1
|
Lee J. Tetrahydrocannabinol and dopamine D1 receptor. Front Neurosci 2024; 18:1360205. [PMID: 38419666 PMCID: PMC10899378 DOI: 10.3389/fnins.2024.1360205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Dopamine is a hormone that is released by the adrenal gland and influences motor control and motivation. Dopamine is known to have 5 receptors which are D1, D2, D3, D4 and D5, which are further categorized into 2 families: D1 family and D2 family. The D1 family is known to play a role in motivation and motor control whereas the D2 family is known to affect attention and sleep. THC, a type of cannabinoid, can lead to feelings of euphoria, anxiety, fear, distrust, or panic. THC is known to affect dopamine in regions such as the anterior cingulate cortex (ACC), and plays a role in fundamental cognitive processes. Although there is a vast amount of research between the relationship of THC on dopamine, there continues to be limited research in relation to THC on dopamine receptors. The D1 receptor plays a role in several essential functions, such as memory, attention, impulse control, regulation of renal function, and locomotion. Accordingly, this review is intended to summarize the relationship between THC and D1 receptors, highlighting key gaps in the literature and avenues for future research.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Psychology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
2
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
3
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
4
|
Ferré S, Köfalvi A, Ciruela F, Justinova Z, Pistis M. Targeting corticostriatal transmission for the treatment of cannabinoid use disorder. Trends Pharmacol Sci 2023; 44:495-506. [PMID: 37331914 PMCID: PMC10524660 DOI: 10.1016/j.tips.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Zuzana Justinova
- Division of Pharmacology, Physiology, and Biological Chemistry (PPBC), National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
5
|
Xu H, Owens MM, Farncombe T, Noseworthy M, MacKillop J. Molecular brain differences and cannabis involvement: A systematic review of positron emission tomography studies. J Psychiatr Res 2023; 162:44-56. [PMID: 37088043 DOI: 10.1016/j.jpsychires.2023.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND An increasing number of studies have used positron emission tomography (PET) to investigate molecular neurobiological differences in individuals who use cannabis. This study aimed to systematically review PET imaging research in individuals who use cannabis or have cannabis use disorder (CUD). METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria, a comprehensive systematic review was undertaken using the PubMed, Scopus, PsycINFO and Web of Science databases. RESULTS In total, 20 studies were identified and grouped into three themes: (1) studies of the dopamine system primarily found that cannabis use was associated with abnormal striatal dopamine synthesis capacity, which was in turn correlated with clinical symptoms; (2) studies of the endocannabinoid system found that cannabis use and CUD are associated with lower cannabinoid receptor type 1 availability and global reductions in fatty acid amide hydrolase binding; (3) studies of brain metabolism found that individuals who use cannabis exhibit lower normalized glucose metabolism in both cortical and subcortical brain regions, and reduced cerebral blood flow in the lateral prefrontal cortex during experimental tasks. Heterogeneity across studies prevented meta-analysis. CONCLUSION Existing PET imaging research reveals substantive molecular differences in cannabis users in the dopamine and endocannabinoid systems, and in global brain metabolism, although the heterogeneity of designs and approaches is very high, and whether these differences are causal versus consequential is largely unclear.
Collapse
Affiliation(s)
- Hui Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Max M Owens
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Troy Farncombe
- Department of Radiology, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - Michael Noseworthy
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada; Michael G. DeGroote Centre for Medicinal Cannabis Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada.
| |
Collapse
|
6
|
Gunasekera B, Davies C, Blest-Hopley G, Veronese M, Ramsey NF, Bossong MG, Radua J, Bhattacharyya S. Task-independent acute effects of delta-9-tetrahydrocannabinol on human brain function and its relationship with cannabinoid receptor gene expression: A neuroimaging meta-regression analysis. Neurosci Biobehav Rev 2022; 140:104801. [PMID: 35914625 DOI: 10.1016/j.neubiorev.2022.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
The neurobiological mechanisms underlying the effects of delta-9-tetrahydrocannabinol (THC) remain unclear. Here, we examined the spatial acute effect of THC on human regional brain activation or blood flow (hereafter called 'activation signal') in a 'core' network of brain regions from 372 participants, tested using a within-subject repeated measures design under experimental conditions. We also investigated whether the neuromodulatory effects of THC are related to the local expression of the cannabinoid-type-1 (CB1R) and type-2 (CB2R) receptors. Finally, we investigated the dose-response relationship between THC and key brain substrates. These meta-analytic findings shed new light on the localisation of the effects of THC in the human brain, suggesting that THC has neuromodulatory effects in regions central to many cognitive tasks and processes, related to dose, with greater effects in regions with higher levels of CB1R expression.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Centre for Neuroimaging Sciences, King's College London, UK; Department of Information Engineering, University of Padua, Italy
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Matthijs G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| |
Collapse
|
7
|
Differences in Inhibitory Control and Resting Brain Metabolism between Older Chronic Users of Tetrahydrocannabinol (THC) or Cannabidiol (CBD)—A Pilot Study. Brain Sci 2022; 12:brainsci12070819. [PMID: 35884627 PMCID: PMC9312972 DOI: 10.3390/brainsci12070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Δ9-Tetrahydrocannabinol is the main psychoactive component of cannabis and cannabidiol is purportedly responsible for many of the medicinal benefits. The effects of Δ9-tetrahydrocannabinol and cannabidiol in younger populations have been well studied; however, motor function, cognitive function, and cerebral glucose metabolism in older adults have not been extensively researched. The purpose of this study was to assess differences in cognitive function, motor function, and cerebral glucose metabolism (assessed via [18F]-fluorodeoxyglucose positron emission tomography) in older adults chronically using Δ9-tetrahydrocannabinol, cannabidiol, and non-using controls. Eight Δ9-tetrahydrocannabinol users (59.3 ± 5.7 years), five cannabidiol users (54.6 ± 2.1 years), and 16 non-users (58.2 ± 16.9 years) participated. Subjects underwent resting scans and performed cognitive testing (reaction time, Flanker Inhibitory Control and Attention Test), motor testing (hand/arm function, gait), and balance testing. Δ9-tetrahydrocannabinol users performed worse than both cannabidiol users and non-users on the Flanker Test but were similar on all other cognitive and motor tasks. Δ9-tetrahydrocannabinol users also had lower global metabolism and relative hypermetabolism in the bilateral amygdala, cerebellum, and brainstem. Chronic use of Δ9-tetrahydrocannabinol in older adults might negatively influence inhibitory control and alter brain activity. Future longitudinal studies with larger sample sizes investigating multiple Δ9-tetrahydrocannabinol:cannabidiol ratios on functional outcomes and cerebral glucose metabolism in older adults are necessary.
Collapse
|
8
|
Francis AM, Bissonnette JN, MacNeil SE, Crocker CE, Tibbo PG, Fisher DJ. Interaction of sex and cannabis in adult in vivo brain imaging studies: A systematic review. Brain Neurosci Adv 2022; 6:23982128211073431. [PMID: 35097219 PMCID: PMC8793398 DOI: 10.1177/23982128211073431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis has been shown to cause structural and functional neurocognitive changes in heavy users. Cannabis use initiation aligns with brain development trajectories; therefore, it is imperative that the potential neurological implications of cannabis use are understood. Males and females reach neurodevelopmental milestones at different rates making it necessary to consider biological sex in all cannabis and brain-based research. Through use of a systamatic review in accordance with PRISMA guidelines, we aimed to understand the interaction between biological sex and cannabis use on brain-based markers. In total, 18 articles containing a sex-based analysis of cannabis users were identified. While the majority of studies (n = 11) reported no sex by cannabis use interactions on brain-based markers, those that reported findings (n = 8) suggest females may be more susceptible to cannabis' neurotoxic effects. Unfortunately, a large portion of the literature was excluded due to no sex-based analysis. In addition, studies that reported no sex differences often contained a reduced number of females which may result in some studies being underpowered for sex-based analyses, making it difficult to draw firm conclusions. Suggestions to improve cannabis and sex-based reseach are proposed.
Collapse
Affiliation(s)
- Ashley M. Francis
- Department of Psychology, Saint Mary’s University, Halifax, NS, Canada
| | - Jenna N. Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | - Sarah E. MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | - Candice E. Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Derek J. Fisher
- Department of Psychology, Saint Mary’s University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| |
Collapse
|
9
|
Martin AMS, Kim DJ, Newman SD, Cheng H, Hetrick WP, Mackie K, O’Donnell BF. Altered cerebellar-cortical resting-state functional connectivity in cannabis users. J Psychopharmacol 2021; 35:823-832. [PMID: 34034553 PMCID: PMC8813046 DOI: 10.1177/02698811211019291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cannabis use has been associated with abnormalities in cerebellar mediated motor and non-motor (i.e. cognition and personality) phenomena. Since the cerebellum is a region with high cannabinoid type 1 receptor density, these impairments may reflect alterations of signaling between the cerebellum and other brain regions. AIMS We hypothesized that cerebellar-cortical resting-state functional connectivity (rsFC) would be altered in cannabis users, relative to their non-using peers. It was also hypothesized that differences in rsFC would be associated with cannabis use features, such as age of initiation and lifetime use. METHODS Cerebellar-cortical and subcortical rsFCs were computed between 28 cerebellar lobules, defined by a spatially unbiased atlas template of the cerebellum, and individual voxels in the cerebral regions, in 41 regular cannabis users (20 female) and healthy non-using peers (N = 31; 18 female). We also investigated associations between rsFC and cannabis use features (e.g. lifetime cannabis use and age of initiation). RESULTS Cannabis users demonstrated hyperconnectivity between the anterior cerebellar regions (i.e. lobule I-IV) with the posterior cingulate cortex, and hypoconnectivity between the rest of the cerebellum (i.e. Crus I and II, lobule VIIb, VIIIa, VIIIb, IX, and X) and the cortex. No associations were observed between features of cannabis use and rsFC. CONCLUSIONS Cannabis use was associated with altered patterns of rsFC from the cerebellum to the cerebral cortex which may have a downstream impact on behavior and cognition.
Collapse
Affiliation(s)
- Ashley M Schnakenberg Martin
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA,Psychology Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dae-Jin Kim
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Sharlene D Newman
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Hu Cheng
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brian F O’Donnell
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Covelo A, Eraso-Pichot A, Fernández-Moncada I, Serrat R, Marsicano G. CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions. Neuropharmacology 2021; 195:108678. [PMID: 34157362 DOI: 10.1016/j.neuropharm.2021.108678] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) is involved in a variety of brain functions, mainly through the activation of the type-1 cannabinoid receptors (CB1R). CB1R are highly expressed throughout the brain at different structural, cellular and subcellular locations and its activity and expression levels have a direct impact in synaptic activity and behavior. In the last few decades, astrocytes have arisen as active players of brain physiology through their participation in the tripartite synapse and through their metabolic interaction with neurons. Here, we discuss some of the mechanisms by which astroglial CB1R at different subcellular locations, regulate astrocyte calcium signals and have an impact on gliotransmission and metabolic regulation. In addition, we discuss evidence pointing at astrocytes as potential important sources of endocannabinoid synthesis and release. Thus, we summarize recent findings that add further complexity and establish that the ECS is a fundamental effector of astrocyte functions in the brain. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Ana Covelo
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Abel Eraso-Pichot
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Ignacio Fernández-Moncada
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Román Serrat
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, 33077, Bordeaux, France
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France.
| |
Collapse
|
11
|
Gunasekera B, Davies C, Martin-Santos R, Bhattacharyya S. The Yin and Yang of Cannabis: A Systematic Review of Human Neuroimaging Evidence of the Differential Effects of Δ 9-Tetrahydrocannabinol and Cannabidiol. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:636-645. [PMID: 33414100 DOI: 10.1016/j.bpsc.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) have been the most investigated cannabinoids at the human and preclinical levels, although the neurobiological mechanisms underlying their effects remain unclear. Human experimental evidence complemented by observational studies suggests that THC may have psychotogenic effects while CBD may have antipsychotic effects. However, whether their effects on brain function are consistent with their opposing behavioral effects remains unclear. To address this, here we synthesize neuroimaging evidence investigating the acute effects of THC and CBD on human brain function using a range of neuroimaging techniques, with an aim to identify the key brain substrates where THC and CBD have opposing effects. After a systematic search, a review of the available studies indicated marked heterogeneity. However, an overall pattern of opposite effect profiles of the two cannabinoids was evident with some degree of consistency, primarily attributed to the head-to-head challenge studies of THC and CBD. While head-to-head comparisons are relatively few, collectively the evidence suggests that opposite effects of THC and CBD may be present in the striatum, parahippocampus, anterior cingulate/medial prefrontal cortex, and amygdala, with opposite effects less consistently identified in other regions. Broadly, THC seems to increase brain activation and blood flow, whereas CBD seems to decrease brain activation and blood flow. Given the sparse evidence, there is a particular need to understand the mechanisms underlying their opposite behavioral effects because it may not only offer insights into the underlying pathophysiological mechanisms of psychotic disorders but also suggest potentially novel targets and biomarkers for drug discovery.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Rocio Martin-Santos
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
12
|
McPherson KL, Tomasi DG, Wang GJ, Manza P, Volkow ND. Cannabis Affects Cerebellar Volume and Sleep Differently in Men and Women. Front Psychiatry 2021; 12:643193. [PMID: 34054601 PMCID: PMC8155508 DOI: 10.3389/fpsyt.2021.643193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background: There are known sex differences in behavioral and clinical outcomes associated with drugs of abuse, including cannabis. However, little is known about how chronic cannabis use and sex interact to affect brain structure, particularly in regions with high cannabinoid receptor expression, such as the cerebellum, amygdala, and hippocampus. Based on behavioral data suggesting that females may be particularly vulnerable to the effects of chronic cannabis use, we hypothesized lower volumes in these regions in female cannabis users. We also hypothesized poorer sleep quality among female cannabis users, given recent findings highlighting the importance of sleep for many outcomes related to cannabis use disorder. Methods: Using data from the Human Connectome Project, we examined 170 chronic cannabis users (>100 lifetime uses and/or a lifetime diagnosis of cannabis dependence) and 170 controls that we attempted to match on age, sex, BMI, race, tobacco use, and alcohol use. We performed group-by-sex ANOVAs, testing for an interaction in subcortical volumes, and in self-reported sleep quality (Pittsburgh Sleep Questionnaire Inventory). Results: After controlling for total intracranial volume and past/current tobacco usage, we found that cannabis users relative to controls had smaller cerebellum volume and poorer sleep quality, and these effects were driven by the female cannabis users (i.e., a group-by-sex interaction). Among cannabis users, there was an age of first use-by-sex interaction in sleep quality, such that females with earlier age of first cannabis use tended to have more self-reported sleep issues, whereas this trend was not present among male cannabis users. The amygdala volume was smaller in cannabis users than in non-users but the group by sex interaction was not significant. Conclusions: These data corroborate prior findings that females may be more sensitive to the neural and behavioral effects of chronic cannabis use than males. Further work is needed to determine if reduced cerebellar and amygdala volumes contribute to sleep impairments in cannabis users.
Collapse
Affiliation(s)
- Katherine L. McPherson
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Dardo G. Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Chetia S, Borah G. Δ 9-Tetrahydrocannabinol Toxicity and Validation of Cannabidiol on Brain Dopamine Levels: An Assessment on Cannabis Duplicity. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:285-296. [PMID: 32860199 PMCID: PMC7520491 DOI: 10.1007/s13659-020-00263-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) of cannabis is the main psychoactive component which is a global significant concern to human health. Evaluation on THC reported its drastic effect on the brain dopaminergic (DAergic) system stimulating mesolimbic DA containing neurons thereby increasing the level of striatal DA. Cannabidiol (CBD), with its anxiolytic and anti-psychotic property, is potent to ameliorate the THC-induced DAergic variations. Legal authorization of cannabis use and its analogs in most countries led to a drastic dispute in the elicitation of cannabis products. With a recent increase in cannabis-induced disorder rates, the present review highlighted the detrimental effects of THC and the effects of CBD on THC induced alterations in DA synthesis and release. Alongside the reported data, uses of cannabis as a therapeutic medium in a number of health complications are also being briefly reviewed. These evaluated reports led to an anticipation of additional research contradictory to the findings of THC and CBD activity in the brain DAergic system and their medical implementations as therapeutics.
Collapse
Affiliation(s)
- Swapnali Chetia
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India.
| | - Gaurab Borah
- Department of Zoology, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112, India
| |
Collapse
|
14
|
Debenham J, Newton N, Birrell L, Yücel M, Lees B, Champion K. Cannabis and Illicit Drug Use During Neurodevelopment and the Associated Structural, Functional and Cognitive Outcomes: Protocol for a Systematic Review. JMIR Res Protoc 2020; 9:e18349. [PMID: 32716005 PMCID: PMC7418018 DOI: 10.2196/18349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/16/2023] Open
Abstract
Background High rates of cannabis and illicit drug use are experienced by young people during the final stages of neurodevelopment (aged 15-24 years), a period characterized by high neuroplasticity. Frequent drug use during this time may interfere with neurophysiological and neuropsychological development pathways, potentially leading to ongoing unfavorable neuroadaptations. The dose-response relationship between illicit drug use, exposure, and individual neurodevelopmental variation is unknown but salient with global shifts in the legal landscape and increasingly liberal attitudes and perceptions of the harm caused by cannabis and illicit drugs. Objective This systematic review aims to synthesize longitudinal studies that investigate the effects of illicit drug use on structural, functional, and cognitive brain domains in individuals under the neural age of adulthood (25 years). This protocol outlines prospective methods that will facilitate an exhaustive review of the literature exploring pre- and post-drug use brain abnormalities arising during neurodevelopment. Methods Five electronic databases (Medline, Embase, PsycINFO, ProQuest Central, and Web of Science) will be systematically searched between 1990 and 2019. The search terms will be a combination of MeSH (Medical Subject Headings), with keywords adapted to each database. Study reporting will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and if relevant, study quality will be assessed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. Eligible studies are those that sampled youth exposed to cannabis or illicit drugs and employed neurophysiological or neuropsychological assessment techniques. Studies will be excluded if participants had been clinically diagnosed with any psychiatric, neurological, or pharmacological condition. Results This is an ongoing review. As of February 2020, papers are in full-text screening, with results predicted to be complete by July 2020. Conclusions Integrating data collected on the three brain domains will enable an assessment of the links between structural, functional, and cognitive brain health across individuals and may support the early detection and prevention of neurodevelopmental harm. Trial Registration PROSPERO CRD42020151442; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=151442 International Registered Report Identifier (IRRID) PRR1-10.2196/18349
Collapse
Affiliation(s)
- Jennifer Debenham
- The Matilda Centre for Research into Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| | - Nicola Newton
- The Matilda Centre for Research into Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| | - Louise Birrell
- The Matilda Centre for Research into Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| | - Murat Yücel
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | - Briana Lees
- The Matilda Centre for Research into Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| | - Katrina Champion
- The Matilda Centre for Research into Mental Health and Substance Use, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Ogunbiyi MO, Hindocha C, Freeman TP, Bloomfield MAP. Acute and chronic effects of Δ 9-tetrahydrocannabinol (THC) on cerebral blood flow: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109900. [PMID: 32109508 DOI: 10.1016/j.pnpbp.2020.109900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Acute and chronic exposure to cannabis and its main psychoactive component, Δ9-tetrahydrocannabinol (THC), is associated with changes in brain function and cerebral blood flow (CBF). We therefore sought to systematically review the literature on the effects of THC on CBF following PRISMA guidelines. Studies assessing the acute and chronic effects of THC on CBF, perfusion and volume were searched in the PubMed database between January 1972 and June 2019. We included thirty-four studies, which altogether investigated 1259 humans and 28 animals. Acute and chronic THC exposure have contrasting and regionally specific effects on CBF. While acute THC causes an overall increase in CBF in the anterior cingulate cortex, frontal cortex and insula, in a dose-dependent manner, chronic cannabis use results in an overall reduction in CBF, especially in the prefrontal cortex, which may be reversed upon prolonged abstinence from the drug. Future studies should focus on standardised methodology and longitudinal assessment to strengthen our understanding of the region-specific effects of THC on CBF and its clinical and functional significance.
Collapse
Affiliation(s)
- M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, UK
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, UK; Clinical Psychopharmacology Unit, Research Department of Clinical and Health Psychology, Division of Psychology, University College London, UK; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, UK
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, UK; Clinical Psychopharmacology Unit, Research Department of Clinical and Health Psychology, Division of Psychology, University College London, UK; Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, UK; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, UK; Clinical Psychopharmacology Unit, Research Department of Clinical and Health Psychology, Division of Psychology, University College London, UK; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, UK; The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
16
|
Hu Y, Ranganathan M, Shu C, Liang X, Ganesh S, Osafo-Addo A, Yan C, Zhang X, Aouizerat BE, Krystal JH, D'Souza DC, Xu K. Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep 2020; 10:3450. [PMID: 32103029 PMCID: PMC7044203 DOI: 10.1038/s41598-020-59827-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 01/02/2023] Open
Abstract
Delta-9-tetrahydrocannabinol (THC) is known to modulate immune response in peripheral blood cells. The mechanisms of THC's effects on gene expression in human immune cells remains poorly understood. Combining a within-subject design with single cell transcriptome mapping, we report that THC acutely alters gene expression in 15,973 blood cells. We identified 294 transcriptome-wide significant genes among eight cell types including 69 common genes and 225 cell-type-specific genes affected by THC administration, including those genes involving in immune response, cytokine production, cell proliferation and apoptosis. We revealed distinct transcriptomic sub-clusters affected by THC in major immune cell types where THC perturbed cell-type-specific intracellular gene expression correlations. Gene set enrichment analysis further supports the findings of THC's common and cell-type-specific effects on immune response and cell toxicity. This comprehensive single-cell transcriptomic profiling provides important insights into THC's acute effects on immune function that may have important medical implications.
Collapse
Affiliation(s)
- Ying Hu
- Center for Biomedical Information and Information Technology, National Cancer Institute, Rockville, MD, 20850, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Chang Shu
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Xiaoyu Liang
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Suhas Ganesh
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Awo Osafo-Addo
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Chunhua Yan
- Center for Biomedical Information and Information Technology, National Cancer Institute, Rockville, MD, 20850, USA
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, NY, 10010, USA
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Deepak C D'Souza
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA.
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
17
|
Nielsen S, Sabioni P, Gowing L, Le Foll B. Pharmacotherapies for Cannabis Use Disorders: Clinical Challenges and Promising Therapeutic Agents. Handb Exp Pharmacol 2020; 258:355-372. [PMID: 31375922 DOI: 10.1007/164_2019_258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This chapter reviews pharmacotherapies that have been trialled for cannabis dependence, identifying those that warrant further research and those of little or uncertain value. A diverse range of medicines have been tested, representing a broad range of pharmacological strategies. These include tetrahydrocannabinol preparations, various types of antidepressant, anxiolytics, a glutamatergic modulator and the neuropeptide oxytocin. Cannabinoid agonists warrant further research. For the FAAH inhibitor PF-04457845, oxytocin, varenicline and gabapentin, although there is a signal to indicate further research is warranted, these medications do not yet have sufficient evidence to support clinical use, and larger, longer-term trials are needed in representative treatment-seeking populations. Special populations that warrant consideration are those with cannabis dependence and concurrent mental health conditions and those that develop dependence through therapeutic use.
Collapse
Affiliation(s)
- Suzanne Nielsen
- Monash Addiction Research Centre, Monash University, Peninsula Campus, Frankston, VIC, Australia
| | - Pamela Sabioni
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Linda Gowing
- Discipline of Pharmacology, University of Adelaide, Adelaide, SA, Australia
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Departments of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
18
|
Neural bases of impulse control disorders in Parkinson’s disease: A systematic review and an ALE meta-analysis. Neurosci Biobehav Rev 2019; 107:672-685. [DOI: 10.1016/j.neubiorev.2019.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022]
|
19
|
Blithikioti C, Miquel L, Batalla A, Rubio B, Maffei G, Herreros I, Gual A, Verschure P, Balcells‐Oliveró M. Cerebellar alterations in cannabis users: A systematic review. Addict Biol 2019; 24:1121-1137. [PMID: 30811097 DOI: 10.1111/adb.12714] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/18/2023]
Abstract
Cannabis is the most used illicit substance in the world. As many countries are moving towards decriminalization, it is crucial to determine whether and how cannabis use affects human brain and behavior. The role of the cerebellum in cognition, emotion, learning, and addiction is increasingly recognized. Because of its high density in CB1 receptors, it is expected to be highly affected by cannabis use. The aim of this systematic review is to investigate how cannabis use affects cerebellar structure and function, as well as cerebellar-dependent behavioral tasks. Three databases were searched for peer-reviewed literature published until March 2018. We included studies that focused on cannabis effects on cerebellar structure, function, or cerebellar-dependent behavioral tasks. A total of 348 unique records were screened, and 40 studies were included in the qualitative synthesis. The most consistent findings include (1) increases in cerebellar gray matter volume after chronic cannabis use, (2) alteration of cerebellar resting state activity after acute or chronic use, and (3) deficits in memory, decision making, and associative learning. Age of onset and higher exposure to cannabis use were frequently associated with increased cannabis-induced alterations. Chronic cannabis use is associated with alterations in cerebellar structure and function, as well as with deficits in behavioral paradigms that involve the cerebellum (eg, eyeblink conditioning, memory, and decision making). Future studies should consider tobacco as confounding factor and use standardized methods for assessing cannabis use. Paradigms exploring the functional activity of the cerebellum may prove useful as monitoring tools of cannabis-induced impairment.
Collapse
Affiliation(s)
- Chrysanthi Blithikioti
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| | - Laia Miquel
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| | - Albert Batalla
- Department of Psychiatry, Brain Center Rudolf MagnusUniversity Medical Center Utrecht Utrecht the Netherlands
- Nijmegen Institute for Scientist‐Practitioners in Addiction (NISPA)Radboud University Nijmegen The Netherlands
| | - Belen Rubio
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Giovanni Maffei
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Ivan Herreros
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Antoni Gual
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| | - Paul Verschure
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
- ICREAInstitucio Catalana de Recerca I Estudis Avançats, Passeig Lluis Companys Barcelona Spain
| | - Mercedes Balcells‐Oliveró
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| |
Collapse
|
20
|
Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction. Neuroimage 2019; 200:313-331. [DOI: 10.1016/j.neuroimage.2019.06.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
|
21
|
Tawfik GM, Hashan MR, Abdelaal A, Tieu TM, Huy NT. A commentary on the medicinal use of marijuana. Trop Med Health 2019; 47:35. [PMID: 31148941 PMCID: PMC6534865 DOI: 10.1186/s41182-019-0161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background Lately, the number of people using marijuana in the USA has dramatically increased. In 2018, many states have legalized marijuana use for both medical and recreational purposes, thus exploring the evidence behind medical marijuana use became essential. Muslim majority countries enforce rigorous rules as marijuana has been a long-debated issue due to the stigma associated with its use as a treatment. Marijuana has a high beneficial effect in managing chronic pain in adults and relieving spasticity symptoms in multiple sclerosis, obstructive sleep apnea syndrome, and fibromyalgia. As well as, used as pain management, and as anti-emetic in treatment of chemotherapy-induced vomiting and nausea. Marijuana is requested from more than one-third of posttraumatic stress disorder patients due to its significant clinical improvement in nightmares and subsidence disorder symptoms. Marijuana adversely affects the body’s resistance to many infections, compromising their immune response. Its recreational use has led to an increasing trend in the occurrence of major acute cardiovascular events as stroke, epilepsy, acute myocardial infarction, congestive heart failure, and arrhythmia. Conclusion Many countries started to allow medicinal use of marijuana due to its beneficial effect in managing chronic pain, spasticity symptoms in multiple sclerosis, obstructive sleep apnea syndrome, fibromyalgia, and posttraumatic stress disorder. But literature lacks benefit-harm analysis for marijuana usage in medicine. Therefore, evidence-based report of short- and long-term health effects of marijuana use—both harmful and beneficial effects—is crucial for further marijuana prescription in healthcare settings.
Collapse
Affiliation(s)
- Gehad Mohamed Tawfik
- 1Faculty of Medicine, Ain Shams University, Cairo, Egypt.,http://www.onlineresearchclub.org
| | - Mohammad Rashidul Hashan
- http://www.onlineresearchclub.org.,3Respiratory and Enteric Infections Department, Infectious Disease Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Abdelaziz Abdelaal
- http://www.onlineresearchclub.org.,4Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Thuan Minh Tieu
- http://www.onlineresearchclub.org.,5Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Nguyen Tien Huy
- 6Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| |
Collapse
|
22
|
Gilman JM, Yücel MA, Pachas GN, Potter K, Levar N, Broos H, Manghis EM, Schuster RM, Evins AE. Delta-9-tetrahydrocannabinol intoxication is associated with increased prefrontal activation as assessed with functional near-infrared spectroscopy: A report of a potential biomarker of intoxication. Neuroimage 2019; 197:575-585. [PMID: 31075393 DOI: 10.1016/j.neuroimage.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 11/17/2022] Open
Abstract
The primary psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), binds to cannabinoid receptors (CB1) present in high concentrations in the prefrontal cortex (PFC). It is unknown whether the PFC hemodynamic response changes with THC intoxication. We conducted the first double-blind, placebo-controlled, cross-over study of the effect of THC intoxication on functional near infrared spectroscopy (fNIRS) measures of PFC activation. Fifty-four adult, regular (at least weekly) cannabis users received a single oral dose of synthetic THC (dronabinol; 5-50 mg, dose individually tailored to produce intoxication) and identical placebo on two visits at least one week apart. fNIRS recordings were obtained during a working memory task (N-Back) at three timepoints: before THC/placebo, at 100 min (when peak effects were expected), and at 200 min after THC/placebo administration. Functional data were collected using a continuous-wave NIRS device, with 8 sources and 7 detectors arrayed over the forehead, resulting in 20 channels covering PFC regions. Participants also completed frequent heart rate measures and subjective ratings of intoxication. Approximately half of participants reported significant intoxication. Intoxication ratings were not correlated with dose of THC. Increases in heart rate significantly correlated with intoxication ratings after THC dosing. Results indicated that 100 min after THC administration, oxygenated hemoglobin (HbO) response significantly increased from pre-dose HbO levels throughout the PFC in participants who reported significant intoxication. Changes in HbO response significantly correlated with self-reported intoxication at 100 min after THC administration. Among those who reported intoxication, HbO response decreased at 200 min after THC, when intoxication had largely resolved, compared to the peak THC time point. This study demonstrates that THC intoxication causes increased PFC activity, and fNIRS of the PFC can measure this effect. Increased neural activation in PFC represents a potential biomarker for cannabis intoxication.
Collapse
Affiliation(s)
- Jodi M Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Meryem A Yücel
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gladys N Pachas
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kevin Potter
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nina Levar
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hannah Broos
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Eve M Manghis
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Randi M Schuster
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - A Eden Evins
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, Wang GJ. Cannabis Addiction and the Brain: a Review. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2019; 17:169-182. [PMID: 32021587 DOI: 10.1176/appi.focus.17204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
(©Zehra A, Liuck, Manza P, Wiers CE, Volkow ND Wergh J, 2018. Reprinted with permission from Journal of Neuroimmune Pharmacology (2018) 13:438-452).
Collapse
|
24
|
Moreno-Rius J. The Cerebellum, THC, and Cannabis Addiction: Findings from Animal and Human Studies. THE CEREBELLUM 2019; 18:593-604. [DOI: 10.1007/s12311-018-0993-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
26
|
Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, Wang GJ. Cannabis Addiction and the Brain: a Review. J Neuroimmune Pharmacol 2018; 13:438-452. [PMID: 29556883 PMCID: PMC6223748 DOI: 10.1007/s11481-018-9782-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Cannabis is the most commonly used substance of abuse in the United States after alcohol and tobacco. With a recent increase in the rates of cannabis use disorder (CUD) and a decrease in the perceived risk of cannabis use, it is imperative to assess the addictive potential of cannabis. Here we evaluate cannabis use through the neurobiological model of addiction proposed by Koob and Volkow. The model proposes that repeated substance abuse drives neurobiological changes in the brain that can be separated into three distinct stages, each of which perpetuates the cycle of addiction. Here we review previous research on the acute and long-term effects of cannabis use on the brain and behavior, and find that the three-stage framework of addiction applies to CUD in a manner similar to other drugs of abuse, albeit with some slight differences. These findings highlight the urgent need to conduct research that elucidates specific neurobiological changes associated with CUD in humans.
Collapse
Affiliation(s)
- Amna Zehra
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Jamie Burns
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
28
|
Kindred JH, Honce JM, Kwak JJ, Rudroff T. Multiple Sclerosis, Cannabis Use, and Clinical Disability: A Preliminary [ 18F]-Fluorodeoxyglucose Positron Emission Tomography Study. Cannabis Cannabinoid Res 2018; 3:213-218. [PMID: 30324138 PMCID: PMC6186162 DOI: 10.1089/can.2018.0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Long-term consequences of medicinal cannabis use in people with multiple sclerosis (PwMS) are unknown. This study investigated whether PwMS using cannabis had lower resting brain glucose uptake (GU) and worse clinical test results compared with nonusers. Methods: Sixteen PwMS, eight users, underwent clinical testing followed by [18F]-Fluorodeoxyglucose positron emission tomography/computed tomography imaging. Results: Users had lower cognitive function test scores, but performed similarly on the other clinical evaluations. Accounting for disease duration, resting brain GU was similar between the groups. Conclusions: Lower cognitive function was not associated with resting brain GU. Cognitive dysfunction may be a contraindication or consequence of cannabis use in PwMS.
Collapse
Affiliation(s)
- John H. Kindred
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
- Division of Physical Therapy, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran's Administration Medical Center, Charleston, South Carolina
| | - Justin M. Honce
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer J. Kwak
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Thorsten Rudroff
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Address correspondence to: Thorsten Rudroff, PhD, Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242,
| |
Collapse
|
29
|
Subramaniam P, Rogowska J, DiMuzio J, Lopez-Larson M, McGlade E, Yurgelun-Todd D. Orbitofrontal connectivity is associated with depression and anxiety in marijuana-using adolescents. J Affect Disord 2018; 239:234-241. [PMID: 30025312 DOI: 10.1016/j.jad.2018.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/17/2018] [Accepted: 07/01/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Prevalence of marijuana (MJ) use among adolescents has been on the rise. MJ use has been reported to impact several brain regions, including frontal regions such as the orbitofrontal cortex (OFC). The OFC is involved in emotion regulation and processing and has been associated with symptoms of depression and anxiety. Therefore, we hypothesized that adolescent MJ users would show disruptions in OFC connectivity compared with healthy adolescents (HC) which would be associated with symptoms of mood and anxiety. METHODS 43 MJ-using and 31 HC adolescents completed clinical measures including the Hamilton Anxiety Scale (HAM-A) and Hamilton Depression Rating Scale (HAM-D). Resting-state functional magnetic resonance imaging data was also acquired for all participants. RESULTS In MJ users, increased depressive symptoms were associated with increased connectivity between the left OFC and left parietal regions. In contrast, lower ratings of anxiety were associated with increased connectivity between right and left OFC and right occipital and temporal regions. These findings indicate significant differences in OFC connectivity in MJ-using adolescents, which correlated with mood/anxiety. LIMITATIONS Future studies with an increased number of female participants is required to address potential sex differences in connectivity patterns related to symptoms of depression and anxiety. CONCLUSIONS This study highlights the association between OFC connectivity, MJ use, and symptoms of depression and anxiety in adolescents. These findings provide further insight into understanding the neural correlates that modulate the relationship between comorbid MJ use and mood disorders and could potentially help us better develop preventive and treatment measures.
Collapse
Affiliation(s)
- Punitha Subramaniam
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.
| | - Jadwiga Rogowska
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
| | - Jennifer DiMuzio
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
| | | | - Erin McGlade
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; Department of Veteran Affairs, Rocky Mountain MIRECC, Salt Lake City, UT, USA
| | - Deborah Yurgelun-Todd
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; Department of Veteran Affairs, Rocky Mountain MIRECC, Salt Lake City, UT, USA
| |
Collapse
|
30
|
Filbey FM, Aslan S, Lu H, Peng SL. Residual Effects of THC via Novel Measures of Brain Perfusion and Metabolism in a Large Group of Chronic Cannabis Users. Neuropsychopharmacology 2018; 43:700-707. [PMID: 28240291 PMCID: PMC5809805 DOI: 10.1038/npp.2017.44] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/17/2022]
Abstract
Given the known vascular effects of cannabis, this study examined the neurophysiological factors that may affect studies of brain activity in cannabis users. We conducted a systematic evaluation in 72 h abstinent, chronic cannabis users (N=74) and nonusing controls (N=101) to determine the association between prolonged cannabis use and the following neurophysiological indicators: (1) global and regional resting cerebral blood flow (CBF), (2) oxygen extraction fraction (OEF), and (3) cerebral metabolic rate of oxygen (CMRO2). We found that cannabis users had greater global OEF and CMRO2 compared with nonusers. Regionally, we found higher CBF in the right pallidum/putamen of the cannabis users compared with nonusers. Global resting CBF and regional CBF of right superior frontal cortex correlated positively with creatinine-normalized Δ9-tetrahydrocannabinol (THC) levels. These findings demonstrate residual effects of cannabis use whereby global and regional brain metabolism are altered in those with prolonged cannabis exposure. These neurophysiological alterations should be considered in both research and clinical applications.
Collapse
Affiliation(s)
- Francesca M Filbey
- Center for BrainHealth, University of Texas at Dallas, Dallas, TX, USA,Center for BrainHealth, University of Texas at Dallas, 2200 West Mockingbird Lane, Dallas, TX 75235, USA, Tel: +1 972 883 3311, E-mail:
| | - Sina Aslan
- Center for BrainHealth, University of Texas at Dallas, Dallas, TX, USA,Advance MRI LLC, Frisco, TX, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shin-Lei Peng
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
31
|
Keles HO, Radoman M, Pachas GN, Evins AE, Gilman JM. Using Functional Near-Infrared Spectroscopy to Measure Effects of Delta 9-Tetrahydrocannabinol on Prefrontal Activity and Working Memory in Cannabis Users. Front Hum Neurosci 2017; 11:488. [PMID: 29066964 PMCID: PMC5641318 DOI: 10.3389/fnhum.2017.00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/22/2017] [Indexed: 11/13/2022] Open
Abstract
Intoxication from cannabis impairs cognitive performance, in part due to the effects of Δ9-tetrahydrocannabinol (THC, the primary psychoactive compound in cannabis) on prefrontal cortex (PFC) function. However, a relationship between impairment in cognitive functioning with THC administration and THC-induced change in hemodynamic response has not been demonstrated. We explored the feasibility of using functional near-infrared spectroscopy (fNIRS) to examine the functional changes of the human PFC associated with cannabis intoxication and cognitive impairment. Eighteen adult regular cannabis users (final sample, n = 13) performed a working memory task (n-back) during fNIRS recordings, before and after receiving a single dose of oral synthetic THC (dronabinol; 20–50 mg). Functional data were collected using a continuous-wave NIRS device, in which 8 Sources and 7 detectors were placed on the forehead, resulting in 20 channels covering PFC regions. Physiological changes and subjective intoxication measures were collected. We found a significant increase in the oxygenated hemoglobin (HbO) concentration after THC administration in several channels on the PFC during both the high working memory load (2-back) and the low working memory load (0-back) condition. The increased HbO response was accompanied by a trend toward an increased number of omission errors after THC administration. The current study suggests that cannabis intoxication is associated with increases in hemodynamic blood flow to the PFC, and that this increase can be detected with fNIRS.
Collapse
Affiliation(s)
- Hasan O Keles
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Milena Radoman
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Gladys N Pachas
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - A Eden Evins
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Jodi M Gilman
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
32
|
Kindred JH, Li K, Ketelhut NB, Proessl F, Fling BW, Honce JM, Shaffer WR, Rudroff T. Cannabis use in people with Parkinson's disease and Multiple Sclerosis: A web-based investigation. Complement Ther Med 2017; 33:99-104. [PMID: 28735833 DOI: 10.1016/j.ctim.2017.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Cannabis has been used for medicinal purpose for thousands of years; however the positive and negative effects of cannabis use in Parkinson's disease (PD) and Multiple Sclerosis (MS) are mostly unknown. Our aim was to assess cannabis use in PD and MS and compare results of self-reported assessments of neurological disability between current cannabis users and non-users. METHODS An anonymous web-based survey was hosted on the Michael J. Fox Foundation and the National Multiple Sclerosis Society webpages from 15 February to 15 October 2016. The survey collected demographic and cannabis use information, and used standardized questionnaires to assess neurological function, fatigue, balance, and physical activity participation. Analysis of variance and chi-square tests were used for the analysis. RESULTS The survey was viewed 801 times, and 595 participants were in the final data set. Seventy-six percent and 24% of the respondents reported PD and MS respectively. Current users reported high efficacy of cannabis, 6.4 (SD 1.8) on a scale from 0 to 7 and 59% reported reducing prescription medication since beginning cannabis use. Current cannabis users were younger and less likely to be classified as obese (P < 0.035). Cannabis users reported lower levels of disability, specifically in domains of mood, memory, and fatigue (P<0.040). CONCLUSIONS Cannabis may have positive impacts on mood, memory, fatigue, and obesity status in people with PD and MS. Further studies using clinically and longitudinally assessed measurements of these domains are needed to establish if these associations are causal and determine the long-term benefits and consequences of cannabis use in people with PD and MS.
Collapse
Affiliation(s)
- John H Kindred
- Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kaigang Li
- Colorado State University, Fort Collins, CO, 80523, USA.
| | | | - Felix Proessl
- Colorado State University, Fort Collins, CO, 80523, USA.
| | - Brett W Fling
- Colorado State University, Fort Collins, CO, 80523, USA.
| | | | | | | |
Collapse
|
33
|
Zhu X, Zhu Q, Jiang C, Shen H, Wang F, Liao W, Yuan F. Disrupted Resting-State Default Mode Network in Betel Quid-Dependent Individuals. Front Psychol 2017; 8:84. [PMID: 28194128 PMCID: PMC5276995 DOI: 10.3389/fpsyg.2017.00084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/13/2017] [Indexed: 11/15/2022] Open
Abstract
Recent studies have shown that substance dependence (addiction) is accompanied with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and betel quid dependence (BQD)-related physiopathological characteristics still remain unclear. Resting-state functional magnetic resonance imaging images were obtained from 26 BQD individuals and 28 matched healthy control subjects. Group independent component analysis was performed to analyze the resting state images into spatially independent components. Gray matter volume was examined as covariate with voxel-based morphometry to rule out its effect on the functional results. The severity of BQD was assessed by the BQD Scale (BQDS). We observed decreased functional connectivity in anterior part of the DMN including ventral medial prefrontal cortex, orbital MPFC (OMPFC)/anterior cingulate cortex (ACC). Furthermore, the functional connectivity within the OMPFC/ACC in BQD individuals was negatively correlated with BQDS (p = 0.01, r = -0.49). We reported decreased functional connectivity within anterior part of the DMN in BQD individuals, which provides new evidence for the role of the DMN in the pathophysiology of BQD.
Collapse
Affiliation(s)
- Xueling Zhu
- Health Management Center, Xiangya Hospital, Central South UniversityChangsha, China
- School of Humanities and Social Sciences, National University of Defense TechnologyChangsha, China
| | - Qiuling Zhu
- Obstetrics Department, Jinan Maternity and Child Care HospitalJinan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Huaizhen Shen
- School of Humanities and Social Sciences, National University of Defense TechnologyChangsha, China
| | - Furong Wang
- School of Humanities and Social Sciences, National University of Defense TechnologyChangsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
34
|
Altamura AC, Delvecchio G, Marotta G, Oldani L, Pigoni A, Ciappolino V, Caletti E, Rovera C, Dobrea C, Arici C, Benatti B, Camuri G, Prunas C, Paoli RA, Dell'osso B, Cinnante C, Triulzi FM, Brambilla P. Structural and metabolic differentiation between bipolar disorder with psychosis and substance-induced psychosis: An integrated MRI/PET study. Eur Psychiatry 2016; 41:85-94. [PMID: 28049086 DOI: 10.1016/j.eurpsy.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) may be characterized by the presence of psychotic symptoms and comorbid substance abuse. In this context, structural and metabolic dysfunctions have been reported in both BD with psychosis and addiction, separately. In this study, we aimed at identifying neural substrates differentiating psychotic BD, with or without substance abuse, versus substance-induced psychosis (SIP) by coupling, for the first time, magnetic resonance imaging (MRI) and positron emission tomography (PET). METHODS Twenty-seven BD type I psychotic patients with (n=10) or without (n=17) substance abuse, 16 SIP patients and 54 healthy controls were enrolled in this study. 3T MRI and 18-FDG-PET scanning were acquired. RESULTS Gray matter (GM) volume and cerebral metabolism reductions in temporal cortices were observed in all patients compared to healthy controls. Moreover, a distinct pattern of fronto-limbic alterations were found in patients with substance abuse. Specifically, BD patients with substance abuse showed volume reductions in ventrolateral prefrontal cortex, anterior cingulate, insula and thalamus, whereas SIP patients in dorsolateral prefrontal cortex and posterior cingulate. Common alterations in cerebellum, parahippocampus and posterior cingulate were found in both BD with substance abuse and SIP. Finally, a unique pattern of GM volumes reduction, with concomitant increased of striatal metabolism, were observed in SIP patients. CONCLUSIONS These findings contribute to shed light on the identification of common and distinct neural markers associated with bipolar psychosis and substance abuse. Future longitudinal studies should explore the effect of single substances of abuse in patients at the first-episode of BD and substance-induced psychosis.
Collapse
Affiliation(s)
- A C Altamura
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - G Delvecchio
- Scientific Institute IRCCS "E. Medea", San Vito al Tagliamento (PN), Italy
| | - G Marotta
- Department of Services, Neuroradiology Unit, Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - L Oldani
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - A Pigoni
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - V Ciappolino
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - E Caletti
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - C Rovera
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - C Dobrea
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - C Arici
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - B Benatti
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - G Camuri
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - C Prunas
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - R A Paoli
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - B Dell'osso
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry, Bipolar Disorders Clinic, Stanford University, CA, USA
| | - C Cinnante
- Department of Services, Neuroradiology Unit, Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F M Triulzi
- Department of Services, Neuroradiology Unit, Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P Brambilla
- Department of Neurosciences and Mental Health, Institute of Psychiatry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, TX, USA.
| |
Collapse
|
35
|
Bloomfield MAP, Ashok AH, Volkow ND, Howes OD. The effects of Δ 9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539:369-377. [PMID: 27853201 PMCID: PMC5123717 DOI: 10.1038/nature20153] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
The effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, are a pressing concern for global mental health. Patterns of cannabis use are changing drastically owing to legalization, the availability of synthetic analogues (commonly termed spice), cannavaping and an emphasis on the purported therapeutic effects of cannabis. Many of the reinforcing effects of THC are mediated by the dopamine system. Owing to the complexity of the cannabinoid-dopamine interactions that take place, there is conflicting evidence from human and animal studies concerning the effects of THC on the dopamine system. Acute THC administration causes increased dopamine release and neuron activity, whereas long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of THC.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London WC1T 7NF, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London WC1E 6BT, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Boulevard, Bethesda, Maryland 20892-9561, USA
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
36
|
Plunk AD, Agrawal A, Harrell PT, Tate WF, Will KE, Mellor JM, Grucza RA. The impact of adolescent exposure to medical marijuana laws on high school completion, college enrollment and college degree completion. Drug Alcohol Depend 2016; 168:320-327. [PMID: 27742490 PMCID: PMC5123757 DOI: 10.1016/j.drugalcdep.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND There is concern that medical marijuana laws (MMLs) could negatively affect adolescents. To better understand these policies, we assess how adolescent exposure to MMLs is related to educational attainment. METHODS Data from the 2000 Census and 2001-2014 American Community Surveys were restricted to individuals who were of high school age (14-18) between 1990 and 2012 (n=5,483,715). MML exposure was coded as: (i) a dichotomous "any MML" indicator, and (ii) number of years of high school age exposure. We used logistic regression to model whether MMLs affected: (a) completing high school by age 19; (b) beginning college, irrespective of completion; and (c) obtaining any degree after beginning college. A similar dataset based on the Youth Risk Behavior Survey (YRBS) was also constructed for confirmatory analyses assessing marijuana use. RESULTS MMLs were associated with a 0.40 percentage point increase in the probability of not earning a high school diploma or GED after completing the 12th grade (from 3.99% to 4.39%). High school MML exposure was also associated with a 1.84 and 0.85 percentage point increase in the probability of college non-enrollment and degree non-completion, respectively (from 31.12% to 32.96% and 45.30% to 46.15%, respectively). Years of MML exposure exhibited a consistent dose response relationship for all outcomes. MMLs were also associated with 0.85 percentage point increase in daily marijuana use among 12th graders (up from 1.26%). CONCLUSIONS Medical marijuana law exposure between age 14 to 18 likely has a delayed effect on use and education that persists over time.
Collapse
Affiliation(s)
- Andrew D. Plunk
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul T. Harrell
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - William F. Tate
- Department of Education, Washington University in St. Louis, St. Louis, MO, USA
| | - Kelli England Will
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jennifer M. Mellor
- Department of Economics, College of William and Mary, Williamsburg, VA, USA
| | - Richard A. Grucza
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
37
|
Wiers CE, Shokri-Kojori E, Wong CT, Abi-Dargham A, Demiral ŞB, Tomasi D, Wang GJ, Volkow ND. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males. Neuropsychopharmacology 2016; 41:2596-605. [PMID: 27156854 PMCID: PMC4987858 DOI: 10.1038/npp.2016.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 12/14/2022]
Abstract
The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christopher T Wong
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Anissa Abi-Dargham
- Division of Translational Imaging, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Şükrü B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| |
Collapse
|
38
|
Ganzer F, Bröning S, Kraft S, Sack PM, Thomasius R. Weighing the Evidence: A Systematic Review on Long-Term Neurocognitive Effects of Cannabis Use in Abstinent Adolescents and Adults. Neuropsychol Rev 2016; 26:186-222. [DOI: 10.1007/s11065-016-9316-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
|
39
|
Abstract
Advances in neuroscience identified addiction as a chronic brain disease with strong genetic, neurodevelopmental, and sociocultural components. We here discuss the circuit- and cell-level mechanisms of this condition and its co-option of pathways regulating reward, self-control, and affect. Drugs of abuse exert their initial reinforcing effects by triggering supraphysiologic surges of dopamine in the nucleus accumbens that activate the direct striatal pathway via D1 receptors and inhibit the indirect striato-cortical pathway via D2 receptors. Repeated drug administration triggers neuroplastic changes in glutamatergic inputs to the striatum and midbrain dopamine neurons, enhancing the brain's reactivity to drug cues, reducing the sensitivity to non-drug rewards, weakening self-regulation, and increasing the sensitivity to stressful stimuli and dysphoria. Drug-induced impairments are long lasting; thus, interventions designed to mitigate or even reverse them would be beneficial for the treatment of addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marisela Morales
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Wu ZH, Tennen H, Hosain M, Coman E, Cullum J, Berenson AB. Stress mediates the relationship between past drug addiction and current risky sexual behavior among low income women. Stress Health 2016; 32:138-44. [PMID: 24985341 PMCID: PMC4282630 DOI: 10.1002/smi.2587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 04/03/2014] [Accepted: 04/22/2014] [Indexed: 11/05/2022]
Abstract
This study examined the role of stress as a mediator of the relationship between prior drug addiction and current high-risk sexual behaviour. Eight hundred twenty women aged 18 to 30 years, who received care at community-based family planning clinics, were interviewed using the Composite International Diagnostic Interview and the Sexual Risk Behavior Assessment Schedule. They also completed the brief version of the Self-Control Scale as a measure of problem-solving strategies and measures of recent stressful events, daily hassles and ongoing chronic stress. Regardless of addiction history, stress exposure during the previous 12 months was associated with risky sexual behaviour during the previous 12 months. Structural equation modelling revealed that 12-month stress levels mediated the relationship between past drug addiction and 12-month high-risk sexual behaviours, as well as the negative relationship between problem-solving strategies and high-risk sexual behaviours. Problem-solving strategies did not moderate the relationship between drug addiction and high-risk sexual behaviours. These findings suggest that stress management training may help reduce risky behaviour among young, low-income women.
Collapse
Affiliation(s)
- Z. Helen Wu
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Howard Tennen
- Department of Community Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Monawar Hosain
- Health Statistics and Data Management Unit, Dept. of Health and Human Service Concord, NH 03301
| | - Emil Coman
- TRIPP Center, University of Connecticut Health Center, Farmington, CT -06030, USA
| | - Jerry Cullum
- Frost Research Center, Hope College, Holland, MI, USA
| | - Abbey B. Berenson
- Department of Obstetrics and Gynecology and Center for Interdisciplinary Research in Women’s Health, University of Texas Medical Branch, Galveston
| |
Collapse
|
41
|
Metna-Laurent M, Marsicano G. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors. Glia 2014; 63:353-64. [PMID: 25452006 DOI: 10.1002/glia.22773] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/13/2014] [Indexed: 01/03/2023]
Abstract
The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field.
Collapse
|
42
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
44
|
Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A 2014; 111:E3149-56. [PMID: 25024177 DOI: 10.1073/pnas.1411228111] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Moves to legalize marijuana highlight the urgency to investigate effects of chronic marijuana in the human brain. Here, we challenged 48 participants (24 controls and 24 marijuana abusers) with methylphenidate (MP), a drug that elevates extracellular dopamine (DA) as a surrogate for probing the reactivity of the brain to DA stimulation. We compared the subjective, cardiovascular, and brain DA responses (measured with PET and [(11)C]raclopride) to MP between controls and marijuana abusers. Although baseline (placebo) measures of striatal DA D2 receptor availability did not differ between groups, the marijuana abusers showed markedly blunted responses when challenged with MP. Specifically, compared with controls, marijuana abusers had significantly attenuated behavioral ("self-reports" for high, drug effects, anxiety, and restlessness), cardiovascular (pulse rate and diastolic blood pressure), and brain DA [reduced decreases in distribution volumes (DVs) of [(11)C]raclopride, although normal reductions in striatal nondisplaceable binding potential (BPND)] responses to MP. In ventral striatum (key brain reward region), MP-induced reductions in DVs and BPND (reflecting DA increases) were inversely correlated with scores of negative emotionality, which were significantly higher for marijuana abusers than controls. In marijuana abusers, DA responses in ventral striatum were also inversely correlated with addiction severity and craving. The attenuated responses to MP, including reduced decreases in striatal DVs, are consistent with decreased brain reactivity to the DA stimulation in marijuana abusers that might contribute to their negative emotionality (increased stress reactivity and irritability) and addictive behaviors.
Collapse
|
45
|
Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol 2014; 19:317-31. [PMID: 24851284 DOI: 10.1111/adb.12101] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although cerebellar alterations have been consistently noted in the addiction literature, the pathophysiology of this link remains unclear. The cerebellum is commonly classified as a motor structure, but human functional neuroimaging along with clinical observations in cerebellar stroke patients and anatomical tract tracing in non-human primates suggests its involvement in cognitive and affective processing. A comprehensive literature search on the role of the cerebellum in addiction was performed. This review article (1) considers the potential role of the cerebellum in addiction; (2) summarizes the cerebellar structural alterations linked to addiction; (3) presents the functional neuroimaging evidence linking the cerebellum with addiction; and (4) proposes a model for addiction that underscores the role of the cerebellum. The data implicate the cerebellum as an intermediary between motor and reward, motivation and cognitive control systems, as all are relevant etiologic factors in addiction. Furthermore, consideration of these findings could contribute to deeper and more sophisticated insights into normal reward and motivational function. The goal of this review is to spread awareness of cerebellar involvement in addictive processes, and to suggest a preliminary model for its potential role.
Collapse
Affiliation(s)
- Eric A. Moulton
- P.A.I.N. Group; Center for Pain and the Brain; Boston Children's Hospital; Massachusetts General Hospital, McLean Hospital, Harvard Medical School; Boston MA USA
| | - Igor Elman
- Providence Veterans Administration Medical Center; Providence RI USA
- Department of Psychiatry; Cambridge Health Alliance, Harvard Medical School; Cambridge MA USA
| | - Lino R. Becerra
- P.A.I.N. Group; Center for Pain and the Brain; Boston Children's Hospital; Massachusetts General Hospital, McLean Hospital, Harvard Medical School; Boston MA USA
| | | | - David Borsook
- P.A.I.N. Group; Center for Pain and the Brain; Boston Children's Hospital; Massachusetts General Hospital, McLean Hospital, Harvard Medical School; Boston MA USA
| |
Collapse
|
46
|
Babson KA, Bonn-Miller MO. Sleep Disturbances: Implications for Cannabis Use, Cannabis Use Cessation, and Cannabis Use Treatment. CURRENT ADDICTION REPORTS 2014. [DOI: 10.1007/s40429-014-0016-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Cannabis-Associated Arterial Disease. Ann Vasc Surg 2013; 27:996-1005. [DOI: 10.1016/j.avsg.2013.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/22/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022]
|
48
|
Fagundo AB, de la Torre R, Jiménez-Murcia S, Agüera Z, Pastor A, Casanueva FF, Granero R, Baños R, Botella C, del Pino-Gutierrez A, Fernández-Real JM, Fernández-García JC, Frühbeck G, Gómez-Ambrosi J, Menchón JM, Moragrega I, Rodríguez R, Tárrega S, Tinahones FJ, Fernández-Aranda F. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans. PLoS One 2013; 8:e66387. [PMID: 23840456 PMCID: PMC3686875 DOI: 10.1371/journal.pone.0066387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/05/2013] [Indexed: 12/20/2022] Open
Abstract
Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = −.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = −.17) or AEA (r = −.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches.
Collapse
Affiliation(s)
- Ana B. Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Zaida Agüera
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
| | - Antoni Pastor
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Felipe F. Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Endocrine Division, Complejo Hospitalario U. de Santiago, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Personality, Evaluation and Psychological Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Amparo del Pino-Gutierrez
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Nursing Department of Public Health, Maternal and Child Health the Nursing School of the University of Barcelona, Barcelona, Spain
| | - Jose M. Fernández-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Jose C. Fernández-García
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - José M. Menchón
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Salud Mental (CIBERsam), Instituto Salud Carlos III, Barcelona, Spain
| | - Inés Moragrega
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Roser Rodríguez
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Salomé Tárrega
- Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
49
|
Batalla A, Bhattacharyya S, Yücel M, Fusar-Poli P, Crippa JA, Nogué S, Torrens M, Pujol J, Farré M, Martin-Santos R. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One 2013; 8:e55821. [PMID: 23390554 PMCID: PMC3563634 DOI: 10.1371/journal.pone.0055821] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/02/2013] [Indexed: 12/18/2022] Open
Abstract
Background The growing concern about cannabis use, the most commonly used illicit drug worldwide, has led to a significant increase in the number of human studies using neuroimaging techniques to determine the effect of cannabis on brain structure and function. We conducted a systematic review to assess the evidence of the impact of chronic cannabis use on brain structure and function in adults and adolescents. Methods Papers published until August 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only neuroimaging studies involving chronic cannabis users with a matched control group were considered. Results One hundred and forty-two studies were identified, of which 43 met the established criteria. Eight studies were in adolescent population. Neuroimaging studies provide evidence of morphological brain alterations in both population groups, particularly in the medial temporal and frontal cortices, as well as the cerebellum. These effects may be related to the amount of cannabis exposure. Functional neuroimaging studies suggest different patterns of resting global and brain activity during the performance of several cognitive tasks both in adolescents and adults, which may indicate compensatory effects in response to chronic cannabis exposure. Limitations However, the results pointed out methodological limitations of the work conducted to date and considerable heterogeneity in the findings. Conclusion Chronic cannabis use may alter brain structure and function in adult and adolescent population. Further studies should consider the use of convergent methodology, prospective large samples involving adolescent to adulthood subjects, and data-sharing initiatives.
Collapse
Affiliation(s)
- Albert Batalla
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Jose Alexandre Crippa
- Neuroscience and Cognitive Behavior Department, University of Sao Paulo, Ribeirao Preto, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
| | - Santiago Nogué
- Clinical Toxicology Unit, Emergency Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Torrens
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Jesús Pujol
- Institut d’Alta Tecnologia-PRBB, CRC Mar, Hospital del Mar, Barcelona, Spain
| | - Magí Farré
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Rocio Martin-Santos
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
- * E-mail:
| |
Collapse
|
50
|
Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Biochem Mol Biol 2013; 48:1-19. [PMID: 23173916 PMCID: PMC3557663 DOI: 10.3109/10409238.2012.735642] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroimaging techniques are starting to reveal significant overlap in the brain circuitry underlying addiction and disorders of dyscontrol over rewarding behaviors (such as binge eating disorder and obesity). Positron emission tomography (PET) has demonstrated impaired striatal dopamine (DA) signaling (decreased D2 receptors) in drug addiction and obesity that is associated with reduced baseline glucose metabolism in medial and ventral prefrontal brain regions. Functional magnetic resonance imaging (fMRI) has documented brain activation abnormalities that also implicate DA-modulated striato-cortical pathways. In this review we map findings from recent neuroimaging studies that differentiate brain activation in drug/food addiction from those in controls within brain networks functionally connected with ventral and dorsal striatum. We show that regions found to be abnormal in addiction and obesity frequently emerge at the overlap of the dorsal and the ventral striatal networks. Medial temporal and superior frontal regions functionally connected with dorsal striatum display greater vulnerability in obesity and eating disorders than in drug addictions, indicating more widespread abnormalities for obesity and eating disorders than for addictions. This corroborates involvement of both ventral striatal (predominantly associated with reward and motivation) and dorsal striatal networks (associated with habits or stimulus response learning) in addiction and obesity but also identify distinct patterns between these two disorders.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | | |
Collapse
|