysis identified common structural alternations of the left orbitofrontal cortex, left putamen, bilateral thalamus and right amygdala across macro-modalities. Importantly, the microstructural properties, longitudinal relaxation time of the left thalamus was increased and inversely correlated with its grey matter volume in patients with depression. Together, this work to date provides the first macro-micro neuroimaging evidence for the structural abnormalities of the thalamus in patients with depression, shedding light on the neuropathological disruptions of the limbic-cortical-striatal-pallidal-thalamic circuit in major depressive disorder. These findings have implications in understanding the abnormal changes of brain structures across the development of depression.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yingli Zhang
- Department of Depressive Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Hui Ai
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518052, China
| | - Nicholas T Van Dam
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100176, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen 518107, China
| |
Collapse
|
7
|
Auerbach RP, Pagliaccio D, Hubbard NA, Frosch I, Kremens R, Cosby E, Jones R, Siless V, Lo N, Henin A, Hofmann SG, Gabrieli JDE, Yendiki A, Whitfield-Gabrieli S, Pizzagalli DA. Reward-Related Neural Circuitry in Depressed and Anxious Adolescents: A Human Connectome Project. J Am Acad Child Adolesc Psychiatry 2022; 61:308-320. [PMID: 33965516 PMCID: PMC8643367 DOI: 10.1016/j.jaac.2021.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Although depression and anxiety often have distinct etiologies, they frequently co-occur in adolescence. Recent initiatives have underscored the importance of developing new ways of classifying mental illness based on underlying neural dimensions that cut across traditional diagnostic boundaries. Accordingly, the aim of the study was to clarify reward-related neural circuitry that may characterize depressed-anxious youth. METHOD The Boston Adolescent Neuroimaging of Depression and Anxiety Human Connectome Project tested group differences regarding subcortical volume and nucleus accumbens activation during an incentive processing task among 14- to 17-year-old adolescents presenting with a primary depressive and/or anxiety disorder (n = 129) or no lifetime history of mental disorders (n = 64). In addition, multimodal modeling examined predictors of depression and anxiety symptom change over a 6-month follow-up period. RESULTS Our findings highlighted considerable convergence. Relative to healthy youth, depressed-anxious adolescents exhibited reduced nucleus accumbens volume and activation following reward receipt. These findings remained when removing all medicated participants (∼59% of depressed-anxious youth). Subgroup analyses comparing anxious-only, depressed-anxious, and healthy youth also were largely consistent. Multimodal modeling showed that only structural alterations predicted depressive symptoms over time. CONCLUSION Multimodal findings highlight alterations within nucleus accumbens structure and function that characterize depressed-anxious adolescents. In the current hypothesis-driven analyses, however, only reduced nucleus accumbens volume predicted depressive symptoms over time. An important next step will be to clarify why structural alterations have an impact on reward-related processes and associated symptoms.
Collapse
|
8
|
Yan X, Jiang K, Li H, Wang Z, Perkins K, Cao F. Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia. eLife 2021; 10:e69523. [PMID: 34569931 PMCID: PMC8497057 DOI: 10.7554/elife.69523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Ke Jiang
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Hui Li
- Department of Preschool Education, Anyang Preschool Education CollegeAnyangChina
| | - Ziyi Wang
- School of Foreign Language, Jining UniversityJiningChina
| | - Kyle Perkins
- Florida International University (Retired Professor)MiamiUnited States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
9
|
A longitudinal study of the association between basal ganglia volumes and psychomotor symptoms in subjects with late life depression undergoing ECT. Transl Psychiatry 2021; 11:199. [PMID: 33795659 PMCID: PMC8017007 DOI: 10.1038/s41398-021-01314-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Psychomotor dysfunction (PMD) is a core element and key contributor to disability in late life depression (LLD), which responds well to electroconvulsive therapy (ECT). The neurobiology of PMD and its response to ECT are not well understood. We hypothesized that PMD in LLD is associated with lower striatal volume, and that striatal volume increase following ECT explains PMD improvement. We analyzed data from a two-center prospective cohort study of 110 LLD subjects (>55 years) receiving ECT. Brain MRI and assessment of mood, cognition, and PMD was performed 1 week before, 1 week after, and 6 months after ECT. Volumetry of the caudate nucleus, putamen, globus pallidus, and nucleus accumbens was derived from automatically segmented brain MRIs using Freesurfer®. Linear multiple regression analyses were used to study associations between basal ganglia volume and PMD. Brain MRI was available for 66 patients 1 week post ECT and in 22 patients also six months post ECT. Baseline PMD was associated with a smaller left caudate nucleus. One week after ECT, PMD improved and volume increases were detected bilaterally in the caudate nucleus and putamen, and in the right nucleus accumbens. Improved PMD after ECT did not relate to the significant volume increases in these structures, but was predicted by a nonsignificant volume change in the right globus pallidus. No volume differences were detected 6 months after ECT, compared to baseline. Although PMD is related to lower striatal volume in LLD, ECT-induced increase of striatal volume does not explain PMD improvement.
Collapse
|
10
|
Lorefice L, Fenu G, Carta E, Frau J, Coghe G, Contu F, Barracciu MA, Carta MG, Cocco E. Bipolar disorders and deep grey matter in multiple sclerosis: A preliminary quantitative MRI study. Mult Scler Relat Disord 2020; 46:102564. [PMID: 33172832 DOI: 10.1016/j.msard.2020.102564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is frequently observed in patients affected by multiple sclerosis (MS), presenting a lifetime estimate of around 8%. However, uncertainty exists on the brain damage associated with this psychiatric comorbidity. This study aimed to investigate the effect of brain atrophy, particularly that of the subcortical grey matter (scGM) structures that notoriously regulate the affective functioning, on the co-occurrence of BD in patients with MS. METHODS A group of patients with MS affected by BD and a control group of patients with MS without any mood/psychiatric disorder, as defined using standardised diagnostic tools (Advanced Neuropsychiatric Tools and Assessment Schedule), were recruited. The patients underwent brain MRI, and the volumes of the whole brain (WB), white matter (WM), and grey matter (GM) were estimated using SIENAX. Thus, the scGM volumes of the putamen, caudate, thalamus, hippocampus, amygdala, nucleus accumbens, and pallidus were estimated using the FIRST tool. RESULTS The sample included 61 patients with MS, amongst whom 15 (24.6%) had BD. No differences in the WB, WM, and cortical GM volumes were observed between the patients with MS with and without BD. Conversely, the multiple regression analysis revealed a significant association of BD with lower volumes of the putamen (p = 0.032), nucleus accumbens (p = 0.029), and pallidus (p = 0.061; with a trend towards significance), independently from the demographic and MS clinical features. CONCLUSIONS Our preliminary results indicated that the nucleus accumbens and putamen are smaller in MS patients with BD. Further investigations in larger cohorts of MS patients with affective disorders are necessary to confirm these data and understand the structural brain damage underlying this psychiatric comorbidity.
Collapse
Affiliation(s)
- L Lorefice
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Italy.
| | - G Fenu
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Italy
| | - E Carta
- Multiple Sclerosis Centre, Dpt of Medical Sciences and Public Health, University of Cagliari, Italy
| | - J Frau
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Italy
| | - G Coghe
- Multiple Sclerosis Centre, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Italy
| | - F Contu
- Radiology Unit, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Italy
| | - M A Barracciu
- Radiology Unit, Binaghi Hospital, ATS Sardegna, ASSL Cagliari, Italy
| | - M G Carta
- Dpt of Medical Sciences and Public Health, University of Cagliari, Italy
| | - E Cocco
- Multiple Sclerosis Centre, Dpt of Medical Sciences and Public Health, University of Cagliari, Italy
| |
Collapse
|
11
|
Brain Volume Abnormalities in Youth at High Risk for Depression: Adolescent Brain and Cognitive Development Study. J Am Acad Child Adolesc Psychiatry 2020; 59:1178-1188. [PMID: 31634568 PMCID: PMC7165045 DOI: 10.1016/j.jaac.2019.09.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Children of parents with depression are two to three times more likely to develop major depressive disorder than children without parental history; however, subcortical brain volume abnormalities characterizing major depressive disorder risk remain unclear. The Adolescent Brain and Cognitive Development (ABCD) Study provides an opportunity to identify subcortical differences associated with parental depressive history. METHOD Structural magnetic resonance data were acquired from 9- and 10-year-old children (N = 11,876; release 1.1, n = 4,521; release 2.0.1, n = 7,355). Approximately one-third of the children had a parental depressive history, providing sufficient power to test differences in subcortical brain volume between low- and high-risk youths. Children from release 1.1 were examined as a discovery sample, and we sought to replicate effects in release 2.0.1. Secondary analyses tested group differences in the prevalence of depressive disorders and clarified whether subcortical brain differences were present in youths with a lifetime depressive disorder history. RESULTS Parental depressive history was related to smaller right putamen volume in the discovery (release 1.1; d = -0.10) and replication (release 2.0.1; d = -0.10) samples. However, in release 1.1, this effect was driven by maternal depressive history (d = -0.14), whereas in release 2.0.1, paternal depressive history showed a stronger relationship with putamen volume (d = -0.09). Furthermore, high-risk children exhibited a near twofold greater occurrence of depressive disorders relative to low-risk youths (maternal history odds ratio =1.99; paternal history odds ratio = 1.45), but youths with a lifetime depressive history did not exhibit significant subcortical abnormalities. CONCLUSION A parental depressive history was associated with smaller putamen volume, which may affect reward learning processes that confer increased risk for major depressive disorder.
Collapse
|
12
|
Moriya H, Tiger M, Tateno A, Sakayori T, Masuoka T, Kim W, Arakawa R, Okubo Y. Low dopamine transporter binding in the nucleus accumbens in geriatric patients with severe depression. Psychiatry Clin Neurosci 2020; 74:424-430. [PMID: 32363761 DOI: 10.1111/pcn.13020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
AIM Dysfunction of dopaminergic neurons in the central nervous system is considered to be related to major depressive disorder (MDD). Especially, MDD in geriatric patients is characterized by anhedonia, which is assumed to be associated with reduced dopamine neurotransmission in the reward system. Dopamine transporter (DAT) is considered to reflect the function of the dopamine nerve system. However, previous DAT imaging studies using single photon emission computed tomography or positron emission tomography (PET) have shown inconsistent results. The radioligand [18 F]FE-PE2I for PET enables more precise evaluation of DAT availability. Hence, we aimed to evaluate the DAT availability in geriatric patients with MDD using [18 F]FE-PE2I. METHODS Eleven geriatric patients with severe MDD and 27 healthy controls underwent PET with [18 F]FE-PE2I, which has high affinity and selectivity for DAT. Binding potentials (BPND ) in the striatum (caudate and putamen), nucleus accumbens (NAc), and substantia nigra were calculated. BPND values were compared between MDD patients and healthy controls. RESULTS MDD patients showed significantly lower DAT BPND in the NAc (P = 0.009), and there was a trend of lower BPND in the putamen (P = 0.032) compared to controls. CONCLUSION We found low DAT in the NAc and putamen in geriatric patients with severe MDD, which could be related to dysregulation of the reward system.
Collapse
Affiliation(s)
- Hiroki Moriya
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mikael Tiger
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takahiro Masuoka
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - WooChan Kim
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
13
|
Hanseeuw BJ, Jonas V, Jackson J, Betensky RA, Rentz DM, Johnson KA, Sperling RA, Donovan NJ. Association of anxiety with subcortical amyloidosis in cognitively normal older adults. Mol Psychiatry 2020; 25:2599-2607. [PMID: 30116029 PMCID: PMC6377864 DOI: 10.1038/s41380-018-0214-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Late-life anxiety has been associated with increased progression from normal cognition to amnestic MCI, suggesting that anxiety may be a neuropsychiatric symptom of Alzheimer's disease (AD) pathological changes and a possible marker of anatomical progression in preclinical AD. This study examined whether cortical or subcortical amyloidosis, indicating earlier or later stages of preclinical AD, was associated with greater self-reported anxiety among 118 cognitively normal volunteers, aged 65-90 years, and whether this association was stronger in APOEε4 carriers. Participants underwent Pittsburgh Compound B Positron Emission Tomography (PiB-PET) to assess fibrillar amyloid-β burden in cortical and subcortical regions, and measurement of anxiety using the Hospital Anxiety and Depression Scale-anxiety subscale. Higher PiB-PET measures in the subcortex (striatum, amygdala, and thalamus), but not in the cortex, were associated with greater anxiety, adjusting for demographics, cognition, and depression. Findings were similar using a cortico-striatal staging system and continuous PET measurements. Anxiety was highest in APOEε4 carriers with subcortical amyloidosis. This work supports in vivo staging of amyloid-β deposition in both cortical and subcortical regions as a promising approach to the study of neuropsychiatric symptoms such as anxiety in cognitively normal older individuals. Elevated anxiety symptoms in combination with high-risk biological factors such as APOEε4 and subcortical amyloid-β may identify participants closest to MCI for secondary prevention trials.
Collapse
Affiliation(s)
- Bernard J. Hanseeuw
- grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.7942.80000 0001 2294 713XDepartment of Neurology, Cliniques Universitaires Saint-Luc, Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - Victoria Jonas
- grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jonathan Jackson
- grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Rebecca A. Betensky
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Dorene M. Rentz
- grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Keith A. Johnson
- grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Reisa A. Sperling
- grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Nancy J. Donovan
- Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
14
|
Knyazev GG, Savostyanov AN, Bocharov AV, Brak IV, Osipov EA, Filimonova EA, Saprigyn AE, Aftanas LI. Task-positive and task-negative networks in major depressive disorder: A combined fMRI and EEG study. J Affect Disord 2018; 235:211-219. [PMID: 29656269 DOI: 10.1016/j.jad.2018.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/23/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND The study of intrinsic connectivity networks, i.e., sets of brain regions that show a high degree of interconnectedness even in the absence of a task, showed that major depressive disorder (MDD) patients demonstrate an increased connectivity within the default mode network (DMN), which is active in a resting state and is implicated in self-referential processing, and a decreased connectivity in task-positive networks (TPNs), which increase their activity in attention tasks. Cortical localization of this 'dominance' of the DMN over the TPN in MDD patients is not fully understood. Besides, this effect has been investigated using fMRI and its electrophysiological underpinning is not known. METHOD In this study, we tested the dominance hypothesis using seed-based connectivity analysis of resting-state fMRI and EEG data obtained in 41 MDD patients and 23 controls. RESULTS In MDD patients, as compared to controls, insula, pallidum/putamen, amygdala, and left dorso- and ventrolateral prefrontal cortex are more strongly connected with DMN than with TPN seeds. In EEG, all significant effects were obtained in the delta frequency band. LIMITATIONS fMRI and EEG data were not obtained simultaneously during the same session. CONCLUSIONS In MDD patients, major emotion and attention regulation circuits are more strongly connected with DMN than with TPN implying they are more prepared to respond to internally generated self-related thoughts than to environmental challenges.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia.
| | - Alexander N Savostyanov
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Humanitarian Institute, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey V Bocharov
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Humanitarian Institute, Novosibirsk State University, Novosibirsk, Russia
| | - Ivan V Brak
- Laboratory of Affective and Cognitive Neuroscience, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Evgeny A Osipov
- Laboratory of Affective and Cognitive Neuroscience, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Elena A Filimonova
- Laboratory of Affective and Cognitive Neuroscience, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Alexander E Saprigyn
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Laboratory of Affective and Cognitive Neuroscience, Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
15
|
Zhou H, Polimanti R, Yang BZ, Wang Q, Han S, Sherva R, Nuñez YZ, Zhao H, Farrer LA, Kranzler HR, Gelernter J. Genetic Risk Variants Associated With Comorbid Alcohol Dependence and Major Depression. JAMA Psychiatry 2017; 74:1234-1241. [PMID: 29071344 PMCID: PMC6331050 DOI: 10.1001/jamapsychiatry.2017.3275] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Alcohol dependence (AD) and major depression (MD) are leading causes of disability that often co-occur. Genetic epidemiologic data have shown that AD and MD share a common possible genetic cause. The molecular nature of this shared genetic basis is poorly understood. Objectives To detect genetic risk variants for comorbid AD and MD and to determine whether polygenic risk alleles are shared with neuropsychiatric traits or subcortical brain volumes. Design, Setting, and Participants This genome-wide association study analyzed criterion counts of comorbid AD and MD in African American and European American data sets collected as part of the Yale-Penn study of the genetics of drug and alcohol dependence from February 14, 1999, to January 13, 2015. After excluding participants never exposed to alcohol or with missing information for any diagnostic criterion, genome-wide association studies were performed on 2 samples (the Yale-Penn 1 and Yale-Penn 2 samples) totaling 4653 African American participants and 3169 European American participants (analyzed separately). Tests were performed to determine whether polygenic risk scores derived from potentially related traits in European American participants could be used to estimate comorbid AD and MD. Main Outcomes and Measures Comorbid criterion counts (ranging from 0 to 14) for AD (7 criteria) and MD (9 criteria, scaled to 7) as defined by the DSM-IV. Results Of the 7822 participants (3342 women and 4480 men; mean [SD] age, 40.1 [10.7] years), the median comorbid criterion count was 6.2 (interquartile range, 2.3-10.9). Under the linear regression model, rs139438618 at the semaphorin 3A (SEMA3A [OMIM 603961]) locus was significantly associated with AD and MD comorbidity in African American participants in the Yale-Penn 1 sample (β = 0.89; 95% CI, 0.57-1.20; P = 2.76 × 10-8). In the independent Yale-Penn 2 sample, the association was also significant (β = 0.83; 95% CI, 0.39-1.28; P = 2.06 × 10-4). Meta-analysis of the 2 samples yielded a more robust association (β = 0.87; 95% CI, 0.61-1.12; P = 2.41 × 10-11). There was no significant association identified in European American participants. Analyses of polygenic risk scores showed that individuals with a higher risk of neuroticism (β = 1.01; 95% CI, 0.50-1.52) or depressive symptoms (β = 0.87; 95% CI, 0.32-1.42) and a lower level of subjective well-being (β = -0.94; 95% CI, -1.46 to -0.42) and educational attainment (β = -1.00, 95% CI, -1.57 to -0.44) had a higher level of AD and MD comorbidity, while larger intracranial (β = 1.07; 95% CI, 0.50 to 1.64) and smaller putamen volumes (β = -1.16; 95% CI, -1.86 to -0.46) were associated with higher risks of AD and MD comorbidity. Conclusions and Relevance SEMA3A variation is significantly and replicably associated with comorbid AD and MD in African American participants. Analyses of polygenic risk scores identified pleiotropy with neuropsychiatric traits and brain volumes. Further studies are warranted to understand the biological and genetic mechanisms of this comorbidity, which could facilitate development of medications and other treatments for comorbid AD and MD.
Collapse
Affiliation(s)
- Hang Zhou
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Bao-Zhu Yang
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven
| | - Qian Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Shizhong Han
- Department of Psychiatry, University of Iowa, Iowa City,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
| | - Yaira Z. Nuñez
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven
| | - Hongyu Zhao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut,Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut,Veterans Affairs Cooperative Studies Program Coordinating Center, West Haven, Connecticut
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts,Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts,Department of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia,Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Mahar I, Alosco ML, McKee AC. Psychiatric phenotypes in chronic traumatic encephalopathy. Neurosci Biobehav Rev 2017; 83:622-630. [PMID: 28888534 DOI: 10.1016/j.neubiorev.2017.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/12/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder involving cognitive, motor, and psychiatrically-relevant symptoms resulting from repetitive head impacts. Psychiatric phenotypes of CTE, including depression and suicidality, present particular challenges for CTE research, given that the diagnosis requires postmortem neuropathological examination. The pathognomonic lesion of CTE is the perivascular accumulation of hyperphosphorylated tau (ptau) protein at the depths of cortical sulci. These lesions are found in the earliest disease stages, and with advancing pathological severity, ptau deposition occurs in widespread brain regions in a four-stage scheme of severity. We review the psychiatric phenotypes of individuals neuropathologically diagnosed with CTE, and suggest that earlier CTE stages hold particular interest for psychiatric CTE research. In the early CTE stages, there is ptau pathology in frontal cortex and axonal loss in the frontal white matter, followed by progressive ptau neurofibrillary degeneration in the amygdala and hippocampus. Neuropathological changes in the frontal and medial temporal lobes may underlie psychiatric phenotypes. Additional insight into the association between CTE pathology and psychiatric sequelae may come from advancements in in vivo methods of CTE detection. Further epidemiological, clinical, and postmortem studies are needed to validate the nature of psychiatric sequelae in CTE.
Collapse
Affiliation(s)
- Ian Mahar
- Dept. of Neurology, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease and Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Dept. of Neurology, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease and Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Dept. of Neurology, Boston University School of Medicine, Boston, MA, USA; Dept. of Pathology, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease and Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
17
|
Sacchet MD, Camacho MC, Livermore EE, Thomas EA, Gotlib IH. Accelerated aging of the putamen in patients with major depressive disorder. J Psychiatry Neurosci 2017; 42:164-171. [PMID: 27749245 PMCID: PMC5403661 DOI: 10.1503/jpn.160010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing evidence indicates that major depressive disorder (MDD) is characterized by accelerated biological aging, including greater age-related changes in physiological functioning. The disorder is also associated with abnormal neural reward circuitry, particularly in the basal ganglia (BG). Here we assessed age-related changes in BG volume in both patients with MDD and healthy control participants. METHODS We obtained whole-brain T1-weighted images from patients with MDD and healthy controls. We estimated grey matter volumes of the BG, including the nucleus accumbens, caudate, pallidum and putamen. Volumes were assessed using multivariate analysis of covariance (MANCOVA) with age as a covariate, followed by appropriate post hoc tests. RESULTS We included 232 individuals (116 patients with MDD) in our analysis. The MANCOVA yielded a significant group × age interaction (p = 0.043). Analyses for each region yielded a significant group × age interaction in the putamen (univariate test, p = 0.005; permutation test, p = 0.004); this effect was not significant in the other regions. The negative association between age and putamen volume was twice as large in the MDD than in the control group (-35.2 v. -16.7 mm3/yr), indicating greater age-related volumetric decreases in the putamen in individuals with MDD than in controls. LIMITATIONS These findings are cross-sectional; future studies should assess the longitudinal impact of accelerated aging on anhedonia and neural indices of reward processing. CONCLUSION Our results indicate that putamen aging is accelerated in patients with MDD. Thus, the putamen may uniquely contribute to the adverse long-term effects of depressive psychopathology and may be a useful target for the treatment of MDD across the lifespan.
Collapse
Affiliation(s)
- Matthew D. Sacchet
- Correspondence to: M.D. Sacchet, Department of Psychology, Jordan Hall, Building 01-420, Stanford University, 450 Serra Mall, Stanford, CA, USA;
| | | | | | | | | |
Collapse
|
18
|
Amplitude of low-frequency fluctuations in first-episode, drug-naïve depressive patients: A 5-year retrospective study. PLoS One 2017; 12:e0174564. [PMID: 28384269 PMCID: PMC5383053 DOI: 10.1371/journal.pone.0174564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/12/2017] [Indexed: 11/19/2022] Open
Abstract
Despite different treatments and courses of illness, depressive symptoms appear similar in bipolar disorder (BD) and major depressive disorder (MDD), causing BD with an onset of depressive episode being frequently misdiagnosed as MDD, and leading to inappropriate treatment and poor clinical outcomes. Therefore, there is an urgent need to explore underlying neural basis to distinguish BD from MDD. The medical records of 80 first-episode, drug-naïve depressive patients with an initial diagnosis of MDD and illness duration of at least 5 years were reviewed retrospectively for this study. Fourteen bipolar depressed patients with a diagnosis conversion from MDD to BD, 14 patients with diagnosis of MDD, and 14 healthy subjects demographically matched with the BD group, were selected to participate in the study. Firstly, we examined whether there were differences among the three groups in whole brain fALFF during resting state. Secondly, clusters showing group differences in fALFF in any two groups were chosen as regions of interest (ROI) and then correlation between clinical features and fALFF values of ROIs were calculated. The BD group showed increased fALFF in bilateral putamen relative to both the MDD group and controls, while the MDD group exhibited decreased fALFF in left superior frontal gyrus (SFG) relative to both the BD group and controls (p < 0.05, corrected). Positive correlations between abnormality in the putamen and symptom severity were observed (significant for the MDD group, p = 0.043; marginally significant for the BD group, p = 0.060/0.076). These results implicate that abnormalities of key regions in the striatum and prefrontal areas may be trait markers for BD and MDD.
Collapse
|
19
|
Zhao K, Liu H, Yan R, Hua L, Chen Y, Shi J, Yao Z, Lu Q. Altered patterns of association between cortical thickness and subcortical volume in patients with first episode major depressive disorder: A structural MRI study. Psychiatry Res Neuroimaging 2017; 260:16-22. [PMID: 28012422 DOI: 10.1016/j.pscychresns.2016.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Depressed individuals may exhibit changes in cortical thickness and subcortical volume. However, we know little about their associated connection patterns in the brain's neural circuits. This study explored correlations between overall cortical thickness and the volume of several subcortical structures in first episode major depressive disorder (MDD) patients. Thirty-six untreated individuals experiencing their first episode of MDD were compared with healthy controls (n=41). Their brains were imaged by T1-weighted MRI, allowing the measurement of cortical thickness and the volume of subcortical structures. We found that in MDD patients, the cortex was thinner in four of the measured regions (frontal, temporal, parietal and insula) and the volume of the putamen and amygdala tended to be smaller compared with controls. Furthermore, the ratio of the volume of the four measured subcortical structures (left pallidum, left putamen, left amygdala and right caudate) to cortical thickness (measured in 11 regions)was significantly larger in the MDD group compared with controls. These results show that there are different relationships between subcortical volume and cortical thickness inearly-stage MDD and control subjects.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiyan Liu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Chen
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiabo Shi
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Medical School, Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- Research Center of Learning Science, Southeast University, Nanjing 210096, China.
| |
Collapse
|
20
|
Dossat AM, Sanchez-Gonzalez MA, Koutnik AP, Leitner S, Ruiz EL, Griffin B, Rosenberg JT, Grant SC, Fincham FD, Pinto JR, Kabbaj M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy. FASEB J 2017; 31:2492-2506. [PMID: 28235781 DOI: 10.1096/fj.201600955rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 01/04/2023]
Abstract
Cardiovascular dysfunction is highly comorbid with mood disorders, such as anxiety and depression. However, the mechanisms linking cardiovascular dysfunction with the core behavioral features of mood disorder remain poorly understood. In this study, we used mice bearing a knock-in sarcomeric mutation, which is exhibited in human hypertrophic cardiomyopathy (HCM), to investigate the influence of HCM over the development of anxiety and depression. We employed behavioral, MRI, and biochemical techniques in young (3-4 mo) and aged adult (7-8 mo) female mice to examine the effects of HCM on the development of anxiety- and depression-like behaviors. We focused on females because in both humans and rodents, they experience a 2-fold increase in mood disorder prevalence vs. males. Our results showed that young and aged HCM mice displayed echocardiographic characteristics of the heart disease condition, yet only aged HCM females displayed anxiety- and depression-like behaviors. Electrocardiographic parameters of sympathetic nervous system activation were increased in aged HCM females vs. controls and correlated with mood disorder-related symptoms. In addition, when compared with controls, aged HCM females exhibited adrenal gland hypertrophy, reduced volume in mood-related brain regions, and reduced hippocampal signaling proteins, such as brain-derived neurotrophic factor and its downstream targets vs. controls. In conclusion, prolonged systemic HCM stress can lead to development of mood disorders, possibly through inducing structural and functional brain changes, and thus, mood disorders in patients with heart disease should not be considered solely a psychologic or situational condition.-Dossat, A. M., Sanchez-Gonzalez, M. A., Koutnik, A. P., Leitner, S., Ruiz, E. L., Griffin, B., Rosenberg, J. T., Grant, S. C., Fincham, F. D., Pinto, J. R. Kabbaj, M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Amanda M Dossat
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Marcos A Sanchez-Gonzalez
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, USA
| | - Andrew P Koutnik
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Stefano Leitner
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Edda L Ruiz
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Brittany Griffin
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, Florida, USA; and
| | - Samuel C Grant
- The National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, Florida, USA; and
| | - Francis D Fincham
- Family Institute, Florida State University, Tallahassee, Florida, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA;
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA;
| |
Collapse
|
21
|
Bubshait DK, Rashid A, Al-Owain MA, Sulaiman RA. Depression in adult patients with biotin responsive basal ganglia disease. Drug Discov Ther 2016; 10:223-5. [PMID: 27534451 DOI: 10.5582/ddt.2016.01046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biotin responsive basal ganglia disease (BBGD), is a potentially treatable inherited metabolic disorder which clinically presents as sub-acute encephalopathy in children. Early diagnosis and treatment of this disorder results in good clinical recovery in childhood. However, there is no report in the literature on the long term outcome of these treated patients in adult life. We report two patients with BBGD who were metabolically stable on treatment and developed depression later in life. These cases highlight the association of depression with basal ganglia disorders and demonstrate that depression is the potential long term complication of BBGD.
Collapse
Affiliation(s)
- Dalal K Bubshait
- Department of Medical Genetics, King Faisal Specialist Hospital and Research center
| | | | | | | |
Collapse
|
22
|
Abstract
There is increasing evidence for structural brain changes associated with unipolar re current major depression. Many depressed patients have comorbid physical illnesses, producing a high rate of subcortical white matter changes and brain damage to key structures involved in the modulation of emotion. This is especially true in the case of late-onset depression, which typically occurs in the setting of age-related illnesses, such as Parkinson's disease, Alzheimer's disease, poststroke syndromes, and myocardial in farction. In addition, there is now evidence for brain changes associated with early-onset major depression. Volume decreases have been reported in the hippocampus, amygdala, caudate, putamen, and frontal cortex. These structures are extensively interconnected and are part of a neuroanatomical circuit that has been termed the limbic-cortical-striatal pallidal-thalamic tract. Possible mechanisms for tissue loss include neuronal loss through exposure to repeated episodes of hypercortisolemia or glial cell loss, resulting in in creased vulnerability to glutamate neurotoxicity. Studies combining the anatomical and morphological information of MRI studies with functional studies have the potential to localize abnormalities in blood flow, metabolism, and neurotransmitter receptors and provide a better integrated model of depression. NEUROSCIENTIST 4:331-334, 1998
Collapse
|
23
|
Davison SE, Aylward EH, McArthur JC, Selnes OA, Lyketsos C, Barta PE, Pearlson GD. A Quantitative MRI Study of the Basal Ganglia in Depression in HIV Seropositive Men. ACTA ACUST UNITED AC 2016; 1:29-41. [PMID: 16873169 DOI: 10.1300/j128v01n03_02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED HIV (Human Immunodeficiency Virus) infection is associated with high rates of depressive symptomatology. There is evidence that such infection is associated with damage to the basal ganglia. It has also been suggested that the basal ganglia are implicated in the aetiology of affective disorders. OBJECTIVE This study examined the association between basal ganglia atrophy and depression in HIV seropositive men. We hypothesized that depressed HIV seropositive patients would have smaller basal ganglia compared with nondepressed HIV positive comparison subjects. METHOD Using quantitative magnetic resonance imaging (MRI) techniques we compared for the basal ganglia volumes of sixteen depressed, and sixteen group-matched nondepressed HIV seropositive homosexual men. RESULTS We found no significant difference in basal ganglia volumes between the two groups. CONCLUSIONS We suggest that depression, at least in the early stages of HIV infection, is not associated with basal ganglia atrophy.
Collapse
Affiliation(s)
- S E Davison
- , Broadmoor Hospital, Crowthorne, Berkshire, RG11 7EG, England
| | | | | | | | | | | | | |
Collapse
|
24
|
Hong SB, Lee TY, Kwak YB, Kim SN, Kwon JS. Baseline putamen volume as a predictor of positive symptom reduction in patients at clinical high risk for psychosis: A preliminary study. Schizophr Res 2015; 169:178-185. [PMID: 26527246 DOI: 10.1016/j.schres.2015.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Illness course in individuals at clinical high risk (CHR) status for psychosis is heterogeneous, which limits effective treatment for all CHR subgroups. Baseline predictors of positive symptom trajectory in the CHR group will reduce such limitations. We singled out the putamen, thought to be involved in the generation of the key schizophrenia symptoms early in the course of disease, as a potential predictor of positive symptom trajectory in CHR patients. METHOD We recruited 45 CHR patients and 29 age- and gender-matched healthy controls (HC). The CHR group was divided into patients with positive symptom reduction (CHR-R) and patients without positive symptom reduction (CHR-NR) at 6 months. Comparisons were made between the baseline putamen volumes of CHR-R, CHR-NR and HC groups. The relationship between baseline putamen volumes and clinical measures was investigated. RESULTS Left putamen volumes of CHR-R patients were significantly smaller than those of HCs (p=0.002) and of CHR-NR patients (p=0.024). CHR-R patients had significantly reduced leftward laterality compared to HCs (p=0.007). In the CHR-R group, bilateral putamen volumes were correlated with positive symptom severity at baseline (r=-0.552, p=0.001) and at 6 months (r=-0.360, p=0.043), and predicted positive symptom score change in 6 months at a trend level (p=0.092). CONCLUSION Smaller left putamen volumes in CHR-R patients, and the correlation between positive symptom severity and putamen volumes suggest that putamen volume is a possible risk-stratifier and predictor of clinical course in the CHR population.
Collapse
Affiliation(s)
- Sang Bin Hong
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yoo Bin Kwak
- Department of Brain & Cognitive Sciences, Seoul National University College of National Sciences, Seoul, Republic of Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain & Cognitive Sciences, Seoul National University College of National Sciences, Seoul, Republic of Korea
| |
Collapse
|
25
|
Dusi N, Barlati S, Vita A, Brambilla P. Brain Structural Effects of Antidepressant Treatment in Major Depression. Curr Neuropharmacol 2015; 13:458-65. [PMID: 26412065 PMCID: PMC4790407 DOI: 10.2174/1570159x1304150831121909] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/16/2014] [Accepted: 12/19/2015] [Indexed: 01/26/2023] Open
Abstract
Depressive disorder is a very frequent and heterogeneous syndrome. Structural imaging techniques offer a useful tool in the comprehension of neurobiological alterations that concern depressive disorder. Altered brain structures in depressive disorder have been particularly located in the prefrontal cortex (medial prefrontal cortex and orbitofrontal cortex, OFC) and medial temporal cortex areas (hippocampus). These brain areas belong to a structural and functional network related to cognitive and emotional processes putatively implicated in depressive symptoms. These volumetric alterations may also represent biological predictors of response to pharmacological treatment. In this context, major findings of magnetic resonance (MR) imaging, in relation to treatment response in depressive disorder, will here be presented and discussed.
Collapse
Affiliation(s)
| | | | | | - Paolo Brambilla
- Dipartimento di Neuroscienze e Salute Mentale, Università degli Studi di Milano, U.O.C. Psichiatria, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35 - 20122 Milano.
| |
Collapse
|
26
|
Yang X, Ma X, Li M, Liu Y, Zhang J, Huang B, Zhao L, Deng W, Li T, Ma X. Anatomical and functional brain abnormalities in unmedicated major depressive disorder. Neuropsychiatr Dis Treat 2015; 11:2415-23. [PMID: 26425096 PMCID: PMC4581780 DOI: 10.2147/ndt.s93055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Using magnetic resonance imaging (MRI) and resting-state functional magnetic resonance imaging (rsfMRI) to explore the mechanism of brain structure and function in unmedicated patients with major depressive disorder (MDD). PATIENTS AND METHODS Fifty patients with MDD and 50 matched healthy control participants free of psychotropic medication underwent high-resolution structural and rsfMRI scanning. Optimized diffeomorphic anatomical registration through exponentiated lie algebra and the Data Processing Assistant for rsfMRI were used to find potential differences in gray-matter volume (GMV) and regional homogeneity (ReHo) between the two groups. A Pearson correlation model was used to analyze associations of morphometric and functional changes with clinical symptoms. RESULTS Compared to healthy controls, patients with MDD showed significant GMV increase in the left posterior cingulate gyrus and GMV decrease in the left lingual gyrus (P<0.001, uncorrected). In ReHo analysis, values were significantly increased in the left precuneus and decreased in the left putamen (P<0.001, uncorrected) in patients with MDD compared to healthy controls. There was no overlap between anatomical and functional changes. Linear correlation suggested no significant correlation between mean GMV values within regions with anatomical abnormality and ReHo values in regions with functional abnormality in the patient group. These changes were not significantly correlated with symptom severity. CONCLUSION Our study suggests a dissociation pattern of brain regions with anatomical and functional alterations in unmedicated patients with MDD, especially with regard to GMV and ReHo.
Collapse
Affiliation(s)
- Xiao Yang
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China ; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaojuan Ma
- Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Mingli Li
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China ; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ye Liu
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China
| | - Jian Zhang
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China
| | - Bin Huang
- Dong Feng Mao Jian Hospital, Shiyan, People's Republic of China
| | - Liansheng Zhao
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China ; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei Deng
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China ; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao Li
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China ; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaohong Ma
- Psychiatric Laboratory and Department of Psychiatry, Sichuan University, Chengdu, People's Republic of China ; National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Abstract
Viable new treatments for depression and anxiety have been slow to emerge, likely owing to the complex and incompletely understood etiology of these disorders. A budding area of research with great therapeutic promise involves the study of resilience, the adaptive maintenance of normal physiology and behavior despite exposure to marked psychological stress. This phenomenon, documented in both humans and animal models, involves coordinated biological mechanisms in numerous bodily systems, both peripheral and central. In this review, we provide an overview of resilience mechanisms throughout the body, discussing current research in animal models investigating the roles of the neuroendocrine, immune, and central nervous systems in behavioral resilience to stress.
Collapse
Affiliation(s)
- Madeline L Pfau
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029 ; Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029 ; Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA, 10029
| |
Collapse
|
28
|
Cerullo MA, Eliassen JC, Smith CT, Fleck DE, Nelson EB, Strawn JR, Lamy M, DelBello MP, Adler CM, Strakowski SM. Bipolar I disorder and major depressive disorder show similar brain activation during depression. Bipolar Disord 2014; 16:703-12. [PMID: 24990479 PMCID: PMC4213254 DOI: 10.1111/bdi.12225] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Despite different treatments and courses of illness, depressive symptoms appear similar in major depressive disorder (MDD) and bipolar I disorder (BP-I). This similarity of depressive symptoms suggests significant overlap in brain pathways underlying neurovegetative, mood, and cognitive symptoms of depression. These shared brain regions might be expected to exhibit similar activation in individuals with MDD and BP-I during functional magnetic resonance imaging (fMRI). METHODS fMRI was used to compare regional brain activation in participants with BP-I (n = 25) and MDD (n = 25) during a depressive episode as well as 25 healthy comparison (HC) participants. During the scans, participants performed an attentional task that incorporated emotional pictures. RESULTS During the viewing of emotional images, subjects with BP-I showed decreased activation in the middle occipital gyrus, lingual gyrus, and middle temporal gyrus compared to both subjects with MDD and HC participants. During attentional processing, participants with MDD had increased activation in the parahippocampus, parietal lobe, and postcentral gyrus. However, among these regions, only the postcentral gyrus also showed differences between MDD and HC participants. CONCLUSIONS No differences in cortico-limbic regions were found between participants with BP-I and MDD during depression. Instead, the major differences occurred in primary and secondary visual processing regions, with decreased activation in these regions in BP-I compared to major depression. These differences were driven by abnormal decreases in activation seen in the participants with BP-I. Posterior activation changes are a common finding in studies across mood states in participants with BP-I.
Collapse
Affiliation(s)
- Michael A Cerullo
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Eliassen
- Center for Imaging Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher T Smith
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Fleck
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Center for Imaging Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Erik B Nelson
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Martine Lamy
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb M Adler
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Center for Imaging Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Center for Imaging Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
29
|
Wyciszkiewicz A, Pawlak MA. Basal Ganglia Volumes: MR-Derived Reference Ranges and Lateralization Indices for Children and Young Adults. Neuroradiol J 2014; 27:595-612. [PMID: 25260207 DOI: 10.15274/nrj-2014-10073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/29/2014] [Indexed: 11/12/2022] Open
Abstract
SUMMARY - Previous studies indicate rightward asymmetry of the caudate nucleus (CN) volume and leftward asymmetry of the putamen (PN) and globus pallidus (GP). This study aimed to estimate reference ranges for basal ganglia asymmetry in a large cohort of healthy individuals (n= 949), aged seven to 21 years. MRI images of 949 (320 female, mean age 12.6 +/- 3.3, range 7-21) healthy individuals were reviewed. Volumetric measurements of the basal ganglia were obtained using automated segmentation (FreeSurfer). We computed two lateralization indices: (L-R)/(L+R) (LI) and right/left ratio (RLR). Tolerance interval estimates were used to calculate reference ranges. Rightward asymmetry of the CN and leftward asymmetry of the PN and GP were confirmed. PN and GP volume decreased with age, but CN volume did not. The lateralization index decreased with age for PN, but not for CN and GP. RLR increased with age for PN and not for CN or GP. Females were associated with smaller volume, but not with either LI or RLR difference. Reference ranges obtained in this study provide useful resources for power analysis and a reference group for future studies using basal ganglia asymmetry indices.
Collapse
Affiliation(s)
- Aleksandra Wyciszkiewicz
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences; Poznan, Poland -
| | - Mikolaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznan University of Medical Sciences; Poznan, Poland
| |
Collapse
|
30
|
Kumar R, Farahvar S, Ogren JA, Macey PM, Thompson PM, Woo MA, Yan-Go FL, Harper RM. Brain putamen volume changes in newly-diagnosed patients with obstructive sleep apnea. NEUROIMAGE-CLINICAL 2014; 4:383-91. [PMID: 24567910 PMCID: PMC3930100 DOI: 10.1016/j.nicl.2014.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/24/2022]
Abstract
Obstructive sleep apnea (OSA) is accompanied by cognitive, motor, autonomic, learning, and affective abnormalities. The putamen serves several of these functions, especially motor and autonomic behaviors, but whether global and specific sub-regions of that structure are damaged is unclear. We assessed global and regional putamen volumes in 43 recently-diagnosed, treatment-naïve OSA (age, 46.4 ± 8.8 years; 31 male) and 61 control subjects (47.6 ± 8.8 years; 39 male) using high-resolution T1-weighted images collected with a 3.0-Tesla MRI scanner. Global putamen volumes were calculated, and group differences evaluated with independent samples t-tests, as well as with analysis of covariance (covariates; age, gender, and total intracranial volume). Regional differences between groups were visualized with 3D surface morphometry-based group ratio maps. OSA subjects showed significantly higher global putamen volumes, relative to controls. Regional analyses showed putamen areas with increased and decreased tissue volumes in OSA relative to control subjects, including increases in caudal, mid-dorsal, mid-ventral portions, and ventral regions, while areas with decreased volumes appeared in rostral, mid-dorsal, medial-caudal, and mid-ventral sites. Global putamen volumes were significantly higher in the OSA subjects, but local sites showed both higher and lower volumes. The appearance of localized volume alterations points to differential hypoxic or perfusion action on glia and other tissues within the structure, and may reflect a stage in progression of injury in these newly-diagnosed patients toward the overall volume loss found in patients with chronic OSA. The regional changes may underlie some of the specific deficits in motor, autonomic, and neuropsychologic functions in OSA. Global and regional putamen volumes were examined in newly-diagnosed OSA. Global volumes are higher, but subareas showed increases and decreases. The volume increases suggest transient tissue swelling from hypoxic action. Altered sites likely contribute to motor and other functional deficits in OSA.
Collapse
Key Words
- 3D surface morphometry
- 3D, Three dimensional
- AHI, Apnea–hypopnea index
- Autonomic
- BAI, Beck Anxiety Inventory
- BDI-II, Beck Depression Inventory II
- Basal ganglia
- CSF, Cerebrospinal fluid
- Cognition
- ESS, Epworth Sleepiness Scale
- FA, Flip angle
- FOV, Field of view
- GRAPPA, Generalized autocalibrating partially parallel acquisition
- Intermittent hypoxia
- MNI, Montreal Neurological Institute
- MPRAGE, Magnetization prepared rapid acquisition gradient-echo
- MRI, Magnetic resonance imaging
- Magnetic resonance imaging
- Motor
- OSA, Obstructive sleep apnea
- PD, Proton density
- PSQI, Pittsburgh Sleep Quality Index
- TE, Echo time
- TIV, Total intracranial volume
- TR, Repetition time
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA ; The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Salar Farahvar
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer A Ogren
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Paul M Macey
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA ; The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Paul M Thompson
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA ; Department of Psychiatry, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mary A Woo
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Frisca L Yan-Go
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA ; The Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Morimoto SS, Alexopoulos GS. Cognitive deficits in geriatric depression: clinical correlates and implications for current and future treatment. Psychiatr Clin North Am 2013; 36:517-31. [PMID: 24229654 PMCID: PMC3830452 DOI: 10.1016/j.psc.2013.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The purpose of this article is to identify the cognitive deficits commonly associated with geriatric depression and describe their clinical significance. The complex relationship between geriatric depression and dementia is summarized and possible shared mechanisms discussed. Evidence regarding whether the cognitive deficits in depression may be mitigated with medication or with computerized cognitive remediation is presented.
Collapse
Affiliation(s)
- Sarah Shizuko Morimoto
- Department of Psychiatry, Institute of Geriatric Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| | - George S. Alexopoulos
- Stephen P. Tobin and Dr. Arnold M. Cooper Professor of Psychiatry, Weill Cornell Medical College, White Plains, NY
| |
Collapse
|
32
|
Guo S, Yu Y, Zhang J, Feng J. A reversal coarse-grained analysis with application to an altered functional circuit in depression. Brain Behav 2013; 3:637-48. [PMID: 24363967 PMCID: PMC3868169 DOI: 10.1002/brb3.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION When studying brain function using functional magnetic resonance imaging (fMRI) data containing tens of thousands of voxels, a coarse-grained approach - dividing the whole brain into regions of interest - is applied frequently to investigate the organization of the functional network on a relatively coarse scale. However, a coarse-grained scheme may average out the fine details over small spatial scales, thus rendering it difficult to identify the exact locations of functional abnormalities. METHODS A novel and general approach to reverse the coarse-grained approach by locating the exact sources of the functional abnormalities is proposed. RESULTS Thirty-nine patients with major depressive disorder (MDD) and 37 matched healthy controls are studied. A circuit comprising the left superior frontal gyrus (SFGdor), right insula (INS), and right putamen (PUT) exhibit the greatest changes between the patients with MDD and controls. A reversal coarse-grained analysis is applied to this circuit to determine the exact location of functional abnormalities. CONCLUSIONS The voxel-wise time series extracted from the reversal coarse-grained analysis (source) had several advantages over the original coarse-grained approach: (1) presence of a larger and detectable amplitude of fluctuations, which indicates that neuronal activities in the source are more synchronized; (2) identification of more significant differences between patients and controls in terms of the functional connectivity associated with the sources; and (3) marked improvement in performing discrimination tasks. A software package for pattern classification between controls and patients is available in Supporting Information.
Collapse
Affiliation(s)
- Shuixia Guo
- College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University Changsha, Hunan, China
| | - Yun Yu
- College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University Changsha, Hunan, China
| | - Jie Zhang
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University Shanghai, China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University Shanghai, China ; Department of Computer Science, University of Warwick Coventry, U.K
| |
Collapse
|
33
|
Nugent AC, Davis RM, Zarate CA, Drevets WC. Reduced thalamic volumes in major depressive disorder. Psychiatry Res 2013; 213:179-85. [PMID: 23850106 PMCID: PMC3756884 DOI: 10.1016/j.pscychresns.2013.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/16/2013] [Accepted: 05/16/2013] [Indexed: 01/20/2023]
Abstract
Altered function in the limbic-cortical-striatial-pallidal-thalamic (LCSPT) circuit has been implicated in the pathophysiology of major depressive disorder (MDD). This study evaluated volumetric differences in subcortical volumes between depressed subjects with MDD (N=142), subjects with MDD in remission (N=72), and healthy controls (N=169). Participants underwent magnetic resonance imaging (MRI) scanning, and subcortical volumes were extracted using FMRIB's Integrated Registration and Segmentation Tool (FIRST), University of Oxford, UK. The depressed MDD subjects exhibited significantly smaller volumes in the bilateral thalamus and hippocampus compared to control subjects, and the differences in the bilateral thalamus remained significant after controlling for total intracranial volume. In a smaller subset of healthy controls and depressed MDD subjects matched to the remitted MDD subjects, significant differences in volume were observed across groups in the bilateral thalamus, as well as the right lateralized caudate, hippocampus, and pallidum; these were primarily accounted for by differences between the depressed MDD subjects versus both the remitted and healthy subjects, though none of these changes remained significant after controlling for total intracranial volume (TIV). Volumetric reductions in the thalamus and hippocampus may contribute to dysfunction within subcortical-cortical networks, consistent with previous evidence of metabolic and hemodynamic abnormalities in these regions in MDD.
Collapse
Affiliation(s)
- Allison Carol Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | - Wayne Curtis Drevets
- Laureate Institute for Brain Research and The University of Oklahoma College of Medicine, Department of Psychiatry, Tulsa, OK,Johnson and Johnson Pharmaceutical Research and Development, Titusville, NJ
| |
Collapse
|
34
|
Abstract
Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioural domains. A recent literature has identified important structural and functional alterations within the brain's reward circuitry--particularly in the ventral tegmental area-nucleus accumbens pathway--that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This Review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms.
Collapse
Affiliation(s)
- Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. scott.russo@mssm. edu
| | | |
Collapse
|
35
|
Canbeyli R. Sensorimotor modulation of mood and depression: in search of an optimal mode of stimulation. Front Hum Neurosci 2013; 7:428. [PMID: 23908624 PMCID: PMC3727046 DOI: 10.3389/fnhum.2013.00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.
Collapse
Affiliation(s)
- Resit Canbeyli
- Psychobiology Laboratory, Department of Psychology, Bogazici University , Istanbul , Turkey
| |
Collapse
|
36
|
Abstract
It is increasingly recognized that we need a better understanding of how mental disorders such as depression alter the brain's functional connections to improve both early diagnosis and therapy. A new holistic approach has been used to investigate functional connectivity changes in the brains of patients suffering from major depression using resting-state functional magnetic resonance imaging (fMRI) data. A canonical template of connectivity in 90 different brain regions was constructed from healthy control subjects and this identified a six-community structure with each network corresponding to a different functional system. This template was compared with functional networks derived from fMRI scans of both first-episode and longer-term, drug resistant, patients suffering from severe depression. The greatest change in both groups of depressed patients was uncoupling of the so-called 'hate circuit' involving the superior frontal gyrus, insula and putamen. Other major changes occurred in circuits related to risk and action responses, reward and emotion, attention and memory processing. A voxel-based morphometry analysis was also carried out but this revealed no evidence in the depressed patients for altered gray or white matter densities in the regions showing altered functional connectivity. This is the first evidence for the involvement of the 'hate circuit' in depression and suggests a potential reappraisal of the key neural circuitry involved. We have hypothesized that this may reflect reduced cognitive control over negative feelings toward both self and others.
Collapse
|
37
|
Amsterdam JD, Newberg AB, Soeller I, Shults J. Greater striatal dopamine transporter density may be associated with major depressive episode. J Affect Disord 2012; 141:425-31. [PMID: 22482744 PMCID: PMC3845357 DOI: 10.1016/j.jad.2012.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/22/2012] [Accepted: 03/03/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND We examined striatal dopamine transporter (DAT) distribution volume ratio (DVR) values in subjects with unipolar or bipolar major depressive episode (versus non-depressed healthy volunteers) using the selective DAT radioligand [(99m)Tc]TRODAT-1 and single photon emission computed tomography (SPECT). We hypothesized that striatal DVR values would be greater in depressed versus non-depressed subjects, and that greater DVR values may represent a possible clinical biomarker of depression. METHODS [(99m)Tc]TRODAT-1 spect images were acquired from 39 depressed and 103 non-depressed drug-free subjects. The primary outcome measure was the DVR value of [(99m)Tc]TRODAT-1 binding for the putamen region and the combined putamen plus caudate region. RESULTS DVR values were significantly correlated across all striatal regions within both subject groups (p<0.005). Depressed subjects had significantly greater DVR values (versus non-depressed subjects) in the putamen (p<0.0005) and the combined putamen plus caudate (p<0.0005) regions. There was no difference in DVR values between unipolar (n=24) and bipolar (n=15) depressed subjects, and no difference in DVR values for depressed subjects with or without prior antidepressant exposure. The predictive probability of the putamen or combined putamen plus caudate DVR value to distinguish depressed from non-depressed subjects was significant (p<0.0005). LIMITATIONS DAT values could potentially be influenced by age, gender, diagnosis, prior psychotropic dug exposure, illness length, or symptom severity. CONCLUSION Results confirm prior observations of greater striatal DAT density in depressed versus non-depressed subjects, and suggest that greater DVR values may possibly represent a potential diagnostic biomarker for distinguish depressed from non-depressed individuals.
Collapse
Affiliation(s)
- Jay D Amsterdam
- Depression Research Unit, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Late-life depression (LLD) has a complex and multifactoral etiology. There is growing interest in elucidating how glia, acting alone or as part of a glial-neuronal network, may contribute to the pathophysiology of depression. In this paper, we explore results from neuroimaging studies showing gray-matter volume loss in key frontal and subcortical structures implicated in LLD, and present the few histological studies that have examined neuronal and glial densities in these regions. Compared to results in younger people with depression, there appear to be age-dependent differences in neuronal pathology but the changes in glial pathology may be more subtle, perhaps reflecting a longer-term compensatory gliosis to earlier damage. We then consider the mechanisms by which both astrocytes and microglia may mediate and modulate neuronal dysfunction and possible degeneration in depression. These include a critical role in the response to peripheral inflammation and central microglial activation, as well as a key role in glutamate metabolism. Advances in our understanding of glia are highlighted, including the role of microglia as "electricians" of the brain and astrocytes as key communicating cells, an integral part of the tripartite synapse. Finally, implications for clinicians are discussed, including the consideration of glia as biomarkers for LLD and incorporation of glia into future therapeutic strategies.
Collapse
Affiliation(s)
- Matt Bennett Paradise
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
39
|
Quiroz JA, Manji HK. Enhancing synaptic plasticity and cellular resilience to develop novel, improved treatments for mood disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034240 PMCID: PMC3181673 DOI: 10.31887/dcns.2002.4.1/jquiroz] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
There is mounting evidence that recurrent mood disorders - once considered “good prognosis diseases”- are, in fact, often very severe and life-threatening illnesses. Furthermore, although mood disorders have traditionally been conceptualized as neurochemical disorders, there is now evidence from a variety of sources demonstrating regional reductions in central nervous system (CNS) volume, as well as reductions in the numbers and/or sizes ofglia and neurons in discrete brain areas. Although the precise cellular mechanisms underlying these morphometric changes remain to be fully elucidated, the data suggest that mood disorders are associated with impairments of synaptic plasticity and cellular resilience. In this context, it is noteworthy that there is increasing preclinical evidence that antidepressants regulate the function of the glutamatergic system. Moreover, although clearly preliminary, the available clinical data suggest that attenuation of N-methyl-D-aspartate (NMDA) function has antidepressant effects. Recent preclinical and clinical studies have shown that signaling pathways involved in regulating cell survival and cell death are long-term targets for the actions of antidepressant agents. Antidepressants and mood stabilizers indirectly regulate a number of factors involved in cell survival pathways, including cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), the antiapoptotic protein bcl-2, and mitogen-activated protein (MAP) kinases, and may thus bring about some of their delayed long-term beneficial effects via underappreciated neurotrophic effects. There is much promise for the future development of treatments that more directly target molecules in critical CNS signaling pathways regulating synaptic plasticity and cellular resilience. These will represent improved long-term treatments for mood disorders.
Collapse
Affiliation(s)
- Jorge A Quiroz
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Md, USA
| | | |
Collapse
|
40
|
Alexopoulos GS, Bruce ML, Silbersweig D, Kalayam B, Stern E. Vascular depression: a new view of late-onset depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033775 PMCID: PMC3181568 DOI: 10.31887/dcns.1999.1.2/galexopoulos] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have suggested that cerebrovascular disease may predispose, precipitate, or perpetuate some late-life depressive syndromes. The mechanisms of "vascular depression" include disruption of cortico-striato-pallido-thalamo-cortical (CSPTC) pathways or their modulating systems. This view is supported by the presentation of vascular depression, which consists of depressive symptoms, cognitive abnormalities, as well as neuroimaging findings that may result from CSPTC impairment. Moreover, clinical and electrophysiological evidence of CSPTC impairment, an abnormality frequently found in patients with vascular depression, appears to be associated with poor response to antidepressant treatment and early relapse and recurrence. The vascular depression hypothesis provides the conceptual background for studies that may have clinical and theoretical impact. Agents influencing dopamine, acetylcholine, and opioid neurotransmitters may be studied in vascular depression, since these are essential neurotransmitters of the frontostriatal circuitry. Drugs used for prevention and treatment of cerebrovascular disease may be shown to reduce the risk for vascular depression or improve its outcomes. The choice of antidepressants in vascular depression may depend on their effect on neurological recovery from ischemic lesions. Finally, identification of specific relationships between specific symptoms, cognitive deficits, and disability may lead to interventions that target the patients' deficits as well as their interactions with psychosocial factors known to contribute to depression. Research can clarify the pathways to vascular depression by focusing on the site of lesion, the resultant brain dysfunction, the presentation of depression and time of onset, and the contribution of nonbiological factors.
Collapse
Affiliation(s)
- G S Alexopoulos
- Weill Medical College of Cornell University, White Plains, NY, USA. Professor of Psychiatry, Director Cornell Institute of Geriatric Psychiatry
| | | | | | | | | |
Collapse
|
41
|
Abstract
Neuroimaging and neuropathological studies of major depressive disorder (MDD) and bipolar disorder (BD) have identified abnormalities of brain structure in areas of the prefrontal cortex, amygdala, striatum, hippocampus, parahippocampal gyrus, and raphe nucleus. These structural imaging abnormalities persist across illness episodes, and preliminary evidence suggests they may in some cases arise prior to the onset of depressive episodes in subjects at high familial risk for MDD. In other cases, the magnitude of abnormality is reportedly correlated with time spent depressed. Postmortem histopathological studies of these regions have shown abnormal reductions of synaptic markers and glial cells, and, in rare cases, reductions in neurons in MDD and BD. Many of the regions affected by these structural abnormalities show increased glucose metabolism during depressive episodes. Because the glucose metabolic signal is dominated by glutamatergic transmission, these data support other evidence that excitatory amino acid transmission is elevated in limbic-cortical-striatal-pallidal-thalamic circuits during depression. Some of the subject samples in which these metabolic abnormalities have been demonstrated were also shown to manifest abnormally elevated stressed plasma cortisol levels. The co-occurrence of increased glutamatergic transmission and Cortisol hypersecretion raises the possibility that the gray matter volumetric reductions in these depressed subjects are partly accounted for by processes homologous to the dendritic atrophy induced by chronic stress in adult rodents, which depends upon interactions between elevated glucocorticoid secretion and N-meihyl-D-aspartate (NMDA)-glutamate receptor stimulation. Some mood-stabilizing and antidepressant drugs that exert neurotrophic effects in rodents appear to reverse or attenuate the gray matter volume abnormalities in humans with mood disorders. These neurotrophic effects may be integrally related to the therapeutic effects of such agents, because the regions affected by structural abnormalities in mood disorders are known to play major roles in modulating the endocrine, autonomic, behavioral, and emotional experiential responses to stressors.
Collapse
Affiliation(s)
- Wayne C Drevets
- MD, Mood and Anxiety Disorders Program, NIH NIMH/MIB, 15K North Dr, Bethesda, Md, USA
| |
Collapse
|
42
|
Association between subcortical volumes and verbal memory in unmedicated depressed patients and healthy controls. Neuropsychologia 2012; 50:2348-55. [PMID: 22714007 DOI: 10.1016/j.neuropsychologia.2012.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 05/09/2012] [Accepted: 06/08/2012] [Indexed: 12/23/2022]
Abstract
Research has shown poor performance on verbal memory tasks in patients with major depressive disorder relative to healthy controls, as well as structural abnormalities in the subcortical structures that form the limbic-cortical-striatal-pallidal-thalamic circuitry. Few studies, however, have attempted to link the impairments in learning and memory in depression with these structural abnormalities, and of those which have done so, most have included patients medicated with psychotropic agents likely to influence cognitive performance. This study thus examines the relationship between subcortical structural abnormalities and verbal memory using the California Verbal Learning Test (CVLT) in unmedicated depressed patients. A T1 weighted magnetic resonance imaging scan and the CVLT were obtained on 45 subjects with major depressive disorder and 44 healthy controls. Using the FMRIB's Integrated Registration and Segmentation Tool (FIRST) volumes of selected subcortical structures were segmented and correlated with CVLT performance. Depressed participants showed significantly smaller right thalamus and right hippocampus volumes than healthy controls. Depressed participants also showed impaired performance on global verbal learning ability, and appeared to depend upon an inferior memory strategy (serial clustering). Measures of serial clustering were correlated significantly with right hippocampal volumes in depressed participants. Our findings indicate that depressed participants and healthy controls differ in the memory strategies they employ, and that while depressed participants had a smaller hippocampal volume, there was a positive correlation between volume and use of an inferior memory strategy. This suggests that larger hippocampal volume is related to better memory recall in depression, but specifically with regard to utilizing an inferior memory strategy.
Collapse
|
43
|
Guo WB, Liu F, Xue ZM, Xu XJ, Wu RR, Ma CQ, Wooderson SC, Tan CL, Sun XL, Chen JD, Liu ZN, Xiao CQ, Chen HF, Zhao JP. Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:153-160. [PMID: 22306865 DOI: 10.1016/j.pnpbp.2012.01.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/20/2011] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
BACKGROUND Patients with treatment-resistant depression (TRD) and those with treatment-response depression (TSD) respond to antidepressants differently and previous studies have commonly reported different brain networks in resistant and nonresistant patients. Using the amplitude of low-frequency fluctuations (ALFF) approach, we explored ALFF values of the brain regions in TRD and TSD patients at resting state to test the hypothesis of the different brain networks in TRD and TSD patients. METHODS Eighteen TRD patients, 17 TSD patients and 17 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. RESULTS There are widespread differences in ALFF values among TRD patients, TSD patients and healthy subjects throughout the cerebellum, the visual recognition circuit (middle temporal gyrus, middle/inferior occipital gyrus and fusiform), the hate circuit (putamen), the default circuit (ACC and medial frontal gyrus) and the risk/action circuit (inferior frontal gyrus). The differences in brain circuits between the TRD and TSD patients are mainly in the cerebellum, the visual recognition circuit and the default circuit. CONCLUSIONS The affected brain circuits of TRD patients might be partly different from those of TSD patients.
Collapse
Affiliation(s)
- Wen-bin Guo
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bora E, Harrison BJ, Davey CG, Yücel M, Pantelis C. Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychol Med 2012; 42:671-681. [PMID: 21910935 DOI: 10.1017/s0033291711001668] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in cortico-striatal-pallidal-thalamic (CSPT) circuits have been implicated in major depressive disorder (MDD). However, the robustness of these findings across studies is unclear, as is the extent to which they are influenced by demographic, clinical and pharmacological factors. METHOD With the aim of clarifying these questions, we conducted a meta-analysis to map the volumetric abnormalities that were most robustly identified in CSPT circuits of individuals with MDD. A systematic search identified 41 studies meeting our inclusion criteria. RESULTS There were significant volume reductions in prefrontal (especially orbitofrontal) and anterior cingulate cortices, and also in subcortical structures such as the caudate nucleus and putamen, with effect sizes ranging from small to moderate. The subgenual anterior cingulate and orbitofrontal cortices were significantly smaller in antidepressant-free samples compared to medicated patients. Late-life depression (LLD) tended to be associated with smaller volumes in circumscribed frontal and subcortical structures, with the most robust differences being found in thalamic volume. CONCLUSIONS Individuals with major depression demonstrate volumetric abnormalities of CSPT circuits. However, these observations may be restricted to certain subgroups, highlighting the clinical heterogeneity of the disorder. On the basis of this meta-analysis, CSPT abnormalities were more prominent in those with LLD whereas antidepressant use seemed to normalize certain cortical volumetric abnormalities.
Collapse
Affiliation(s)
- E Bora
- Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia.
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol 2012; 22:1-16. [PMID: 21723712 DOI: 10.1016/j.euroneuro.2011.05.003] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/28/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Previous meta-analyses of structural MRI studies have shown diffuse cortical and sub-cortical abnormalities in unipolar depression. However, the presence of duplicate publications, recruitment of particular age groups and the selection of specific regions of interest means that there is uncertainty about the balance of current research. Moreover, the lack of systematic exploration of highly significant heterogeneity has prevented the generalisability of finding. A systematic review and random-effects meta-analysis was carried out to estimate effect sizes. Possible publication bias, and the impact of various study design characteristics on the magnitude of the observed effect size were systematically explored. The aim of this study was 1) to include structural MRI studies systematically comparing unipolar depression with bipolar disorder and healthy volunteers; 2) to consider all available structures of interest without specific age limits, avoiding data duplication, and 3) to explore the influence of factors contributing to the measured effect sizes systematically with meta-regression analyses. Unipolar depression was characterised by reduced brain volume in areas involved in emotional processing, including the frontal cortex, orbitofrontal cortex, cingulate cortex, hippocampus and striatum. There was also evidence of pituitary enlargement and an excess of white matter hyperintensity volume in unipolar depression. Factors which influenced the magnitude of the observed effect sizes were differences in methods, clinical variables, pharmacological interventions and sample age.
Collapse
Affiliation(s)
- D Arnone
- Neuroscience and Psychiatry Unit, University of Manchester and MAHSC, Manchester, UK.
| | | | | | | | | |
Collapse
|
47
|
Daniels WMU, Marais L, Stein DJ, Russell VA. Exercise normalizes altered expression of proteins in the ventral hippocampus of rats subjected to maternal separation. Exp Physiol 2011; 97:239-47. [PMID: 22080486 DOI: 10.1113/expphysiol.2011.061176] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many studies have reported on the detrimental effects of early life adversity and the beneficial effects of exercise on brain function. However, the molecular mechanisms that underpin these various effects remain poorly understood. The advent of advanced proteomic analysis techniques has enabled simultaneous measurement of protein expression in a wide range of biological systems. We therefore used iTRAQ proteomic analysis of protein expression to determine whether exercise counteracts the detrimental effects of early life adversity in the form of maternal separation on protein expression in the brain. Rat pups were subjected to maternal separation from postnatal day 2 to 14 for 3 h day(-1) or normally reared. At 40 days of age, half of the rats in each group (maternal separation and normally reared) were allowed to exercise voluntarily (access to a running wheel) for 6 weeks and the remainder kept as sedentary control animals. At 83 days of age, rats were killed and the ventral hippocampus was dissected for quantitative proteomic (iTRAQ) analysis. The iTRAQ proteomic analysis identified several proteins that had been altered by maternal separation, including proteins involved in neuronal structure, metabolism, signalling, anti-oxidative stress and neurotransmission, and that many of these proteins were restored to normal by subsequent exposure to voluntary exercise in adolescence. Our data show that a broad range of proteins play a role in the complex consequences of adversity and exercise.
Collapse
Affiliation(s)
- Willie M U Daniels
- Discipline of Human Physiology, Faculty of Health Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban KZ 4000, South Africa.
| | | | | | | |
Collapse
|
48
|
Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S, Williams SCR. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. ACTA ACUST UNITED AC 2011; 68:675-90. [PMID: 21727252 DOI: 10.1001/archgenpsychiatry.2011.60] [Citation(s) in RCA: 590] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT Although differences in clinical characteristics exist between major depressive disorder (MDD) and bipolar disorder (BD), consistent structural brain abnormalities that distinguish the disorders have not been identified. OBJECTIVES To investigate structural brain changes in MDD using meta-analysis of primary studies; assess the effects of medication, demographic, and clinical variables; and compare the findings with those of a meta-analysis of studies on BD. DATA SOURCES The MEDLINE, EMBASE, and PsycINFO databases were searched for studies from January 1, 1980, to February 2, 2010. STUDY SELECTION Two hundred twenty-five studies that used magnetic resonance imaging or x-ray computed tomography to compare brain structure in patients with MDD with that of controls were included in an online database, and 143 that measured common brain structures were selected for meta-analysis. DATA EXTRACTION Twenty-five variables, including demographic and clinical data, were extracted from each study, when available. For the meta-analysis, mean structure size and standard deviation were extracted for continuous variables, and the proportion of patients and controls with an abnormality in brain structure was extracted for categorical variables. DATA SYNTHESIS Compared with the structure of a healthy brain, MDD was associated with lateral ventricle enlargement; larger cerebrospinal fluid volume; and smaller volumes of the basal ganglia, thalamus, hippocampus, frontal lobe, orbitofrontal cortex, and gyrus rectus. Patients during depressive episodes had significantly smaller hippocampal volume than patients during remission. Compared with BD patients, those with MDD had reduced rates of deep white matter hyperintensities, increased corpus callosum cross-sectional area, and smaller hippocampus and basal ganglia. Both disorders were associated with increased lateral ventricle volume and increased rates of subcortical gray matter hyperintensities compared with healthy controls. CONCLUSIONS The meta-analyses revealed structural brain abnormalities in MDD that are distinct from those observed in BD. These findings may aid investigators attempting to discriminate mood disorders using structural magnetic resonance imaging data.
Collapse
Affiliation(s)
- Matthew J Kempton
- Department of Neuroimaging, PO89, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, England.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee HY, Tae WS, Yoon HK, Lee BT, Paik JW, Son KR, Oh YW, Lee MS, Ham BJ. Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: an optimized voxel-based morphometry study. J Affect Disord 2011; 133:128-36. [PMID: 21546094 DOI: 10.1016/j.jad.2011.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/09/2011] [Accepted: 04/09/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous neuroimaging studies in patients with major depressive disorder (MDD) have reported changes in several brain areas, such as the medial and dorsolateral orbital cortex, amygdala, hippocampus, and basal ganglia. However, the results of these studies are inconsistent, and relatively few studies have been conducted using voxel-based morphometry (VBM) to detect gray matter concentration (GMC) abnormalities in patients with MDD. METHODS We examined 47 MDD patients and 51 healthy controls to investigate structural abnormalities using a 1.5 T magnetic resonance imaging system, which was normalized to a customized T1 template and segmented with optimized VBM. Analysis of covariance with age and gender as covariates was adopted for the VBM statistics; the level of statistical significance was set at P<0.05 for the corrected false discovery rate. RESULTS Decreased GMC was found in MDD patients in the bilateral amygdalae, hippocampi, fusiform gyri, lingual gyri, insular gyri, middle-superior temporal gyri, thalami, cingulate gyri, the central lobule of the cerebellum, and the midbrain encompassing the dorsal raphe nuclei (DRN). LIMITATIONS Half of our study subjects were taking antidepressants. This may have been a potential confounding factor if any of the medications affected cortical volume. CONCLUSIONS The results suggest that the GMC of several regions associated with emotion regulation was lower in MDD patients. In particular, we found decreased GMC in the DRN. These findings may provide a better understanding of the anatomical properties of the neural mechanisms underlying the etiology of MDD.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
There is a large literature on the neuroanatomy of late-life depression that continues to grow with the discovery of novel structural imaging techniques along with innovative methods to analyze the images. Such advances have helped identify specific areas, characteristic lesions, and changes in the chemical composition in these regions that might be important in the pathophysiology of this complex disease. This article reviews relevant findings by each structural neuroimaging technique. When validated across many studies, such findings can serve as neuroanatomic markers that can help generate rational hypotheses for future studies to further understanding of geriatric depression.
Collapse
Affiliation(s)
- Sophiya Benjamin
- Department of Psychiatry, Duke University Medical Center, DHSP, Box 3837, Durham- 27710, NC, USA
| | - David C Steffens
- Department of Psychiatry, Duke University Medical Center, DHSP, Box 3837, Durham- 27710, NC, USA,Duke Neuropsychiatric Imaging Research Laboratory, 2200 West Main Street, Suite B210, Durham, NC 27705
| |
Collapse
|