1
|
Cong M, Li Z, Che Y, Li Y, Tian W, Lv J, Sun X. Metabolomics revealed more deleterious toxicity induced by the combined exposure of ammonia and nitrite on Ruditapes philippinarum compared to single exposure. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106398. [PMID: 38377938 DOI: 10.1016/j.marenvres.2024.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
NH3-N and NO2-N always co-exist in the aquatic environment, but there is not a clear opinion on their joint toxicities to the molluscs. Presently, clams Ruditapes philippinarum were challenged by environmental concentrations of NH3-N and NO2-N, singly or in combination, and analyzed by metabolomics approaches, enzyme assays and transmission electron microscope (TEM) observation. Results showed that some same KEGG pathways with different enriched-metabolites were detected in the three exposed groups within one day, and completely different profiles of metabolites were found in the rest of the exposure period. The combined exposure induced heavier and more lasting toxicities to the clams compared with their single exposure. ACP activity and the number of secondary lysosomes were significantly increased after the combined exposure. The present study shed light on the joint-toxicity mechanism of NH3-N and NO2-N, and provided fundamental data for the toxicity research on inorganic nitrogen.
Collapse
Affiliation(s)
- Ming Cong
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Zhaoshun Li
- Ocean School, Yantai University, Yantai, 264005, China
| | - Yu Che
- Ocean School, Yantai University, Yantai, 264005, China
| | - Yuanmei Li
- Ocean School, Yantai University, Yantai, 264005, China
| | - Wenwen Tian
- Ocean School, Yantai University, Yantai, 264005, China
| | - Jiasen Lv
- Biology School, Yantai University, Yantai, 264005, China.
| | - Xiyan Sun
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
2
|
Li R, Yang L, Guan S, Lin M, Lai H, Liu K, Liu Z, Zhang X. UPLC-MS-Based Serum Metabolic Profiling Reveals Potential Biomarkers for Predicting Propofol Responsiveness in Females. J Proteome Res 2021; 20:4578-4588. [PMID: 34384217 DOI: 10.1021/acs.jproteome.1c00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although previous studies have shown that certain factors interfere with the sensitivity of propofol, the mechanisms for interindividual variability in response to propofol remain unclear. This study aimed to screen the metabolites to predict patients' sensitivity to propofol and to identify metabolic pathways to explore possible mechanisms associated with propofol resistance. Sera from 40 female patients undergoing elective hysteroscopic surgery in a prospective cohort propofol study were obtained before the administration of propofol. The patients' responsiveness to propofol was differentiated based on propofol effect-site concentration. Serum samples from two sets, a discovery set (n = 24) and an independent validation set (n = 16), were analyzed using ultraperformance liquid chromatography coupled with mass spectrometry based untargeted metabolomics. In the discovery set, 494 differential metabolites were screened out, and then 391 potential candidate biomarkers with the area under receiver operating characteristic curve >0.80 were selected. Pathway analysis showed that the pathway of glycerophospholipid metabolism was the most influential pathway. In the independent validation set, six potential biomarkers enabled the discrimination of poor responders from good and intermediate responders, which might be applied to predict propofol sensitivity. The mass spectrometry data are available via MetaboLights (http://www.ebi.ac.uk/metabolights/login) with the identifier MTBLS2311.
Collapse
Affiliation(s)
- Ruiyun Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Su Guan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ming Lin
- Department of Anesthesiology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Hanjin Lai
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Kun Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zimeng Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Usatyuk PV, Burns M, Mohan V, Pendyala S, He D, Ebenezer DL, Harijith A, Fu P, Huang LS, Bear JE, Garcia JGN, Natarajan V. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. PLoS One 2013; 8:e63007. [PMID: 23667561 PMCID: PMC3648575 DOI: 10.1371/journal.pone.0063007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Institute for Personalized Respiratory Medicine, University of Illinois, Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Abstract
Membrane fusion underlies many cellular events, including secretion, exocytosis, endocytosis, organelle reconstitution, transport from endoplasmic reticulum to Golgi and nuclear envelope formation. A large number of investigations into membrane fusion indicate various roles for individual members of the phosphoinositide class of membrane lipids. We first review the phosphoinositides as membrane recognition sites and their regulatory functions in membrane fusion. We then consider how modulation of phosphoinositides and their products may affect the structure and dynamics of natural membranes facilitating fusion. These diverse roles underscore the importance of these phospholipids in the fusion of biological membranes.
Collapse
|
6
|
Blistering of supported lipid membranes induced by Phospholipase D, as observed by real-time atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:276-82. [DOI: 10.1016/j.bbamem.2007.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/11/2007] [Accepted: 09/28/2007] [Indexed: 11/21/2022]
|
7
|
Perez-Mansilla B, Ha VL, Justin N, Wilkins AJ, Carpenter CL, Thomas GMH. The differential regulation of phosphatidylinositol 4-phosphate 5-kinases and phospholipase D1 by ADP-ribosylation factors 1 and 6. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1429-42. [PMID: 17071135 DOI: 10.1016/j.bbalip.2006.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinases [PtdIns4P5Ks] synthesise the majority of cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and phospholipase D1 (PLD1) synthesises large amounts of phosphatidic acid (PtdOH). The activities of PtdIns4P5Ks and PLDs are thought to be coupled during cell signalling in order to support large simultaneous increases in both PtdIns(4,5)P(2) and PtdOH, since PtdOH activates PtdIns4P5Ks and PLD1 requires PtdIns(4,5)P(2) as a cofactor. However, little is known about the control of such a system. Membrane recruitment of ADP-ribosylation factors (Arfs) activates both PtdIns4P5Ks and PLDs, but it is not known if each enzyme is controlled in series by different Arfs or in parallel by a single form. We show through pull-down and vesicle sedimentation interaction assays that PtdIns4P5K activation may be facilitated by Arf-enhanced membrane association. However PtdIns4P5Ks discriminate poorly between near homogeneously myristoylated Arf1 and Arf6 although examples of all three known active isoforms (mouse alpha>beta, gamma) respond to these G-proteins. Conversely PLD1 genuinely prefers Arf1 and so the two lipid metabolising enzymes are differentially controlled. We propose that isoform selective Arf/PLD interaction and not Arf/PtdIns4P5K will be the critical trigger in the formation of distinct, optimal triples of Arf/PLDs/PtdIns4P5Ks and be the principle regulator of any coupled increases in the signalling lipids PtdIns(4,5)P(2) and PtdOH.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- Department of Physiology, University College London, Rockefeller Building, 21 University Street, London WC1E 6JJ, UK
| | | | | | | | | | | |
Collapse
|
8
|
Lee HY, Park JB, Jang IH, Chae YC, Kim JH, Kim IS, Suh PG, Ryu SH. Munc-18-1 Inhibits Phospholipase D Activity by Direct Interaction in an Epidermal Growth Factor-reversible Manner. J Biol Chem 2004; 279:16339-48. [PMID: 14744865 DOI: 10.1074/jbc.m310976200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phospholipase D (PLD) has been reported to be a key enzyme for epidermal growth factor (EGF)-induced cellular signaling, however, the regulatory mechanism of PLD is still unclear. In this report, we found that Munc-18-1 is a potent negative regulator of PLD in the basal state and that its inhibition is abolished by EGF stimulation. We investigated PLD-binding proteins obtained from rat brain extract, and identified a 67-kDa protein as Munc-18-1 by peptide-mass finger-printing. The direct association between PLD and Munc-18-1 was confirmed by in vitro binding analysis using the purified proteins, and their binding sites were identified as the phox homology domain of PLD and multiple sites of Munc-18-1. PLD activity was potently inhibited by Munc-18-1 in vitro (IC50 = 2-5 nm), and the cotransfection of COS-7 cells with Munc-18-1 and PLD inhibited basal PLD activity in vivo. In the basal state, Munc-18-1 coprecipitated with PLD and colocalized with PLD2 at the plasma membrane of COS-7 cells. EGF treatment triggered the dissociation of Munc-18-1 from PLD when PLD was activated by EGF. The dissociation of the endogenous interaction between Munc-18-1 and PLD, and the activation of PLD by EGF were also observed in primary cultured chromaffin cells. These results suggest that Munc-18-1 is a potent negative regulator of basal PLD activity and that EGF stimulation abolishes this interaction.
Collapse
Affiliation(s)
- Hye Young Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784 Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Raftos DA, Fabbro M, Nair SV. Exocytosis of a complement component C3-like protein by tunicate hemocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:181-190. [PMID: 14642885 DOI: 10.1016/s0145-305x(03)00136-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigates the exocytic responses of invertebrate hemocytes to pathogen-associated antigens. It demonstrates that a homologue of complement component C3, a key defensive protein of the innate immune system, is expressed by phagocytic hemocytes (non-refractile vacuolated cells) of the tunicate, Styela plicata. C3-like molecules are localized in sub-cellular vesicles and are rapidly exocytosed after stimulation with bacterial, fungal or algal cell surface molecules. Signal transduction analysis indicated that the induced secretion of C3-like molecules is mediated by a G-protein dependent signaling pathway, which modulates tubulin microtubules. All of this evidence indicates that hemocytes can contribute to host defense responses by rapidly exocytosing C3-like proteins at sites of infection.
Collapse
Affiliation(s)
- David A Raftos
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | | | | |
Collapse
|
10
|
Abstract
Membrane traffic requires the generation of high-curvature lipid-bound transport carriers represented by tubules and vesicles. The mechanisms through which membranes are deformed has gained much recent attention. A major advance has been the demonstration that direct interactions between cytosolic proteins and lipid bilayers are important in the acquisition of membrane curvature. Rather than being driven only by the formation of membrane-associated structural scaffolds, membrane deformation requires physical perturbation of the lipid bilayer. A variety of proteins have been identified that directly bind and deform membranes. An emerging theme in this process is the importance of amphipathic peptides that partially penetrate the lipid bilayer.
Collapse
Affiliation(s)
- Khashayar Farsad
- Department of Cell Biology, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | |
Collapse
|
11
|
Oh MK, Yang H, Roberts MF. Using O-(n-alkyl)-N-(N,N'-dimethylethyl)phosphoramidates to investigate the role of Ca2+ and interfacial binding in a bacterial phospholipase D. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1649:146-53. [PMID: 12878033 DOI: 10.1016/s1570-9639(03)00166-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-(n-alkyl)-N-(N,N'-dimethylethyl)phosphoramidates (n=6, 8, and 10; CnPNC) were synthesized and characterized as inhibitors of phospholipase D (PLD) activity toward phosphatidylcholine presented as monomers, micelles, and bilayers. Detailed studies with recombinant Streptomyces chromofuscus PLD, a Ca(2+)-activated enzyme that does not show large changes in catalytic activity toward the same substrate as a monomer or micelle, showed that the longer the inhibitor chain length, the more potent CnPNC is as a competitive inhibitor toward all the substrates. However, the physical state of the inhibitor did affect the maximum inhibition attainable. For a fixed concentration of diC4PC (monomer substrate), CnPNC inhibition reached a maximum around the CMC of the inhibitor; the inhibition was reduced at higher inhibitor concentrations, in part caused by the lower solubility of the aggregated inhibitor. With diC4PC as the substrate and using concentrations of C10PNC that were below its CMC, the Ki for C10PNC was 0.030+/-0.003 mM, approximately 13-fold less than the Km for substrate. Aggregated substrates showed significant inhibition of PLD by CnPNC, although as the substrate chain length increased, inhibition by a given CnPNC was diminished. With POPC vesicles, the apparent Ki for C10PNC was 0.030 of the apparent Km. The availability of these inhibitors allowed us to show that PC analogues can bind to the active site of S. chromofuscus PLD in the absence of Ca2+. Once bound at the active site, the inhibitor does not significantly affect the divalent ion-dependent partitioning of the enzyme to PC surfaces. Of the two other PLD enzymes examined, cabbage PLD, but not Streptomyces sp. PMF, was able to catalyze the cleavage of the P-N bond. Differential susceptibility of PLDs to these phosphoramidates may eventually be useful in studying PLD isozymes in cells.
Collapse
Affiliation(s)
- Mi-Kyung Oh
- Department of Chemistry, E.F. Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02167, USA
| | | | | |
Collapse
|
12
|
Tulk BM, Kapadia S, Edwards JC. CLIC1 inserts from the aqueous phase into phospholipid membranes, where it functions as an anion channel. Am J Physiol Cell Physiol 2002; 282:C1103-12. [PMID: 11940526 DOI: 10.1152/ajpcell.00402.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CLIC1 is a member of the CLIC family of proteins, which has been shown to demonstrate chloride channel activity when reconstituted in phospholipid vesicles. CLIC1 exists in cells as an integral membrane protein and as a soluble cytoplasmic protein, implying that CLIC1 might cycle between membrane-inserted and soluble forms. CLIC1 was purified and detergent was removed, yielding an aqueous solution of essentially pure protein. Pure CLIC1 was mixed with vesicles, and chloride permeability was assessed with a chloride efflux assay and with planar lipid bilayer techniques. Soluble CLIC1 confers anion channel activity to preformed membranes that is indistinguishable from the previously reported activity resulting from reconstitution of CLIC1 into membranes by detergent dialysis. The activity is dependent on the amount of CLIC1 added, appears rapidly on mixing of protein and lipid, is inhibited by indanyloxyacetic acid-94, N-ethylmaleimide, and glutathione, is inactivated by heat, and shows sensitivity to pH and to membrane lipid composition. We conclude that CLIC1 in the absence of detergent spontaneously inserts into preformed membranes, where it can function as an anion-selective channel.
Collapse
Affiliation(s)
- Barry M Tulk
- Department of Medicine, St. Louis University and St. Louis Veterans Affairs Medical Center, St. Louis, Missouri 63106, USA
| | | | | |
Collapse
|
13
|
Park DW, Bae YS, Nam JO, Kim JH, Lee YG, Park YK, Ryu SH, Baek SH. Regulation of cyclooxygenase-2 expression by phospholipase D in human amnion-derived WISH cells. Mol Pharmacol 2002; 61:614-9. [PMID: 11854442 DOI: 10.1124/mol.61.3.614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandins (PGs) are known to play a key role in the initiation of labor, but the mechanisms regulating their synthesis in amnion are largely unknown. In this study, the regulatory mechanisms for PGE(2) production during phospholipase D (PLD) and p38-dependent activation of WISH cells were investigated. We found that the stimulation of WISH cells with interleukin (IL)-1 beta elicited dose-dependent synthesis of cyclooxygenase-2 (COX-2) mRNA, protein, and their products, PGE(2). Moreover, the treatment of [(3)H]myristate-labeled cells in the presence of 1-butanol caused the dose-dependent formation of [(3)H]phosphatidylbutanol (PBt), a product specific to PLD activity. Pretreating the cells with 1-butanol and Ro 31-8220 inhibited the IL-1 beta-induced COX-2 expression, but 3-butanol did not affect this response. In addition, evidence that PLD was involved in the stimulation of COX-2 expression was provided by the observations that COX-2 expression was stimulated by the dioctanoyl phosphatidic acid (PA) and that the prevention of PA dephosphorylation by 1-propranolol potentiated COX-2 expression by IL-1 beta. Moreover, IL-1 beta stimulation of the cells caused the phosphorylation of p38 and extracellular signal-regulated kinase (ERK), and IL-1 beta-induced COX-2 expression was inhibited by the pretreatment of WISH cells with a p38 inhibitor, in contrast ERK upstream inhibitor had no effect. Furthermore, Ro 31-8220 inhibited IL-1 beta-induced p38 phosphorylation but not ERK phosphorylation. The results of this study indicate that in human amnion cells, IL-1 beta might activate PLD through an upstream protein kinase C to elicit p38 and finally induce COX-2 expression.
Collapse
Affiliation(s)
- Dae-Won Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rojas R, Ruiz WG, Leung SM, Jou TS, Apodaca G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells. Mol Biol Cell 2001; 12:2257-74. [PMID: 11514615 PMCID: PMC58593 DOI: 10.1091/mbc.12.8.2257] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.
Collapse
Affiliation(s)
- R Rojas
- Renal-Electrolyte Division of the Department of Medicine, Laboratory of Epithelial Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
15
|
Lee EJ, Min DS, Kang WS, Lee MY, Oh SJ, Chun MH. The expression and cellular localization of phospholipase D1 in the rodent retina. Brain Res 2001; 905:240-4. [PMID: 11423101 DOI: 10.1016/s0006-8993(01)02516-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Phospholipase D (PLD) is one of the intracellular signal transduction enzymes and plays an important role in a variety of cellular functions. We investigated the expression and cellular localization of the PLD isozyme PLD1 in the rodent retina. Western blot analysis showed the presence of PLD1 at the protein level in the rat, mouse and guinea pig retinas. PLD1 immunoreactivity was localized in all Müller cells. Thus, PLD1 protein appears to be important in the functions of these cells in the rodent retina.
Collapse
Affiliation(s)
- E J Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
Costa LG, Guizzetti M, Lu H, Bordi F, Vitalone A, Tita B, Palmery M, Valeri P, Silvestrini B. Intracellular signal transduction pathways as targets for neurotoxicants. Toxicology 2001; 160:19-26. [PMID: 11246120 DOI: 10.1016/s0300-483x(00)00435-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The multiple cascades of signal transduction pathways that lead from receptors on the cell membrane to the nucleus, thus translating extracellular signals into changes in gene expression, may represent important targets for neurotoxic compounds. Among the biochemical steps and pathways that have been investigated are the metabolism of cyclic nucleotides, the formation of nitric oxide, the metabolism of membrane phospholipids, the activation of a multitude of protein kinases and the induction of transcription factors. This brief review will focus on the interactions of three known neurotoxicants, lead, ethanol and polychlorinated biphenyls, with signal transduction pathways, particularly the family of protein kinase C isozymes, and discusses how such effects may be involved in their neurotoxicity.
Collapse
Affiliation(s)
- L G Costa
- Department of Environmental Health, University of Washington, 4225 Roosevelt #100, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mangoura D, Pelletiere C, Leung S, Sakellaridis N, Wang DX. Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 2000; 18:693-704. [PMID: 10978848 DOI: 10.1016/s0736-5748(00)00031-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In normal development, embryonic astrocytes progress through their cell lineage by acquiring differentiation, by apoptosis, and by proliferation. In this study, we show that embryonic astrocytes may maintain and make gains in differentiation as they simultaneously progress through one cell cycle when induced by prolactin (PRL). Prolactin induced the majority of astrocytes to incorporate bromodeoxyuridine (BrdU) with a four-fold increase over controls after 18 h of exposure. Investigating possible mitogenic signaling pathways we show for the first time that prolactin is coupled to a sustained phospholipase D (PLD) activation, with an efficacy similar to the phorbol ester and astrocytic mitogen 12-tetradecanoylphorbol-13-acetate (TPA). Both cyclosporine and suramin abolished this activation. Staurosporine and calphostin C also inhibited the PRL effect by 50%, consistent with involvement of protein kinase C-(PKC)-alpha, the major PKC isoform in astrocytes. Genistein and PP1 blocked the activation indicating additional regulation by cytosolic tyrosine kinases. This profile of PLD activation was suggestive of a PLD I isoform and a mitogenic response. Upon completion of the cell cycle, analysis of glia fibrillary acidic protein (GFAP) and vimentin abundance, and glutamine synthetase (GS) activity showed that astrocytes had gained in expression of differentiation markers. Moreover, the intensity of GFAP immunofluorescence was greater per cell, as was the length of the cell processes. In exploring the signaling for prolactin-induced differentiation we found that prolactin activated the tyrosine kinase Janus kinase (JAK) 2 and significantly stimulated tyrosine, phosphorylation of the prolactin receptor. Stat 1 and 3 were also activated presumably downstream to JAK2 activation. A rapid translocation of the cytosolic Stats over the nucleus was seen in nearly every astrocyte corresponding well with the gains in GFAP per cell. The Stats translocation did not depend on MEK-ERK inhibition by PD98059, inhibition of p38 by 1 microm SB203580, or Src kinase family inhibition by PP1. Our results demonstrate the ability of PRL to concurrently induce activation of PLD, a mitogenic signaling pathway in astrocytes, and prolonged stimulation of Stat1, compatible with the increased GFAP upregulation and cell differentiation. Considered together this data may provide an explanation on the fast gain in both numbers and differentiation in the astrocytic population during development (HD 09402, CRF).
Collapse
Affiliation(s)
- D Mangoura
- Department of Pediatrics, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
18
|
Choukroun GJ, Marshansky V, Gustafson CE, McKee M, Hajjar RJ, Rosenzweig A, Brown D, Bonventre JV. Cytosolic phospholipase A(2) regulates golgi structure and modulates intracellular trafficking of membrane proteins. J Clin Invest 2000; 106:983-93. [PMID: 11032858 PMCID: PMC314339 DOI: 10.1172/jci8914] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Accepted: 09/01/2000] [Indexed: 01/07/2023] Open
Abstract
The Golgi complex and the trans-Golgi network are critical cellular organelles involved in the endocytic and biosynthetic pathways of protein trafficking. Lipids have been implicated in the regulation of membrane-protein trafficking, vesicular fusion, and targeting. We have explored the role of cytosolic group IV phospholipase A(2) (cPLA(2)) in membrane-protein trafficking in kidney epithelial cells. Adenoviral expression of cPLA(2) in LLC-PK(1) kidney epithelial cells prevents constitutive trafficking to the plasma membrane of an aquaporin 2-green fluorescent protein chimera, with retention of the protein in the rough endoplasmic reticulum. Plasma membrane Na(+)-K(+)-ATPase alpha-subunit localization is markedly reduced in cells expressing cPLA(2), whereas the trafficking of a Cl(-)/HCO(3)(-) anion exchanger to the plasma membrane is not altered in these cells. Expression of cPLA(2) results in dispersion of giantin and beta-COP from their normal, condensed Golgi localization, and in marked disruption of the Golgi cisternae. cPLA(2) is present in Golgi fractions from noninfected LLC-PK(1) cells and rat kidney cortex. The distribution of tubulin and actin was not altered by cPLA(2), indicating that the microtubule and actin cytoskeleton remain intact. Total cellular protein synthesis is unaffected by the increase in cPLA(2) activity. Thus cPLA(2) plays an important role in determining Golgi architecture and selective control of constitutive membrane-protein trafficking in renal epithelial cells.
Collapse
Affiliation(s)
- G J Choukroun
- Renal Unit and Program in Membrane Biology, and. Cardiovascular Research Center, Medical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129-2060, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND The phospholipase D (PLD) superfamily includes enzymes that are involved in phospholipid metabolism, nucleases, toxins and virus envelope proteins of unknown function. PLD hydrolyzes the terminal phosphodiester bond of phospholipids to phosphatidic acid and a hydrophilic constituent. Phosphatidic acid is a compound that is heavily involved in signal transduction. PLD also catalyses a transphosphatidylation reaction in the presence of phosphatidylcholine and a short-chained primary or secondary alcohol. RESULTS The first crystal structure of a 54 kDa PLD has been determined to 1.9 A resolution using the multiwavelength anomalous dispersion (MAD) method on a single WO(4) ion and refined to 1.4 A resolution. PLD from the bacterial source Streptomyces sp. strain PMF consists of a single polypeptide chain that is folded into two domains. An active site is located at the interface between these domains. The presented structure supports the proposed superfamily relationship with the published structure of the 16 kDa endonuclease from Salmonella typhimurium. CONCLUSIONS The structure of PLD provides insight into the structure and mode of action of not only bacterial, plant and mammalian PLDs, but also of a variety of enzymes as diverse as cardiolipin synthases, phosphatidylserine synthases, toxins, endonucleases, as well as poxvirus envelope proteins having a so far unknown function. The common features of these enzymes are that they can bind to a phosphodiester moiety, and that most of these enzymes are active as bi-lobed monomers or dimers.
Collapse
Affiliation(s)
- I Leiros
- Department of Chemistry, Faculty of Science, University of Tromso, Norway
| | | | | | | | | |
Collapse
|
20
|
Siddiqi AR, Srajer GE, Leslie CC. Regulation of human PLD1 and PLD2 by calcium and protein kinase C. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:103-14. [PMID: 10838164 DOI: 10.1016/s0167-4889(00)00049-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous studies show that PLD is activated in cells by calcium and by protein kinase C (PKC). We found that human PLD1 and PLD2 expressed in Sf9 cells can be activated by calcium-mobilizing agonists and by co-expression with PKCalpha. The calcium-mobilizing agonists A23187 and CryIC toxin triggered large increases in phosphatidylethanol (PtdEth) production in Sf9 cells over-expressing PLD1 and PLD2, but not in vector controls. PLD activation by these agonists was largely dependent on extracellular calcium. Membrane assays demonstrated significant PLD1 and PLD2 activity in the absence of divalent cations, which could be enhanced by low levels of calcium either in the presence or absence of magnesium. PLD1 but not PLD2 activity was slightly enhanced by magnesium. Treatment of Sf9 cells expressing PLD1 and PLD2 with PMA resulted in little PtdEth production. However, a significant and comparable formation of PtdEth occurred when PLD1 or PLD2 were co-expressed with PKCalpha, but not PKCdelta, and was further augmented by PMA. In contrast to PLD1, co-expressing PLD2 with PKCalpha or PKCdelta further enhanced A23187-induced PtdEth production. Immunoprecipitation experiments demonstrated that PLD1 and PLD2 associated with the PKC isoforms in Sf9 cells. Furthermore, in membrane reconstitution assays, both PLD1 and PLD2 could be stimulated by calmodulin and PKCalpha-enriched cytosol. The results indicate that PLD2 as well as PLD1 is subject to agonist-induced activation in intact cells and can be regulated by calcium and PKC.
Collapse
Affiliation(s)
- A R Siddiqi
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | |
Collapse
|
21
|
Farooqui AA, Horrocks LA, Farooqui T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 2000; 106:1-29. [PMID: 10878232 DOI: 10.1016/s0009-3084(00)00128-6] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neural membranes contain several classes of glycerophospholipids which turnover at different rates with respect to their structure and localization in different cells and membranes. The glycerophospholipid composition of neural membranes greatly alters their functional efficacy. The length of glycerophospholipid acyl chain and the degree of saturation are important determinants of many membrane characteristics including the formation of lateral domains that are rich in polyunsaturated fatty acids. Receptor-mediated degradation of glycerophospholipids by phospholipases A(l), A(2), C, and D results in generation of second messengers such as arachidonic acid, eicosanoids, platelet activating factor and diacylglycerol. Thus, neural membrane phospholipids are a reservoir for second messengers. They are also involved in apoptosis, modulation of activities of transporters, and membrane-bound enzymes. Marked alterations in neural membrane glycerophospholipid composition have been reported to occur in neurological disorders. These alterations result in changes in membrane fluidity and permeability. These processes along with the accumulation of lipid peroxides and compromised energy metabolism may be responsible for the neurodegeneration observed in neurological disorders.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Avenue, 465 Hamilton Hall, 43210, Columbus, OH, USA
| | | | | |
Collapse
|
22
|
Lee M, Jo Y, Chun M, Chung J, Kim M, Min D. Immunohistochemical localization of phospholipase D1 in rat central nervous system. Brain Res 2000; 864:52-9. [PMID: 10793186 DOI: 10.1016/s0006-8993(00)02134-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipase D (PLD) is one of the intracellular signal transduction enzymes and plays an important role in a variety of cellular functions. We investigated the distribution of PLD isozyme, PLD1 in the rat brain and spinal cord using an immunological approach. Western blot analysis showed the presence of PLD1 protein in all tissues studied, with significantly higher levels in the brainstem and spinal cord, which was correlated with the results obtained from PLD activity assay. Prominent and specific signals of PLD1 were observed in many functionally diverse brain areas, including the olfactory bulb, medial septum-diagonal band complex, cerebral cortex, brainstem, cerebellum, and spinal cord. In the brainstem, the red nucleus, substantia nigra, interpeduncular nucleus, cranial motor nuclei (trigeminal motor, abducent, facial, and hypoglossal), sensory cranial nerve nuclei (spinal trigeminal, vestibular, and cochlear), as well as nuclei of the reticular formation, all showed intense immunoreactivity. Purkinje cells and deep cerebellar nuclei of the cerebellum were also labeled intensely. However, no significant labeling was found in the thalamus, epithalamus, and basal ganglia. Although many of the PLD1 immunoreactive cells were neurons, PLD1 was also expressed in glial cells such as presumed astrocytes and tanycytes. These findings suggest that PLD1 may play an important role in the central nervous system of the adult rat.
Collapse
Affiliation(s)
- M Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, 137-701, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Saito S, Sakagami H, Kondo H. Localization of mRNAs for phospholipase D (PLD) type 1 and 2 in the brain of developing and mature rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 120:41-7. [PMID: 10727728 DOI: 10.1016/s0165-3806(99)00189-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipase D (PLD) is known as one of the key enzymes in the lipid metabolism which produces several second messengers. We demonstrated the localization of the gene expression for PLD1 and PLD2 using in situ hybridization histochemistry in the brain of developing and mature rats. Whereas PLD1 mRNA expression was detected mainly in presumptive oligodendrocytes, PLD2 mRNA expression was detected mainly in presumptive astrocytes. In addition, the gene expression for PLDs were expressed in neuroepithelial cells of the ventricular/ependymal zones and the gene for PLD2 was expressed transiently in early postnatal gray matters, presumptive neurons.
Collapse
Affiliation(s)
- S Saito
- Division of Histology, Department of Cell Biology, Graduate School of Medical Sciences, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | | |
Collapse
|
24
|
Jou TS, Leung SM, Fung LM, Ruiz WG, Nelson WJ, Apodaca G. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol Biol Cell 2000; 11:287-304. [PMID: 10637309 PMCID: PMC14775 DOI: 10.1091/mbc.11.1.287] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Madin-Darby canine kidney (MDCK) cells expressing constitutively active Rac1 (Rac1V12) accumulate a large central aggregate of membranes beneath the apical membrane that contains filamentous actin, Rac1V12, rab11, and the resident apical membrane protein GP-135. To examine the roles of Rac1 in membrane traffic and the formation of this aggregate, we analyzed endocytic and biosynthetic trafficking pathways in MDCK cells expressing Rac1V12 and dominant inactive Rac1 (Rac1N17). Rac1V12 expression decreased the rates of apical and basolateral endocytosis, whereas Rac1N17 expression increased those rates from both membrane domains. Basolateral-to-apical transcytosis of immunoglobulin A (IgA) (a ligand for the polymeric immunoglobulin receptor [pIgR]), apical recycling of pIgR-IgA, and accumulation of newly synthesized GP-135 at the apical plasma membrane were all decreased in cells expressing Rac1V12. These effects of Rac1V12 on trafficking pathways to the apical membrane were the result of the delivery and trapping of these proteins in the central aggregate. In contrast to abnormalities in apical trafficking events, basolateral recycling of transferrin, degradation of EGF internalized from the basolateral membrane, and delivery of newly synthesized pIgR from the Golgi to the basolateral membrane were all relatively unaffected by Rac1V12 expression. Rac1N17 expression had little or no effect on these postendocytic or biosynthetic trafficking pathways. These results show that in polarized MDCK cells activated Rac1 may regulate the rate of endocytosis from both membrane domains and that expression of dominant active Rac1V12 specifically alters postendocytic and biosynthetic membrane traffic directed to the apical, but not the basolateral, membrane.
Collapse
Affiliation(s)
- T S Jou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345, USA
| | | | | | | | | | | |
Collapse
|
25
|
Leung SM, Rojas R, Maples C, Flynn C, Ruiz WG, Jou TS, Apodaca G. Modulation of endocytic traffic in polarized Madin-Darby canine kidney cells by the small GTPase RhoA. Mol Biol Cell 1999; 10:4369-84. [PMID: 10588664 PMCID: PMC25764 DOI: 10.1091/mbc.10.12.4369] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell.
Collapse
Affiliation(s)
- S M Leung
- Renal-Electrolyte Division of the Department of Medicine, Laboratory of Epithelial Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Gronier B, Rasmussen K. Pertussis toxin treatment differentially affects cholinergic and dopaminergic receptor stimulation of midbrain dopaminergic neurons. Neuropharmacology 1999; 38:1903-12. [PMID: 10608285 DOI: 10.1016/s0028-3908(99)00080-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Extracellular single-unit recordings and iontophoresis were used to compare the effect of a single administration of pertussis toxin (PTX, 1 microg), into midbrain dopamine (DA) nuclei (A9 and A10 regions), on the muscarinic, NMDA and DA receptor responses of midbrain DA cells in the anesthetized rat. Iontophoretic applications of DA, or apomorphine (50 microg/kg, i.v.), markedly reduced the firing of DA cells in control rats. In PTX-treated animals, these inhibitory responses were totally abolished, indicating that, in both DA nuclei, the inhibitory DA receptors are coupled to Gi/o proteins. In parallel, there was a significant decrease in the number of active DA cells per track which returned to baseline 5 weeks after the treatment. Applications of the muscarinic agonist oxotremorine M (OXO M) or of NMDA produced a potent increase in the firing of DA cells in control rats. DA neurons treated with PTX were still responsive to OXO M, although their sensitivity to the agonist was significantly reduced by 40%. In contrast, NMDA-induced activation remained unchanged, indicating that PTX did not non-selectively dampen all excitatory responses. Applications of cell-permeable cAMP derivatives did not change the basal firing of DA neurons. On the other hand, the phospholipase C inhibitors neomycin and ET-18-OCH3 (200 microg, i.c.v.), reduced significantly the activation of DA cells induced by OXO M. These data suggest that muscarinic activation of DA cells involves an M1-like receptor, possibly coupled to Gq/11 proteins, but also the participation of a PTX substrate.
Collapse
Affiliation(s)
- B Gronier
- Neuroscience Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
27
|
Crusius K, Kaszkin M, Kinzel V, Alonso A. The human papillomavirus type 16 E5 protein modulates phospholipase C-gamma-1 activity and phosphatidyl inositol turnover in mouse fibroblasts. Oncogene 1999; 18:6714-8. [PMID: 10597278 DOI: 10.1038/sj.onc.1203075] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human papillomavirus type 16 E5 (HPV16-E5) protein is a membrane protein that has been associated with malignant growth. The protein affects growth factor-mediated signal transduction in a ligand-dependent manner. We show now that E5 expression in A31 fibroblasts results in an increased level of diacylglycerol (DAG) and inositol phosphates. Immunoprecipitation of phospholipase C-gamma-1 (PLC-gamma-1) with specific antibodies and immunoblotting with anti-phosphotyrosine antibodies reveal a large increase in tyrosine phosphorylation of the enzyme in E5-expressing cells compared to control vector-transfected cells. This activation of tyrosine phosphorylation is growth factor independent. In addition, an enhanced formation of phosphatidic acid (PA) was observed in E5 cells. This increase did not result from activation of phospholipase D (PLD), although the enzyme was activatable by treatment with phorbol ester Thus, a phosphohydrolase-mediated DAG synthesis from PLD-produced PA can be excluded. The observed effects were not further enhanced by EGF showing that the presence of the growth factor is not necessary for maintaining permanent activation of PLC-gamma-1 in E5-expressing cells. The DAG- and inositol phosphate-mediated signal cascade within the cells is thus effectively uncoupled from external control via EGF and its receptor in the presence of E5 protein.
Collapse
Affiliation(s)
- K Crusius
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Carman GM, Henry SA. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 1999; 38:361-99. [PMID: 10793889 DOI: 10.1016/s0163-7827(99)00010-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this review, we have discussed recent progress in the study of the regulation that controls phospholipid metabolism in S. cerevisiae. This regulation occurs on multiple levels and is tightly integrated with a large number of other cellular processes and related metabolic and signal transduction pathways. Progress in deciphering this complex regulation has been very rapid in the last few years, aided by the availability of the sequence of the entire Saccharomyces genome. The assignment of functions to the remaining unassigned open reading frames, as well as ascertainment of remaining gene-enzyme relationships in phospholipid biosynthesis in yeast, promises to provide detailed understanding of the genetic regulation of a crucial area of metabolism in a key eukaryotic model system. Since the processes of lipid metabolism, secretion, and signal transduction show fundamental similarities in all eukaryotes, the dissection of this regulation in yeast promises to have wide application to our understanding of metabolic control in all eukaryotes.
Collapse
Affiliation(s)
- G M Carman
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08901, USA.
| | | |
Collapse
|
29
|
Abstract
Phospholipase D (PLD) is emerging as a major player in many novel signaling pathways. Based on recent studies correlating membrane composition with enzyme function, we speculated that feeding of dietary lipids to the newborns has a major impact on brain PLD activity. To test this hypothesis, the rat dams were fed fat-free powder containing either safflower oil or fish oil, and a control powdered chow. The pups were weaned onto the diet and sacrificed at 30 days of age. PLD activity was measured by transphosphatidylation assays using rat brain membranes. This study shows that microsome GTPgammaS-dependent PLD activity in rats fed safflower oil or fish oil was significantly reduced by 38% and 30% respectively compared to controls. Oleate-dependent PLD activity in the safflower oil group, however, was significantly increased by 38%. In contrast, synaptosome membrane (P2) GTPgammaS-dependent PLD activity in rats consuming safflower oil was significantly increased by 29%, but there was no difference in oleate-dependent PLD activity. Likewise, no difference was observed in microsome oleate-dependent PLD and P2 GTPgammaS-dependent PLD activity between the fish oil and the control groups. These results indicate that dietary lipid intake appears to modulate phospholipid metabolism and differential expression of PLD isozymes in the brain.
Collapse
Affiliation(s)
- J H Peng
- Department of Pediatrics, The University of Mississippi Medical Center, Jackson 39216, USA.
| | | |
Collapse
|
30
|
Strand AM, Lauritzen L, Vinggaard AM, Hansen HS. The subcellular localization of phospholipase D activities in rat Leydig cells. Mol Cell Endocrinol 1999; 152:99-110. [PMID: 10432228 DOI: 10.1016/s0303-7207(99)00057-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rat Leydig cells contain a phospholipase D (PLD), which can be activated by vasopressin and phorbol ester. In order to clarify which Leydig cell organelles that express PLD activity, the subcellular localization of two differently regulated PLD activities was investigated by subcellular fractionation on a 40% (v/v) self-generating Percoll gradient. PLD activities in broken cells were estimated using radiolabeled didecanoylphosphatidylcholine as a substrate. Initial experiments revealed the presence of an oleate Mg2+ -activated PLD and a phosphatidylinositol 4,5-bisphosphate-activated PLD (PIP2-PLD) in the microsomal fraction of Leydig cells. The latter activity could be further stimulated by recombinant nonmyristoylated ADP ribosylating factor 1 (ARF1) plus GTPgammaS. The peak of oleate Mg2+ -PLD activity colocalized with the plasma membrane marker, whereas the highest specific activity of the PIP2-PLD activity was found in fractions with a slightly lower density than those containing the plasma membrane and trans-Golgi marker enzymes. In order to localize phorbol ester-stimulated PLD activity in intact Leydig cells, the cells were prelabeled with [14C]-palmitate and then stimulated for 15 min with 100 nM 4-beta-phorbol-12-myristate-13-acetate (PMA) in the presence of ethanol or butanol. The PLD product [14C]-phosphatidylethanol, expressed as the percentage of total labeled phospholipids in the fraction, was slightly increased in all Percoll fractions and showed a prominent peak in the fractions containing plasma membrane, trans-Golgi, and fractions of slightly lower density. The PMA-induced formation of [14C]-phosphatidylbutanol could be inhibited dose-dependently with brefeldin A suggesting that the activation of PLD by the phorbol ester was mediated by ARF.
Collapse
Affiliation(s)
- A M Strand
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen
| | | | | | | |
Collapse
|
31
|
Burke JR, Davern LB, Gregor KR, Owczarczak LM. Differentiation of U937 cells enables a phospholipase D-dependent pathway of cytosolic phospholipase A2 activation. Biochem Biophys Res Commun 1999; 260:232-9. [PMID: 10381372 DOI: 10.1006/bbrc.1999.0887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.
Collapse
Affiliation(s)
- J R Burke
- Drug Discovery Research, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey, 08543, USA
| | | | | | | |
Collapse
|
32
|
Roth MG, Bi K, Ktistakis NT, Yu S. Phospholipase D as an effector for ADP-ribosylation factor in the regulation of vesicular traffic. Chem Phys Lipids 1999; 98:141-52. [PMID: 10358936 DOI: 10.1016/s0009-3084(99)00026-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mammalian phospholipase D (PLD) activity that is stimulated by ADP-ribosylation factor (ARF) has been identified in Golgi-enriched membrane fractions. This activity is due to the PLD1 isoform and evidence from several laboratories indicates that PLD1 is important for the polymerization of vesicle coat proteins on membranes. When expressed in Chinese hamster ovary cells, PLD1 localized to dispersed small vesicles that overlapped with the location of the ERGIC53 protein, a marker for the endoplasmic reticulum (ER)-Golgi intermediate compartment. Cells having increased PLD1 expression had accelerated anterograde and retrograde transport between the ER and Golgi. Membranes from cells having elevated PLD1 activity bound more COPI, ARF, and ARF-GTPase activating protein. These membranes also produced more COPI vesicles than did membranes from control cells. It is likely that PLD1 participates in both positive and negative feedback regulation of the formation of COPI vesicles and is important for controlling the rate of this process.
Collapse
Affiliation(s)
- M G Roth
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas 75229, USA
| | | | | | | |
Collapse
|
33
|
Aurich I, Hirche F, Ulbrich-Hofmann R. The determination of phospholipase D activity in emulsion systems. Anal Biochem 1999; 268:337-42. [PMID: 10075824 DOI: 10.1006/abio.1998.3072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although phospholipase D (PLD) is often used in emulsion systems consisting of buffer and a nonpolar organic solvent, most activity assays have been designed to work in purely aqueous milieu. Here a method is described for the determination of PLD activity in emulsion systems. The assay is based on the transphosphatidylation of phosphatidylcholine with 1-butanol in dichloromethane/buffer with the subsequent densitometric quantification of the products after their separation by HPTLC and staining with a CuSO4/H3PO4 reagent. The method is particularly appropriate for the determination of enzymes such as PLD from Streptomyces sp. that prefer the exchange of the head group in glycerophospholipids to their hydrolysis. Since the application of an organic solvent in the PLD assay allows the determination of the enzyme in analytes insoluble in aqueous media, the method can also be used to determine PLD activity in the presence of high concentrations of phospholipids.
Collapse
Affiliation(s)
- I Aurich
- Department of Biochemistry/Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, Halle, D-06120, Germany
| | | | | |
Collapse
|
34
|
Kusner DJ, Hall CF, Jackson S. Fcγ Receptor-Mediated Activation of Phospholipase D Regulates Macrophage Phagocytosis of IgG-Opsonized Particles. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Receptors for the Fc portion of IgG (FcγRs) integrate the innate and acquired components of immunity by coupling the specific recognition of IgG Abs to the activation of phagocytic leukocytes. Knowledge of the molecular mechanisms that regulate phagocyte stimulation by FcγRs may permit therapeutic modulation to augment immunoprotective aspects and minimize damage to host tissues in diverse inflammatory diseases. Since phospholipase D (PLD) has been linked to the stimulation of cytotoxic leukocyte responses, we characterized FcγR-dependent activation of PLD in human macrophages. IgG-coated SRBCs (EIgG) stimulated a 9.4-fold increase in PLD activity compared with SRBCs treated with control Ab (p < 0.001), determined by formation of the PLD-specific product phosphatidylethanol in the presence of 0.5% ethanol. Levels of phosphatidic acid, the physiologic product of PLD-mediated catalyzis, were significantly increased in the absence of ethanol (6.4-fold, p < 0.001). PLD activity was also stimulated by immune complex-coated latex beads or cross-linking of Abs specific for FcγRI, FcγRII, or FcγRIII. Phagocytosis of EIgG was reduced by two inhibitors of PLD-mediated signaling, 2,3-diphosphoglycerate or 1-butanol. Addition of purified PLD restored control levels of phagocytosis in cells in which endogenous PLD was inhibited. The tyrosine kinase inhibitors genistein and herbimycin A caused concordant reductions in FcγR-stimulated PLD activity and phagocytosis. These studies demonstrate that FcγR-mediated phagocytosis is accompanied by tyrosine kinase-dependent activation of PLD and support the hypothesis that stimulation of PLD functions to regulate the ingestion of IgG-opsonized particles.
Collapse
Affiliation(s)
- David J. Kusner
- *Department of Medicine, the
- †Inflammation Program, and the
- ‡Graduate Program in Immunology at the University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52242
| | | | - Stephen Jackson
- †Inflammation Program, and the
- ‡Graduate Program in Immunology at the University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52242
| |
Collapse
|
35
|
Soh JW, Lee EH, Prywes R, Weinstein IB. Novel roles of specific isoforms of protein kinase C in activation of the c-fos serum response element. Mol Cell Biol 1999; 19:1313-24. [PMID: 9891065 PMCID: PMC116060 DOI: 10.1128/mcb.19.2.1313] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1998] [Accepted: 11/03/1998] [Indexed: 02/07/2023] Open
Abstract
Protein kinase C (PKC) is a multigene family of enzymes consisting of at least 11 isoforms. It has been implicated in the induction of c-fos and other immediate response genes by various mitogens. The serum response element (SRE) in the c-fos promoter is necessary and sufficient for induction of transcription of c-fos by serum, growth factors, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). It forms a complex with the ternary complex factor (TCF) and with a dimer of the serum response factor (SRF). TCF is the target of several signal transduction pathways and SRF is the target of the rhoA pathway. In this study we generated dominant-negative and constitutively active mutants of PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta to determine the roles of individual isoforms of PKC in activation of the SRE. Transient-transfection assays with NIH 3T3 cells, using an SRE-driven luciferase reporter plasmid, indicated that PKC-alpha and PKC-epsilon, but not PKC-delta or PKC-zeta, mediate SRE activation. TPA-induced activation of the SRE was partially inhibited by dominant negative c-Raf, ERK1, or ERK2, and constitutively active mutants of PKC-alpha and PKC-epsilon activated the transactivation domain of Elk-1. TPA-induced activation of the SRE was also partially inhibited by a dominant-negative MEKK1. Furthermore, TPA treatment of serum-starved NIH 3T3 cells led to phosphorylation of SEK1, and constitutively active mutants of PKC-alpha and PKC-epsilon activated the transactivation domain of c-Jun, a major substrate of JNK. Constitutively active mutants of PKC-alpha and PKC-epsilon could also induce a mutant c-fos promoter which lacks the TCF binding site, and they also induce transactivation activity of the SRF. Furthermore, rhoA-mediated SRE activation was blocked by dominant negative mutants of PKC-alpha or PKC-epsilon. Taken together, these findings indicate that PKC-alpha and PKC-epsilon can enhance the activities of at least three signaling pathways that converge on the SRE: c-Raf-MEK1-ERK-TCF, MEKK1-SEK1-JNK-TCF, and rhoA-SRF. Thus, specific isoforms of PKC may play a role in integrating networks of signal transduction pathways that control gene expression.
Collapse
Affiliation(s)
- J W Soh
- Department of Biochemistry & Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
36
|
Iyer SS, Kusner DJ. Association of phospholipase D activity with the detergent-insoluble cytoskeleton of U937 promonocytic leukocytes. J Biol Chem 1999; 274:2350-9. [PMID: 9891002 DOI: 10.1074/jbc.274.4.2350] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) regulates cytoskeletal-dependent antimicrobial responses of myeloid leukocytes, including phagocytosis and oxidant generation. However, the mechanisms responsible for this association between PLD activity and the actin cytoskeleton are unknown. We utilized a cell-free system from U937 promonocytes to test the hypothesis that stimulation of PLD results in stable association of the activated lipase with the detergent-insoluble membrane skeleton. Plasma membrane and cytosol were incubated +/- guanosine 5'-3-O-(thio)triphosphate (GTPgammaS), followed by re-isolation and extraction of the washed membranes with octyl glucoside. The detergent-insoluble fraction derived from membranes incubated with GTPgammaS (DIFGTPgammaS) exhibited 22-fold greater PLD activity than that derived from control membranes (DIF0), when both were assayed in the presence of GTPgammaS. The DIF contained PLD1, RhoA, and ARF, and the level of each was increased by GTPgammaS in a dose-dependent manner. The DIF also contained F-actin, vinculin, talin, paxillin, and alpha-actinin, consistent with its identification as the membrane skeleton. The physiologic relevance of these findings was demonstrated by a similar increase in DIF-associated PLD activity after stimulation of intact U937 cells with opsonized zymosan. These results indicate that stimulation of PLD1 is accompanied by stable association of the activated lipase, RhoA, and ADP-ribosylation factor with the actin-based membrane skeleton.
Collapse
Affiliation(s)
- S S Iyer
- Department of Medicine, the University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
37
|
Drobnik W, Liebisch G, Biederer C, Tr mbach B, Rogler G, Müller P, Schmitz G. Growth and cell cycle abnormalities of fibroblasts from Tangier disease patients. Arterioscler Thromb Vasc Biol 1999; 19:28-38. [PMID: 9888863 DOI: 10.1161/01.atv.19.1.28] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have investigated the abnormal proliferation and morphology of fibroblasts from patients with Tangier disease (TD), a high density lipoprotein (HDL) deficiency syndrome that is characterized by impairment of HDL3-mediated lipid efflux and Gi-protein-mediated signaling via phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase D (PLD). TD fibroblasts displayed a 30% to 50% reduced in vitro growth rate and a 1.6-fold increased cell surface area. The response to different mitogens was diminished, and asynchronously growing TD fibroblasts showed 4.4+/-0.3% S-phase and 19.1+/-0.5% G2/M-phase cells compared with 9.7+/-0.6% and 7.8+/-0.5%, respectively, in controls. Monensin, but not brefeldin A, induced an S- and G2/M-phase distribution in control cells similar to that found in TD fibroblasts. This effect of monensin was accompanied by an increase of ceramide levels in controls, whereas TD fibroblasts already had a 2.5-fold increased basal ceramide concentration. Incubation of control cells with C2 ceramide and threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) mimicked the effect of monensin on the cell cycle. The inhibition of neither Gi protein function by pertussis toxin nor PLD by butanol resulted in a G2/M-phase arrest. Propranolol, known to increase phosphatidic acid levels, was ineffective in reversing the G2/M-phase arrest in TD fibroblasts. In addition, cDNA sequences and mRNA expression of the participants of PI-PLC or PLD signaling, ie, G-protein subunits alphai1, alphai2, and alphai3; phosphatidylinositol transfer proteins-alpha and -beta; and ADP ribosylation factors 1 and 3 were found to be normal. Thus, growth and cell cycle abnormalities in TD fibroblasts are likely to be related to impaired Golgi function and sphingolipid signaling rather than inoperative G-protein signal transduction. Because PDMP was also found to decrease HDL3-mediated lipid efflux in control but not TD fibroblasts, similar pathways seem to be involved in the disturbances of lipid transport and growth retardation.
Collapse
Affiliation(s)
- W Drobnik
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universit at Regensburg, Regensburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
A new method to determine enzyme activities in two-phase systems by Flow Injection Analysis (FIA). Biosens Bioelectron 1998. [DOI: 10.1016/s0956-5663(98)00064-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Henry SA, Patton-Vogt JL. Genetic regulation of phospholipid metabolism: yeast as a model eukaryote. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:133-79. [PMID: 9752720 DOI: 10.1016/s0079-6603(08)60826-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Baker's yeast, Saccharomyces cerevisiae, is an excellent and an increasingly important model for the study of fundamental questions in eukaryotic cell biology and genetic regulation. The fission yeast, Schizosaccharomyces pombe, although not as intensively studied as S. cerevisiae, also has many advantages as a model system. In this review, we discuss progress over the past several decades in biochemical and molecular genetic studies of the regulation of phospholipid metabolism in these two organisms and higher eukaryotes. In S. cerevisiae, following the recent completion of the yeast genome project, a very high percentage of the gene-enzyme relationships in phospholipid metabolism have been assigned and the remaining assignments are expected to be completed rapidly. Complex transcriptional regulation, sensitive to the availability of phospholipid precusors, as well as growth phase, coordinates the expression of the structural genes encoding these enzymes in S. cerevisiae. In this article, this regulation is described, the mechanism by which the cell senses the ongoing metabolic activity in the pathways for phospholipid biosynthesis is discussed, and a model is presented. Recent information relating to the role of phosphatidylcholine turnover in S. cerevisiae and its relationship to the secretory pathway, as well as to the regulation of phospholipid metabolism, is also presented. Similarities in the role of phospholipase D-mediated phosphatidylcholine turnover in the secretory process in yeast and mammals lend further credence to yeast as a model system.
Collapse
Affiliation(s)
- S A Henry
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
40
|
Zhao D, Berse B, Holler T, Cermak JM, Blusztajn JK. Developmental changes in phospholipase D activity and mRNA levels in rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:121-7. [PMID: 9729325 DOI: 10.1016/s0165-3806(98)00071-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phospholipase D (PLD) activity and PLD1 mRNA levels were determined in rat brain at ages ranging from embryonic day (E) 19 to postnatal day (P) 49. Basal, oleate-, and phosphatidylinositol-4, 5-bisphosphate-stimulated PLD activity increased between E19 and P24 by approximately 3-fold and remained unaltered thereafter. A similar developmental pattern of mRNA levels of PLD1 isoform was found by Northern blotting. The development of PLD correlates with synaptogenesis and myelination suggesting that the enzyme might have an important function in these processes.
Collapse
Affiliation(s)
- D Zhao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 85 East Newton Street, room M1009, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
41
|
Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA. A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 1998; 273:16635-8. [PMID: 9642212 DOI: 10.1074/jbc.273.27.16635] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SEC14 gene encodes a phosphatidylinositol/phosphatidylcholine transfer protein essential for secretion and growth in yeast (1). Mutations (cki1, cct1, and cpt1) in the CDP-choline pathway for phosphatidylcholine synthesis suppress the sec14 growth defect (2), permitting sec14(ts) cki1, sec14(ts) cct1, and sec14(ts) cpt1 strains to grow at the sec14(ts) restrictive temperature. Previously, we reported that these double mutant strains also excrete the phospholipid metabolites, choline and inositol (3). We now report that these choline and inositol excretion phenotypes are eliminated when the SPO14 (PLD1) gene encoding phospholipase D1 is deleted. In contrast to sec14(ts) cki1 strains, sec14(ts) cki1 pld1 strains are not viable at the sec14(ts) restrictive temperature and exhibit a pattern of invertase secretion comparable with sec14(ts) strains. Thus, the PLD1 gene product appears to play an essential role in the suppression of the sec14(ts) defect by CDP-choline pathway mutations, indicating a role for phospholipase D1 in growth and secretion. Furthermore, sec14(ts) strains exhibit elevated Ca2+-independent, phophatidylinositol 4,5-bisphosphate-stimulated phospholipase D activity. We also propose that phospholipase D1-mediated phosphatidylcholine turnover generates a signal that activates transcription of INO1, the structural gene for inositol 1-phosphate synthase.
Collapse
Affiliation(s)
- A Sreenivas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, USA
| | | | | | | | | |
Collapse
|
42
|
Ramalho-Santos J, de Lima MC. The influenza virus hemagglutinin: a model protein in the study of membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:147-54. [PMID: 9666108 DOI: 10.1016/s0304-4157(98)00002-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J Ramalho-Santos
- Center for Neuroscience of Coimbra, University of Coimbra, Coimbra, Portugal.
| | | |
Collapse
|
43
|
Abstract
Signal transduction is the process by which specific information is transferred from the cell surface to the cytosol and ultimately to the nucleus, leading to changes in gene expression. Since these chains of biochemical and molecular steps control the normal function of each cell, disruption of these processes would have a significant impact on cell physiology. Some of the major signal transduction pathways are briefly reviewed. The interactions of four chemicals (lead, ethanol, polychlorinated biphenyls, and trimethyltin) with different cell signaling systems, particularly the phospholipid hydrolysis/protein kinase C pathway, are discussed. The possible causal relationship of such cellular and molecular interactions with known signs and symptoms of neurotoxicity are highlighted.
Collapse
Affiliation(s)
- L G Costa
- Department of Environmental Health, University of Washington, Seattle 98105, USA.
| |
Collapse
|
44
|
Luo JQ, Liu X, Frankel P, Rotunda T, Ramos M, Flom J, Jiang H, Feig LA, Morris AJ, Kahn RA, Foster DA. Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci U S A 1998; 95:3632-7. [PMID: 9520417 PMCID: PMC19887 DOI: 10.1073/pnas.95.7.3632] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Indexed: 02/06/2023] Open
Abstract
Activation of phospholipase D1 (PLD1) by Arf has been implicated in vesicle transport and membrane trafficking. PLD1 has also been shown to be associated with the small GTPase RalA, which functions downstream from Ras in a Ras-RalA GTPase cascade that facilitates intracellular signal transduction. Although PLD1 associates directly with RalA, RalA has no effect upon the activity of PLD1. However, PLD1 precipitated from cell lysates with immobilized glutathione S-transferase-RalA fusion protein is active. This suggests the presence of an additional activating factor in the active RalA-PLD1 complexes. Because Arf stimulates PLD1, we looked for the presence of Arf in the active RalA-PLD1 complexes isolated from v-Src- and v-Ras-transformed cell lysates. Low levels of Arf protein were detected in RalA-PLD1 complexes; however, if guanosine 5'-[gamma-thio]triphosphate was added to activate Arf and stimulate translocation to the membrane, high levels of Arf were precipitated by RalA from cell lysates. Interestingly, deletion of 11 amino-terminal amino acids unique to Ral GTPases, which abolished the ability of RalA to precipitate PLD activity, prevented the association between RalA and Arf. Brefeldin A, which inhibits Arf GDP-GTP exchange, inhibited PLD activity in v-Src- and v-Ras-transformed cells but not in the nontransformed cells, suggesting that the association of Arf with RalA is required for the increased PLD activity induced by v-Src and v-Ras. These data implicate Arf in the transduction of intracellular signals activated by v-Src and mediated by the Ras-RalA GTPase cascade. Because both Arf and PLD1 stimulate vesicle formation in the Golgi, these data raise the possibility that vesicle formation and trafficking may play a role in the transduction of intracellular signals.
Collapse
Affiliation(s)
- J Q Luo
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dittrich N, Haftendorn R, Ulbrich-Hofmann R. Hexadecylphosphocholine and 2-modified 1,3-diacylglycerols as effectors of phospholipase D. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1391:265-72. [PMID: 9555051 DOI: 10.1016/s0005-2760(97)00208-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kinetic behaviour of phospholipase D (PLD) from cabbage has been studied in the presence of several substrate-like compounds such as hexadecylphosphocholine (HPC) and 1,3-didodecanoylglycero-2-phosphatides. 1,3-Didodecanoyl- glycero-2-phosphocholine (1,3-DiC12PC) was found being not cleft by PLD, whereas HPC is hydrolyzed by PLD with small rate. The plot of initial velocity vs. substrate concentration for HPC is more sigmoidal than those for the common substrate phosphatidylcholine (PC)/sodium dodecylsulfate (SDS) (1:0.5) or the short-chain 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DiC6PC). The anionic amphiphiles 1,3-didodecanoylglycero-2-sulfate and 1,3-didodecanoylglycero-2-phosphate act as activators of PLD towards PC similar to SDS. In contrast, 1,3-DiC12PC shows inhibitory properties with an increase in the sigmoidicity of the initial velocity as a function of substrate concentration in the PC/SDS assay. Also HPC inhibits the hydrolysis of PC/SDS, whereas it acts as activator or inhibitor in the hydrolysis of DiC6PC. The results suggest that PLD possesses two substrate-binding sites, where one binds substrate in function of an effector without catalytic activity while the other is the catalytic site. HPC and 1,3-DiC12PC are assumed to compete with the substrate for both binding sites with effects depending on the ratio of concentrations and affinities of substrates and effectors.
Collapse
Affiliation(s)
- N Dittrich
- Department of Biochemistry/Biotechnology, Martin-Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | | | | |
Collapse
|
46
|
Arthur G, Bittman R. The inhibition of cell signaling pathways by antitumor ether lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:85-102. [PMID: 9487143 DOI: 10.1016/s0005-2760(97)00163-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- G Arthur
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | | |
Collapse
|
47
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Patton-Vogt JL, Griac P, Sreenivas A, Bruno V, Dowd S, Swede MJ, Henry SA. Role of the yeast phosphatidylinositol/phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation. J Biol Chem 1997; 272:20873-83. [PMID: 9252414 DOI: 10.1074/jbc.272.33.20873] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In yeast, mutations in the CDP-choline pathway for phosphatidylcholine biosynthesis permit the cell to grow even when the SEC14 gene is completely deleted (Cleves, A., McGee, T., Whitters, E., Champion, K., Aitken, J., Dowhan, W., Goebl, M., and Bankaitis, V. (1991) Cell 64, 789-800). We report that strains carrying mutations in the CDP-choline pathway, such as cki1, exhibit a choline excretion phenotype due to production of choline during normal turnover of phosphatidylcholine. Cells carrying cki1 in combination with sec14(ts), a temperature-sensitive allele in the gene encoding the phosphatidylinositol/phosphatidylcholine transporter, have a dramatically increased choline excretion phenotype when grown at the sec14(ts)-restrictive temperature. We show that the increased choline excretion in sec14(ts) cki1 cells is due to increased turnover of phosphatidylcholine via a mechanism consistent with phospholipase D-mediated turnover. We propose that the elevated rate of phosphatidylcholine turnover in sec14(ts) cki1 cells provides the metabolic condition that permits the secretory pathway to function when Sec14p is inactivated. As phosphatidylcholine turnover increases in sec14(ts) cki1 cells shifted to the restrictive temperature, the INO1 gene (encoding inositol-1-phosphate synthase) is also derepressed, leading to an inositol excretion phenotype (Opi-). Misregulation of the INO1 gene has been observed in many strains with altered phospholipid metabolism, and the relationship between phosphatidylcholine turnover and regulation of INO1 and other co-regulated genes of phospholipid biosynthesis is discussed.
Collapse
Affiliation(s)
- J L Patton-Vogt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, USA
| | | | | | | | | | | | | |
Collapse
|