1
|
Zhou Q, Greene LA. Dpep Inhibits Cancer Cell Growth and Survival via Shared and Context-Dependent Transcriptome Perturbations. Cancers (Basel) 2023; 15:5318. [PMID: 38001578 PMCID: PMC10669862 DOI: 10.3390/cancers15225318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Dpep is a cell-penetrating peptide targeting transcription factors ATF5, CEBPB, and CEBPD, and that selectively promotes the apoptotic death of multiple tumor cell types in vitro and in vivo. As such, it is a potential therapeutic. To better understand its mechanism of action, we used PLATE-seq to compare the transcriptomes of six cancer cell lines of diverse origins before and after Dpep exposure. This revealed a context-dependent pattern of regulated genes that was unique to each line, but that exhibited a number of elements that were shared with other lines. This included the upregulation of pro-apoptotic genes and tumor suppressors as well as the enrichment of genes associated with responses to hypoxia and interferons. Downregulated transcripts included oncogenes and dependency genes, as well as enriched genes associated with different phases of the cell cycle and with DNA repair. In each case, such changes have the potential to lie upstream of apoptotic cell death. We also detected the regulation of unique as well as shared sets of transcription factors in each line, suggesting that Dpep may initiate a cascade of transcriptional responses that culminate in cancer cell death. Such death thus appears to reflect context-dependent, yet shared, disruption of multiple cellular pathways as well as of individual survival-relevant genes.
Collapse
Affiliation(s)
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| |
Collapse
|
2
|
D'Addio F, Maestroni A, Assi E, Ben Nasr M, Amabile G, Usuelli V, Loretelli C, Bertuzzi F, Antonioli B, Cardarelli F, El Essawy B, Solini A, Gerling IC, Bianchi C, Becchi G, Mazzucchelli S, Corradi D, Fadini GP, Foschi D, Markmann JF, Orsi E, Škrha J, Camboni MG, Abdi R, James Shapiro AM, Folli F, Ludvigsson J, Del Prato S, Zuccotti G, Fiorina P. The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nat Commun 2022; 13:684. [PMID: 35115561 PMCID: PMC8813914 DOI: 10.1038/s41467-022-28360-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Loss of pancreatic beta cells is a central feature of type 1 (T1D) and type 2 (T2D) diabetes, but a therapeutic strategy to preserve beta cell mass remains to be established. Here we show that the death receptor TMEM219 is expressed on pancreatic beta cells and that signaling through its ligand insulin-like growth factor binding protein 3 (IGFBP3) leads to beta cell loss and dysfunction. Increased peripheral IGFBP3 was observed in established and at-risk T1D/T2D patients and was confirmed in T1D/T2D preclinical models, suggesting that dysfunctional IGFBP3/TMEM219 signaling is associated with abnormalities in beta cells homeostasis. In vitro and in vivo short-term IGFBP3/TMEM219 inhibition and TMEM219 genetic ablation preserved beta cells and prevented/delayed diabetes onset, while long-term IGFBP3/TMEM219 blockade allowed for beta cell expansion. Interestingly, in several patients' cohorts restoration of appropriate IGFBP3 levels was associated with improved beta cell function. The IGFBP3/TMEM219 pathway is thus shown to be a physiological regulator of beta cell homeostasis and is also demonstrated to be disrupted in T1D/T2D. IGFBP3/TMEM219 targeting may therefore serve as a therapeutic option in diabetes.
Collapse
MESH Headings
- Adult
- Animals
- Cells, Cultured
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Gene Expression Regulation
- Homeostasis/genetics
- Humans
- Immunoblotting
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Insulin-Secreting Cells/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Mice
Collapse
Affiliation(s)
- Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Federico Bertuzzi
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Barbara Antonioli
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Basset El Essawy
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
- Medicine, Al-Azhar University, Cairo, Egypt
| | - Anna Solini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, USA
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriella Becchi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | - Serena Mazzucchelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | | | - Diego Foschi
- General Surgery, DIBIC, L. Sacco Hospital, Università di Milano, Milan, Italy
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emanuela Orsi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS Cà Granda - Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Jan Škrha
- 3rd Department of Internal Medicine, Charles University, First Faculty of Medicine, Prague, Czech Republic
| | | | - Reza Abdi
- Transplantation Research Center, Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
| | - A M James Shapiro
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, Università di Milano, ASST Santi Paolo e Carlo, Milan, Italy
| | - Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano and Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
| |
Collapse
|
3
|
Adeyemo A, Johnson C, Stiene A, LaSance K, Qi Z, Lemen L, Schultz JEJ. Limb functional recovery is impaired in fibroblast growth factor-2 (FGF2) deficient mice despite chronic ischaemia-induced vascular growth. Growth Factors 2020; 38:75-93. [PMID: 32496882 PMCID: PMC8601595 DOI: 10.1080/08977194.2020.1767612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
FGF2 is a potent stimulator of vascular growth; however, even with a deficiency of FGF2 (Fgf2-/-), developmental vessel growth or ischaemia-induced revascularization still transpires. It remains to be elucidated as to what function, if any, FGF2 has during ischaemic injury. Wildtype (WT) or Fgf2-/- mice were subjected to hindlimb ischaemia for up to 42 days. Limb function, vascular growth, inflammatory- and angiogenesis-related proteins, and inflammatory cell infiltration were assessed in sham and ischaemic limbs at various timepoints. Recovery of ischaemic limb function was delayed in Fgf2-/- mice. Yet, vascular growth response to ischaemia was similar between WT and Fgf2-/- hindlimbs. Several angiogenesis- and inflammatory-related proteins (MCP-1, CXCL16, MMPs and PAI-1) were increased in Fgf2-/- ischaemic muscle. Neutrophil or monocyte recruitment/infiltration was elevated in Fgf2-/- ischaemic muscle. In summary, our study indicates that loss of FGF2 induces a pro-inflammatory microenvironment in skeletal muscle which exacerbates ischaemic injury and delays functional limb use.
Collapse
Affiliation(s)
- Adeola Adeyemo
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Christopher Johnson
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Andrew Stiene
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Kathleen LaSance
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Zhihua Qi
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa Lemen
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jo El J. Schultz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
4
|
Kalledsøe L, Dragsted LO, Hansen L, Kyrø C, Grønbæk H, Tjønneland A, Olsen A. The insulin-like growth factor family and breast cancer prognosis: A prospective cohort study among postmenopausal women in Denmark. Growth Horm IGF Res 2019; 44:33-42. [PMID: 30622040 DOI: 10.1016/j.ghir.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Circulating levels of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) have been associated with breast cancer (BC) risk. The evidence in relation to BC prognosis is limited. We aimed to evaluate the association between pre-diagnostic serum levels of IGF-I, IGF-II, IGFBP-2, IGFBP-3 and BC prognosis (i.e. recurrence, BC specific mortality and all-cause mortality) among women diagnosed with BC. We hypothesized that higher serum levels of IGFs and IGFBPs were associated with poor BC prognosis and that the associations were modified by estrogen receptor (ER) status. DESIGN From the Danish Diet, Cancer and Health cohort, 412 postmenopausal women diagnosed with incident BC within 5 years of cohort baseline (1993-1997) were identified. Baseline serum samples were analyzed for IGF-I, IGF-II, IGFBP-2 and IGFBP-3. Follow-up was carried out through 2014 by linkage to national Danish registries. Exposures were related to BC prognosis by Cox Proportional Hazard models; effect modification by ER status was investigated and sensitivity analyses by follow-up time were made. RESULTS During a median of 15 years, 106 women experienced recurrence and 172 died (118 due to BC). Overall, no associations were observed between IGF-I, IGF-II, IGFBP-2, IGFBP-3 and BC prognosis and no effect modification by ER status was observed. However, higher levels of IGF-II were associated with higher BC specific mortality [Hazard Ratio (HR) (95% Confidence Intervals (CI)): 1.43 (1.01-2.04)] within 10 years of follow-up. Likewise, higher levels of IGFBP-2 were associated with higher BC specific mortality [HR (95% CI): 1.87 (1.19-2.94)] within 5 years of follow-up. In contrast, higher levels of IGFBP-3 were associated with lower risk of recurrence [HR (95% CI): 0.76 (0.60-0.97)] at 5 years of follow-up and BC specific mortality [HR (95% CI): 0.80 (0.65-0.98)] within 10 years of follow-up. CONCLUSIONS The present study did not support an association between higher serum levels of IGFs, IGFBPs and adverse BC prognosis. However, it is possible that the role of the IGF family in the etiology of the 5-10 year BC prognosis is different from that of longer-term BC prognosis.
Collapse
Affiliation(s)
- Loa Kalledsøe
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Louise Hansen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Cecilie Kyrø
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Anja Olsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
5
|
|
6
|
Dash P. Reconnoitring the status of prostate specific antigen and its role in women. Indian J Clin Biochem 2014; 30:124-33. [PMID: 25883418 DOI: 10.1007/s12291-014-0451-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Prostate specific antigen is considered to be a tumour marker having maximum utility and specificity for prostate cancer since decades. After the discovery of methods to quantify different molecular fractions of prostate specific antigen (PSA), its usefulness in diagnosing early prostate cancer cases has increased tremendously. The "specificity" of PSA, is now challenged by many studies which proved that PSA, once believed to be secreted exclusively by prostatic epithelium, is also present in females. The exact biological role of extraprostatic PSA is still debatable though many theories substantiated by in vitro evidence has been put forward. With the advent of ultrasensitive analytical techniques, PSA is now quantifiable in female serum in its various molecular forms and this has led to many assumptions of it being useful as a marker in female breast cancers. In a similar scenario to prostate cancer, the ratio of free to total PSA is shown to be useful in detecting early breast cancer cases. It is also shown to be a good prognostic indicator and a predictor of response to therapy and recurrence. Apart from its role in breast cancer, it has been advocated to be a marker of hyper androgenic states in women like hirsutism and polycystic ovarian syndrome. Conflicting reports regarding the role of extra prostatic PSA is accumulating but it has been proven beyond doubt that PSA is no longer specific and confined to prostate gland. Various studies have registered that PSA is an ubiquitous molecule, secreted by hormone responsive organs and its synthesis is stimulated by androgens and progesterone but not oestrogens. In this article, a review of various literatures is done about the presence of extra prostatic PSA, its probable role in those sites as well as its utility as a tumour marker in breast cancer.
Collapse
Affiliation(s)
- Prakruti Dash
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar-19, Odisha India
| |
Collapse
|
7
|
Gunaretnam I, Pretheeban T, Rajamahendran R. Effects of ammonia and urea in vitro on mRNA of candidate bovine endometrial genes. Anim Reprod Sci 2013; 141:42-51. [DOI: 10.1016/j.anireprosci.2013.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 06/30/2013] [Accepted: 07/03/2013] [Indexed: 01/13/2023]
|
8
|
Colocalization and identification of interaction sites between IGFBP-3 and GalNAc-T14. Gene 2012; 499:347-51. [PMID: 22441125 DOI: 10.1016/j.gene.2012.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/04/2012] [Indexed: 11/24/2022]
Abstract
GalNAc-T14 was identified as a novel IGFBP-3 binding partner in previous studies. Here, we furtherly confirmed the interaction between them by confocal microscopy, and identified the binding domain and probable interaction sites of GalNAc-T14 with IGFBP-3. The result of subcellular localization indicated that GalNAc-T14 was distributed in the cytosol, whereas IGFBP-3 existed in the cytosol and nucleolus. Confocal analyses demonstrated that IGFBP-3 and GalNAc-T14 colocalized in the cytosol. The result from yeast two hybrid assay showed that the C terminus of GalNAc-T14 (408-552aa) was essential for the interaction between GalNAc-T14 and IGFBP-3, especially Tyr(408), Pro(409), and Glu(410) of GalNAc-T14 may play key roles in the interaction with IGFBP-3. In conclusion, these studies demonstrated that IGFBP-3 and GalNAc-T14 are colocalized in MCF-7 cells and confirmed the interaction between IGFBP-3 and GalNAc-T14. This interaction may play an important role in the functional regulation of IGFBP-3.
Collapse
|
9
|
Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. DERMATO-ENDOCRINOLOGY 2011; 3:141-65. [PMID: 22110774 PMCID: PMC3219165 DOI: 10.4161/derm.3.3.15331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-γ (PPArγ)- and liver X receptor-α (LXrα)-mediated lipogenesis, β-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin→ATRA→RAR→FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
10
|
Nguyen KH, Yao XH, Moulik S, Mishra S, Nyomba BLG. Human IGF binding protein-3 overexpression impairs glucose regulation in mice via an inhibition of insulin secretion. Endocrinology 2011; 152:2184-96. [PMID: 21447640 DOI: 10.1210/en.2010-1324] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human IGF binding protein-3 (hIGFBP-3) overexpression in mice causes hyperglycemia, but its effect on β-cell function is unknown. We compared wild-type mice with mice overexpressing hIGFBP-3 [phoshoglycerate kinase (PGK)BP3] and mutant (Gly⁵⁶/Gly⁸⁰/Gly⁸¹)hIGFBP-3 devoid of IGF binding affinity (PGKmBP3). Intraperitoneal glucose and insulin tolerance tests were performed, and glucose, IGFBP-3, IGF-I, and insulin were determined. Pancreatic sections were used for islet histomorphometry and stained with antibodies against insulin, glucagon, and hIGFBP-3. Pancreatic islets were isolated to determine the expression of IGFBP-3, and glucose-stimulated insulin secretion was measured using both islet batch incubation and perifusion. IGFBP-3 was expressed in β-cells but not in other islet cell types. Fasting glucose concentration was elevated in PGKBP3 mice (6.27 ± 0.31 mm) compared with PGKmBP3 mice (3.98 ± 0.36 mm) and wild-type mice (4.84 ± 0.07 mm). During glucose tolerance test, glucose declined more slowly in PGKBP3 and PGKmBP3 mice than in wild-type mice, and insulin secretion was impaired in PGKBP3 mice. During insulin tolerance test, insulin declined more slowly in both transgenic mice compared with wild-type mice. Insulin secretion in islets incubated with 3.3 mm glucose was similar among groups, but islet insulin response to 16.7 mm glucose alone, or with carbachol and cAMP enhancers, was reduced in PGKBP3 and PGKmBP3 mice compared with wild-type controls. ATP content, Akt phosphorylation, and phosphoglucose isomerase activity were reduced in islets from both transgenic mice. Thus, overexpression of hIGFBP-3 in mice delays in vivo insulin clearance and reduces glucose-stimulated insulin secretion in pancreatic islets by both IGF-dependent and IGF-independent mechanisms.
Collapse
Affiliation(s)
- K Hoa Nguyen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
11
|
Fujinaka H, Katsuyama K, Yamamoto K, Nameta M, Yoshida Y, Yaoita E, Tomizawa S, Yamamoto T. Expression and localization of insulin-like growth factor binding proteins in normal and proteinuric kidney glomeruli. Nephrology (Carlton) 2011; 15:700-9. [PMID: 21040165 DOI: 10.1111/j.1440-1797.2010.01285.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Insulin-like growth factor I (IGF-I) acts on target cells in an endocrine and/or local manner through the IGF-I receptor (IGF-IR), and its actions are modulated by multiple IGF binding proteins (IGFBP). To elucidate the roles of local IGFBP in kidney glomeruli, the expression and localization of their genes were examined and compared with normal and proteinuric kidney glomeruli. METHODS A cDNA microarray database (MAd-761) was constructed using human kidney glomeruli and cortices. The gene expression levels of IGF-I, IGF-1R and IGFBP (1-10) were examined in glomeruli and cortices by polymerase chain reaction (PCR) and in situ hybridization (ISH), and the expression levels of IGFBP that were abundantly found in the glomerulus were compared between normal and proteinuric kidneys in rats and humans. RESULTS IGFBP-2, -7 and -8 were demonstrated to be abundantly and preferentially expressed in the glomerulus. In PCR, the expression levels of the IGFBP-2, -7, -8 and -10 genes in glomeruli were shown to have more than doubled compared with their levels in the cortices. In ISH, the IGFBP-2, -7, -8 and -10 genes were found to be localized in glomerular cells including podocytes, and their increased expression was observed in inflammatory glomeruli. IGF-I gene expression was localized in glomerular podocytes, whereas the IGF-IR gene was expressed in glomerular podocytes and cortical tubular cells. In nephrotic rats, the expression of the IGFBP-10 gene was increased in glomerular podocytes; however, the expression levels of IGFBP-2, -7 and -8 did not change. CONCLUSION IGFBP-2, -7, -8 and -10 are produced by normal and injured glomerular podocytes and may regulate local IGF-I actions in podocytes and/or cortical tubular cells in the kidney.
Collapse
Affiliation(s)
- Hidehiko Fujinaka
- Institute for Clinical Research, Niigata National Hospital, Kashiwazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dash P, Pati S, Mangaraj M, Sahu PK, Mohapatra PC. Serum total PSA and free PSA in breast tumors. Indian J Clin Biochem 2011; 26:182-6. [PMID: 22468047 DOI: 10.1007/s12291-011-0115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
Now a days measurement of molecular forms of PSA has gained importance in clinical practice. Several studies have demonstrated the production of PSA in female tissues, such as breast. The present piece of work has been undertaken with an objective to estimate the relative proportion of the molecular forms of PSA in serum along with serum testosterone in benign and malignant breast tumor cases and to analyze their association with the severity of the disease process 34 malignant and 26 benign breast disease cases along with 33 healthy controls of same age group were enrolled in this study for evaluation. Serum testosterone was measured by ELISA, whereas serum total PSA (TPSA) and free PSA (FPSA) were estimated by electrochemiluminescence immunoassay. A significant rise of fasting plasma glucose along with prominent dyslipidemia was observed in breast tumor cases. Marked rise in serum testosterone as well as TPSA and FPSA was documented in both benign and malignant breast tumor cases. Serum testosterone revealed a significant positive association with both TPSA and FPSA pointing towards an etiological association between them. However, surgical removal of tumor mass resulted in a marked decline of presurgical value of both TPSA and FPSA with a non-significant fall in serum testosterone revealing tumor tissue as the source of FPSA and TPSA. Thus, estimation of PSA provides prognostic information that may assist in future treatment.
Collapse
|
13
|
Perks CM, Burrows C, Holly JMP. Intrinsic, Pro-Apoptotic Effects of IGFBP-3 on Breast Cancer Cells are Reversible: Involvement of PKA, Rho, and Ceramide. Front Endocrinol (Lausanne) 2011; 2:13. [PMID: 22654794 PMCID: PMC3356103 DOI: 10.3389/fendo.2011.00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/03/2011] [Indexed: 11/29/2022] Open
Abstract
We established previously that IGFBP-3 could exert positive or negative effects on cell function depending upon the extracellular matrix composition and by interacting with integrin signaling. To elicit its pro-apoptotic effects IGFBP-3 bound to caveolin-1 and the beta 1 integrin receptor and increased their association culminating in MAPK activation. Disruption of these complexes or blocking the beta 1 integrin receptor reversed these intrinsic actions of IGFBP-3. In this study we have examined the signaling pathway between integrin receptor binding and MAPK activation that mediates the intrinsic, pro-apoptotic actions of IGFBP-3. We found on inhibiting protein kinase A (PKA), Rho associated kinase (ROCK), and ceramide, the accentuating effects of IGFBP-3 on apoptotic triggers were reversed, such that IGFBP-3 then conferred cell survival. We established that IGFBP-3 activated Rho, the upstream regulator of ROCK and that beta1 integrin and PKA were upstream of Rho activation, whereas the involvement of ceramide was downstream. The beta 1 integrin, PKA, Rho, and ceramide were all upstream of MAPK activation. These data highlight key components involved in the pro-apoptotic effects of IGFBP-3 and that inhibiting them leads to a reversal in the action of IGFBP-3.
Collapse
Affiliation(s)
- Claire M. Perks
- *Correspondence: Claire M. Perks, IGF and Metabolic Endocrinology Group, Department of Clinical Sciences at North Bristol, The Medical School, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK. e-mail:
| | - Carla Burrows
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, Learning and Research Building, Southmead Hospital, University of BristolBristol, UK
| | - Jeff M. P. Holly
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, Learning and Research Building, Southmead Hospital, University of BristolBristol, UK
| |
Collapse
|
14
|
Targeting PKC delta-mediated topoisomerase II beta overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia 2010; 24:729-39. [PMID: 20200558 DOI: 10.1038/leu.2010.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoic acid (RA) relieves the maturation block in t(15:17) acute promyelocytic leukemia (APL), leading to granulocytic differentiation. However, RA treatment alone invariably results in RA resistance, both in vivo and in vitro. RA-resistant cell lines have been shown to serve as useful models for elucidation of mechanisms of resistance. Previously, we identified topoisomerase II beta (TOP2B) as a novel mediator of RA-resistance in APL cell lines. In this study, we show that both TOP2B protein stability and activity are regulated by a member of the protein kinase C (PRKC) family, PRKC delta (PRKCD). Co-treatment with a pharmacologic inhibitor of PRKCD and RA resulted in the induction of an RA responsive reporter construct, as well as the endogenous RA target genes, CEBPE, CYP26A1 and RIG-I. Furthermore, the co-treatment overcame the differentiation block in RA-resistant cells, as assessed by morphological analysis, restoration of promyelocytic leukemia nuclear bodies, induction of CD11c cell surface expression and an increase in nitro-blue-tetrazolium reduction. Cumulatively, our data suggest a model whereby inhibition of PRKCD decreases TOP2B protein levels, leading to a loss of TOP2B-mediated repressive effects on RA-induced transcription and granulocytic differentiation.
Collapse
|
15
|
O'Han MK, Baxter RC, Schedlich LJ. Effects of endogenous insulin-like growth factor binding protein-3 on cell cycle regulation in breast cancer cells. Growth Factors 2009; 27:394-408. [PMID: 19919528 DOI: 10.3109/08977190903185032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High tissue insulin-like growth factor binding protein-3 (IGFBP-3) expression in breast cancers is associated in some studies with rapid growth and poor outcome. This study examined the effects of endogenous IGFBP-3 in Hs578T breast cancer cells, which are IGF-unresponsive and grow aggressively despite relatively high IGFBP-3 expression. IGFBP-3 downregulation using siRNA was associated with increases in DNA synthesis, the percentage of cells in S phase and viable cell numbers, accompanied by increases in cyclins A and D1, a decrease in p27 expression, and increased phosphorylation of retinoblastoma (Rb) on Ser795. Downregulation of IGFBP-3 inhibited extracellular signal-regulated kinase (ERK) activation and cell migration in a monolayer wound healing assay. These results indicate that endogenous IGFBP-3 is anti-proliferative and pro-migratory in Hs578T cells and that these effects are IGF-independent. Poor outcome in breast tumours expressing high levels of IGFBP-3 may be due to the effects of IGFBP-3 on cell migration rather than cell growth.
Collapse
Affiliation(s)
- Michelle K O'Han
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, 2065, Australia
| | | | | |
Collapse
|
16
|
Yamada PM, Lee KW. Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol 2009; 296:C954-76. [PMID: 19279229 DOI: 10.1152/ajpcell.00598.2008] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor (IGF) binding protein (IGFBP)-3 has traditionally been defined by its role as a binding protein and its association with IGF delivery and availability. Development of non-IGF binding IGFBP-3 analogs and the use of cell lines devoid of type 1 IGF receptors (IGF-R) have led to critical advances in the field of IGFBP-3 biology. These studies show that IGFBP-3 has IGF-independent roles in inhibiting cell proliferation in cancer cell lines. Nuclear transcription factor, retinoid X receptor (RXR)-alpha, and IGFBP-3 functionally interact to reduce prostate tumor growth and prostate-specific antigen in vivo. Moreover, IGFBP-3 inhibits insulin-stimulated glucose uptake into adipocytes independent of IGF. The purpose of this review is to highlight IGFBP-3 as a novel effector molecule and not just another "binding protein" by discussing its IGF-independent actions on metabolism and cell growth. Although this review presents studies that assume the role of IGFBP-3 as either an endocrine or autocrine/paracrine molecule, these systems may not exist as distinct entities, justifying the examination of IGFBP-3 in an integrated model. Also, we provide an overview of factors that regulate IGFBP-3 availability, including its production, methylation, and ubiquitination. We conclude with the role of IGFBP-3 in whole body systems and possible future applications of IGFBP-3 in physiology.
Collapse
Affiliation(s)
- Paulette M Yamada
- Dept. of Pediatrics, Mattel Children's Hospital, Los Angeles, CA 90095-1752, USA
| | | |
Collapse
|
17
|
Flint DJ, Tonner E, Beattie J, Allan GJ. Role of insulin-like growth factor binding proteins in mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:443-53. [PMID: 18998203 DOI: 10.1007/s10911-008-9095-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/28/2008] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factors (IGFs) play an important role in mammary gland development and their effects are, in turn, influenced by a family of 6 IGF-binding proteins (IGFBPs). The IGFBPs are expressed in time- and tissue-specific fashion during the periods of rapid growth and involution of the mammary gland. The precise roles of these proteins in vivo have, however, been difficult to determine. This review examines the indirect evidence (evolution, chromosomal location and roles in lower life-forms) the evidence from in vitro studies and the attempts to examine their roles in vivo, using IGFBP-deficient and over-expression models. Evidence exists for a role of the IGFBPs in inhibition of the survival effects of IGFs as well as in IGF-enhancing effects from in vitro studies. The location of the IGFBPs, often associated with the extracellular matrix, suggests roles as a reservoir of IGFs or as a potential barrier, restricting access of IGFs to distinct cellular compartments. We also discuss the relative importance of IGF-dependent versus IGF-independent effects. IGF-independent effects include nuclear localization, activation of proteases and interaction with a variety of extracellular matrix and cell surface proteins. Finally, we examine the increasing evidence for the IGFBPs to be considered as part of a larger family of extracellular matrix proteins involved in morphogenesis and tissue re-modeling.
Collapse
Affiliation(s)
- D J Flint
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0NR, UK.
| | | | | | | |
Collapse
|
18
|
Verschoyle RD, Greaves P, Patel K, Marsden DA, Brown K, Steward WP, Gescher AJ. Evaluation of the cancer chemopreventive efficacy of silibinin in genetic mouse models of prostate and intestinal carcinogenesis: relationship with silibinin levels. Eur J Cancer 2008; 44:898-906. [PMID: 18343654 DOI: 10.1016/j.ejca.2008.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 01/14/2008] [Accepted: 02/18/2008] [Indexed: 02/07/2023]
Abstract
Silibinin, a flavonolignan from milk thistle seeds, possesses cancer chemopreventive properties in rodent models of carcinogenesis. We tested the hypotheses that silibinin or silipide, silibinin formulated with phospholipids, delays tumour development in TRAMP or Apc(Min) mice, genetic models of prostate or intestinal malignancies, respectively. Mice received silibinin or silipide with their diet (0.2% silibinin equivalents) from weaning. Intervention with silipide reduced the size of well differentiated TRAMP adenocarcinomas by 31%. Silipide and silibinin decreased the incidence of poorly differentiated carcinomas by 61% compared to mice on control diet. Silipide decreased plasma levels of insulin-like growth factor (IGF)-1 by 36%. Levels of circulating IGF binding protein (IGFBP)-3 in mice on silipide or silibinin were 3.9- or 5.9-fold, respectively, elevated over those in control TRAMP mice. In Apc(Min) mice silibinin, but not silipide, had only a marginal adenoma number-reducing effect. The results cautiously support the advancement of silipide to the stage of clinical investigation in prostate cancer.
Collapse
Affiliation(s)
- Richard D Verschoyle
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, RKCSB, LRI, University of Leicester, Leicester LE2 7LX, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Zavodovskaya M, Campbell MJ, Maddux BA, Shiry L, Allan G, Hodges L, Kushner P, Kerner JA, Youngren JF, Goldfine ID. Nordihydroguaiaretic acid (NDGA), an inhibitor of the HER2 and IGF-1 receptor tyrosine kinases, blocks the growth of HER2-overexpressing human breast cancer cells. J Cell Biochem 2008; 103:624-35. [PMID: 17562544 DOI: 10.1002/jcb.21435] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have reported that nordihydroguaiaretic acid (NDGA) inhibits the tyrosine kinase activities of the IGF-1 receptor (IGF-1R) and the HER2 receptor in breast cancer cells. Herein, we studied the effects of NDGA on the growth of estrogen receptor (ER) positive MCF-7 cells engineered to overexpress HER2 (MCF-7/HER2-18). These cells are an in vitro model of HER2-driven, ER positive, tamoxifen resistant breast cancer. NDGA was equally effective at inhibiting the growth of both parental MCF-7 and MCF-7/HER2-18 cells. Half maximal effects for both cell lines were in the 10-15 microM range. The growth inhibitory effects of NDGA were associated with an S phase arrest in the cell cycle and the induction of apoptosis. NDGA inhibited both IGF-1R and HER2 kinase activities in these breast cancer cells. In contrast, Gefitinib, an epidermal growth factor receptor inhibitor but not an IGF-1R inhibitor, was more effective in MCF-7/HER2-18 cells than in the parental MCF-7 cells and IGF binding protein-3 (IGFBP-3) was more effective against MCF-7 cells compared to MCF-7/HER2-18. MCF-7/HER2-18 cells are known to be resistant to the effects of the estrogen receptor inhibitor, tamoxifen. Interestingly, NDGA not only inhibited the growth of MCF-7/HER2-18 on its own, but it also demonstrated additive growth inhibitory effects when combined with tamoxifen. These studies suggest that NDGA may have therapeutic benefits in HER2-positive, tamoxifen resistant, breast cancers in humans.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents, Hormonal/pharmacology
- Apoptosis/drug effects
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Drug Screening Assays, Antitumor
- Drug Synergism
- Female
- Gefitinib
- Humans
- Insulin-Like Growth Factor Binding Protein 3/pharmacology
- Masoprocol/pharmacology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- Quinazolines/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, IGF Type 1/antagonists & inhibitors
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Marianna Zavodovskaya
- Diabetes and Endocrine Research, University of California, San Francisco/Mt. Zion Medical Center, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li Y, Brown PH. Translational approaches for the prevention of estrogen receptor-negative breast cancer. Eur J Cancer Prev 2007; 16:203-15. [PMID: 17415091 DOI: 10.1097/cej.0b013e328011ed98] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Breast cancer prevention has focused heavily on endocrine interventions using selective estrogen receptor modulators and aromatase inhibitors. Tamoxifen, the stereotypical selective estrogen receptor modulator, significantly reduces the breast cancer incidence in high-risk women. Selective estrogen receptor modulators and aromatase inhibitors, however, only prevent the development of estrogen receptor-positive breast cancer and have no effect in reducing the risk of estrogen receptor-negative breast cancer, which has poor prognosis. Thus, preventive therapies for estrogen receptor-negative breast cancer are clearly needed. Recently, a number of novel chemopreventive agents targeting nonendocrine pathways have been developed and shown to prevent estrogen receptor-negative mammary tumorigenesis in animal models. These agents include rexinoids, selective cyclooxygenase-2 inhibitors, tyrosine kinase inhibitors, and others. In this review, we discuss the effects of selective estrogen receptor modulators and aromatase inhibitors, as well as novel agents targeting nonendocrine pathways. We also discuss the promise of combining these agents for the effective prevention of all forms of breast cancer.
Collapse
Affiliation(s)
- Yuxin Li
- Departments of Medicine and Molecular and Cellular Biology, Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
21
|
Xi G, Hathaway MR, White ME, Dayton WR. Localization of insulin-like growth factor (IGFBP)-3 in cultured porcine embryonic myogenic cells before and after TGF-beta1 treatment. Domest Anim Endocrinol 2007; 33:422-9. [PMID: 17049199 DOI: 10.1016/j.domaniend.2006.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/18/2006] [Accepted: 08/18/2006] [Indexed: 01/10/2023]
Abstract
Insulin-like growth factor binding protein (IGFBP)-3 binds IGFs with high affinity and affects their biological activity. IGFBP-3 that is not bound to IGF also affects cells via mechanisms involving binding to specific cell surface receptors and/or transport into the cell. IGFBP-3 is produced by porcine embryonic myogenic cell (PEMC) cultures. Additionally, IGFBP-3 facilitates the proliferation-suppressing actions of TGF-beta(1) and myostatin in PEMC cultures via mechanisms that do not involve IGF binding. Moreover, these mechanisms do not involve preventing myostatin or TGF-beta(1)-induced increases in phosphosmad2 or phosphosmad3 level. Consequently, the mechanism(s) by which IGFBP-3 facilitates the proliferation-suppressing actions of TGF-beta(1) and myostatin in PEMC is unclear. Since IGFBP-3 reportedly interacts with nuclear proteins that regulate transcription, TGF-beta(1) or myostatin-induced translocation of IGFBP-3 into the nucleus may facilitate the proliferation-suppressing actions of these cytokines. Here, we show that IGFBP-3 is localized in cells containing the muscle specific protein desmin, thus establishing the presence of this IGFBP in myogenic cells. IGFBP-3 is present in the cytoplasm of all myogenic cells and approximately 50% of the nuclei of proliferating PEMC. IGFBP-3 is also detectable in fused myotubes. IGFBP-3 suppresses IGF-I-stimulated differentiation of PEMC but has no affect on Long-R3-IGF-I-stimulated differentiation of PEMC. Treatment of PEMC for 24h with TGF-beta(1) (20 ng/ml) results in a 78% (p<0.01) increase in the number of nuclei that contain detectable IGFBP-3. These results suggest that translocation of IGFBP-3 into the nucleus of PEMC could play a role in mediating the proliferation-suppressing action of TGF-beta(1).
Collapse
Affiliation(s)
- G Xi
- Animal Growth and Development Laboratory, Department of Animal Science, University of Minnesota, 348 Andrew Boss Laboratory, 1354 Eckles Avenue, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
22
|
Lee SH, Takahashi M, Honke K, Miyoshi E, Osumi D, Sakiyama H, Ekuni A, Wang X, Inoue S, Gu J, Kadomatsu K, Taniguchi N. Loss of core fucosylation of low-density lipoprotein receptor-related protein-1 impairs its function, leading to the upregulation of serum levels of insulin-like growth factor-binding protein 3 in Fut8-/- mice. J Biochem 2007; 139:391-8. [PMID: 16567404 DOI: 10.1093/jb/mvj039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
alpha1,6-Fucosyltransferase (Fut8) catalyzes the transfer of a fucose residue from GDP-fucose to the innermost N-acetylglucosamine residue of N-glycans. Here we report that the loss of core fucosylation impairs the function of low-density lipoprotein (LDL) receptor-related protein-1 (LRP-1), a multifunctional scavenger and signaling receptor, resulting in a reduction in the endocytosis of insulin like growth factor (IGF)-binding protein-3 (IGFBP-3) in the cells derived from Fut8-null (Fut8-/-) mice. The reduced endocytosis was restored by the re-introduction of Fut8. Serum levels of IGFBP-3 were markedly upregulated in Fut8-/- mice. These data clearly indicate that core fucosylation is crucial for the scavenging activity of LRP-1 in vivo.
Collapse
Affiliation(s)
- Seung Ho Lee
- Department of Biochemistry, Osaka University Graduate School of Medicine, B1, 2-2 Yamadaoka, Suita, Osaka 565-0871
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peng L, Malloy PJ, Wang J, Feldman D. Growth inhibitory concentrations of androgens up-regulate insulin-like growth factor binding protein-3 expression via an androgen response element in LNCaP human prostate cancer cells. Endocrinology 2006; 147:4599-607. [PMID: 16825320 DOI: 10.1210/en.2006-0560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IGF binding protein-3 (IGFBP-3), the most abundant circulating IGF binding protein, inhibits cell growth and induces apoptosis by both IGF-I-dependent and -independent pathways. The ability of IGFBP-3 to inhibit tumor growth has been demonstrated in many cancers including prostate cancer (PCa). High concentrations of androgens, which inhibit the growth of the LNCaP human PCa cell line, have been shown to have both positive and negative effects on IGFBP-3 expression by different laboratories. To further explore the relationship between IGFBP-3 and androgens, we examined IGFBP-3 expression in LNCaP cells. We demonstrate that IGFBP-3 expression can be induced by 10 nm of the synthetic androgen R1881 or dihydrotestosterone. Transactivation assays show that the 6-kb IGFBP-3 promoter sequence directly responds to androgen treatment. In silico analysis identified a putative androgen response element (ARE) at -2,879/-2,865 in the IGFBP-3 promoter. A single point mutation in this ARE disrupted transactivation by R1881. Combining the data obtained from EMSA, chromatin immunoprecipitation and mutational analysis, we conclude that a novel functional ARE is present in the IGFBP-3 promoter that directly mediates androgen induction of IGFBP-3 expression. Furthermore, we found that the combination of androgens and calcitriol significantly potentiated the IGFBP-3 promoter activity, suggesting that enhanced induction of the expression of the endogenous IGFBP-3 gene may contribute to the greater inhibition of LNCaP cell growth by combined calcitriol and androgens. Because androgens are well known to stimulate PCa growth and androgen deprivation therapy causes PCa to regress, the stimulation by androgens of this antiproliferative and proapoptotic protein is paradoxical and raises interesting questions about the role of androgen-stimulated IGFBP-3 in PCa.
Collapse
Affiliation(s)
- Lihong Peng
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, California 94305-5103, USA
| | | | | | | |
Collapse
|
24
|
Silha JV, Sheppard PC, Mishra S, Gui Y, Schwartz J, Dodd JG, Murphy LJ. Insulin-like growth factor (IGF) binding protein-3 attenuates prostate tumor growth by IGF-dependent and IGF-independent mechanisms. Endocrinology 2006; 147:2112-21. [PMID: 16469805 DOI: 10.1210/en.2005-1270] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF binding protein (IGFBP)-3 inhibits cell growth and promotes apoptosis by sequestering free IGFs. In addition IGFBP-3 has IGF-independent, proapoptotic, antiproliferative effects on prostate cancer cells in vitro. Expression of the large T-antigen (Tag) under the long probasin promoter (LPB) in LPB-Tag mice results in prostate tumorigenesis. To investigate the IGF-dependent and IGF-independent effects of IGFBP-3 on prostate tumor growth, we crossed LPB-Tag mice with cytomegalovirus (CMVBP-3) and phosphoglycerate kinase (PGKBP-3) mice that overexpress IGFBP-3 under the cytomegalovirus promoter and the phosphoglycerate kinase promoter, respectively, and also I56G/L80G/L81G-mutant IGFBP-3 (PGKmBP-3) mice that express I56G/L80G/L81G-IGFBP-3, a mutant, that does not bind IGF-I but retains IGF-independent proapoptotic effects in vitro. Prostate tumor size and the steady-state level of p53 were attenuated in LPB-Tag/CMVBP-3 and LPB-Tag/PGKBP-3 mice, compared with LPB-Tag/wild-type (Wt) mice. A more marked effect was observed in LPB-Tag/CMVBP-3, compared with LPB-Tag/PGKBP-3, reflecting increased levels of transgene expression in CMVBP-3 prostate tissue. No attenuation of tumor growth was observed in LPB-Tag/PGKmBP-3 mice during the early tumor development, indicating that the inhibitory effects of IGFBP-3 were most likely IGF dependent during the initiation of tumorigenesis. At 15 wk of age, epidermal growth factor receptor expression was increased in LPB-Tag/Wt and LPB-Tag/PGKmBP-3 tissue, compared with LPB-Tag/PGKBP-3. IGF receptor was increased in all transgenic mice, but pAkt expression, a marker of downstream IGF-I action, was increased only in LPB-Tag/Wt and LPB-Tag/PGKmBP-3. After 15 wk of age, a marked reduction in tumor growth was apparent in LPB-Tag/PGKmBP-3 mice, indicating that the IGF-independent effects of IGFBP-3 may be important in inhibiting tumor progression.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Mishra S, Murphy LJ. The effects of insulin-like growth factor binding protein-3 (IGFBP-3) on T47D breast cancer cells enriched for IGFBP-3 binding sites. Mol Cell Biochem 2005; 267:83-9. [PMID: 15663189 DOI: 10.1023/b:mcbi.0000049368.40558.0a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate insulin-like growth factor (IGF)-independent effects of IGF binding protein-3 (IGFBP-3), T47D cells were enriched for a population of cells that expressed binding sites for biotinylated-IGFBP-3 by panning on streptavidin-coated plate. Proliferation of cell enriched for IGFBP-3 binding sites was significantly inhibited by IGFBP-3, whereas IGFBP-3 had no significant effect on the non-enriched cell population. Enriched and non-enriched cells were equally responsive to IGF-I, TGF-beta and EGF. Conditioned medium from enriched cells had less IGFBP-3 than that from non-enriched cells. Cross-linking of biotinylated IGFBP-3 to T47D cell membranes identified complexes with Mr of 32, 80 and 100 kDa. All of these complexes were more abundant in enriched cells compared with the non-enriched cell population. These data demonstrate that despite the anti-proliferative effects of IGFBP-3 it is possible to selectively enriched for cell populations with more abundant IGFBP-3 binding sites. These enriched cells are more responsive to IGFBP-3 and secrete less of this binding protein than non-enriched cells, supporting the concept that IGFBP-3 secretion by human breast cancer cells may function as an autocrine or paracrine modulator of cell proliferation.
Collapse
Affiliation(s)
- Suresh Mishra
- Departments of Internal Medicine & Physiology, University of Manitoba, Winnipeg R3E 0W3 Canada
| | | |
Collapse
|
26
|
Silha JV, Gui Y, Mishra S, Leckstrom A, Cohen P, Murphy LJ. Overexpression of gly56/gly80/gly81-mutant insulin-like growth factor-binding protein-3 in transgenic mice. Endocrinology 2005; 146:1523-31. [PMID: 15550509 DOI: 10.1210/en.2004-0905] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-independent effects of IGF-binding protein-3 (IGFBP-3) have been demonstrated in vitro; however, the physiological significance of these effects in vivo is unclear. We generated two transgenic (Tg) mouse strains that overexpress a human Gly56/Gly80/Gly81-mutant IGFBP-3 cDNA. This mutant has a markedly reduced affinity for the IGFs, but retains the IGF-independent effects. Serum levels of mutant IGFBP-3 were 156 +/- 12 and 400 +/- 24 ng/ml in hemizygous mice of strains 5005 and 5012, respectively. When Tg and wild-type mice were compared, there was no reduction in birth weight, litter size, or postnatal growth. Despite differences in transgene expression in various tissues, relative organ weight was similar in Tg and wild-type mice, with exception of brain, where a modest reduction in brain weight was observed in the high-expressing 5012 lineage. There was also a significant reduction in proliferating cell nuclear antigen-staining cells observed in the periventricular region of the developing brain in embryonic d 18 Tg embryos. In the higher expressing 5012 Tg strain, IGF-I and murine IGFBP-3 levels, marker of GH action were increased. Furthermore, there was a positive correlation between mutant IGFBP-3 levels and IGF-I levels and between mutant IGFBP-3 levels and murine IGFBP-3 (P = 0.002 and P < 0.001, respectively). These data indicate that overexpression of mutant IGFBP-3 is not associated with growth retardation. The higher levels of IGF-I and murine IGFBP-3 in the 5012 Tg strain suggest that the growth inhibitory effect of mutant IGFBP-3 may be compensated for by other mechanisms.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, Canada R3E 0W3
| | | | | | | | | | | |
Collapse
|
27
|
Huang SS, Leal SM, Chen CL, Liu IH, Huang JS. Identification of insulin receptor substrate proteins as key molecules for the TβR‐V/LRP‐1‐mediated growth inhibitory signaling cascade in epithelial and myeloid cells. FASEB J 2004; 18:1719-21. [PMID: 15371331 DOI: 10.1096/fj.04-1872fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The type V TGF-beta receptor (TbetaR-V) mediates IGF-independent growth inhibition by IGFBP-3 and mediates growth inhibition by TGF-beta1 in concert with the other TGF-beta receptor types. TbetaR-V was recently found to be identical to LRP-1. Here we find that insulin and (Q3A4Y15L16) IGF-I (an IGF-I analog that has a low affinity for IGFBP-3) antagonize growth inhibition by IGFBP-3 in mink lung epithelial cells (Mv1Lu cells) stimulated by serum. In these cells, IGFBP-3 induces serine-specific dephosphorylation of IRS-1 and IRS-2. The IGFBP-3-induced dephosphorylation of IRS-2 is prevented by cotreatment of cells with insulin, (Q3A4Y15L16) IGF-I, or TbetaR-V/LRP-1 antagonists. The magnitude of the IRS-2 dephosphorylation induced by IGFBP-3 positively correlates with the degree of growth inhibition by IGFBP-3 in Mv1Lu cells and mutant cells derived from Mv1Lu cells. Stable transfection of murine 32D myeloid cells (which lack endogenous IRS proteins and are insensitive to growth inhibition by IGFBP-3) with IRS-1 or IRS-2 cDNA confers sensitivity to growth inhibition by IGFBP-3; this IRS-mediated growth inhibition can be completely reversed by insulin in 32D cells stably expressing IRS-2 and the insulin receptor. These results suggest that IRS-1 and IRS-2 are key molecules for the TbetaR-V/LRP-1-mediated growth inhibitory signaling cascade.
Collapse
Affiliation(s)
- Shuan Shian Huang
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
28
|
Shaw LC, Grant MB. Insulin like growth factor-1 and insulin-like growth factor binding proteins: their possible roles in both maintaining normal retinal vascular function and in promoting retinal pathology. Rev Endocr Metab Disord 2004; 5:199-207. [PMID: 15211091 DOI: 10.1023/b:remd.0000032408.18015.b1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lynn C Shaw
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Box 100267, Gainesville, FL 32610, USA
| | | |
Collapse
|
29
|
Mishra S, Murphy LJ. Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 2004; 279:23863-8. [PMID: 15069073 DOI: 10.1074/jbc.m311919200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue transglutaminase (TG2) is a ubiquitous enzyme that cross-links glutamine residues with lysine residues, resulting in protein polymerization, cross-linking of dissimilar proteins, and incorporation of diamines and polyamines into proteins. It has not previously been known to have kinase activity. Recently, insulin-like growth factor-binding protein-3 (IGFBP-3) has been reported to be phosphorylated by breast cancer cell membranes. We purified the IGFBP-3 kinase activity from solubilized T47D breast cancer cell membranes using gel filtration, ion-exchange chromatography, and IGFBP-3 affinity chromatography. The fractions containing kinase activity were further purified by high pressure liquid chromatography and analyzed by tandem mass spectroscopy. TG2 was detected in fractions containing kinase activity. Antisera to TG2 and protein A-Sepharose were used to immunoprecipitate TG2 from membrane fractions. The immunoprecipitates retained IGFBP-3 kinase, whereas immunoprecipitation deleted kinase activity in the membrane supernatant. The inhibitors of TG2, cystamine and monodansyl cadaverine, abolished the ability of the T47D cell membrane preparation to phosphorylate IGFBP-3. Both TG2 purified from guinea pig liver and recombinant human TG2 expressed in insect cells were able to phosphorylate IGFBP-3. TG2 kinase activity was inhibited in a concentration-dependent fashion by calcium, which has previously been shown to be important for the cross-linking activity of TG2. These data provide compelling evidence that TG2 has intrinsic kinase activity, a function that has not previously been ascribed to TG2. Furthermore, we provide evidence that TG2 is a major component of the IGFBP-3 kinase activity present on breast cancer cell membranes.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Physiology, University of Manitoba, Winnipeg R3E 0W3, Canada
| | | |
Collapse
|
30
|
Mishra S, Raz A, Murphy LJ. Insulin-Like Growth Factor Binding Protein-3 Interacts with Autocrine Motility Factor/Phosphoglucose Isomerase (AMF/PGI) and Inhibits the AMF/PGI Function. Cancer Res 2004; 64:2516-22. [PMID: 15059907 DOI: 10.1158/0008-5472.can-03-2877] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autocrine motility factor/phosphoglucose isomerase (AMF/PGI) was identified as a binding partner for insulin-like growth factor binding protein-3 (IGFBP-3) in solubilized T47D and MCF-7 human breast cancer cell membranes. The interaction between AMF/PGI and IGFBP-3 was verified by cross-linking biotinylated IGFBP-3 to intact cells. After solubilization of the membranes, the biotinylated complexes were precipitated with streptavidin-agarose conjugate and analyzed by SDS-PAGE. A M(r) approximately 80,000 complex was identified when the nitrocellulose membranes were probed either with streptavidin-horseradish peroxidase conjugate or AMF/PGI antiserum confirming the cross-linking of IGFBP-3 to AMF/PGI. The interaction between IGFBP-3 and AMF/PGI was also further confirmed by ligand blotting of purified AMF/PGI using biotinylated IGFBP-3. Both glycosylated and nonglycosylated IGFBP-3 inhibited the catalytic activity of AMF/PGI in a dose-dependent fashion. In addition, IGFBP-3 inhibited the binding of AMF/PGI to breast cancer cells and AMF/PGI-induced migration of both T47D and MCF-7 human breast cancer cells. IGFBP-3 also decreased the phosphorylation of AMF/PGI and reduced the translocation of AMF/PGI to the cell membrane and AMF/PGI. AMF/PGI resulted in a dose-dependent inhibition of IGFBP-3 induced apoptosis in T47D and MCF-7 cells. In summary, we have identified AMF/PGI as a membrane-associated binding partner for IGFBP-3 in breast cancer cells. The ability of IGFBP-3 to bind and inhibit the actions of AMF/PGI may have some role in the antiproliferative proapoptotic effects of IGFBP-3.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
31
|
Mishra S, Murphy LJ. Phosphorylation of insulin-like growth factor (IGF) binding protein-3 by breast cancer cell membranes enhances IGF-I binding. Endocrinology 2003; 144:4042-50. [PMID: 12933678 DOI: 10.1210/en.2003-0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cross-linking of nonglycosylated biotinylated IGF binding protein (IGFBP)-3 to T-47D cell membranes identifies complexes with Mr of 32, 50, 70, and 100 kDa. Nonbiotinylated glycosylated IGFBP-3 competed for binding to each of these sites. The 32-kDa band approximated the size of intact nonglycosylated IGFBP-3, but its abundance was enhanced by cross-linking, and it had a more acidic isoelectric point on isoelectric focusing, suggesting that it had undergone phosphorylation. Immobilized IGFBP-3 was phosphorylated in the presence of (32)P-gamma ATP by both T-47D cell membranes and by intact cells treated with phenylarsine oxide to inhibit internalization. MCF-7 and COS-1 cells were also able to bind and phosphorylated IGFBP-3. IGF-I inhibited both IGFBP-3 binding to membranes and phosphorylation. However, incubation of T-47D cells with IGFBP-3 enhanced binding of (125)I-IGF-I to the cell monolayer indicating that membrane bound IGFBP-3 was able to bind IGF-I. Immobilized IGFBP-3 when phosphorylated by T-47D membranes bound significantly more (125)I-IGF-I than nonphosphorylated IGFBP-3. Treatment with alkaline phosphatase significantly reduced (125)I-IGF-I binding to phosphorylated immobilized IGFBP-3 and also reduced (125)I-IGF-I to T-47D cell monolayers preincubated with IGFBP-3. Phosphorylation of IGFBP-3 by T-47D membranes was partially blocked by inhibitors of both protein kinase A and C. These data demonstrate that binding of IGFBP-3 to breast cancer membranes is accompanied by phosphorylation at the plasma membrane and that both processes are inhibited by IGF-I. However, once phosphorylated the ability of IGFBP-3 to bind IGF-I is enhanced, resulting in increased association of the IGF-I with the cell membrane.
Collapse
Affiliation(s)
- Suresh Mishra
- Departments of Internal Medicine and Physiology, University of Manitoba, Winnipeg, Canada, R3E 0W3
| | | |
Collapse
|
32
|
Nardon E, Buda I, Stanta G, Buratti E, Fonda M, Cattin L. Insulin-like growth factor system gene expression in women with type 2 diabetes and breast cancer. J Clin Pathol 2003; 56:599-604. [PMID: 12890810 PMCID: PMC1770044 DOI: 10.1136/jcp.56.8.599] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2003] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIMS A twofold increased risk for breast cancer has been reported recently for women with late onset diabetes. Most studies showed that there were differences in serum concentrations of insulin-like growth factors and related proteins between women with and without diabetes who have breast cancer. This study investigated the expression of these markers at the cellular level in a cohort of women with and without type 2 diabetes who underwent biopsy because of a breast lump. METHODS Relative quantitative analysis of specific mRNA sequences was performed after extraction and reverse transcription polymerase chain reaction amplification from formalin fixed and paraffin wax embedded tissues. Sixty seven breast surgical specimens from women with and without diabetes who did not have cancer and from women with and without diabetes who did have cancer were studied for insulin-like growth factor I (IGF-I), the IGF-I receptor (IGF-IR), insulin-like growth factor binding protein 3 (IGFBP-3), and oestrogen receptor 1 gene expression. RESULTS The expression of IGF-I and IGF-IR was significantly lower in the cancer groups, whereas there was no significant difference for IGFBP-3 between women with and without cancer. Moreover, there was a good correlation between the expression of IGF-I and IGF-IR in women without cancer: this link was still present in breast tissue from patients with diabetes and cancer, whereas it was lost in patients without diabetes but with cancer. CONCLUSIONS These differences in IGF-I/IGF-IR expression could contribute to the increased risk for breast cancer in women with type 2 diabetes.
Collapse
Affiliation(s)
- E Nardon
- Department of Clinical, Morphological and Technological Sciences, University of Trieste, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Johnson BJ, White ME, Hathaway MR, Dayton WR. Effect of differentiation on levels of insulin-like growth factor binding protein mRNAs in cultured porcine embryonic myogenic cells. Domest Anim Endocrinol 2003; 24:81-93. [PMID: 12450627 DOI: 10.1016/s0739-7240(02)00207-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) have been shown to affect proliferation of several cell types via insulin-like growth factor (IGF)-dependent and IGF-independent mechanisms. The goal of this study was to determine if levels of IGFBP-2, -3, -4 and -5 mRNA changed during differentiation of cultured porcine embryonic myogenic cells. Total RNA was isolated from muscle cultures at various stages of differentiation and Northern blots of this RNA were probed with 32P-labeled cDNA probes specific for individual IGFBPs. Fusion, myogenin mRNA, and creatine phosphokinase activity were used as markers of differentiation. The level of IGFBP-3 mRNA in differentiating cultures (120 h in culture) was only one-third of the level in myogenin negative, nonfused cultures (72 h in culture) (P < 0.05, n = 4). In contrast, the level of IGFBP-3 mRNA in extensively fused cultures (144 h in culture) was increased by three-fold as compared to the level in myogenin negative, nonfused cultures (P < 0.05, n = 4) and approximately seven-fold as compared to the 120-h cultures (P < 0.05, n = 4). No significant change in the level of IGFBP-5 mRNA was observed during differentiation of myogenic cultures. IGFBP-2 mRNA levels were not significantly different at 72, 96 and 120 h, but at 144 h IGFBP-2 mRNA level was increased three-fold as compared to nonfused cultures (72 h) (P < 0.05, n = 4). IGFBP-4 mRNA was not detectable on Northern blots of total RNA from porcine myogenic cultures at any stage of differentiation. Changes in IGFBP-3 and IGFBP-2 mRNA levels are associated with differentiation of embryonic porcine myogenic cells in culture and this may indicate that these IGFBPs play a role in differentiation of these cells.
Collapse
Affiliation(s)
- B J Johnson
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
34
|
Sauter ER, Chervoneva I, Diamandis A, Khosravi JM, Litwin S, Diamandis EP. Prostate-specific antigen and insulin-like growth factor binding protein-3 in nipple aspirate fluid are associated with breast cancer. CANCER DETECTION AND PREVENTION 2002; 26:149-57. [PMID: 12102150 DOI: 10.1016/s0361-090x(02)00028-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is an important growth factor for breast cancer cells and insulin-like growth factor binding protein-3 (IGFBP-3) its most prevalent binding protein. Prostate-specific antigen (PSA) enzymatically cleaves IGFBP-3 into fragments (BP3-FR). Our purpose was to determine the association of these markers in nipple aspirate fluid (NAF) and serum with the presence of breast cancer. NAF from 175 and serum from 215 subjects were collected from women with or without breast cancer. In unadjusted analysis low NAFPSA (P < 0.001) and high NAFIGFBP-3 (P = 0.023) were associated with breast cancer. Low serum PSA was associated with postmenopausal breast cancer (P = 0.034). In separate multivariate analyses, controlling for age, menopausal status, and age at menarche, NAF PSA and IGFBP-3 were each associated with breast cancer. The association was significant for NAF IGFBP-3 in all women (P = 0.031), but for NAF PSA only in premenopausal women (P < 0.001). When considered jointly, only NAF PSA was significant. Therefore, NAF PSA, and to a lesser extent NAF IGFBP-3 and serum PSA, seem to be important predictors of breast cancer.
Collapse
Affiliation(s)
- Edward R Sauter
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Silha JV, Gui Y, Murphy LJ. Impaired glucose homeostasis in insulin-like growth factor-binding protein-3-transgenic mice. Am J Physiol Endocrinol Metab 2002; 283:E937-45. [PMID: 12376320 DOI: 10.1152/ajpendo.00014.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose homeostasis was examined in male transgenic (Tg) mice that overexpressed the human insulin-like growth factor (IGF)-binding protein (IGFBP)-3 cDNA, driven by either the cytomegalovirus (CMV) or the phosphoglycerate kinase (PGK) promoter. The Tg mice of both lineages demonstrated increased serum levels of human (h) IGFBP-3 and total IGF-I compared with wild-type (Wt) mice. Fasting blood glucose levels were significantly elevated in 8-wk-old CMV-binding protein (CMVBP)-3- and PGK binding protein (PGKBP)-3-Tg mice compared with Wt mice: 6.35 +/- 0.22 and 5.22 +/- 0.39 vs. 3.99 +/- 0.26 mmol/l, respectively. Plasma insulin was significantly elevated only in CMVBP-3-Tg mice. The responses to a glucose challenge were significantly increased in both Tg strains: area under the glucose curve = 1,824 +/- 65 and 1,910 +/- 115 vs. 1,590 +/- 67 mmol. l(-1). min for CMVBP-3, PGKBP-3, and Wt mice, respectively. The hypoglycemic effects of insulin and IGF-I were significantly attenuated in Tg mice compared with Wt mice. There were no differences in adipose tissue resistin, retinoid X receptor-alpha, or peroxisome proliferator-activated receptor-gamma mRNA levels between Tg and Wt mice. Uptake of 2-deoxyglucose was reduced in muscle and adipose tissue from Tg mice compared with Wt mice. These data demonstrate that overexpression of hIGFBP-3 results in fasting hyperglycemia, impaired glucose tolerance, and insulin resistance.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg R3E 0W3, Canada
| | | | | |
Collapse
|
36
|
Marek B, Kajdaniuk D, Kos-Kudl&z shtsls;a B, Ostrowska Z, Niedziol&z shtsls;ka D, Janczewska-Kazek E. Acromegaly and the risk of cancer. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2001; 8:69-75. [PMID: 11720801 DOI: 10.1016/s0928-4680(01)00078-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies suggest that acromegaly might predispose to an increased risk of benign and malignant neoplasms, thus influencing the final outcome of the disease. The exact mechanism of neoplastic events in acromegaly has not been completely clarified. Several studies indicate an autocrine-paracrine role for growth hormone (GH) and insulin-like growth factor-I (IGF-I) in the proliferation of normal and neoplastic cells. The paper reviews the results of molecular, clinical and epidemiological data supporting a role for GH-IGF-I action in colon, prostate, breast and lung carcinogenesis inpatients with acromegaly.
Collapse
Affiliation(s)
- Bogdan Marek
- Department of Pathophysiology, Silesian Medical Academy, Pl. Traugutta 2, 41-800, Zabrze, Poland
| | | | | | | | | | | |
Collapse
|
37
|
Niu MY, Ménard M, Reed JC, Krajewski S, Pratt MA. Ectopic expression of cyclin D1 amplifies a retinoic acid-induced mitochondrial death pathway in breast cancer cells. Oncogene 2001; 20:3506-18. [PMID: 11429697 DOI: 10.1038/sj.onc.1204453] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Revised: 03/05/2001] [Accepted: 03/07/2001] [Indexed: 01/13/2023]
Abstract
All-trans retinoic acid inhibits growth associated with downregulation of cyclin D1 and can cause low level apoptosis in estrogen receptor positive breast cancer cell lines. The cyclin D1 gene is amplified and/or the protein overexpressed in about one-third of breast cancers. Constitutive expression of cyclin D1 in estrogen receptor positive MCF-7 and ZR-75 breast cancer cells (MCF-7(cycD1) and ZR-75(cycD1)) Increased the fraction of cells in S phase and reduced the G1 accumulation following retinoic acid treatment compared with control cells. However, culture of MCF-7(cycD1) with 1 microM all-trans retinoic acid resulted in about threefold greater growth inhibition compared with vector-transfected cells. Hoechst staining of DNA and in situ DNA end-labeling analysis indicated that MCF-7(cycD1) and ZR-75(cycD1) cultures contained 4-6-fold more retinoic acid-induced apoptotic nuclei as vector-transfected cells. Retinoic acid treatment of vector-transfected clones resulted in Bax protein activation as assessed by exposure of the NH(2)-terminus of Bax but the proportion of cells containing activated Bax was increased in cyclin D-expressing cells treated with retinoic acid. The latter cells also displayed both immunocytochemical and biochemical evidence of translocation of cytochrome c into the cytosol following RA-treatment. Retinoic acid markedly decreased the Bcl-2 levels in MCF-7 and ZR-75 cells. Accordingly, coexpression of Bcl-2 and cyclin D1 rendered the cells resistant to retinoic acid-induced apoptosis. We conclude that constitutive expression of cyclin D1 sensitizes ER-positive breast cancer cells to a retinoic acid-induced mitochondrial death pathway involving Bax activation, cytochrome c release and caspase-9 cleavage.
Collapse
Affiliation(s)
- M Y Niu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | |
Collapse
|
38
|
Modric T, Silha JV, Shi Z, Gui Y, Suwanichkul A, Durham SK, Powell DR, Murphy LJ. Phenotypic manifestations of insulin-like growth factor-binding protein-3 overexpression in transgenic mice. Endocrinology 2001; 142:1958-67. [PMID: 11316761 DOI: 10.1210/endo.142.5.8165] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In cell culture systems insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) can both enhance and inhibit IGF-I action. To investigate the biological role of IGFBP-3 in vivo, transgenic (Tg) mice that constitutively overexpress the human IGFBP-3 complementary DNA (cDNA) driven by the mouse phosphoglycerate kinase I (PGK) and the cytomegalovirus (CMV) promoters were examined. Serum levels of human IGFBP-3 in CMVBP-3 and PGKBP-3 Tg mice were 4.7 and 5.8 microgram/ml, respectively and total IGFBP-3 was increased 4.9- and 7.7-fold compared with that in wild-type (Wt) mice. In PGKBP-3 Tg mice the levels of transgene expression were similar in all tissues. Although CMVBP-3 mice demonstrated similar levels of expression of the transgene as PGKBP-3 mice in most tissues, markedly elevated expression was apparent in the kidney and heart. The transgene-derived IGFBP-3 circulated as a 150-kDa ternary complex, and serum IGF-I levels were elevated 1.9- to 2.8-fold in Tg mice compared with Wt mice. A significant reduction in birth weight of approximately 10% and a modest reduction in litter size were apparent in both Tg strains. Early postnatal growth, as assessed by both body weight and length, was significantly reduced in Tg mice compared with Wt mice. This was more marked in PGKBP-3 than in CMVBP-3 mice, who demonstrated a propensity to adiposity after weaning. The relative organ weights of brain and kidney were reduced in both Tg strains, whereas liver size and epididymal fat were significantly increased in CMVBP-3, but not PGKBP-3, mice. Our data indicate that overexpression of IGFBP-3 is associated with modest intrauterine and postnatal growth retardation despite elevated circulating IGF-I levels.
Collapse
Affiliation(s)
- T Modric
- Departments of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mannhardt B, Weinzimer SA, Wagner M, Fiedler M, Cohen P, Jansen-Dürr P, Zwerschke W. Human papillomavirus type 16 E7 oncoprotein binds and inactivates growth-inhibitory insulin-like growth factor binding protein 3. Mol Cell Biol 2000; 20:6483-95. [PMID: 10938125 PMCID: PMC86123 DOI: 10.1128/mcb.20.17.6483-6495.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1999] [Accepted: 06/12/2000] [Indexed: 11/20/2022] Open
Abstract
The E7 protein encoded by human papillomavirus type 16 is one of the few viral genes that can immortalize primary human cells and thereby override cellular senescence. While it is generally assumed that this property of E7 depends on its interaction with regulators of the cell cycle, we show here that E7 targets insulin-like growth factor binding protein 3 (IGFBP-3), the product of a p53-inducible gene that is overexpressed in senescent cells. IGFBP-3 can suppress cell proliferation and induce apoptosis; we show here that IGFBP-3-mediated apoptosis is inhibited by E7, which binds to IGFBP-3 and triggers its proteolytic cleavage. Two transformation-deficient mutants of E7 failed to inactivate IGFBP-3, suggesting that inactivation of IGFBP-3 may contribute to cell transformation.
Collapse
Affiliation(s)
- B Mannhardt
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, INF 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U. CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL). Br J Cancer 2000; 83:756-60. [PMID: 10952780 PMCID: PMC2363531 DOI: 10.1054/bjoc.2000.1364] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a major chemotactic and mitogenic factor for connective tissue cells. The amino acid sequence shares an overall 28-38% identity to IGFBPs and contains critical conserved sequences in the amino terminus. It has been demonstrated that human CTGF specifically binds IGFs with low affinity and is considered to be a member of the IGFBP superfamily (IGFBP-rP2). In the present study, the expression of CTGF (IGFBP-rP2) in human leukaemic lymphoblasts from children with acute lymphoblastic leukaemia (ALL) was investigated. RNA samples from tumour clones enriched by ficoll separation of bone marrow or peripheral blood mononuclear cells (MNC) from 107 patients with childhood ALL at diagnosis and 57 adult patients with chronic myeloid leukaemia (CML) were studied by RT-PCR. In addition MNC samples from children with IDDM and cord blood samples from healthy newborns were investigated as control groups. Sixty-one percent of the patients with ALL (65 of 107) were positive for CTGF (IGFBP-rP2) expression. In the control groups, no expression of CTGF (IGFBP-rP2) in peripheral MNC was detected, and in the group of adult CML patients only 3.5% (2 of 57) were positive for this gene. The role of CTGF (IGFBP-rP2) in lymphoblastic leukaemogenesis requires further evaluation, as does its potential utility as a tumour marker.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Child
- Child, Preschool
- Connective Tissue Growth Factor
- Female
- Gene Expression Regulation, Neoplastic
- Growth Substances/analysis
- Growth Substances/genetics
- Humans
- Immediate-Early Proteins/analysis
- Immediate-Early Proteins/genetics
- Infant
- Infant, Newborn
- Insulin-Like Growth Factor Binding Protein 2/analysis
- Insulin-Like Growth Factor Binding Protein 2/genetics
- Intercellular Signaling Peptides and Proteins
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Lymphocytes/physiology
- Male
- Middle Aged
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- RNA, Messenger/analysis
Collapse
Affiliation(s)
- P Vorwerk
- Department of Pediatric Hematology and Oncology, Otto von Guericke University Magdeburg, E. -Larisch-Weg 17-19, Magdeburg, D-39112, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
p53-mediated apoptosis involves multiple mechanisms. A number of p53-regulated apoptosis-related genes have been identified. Some of these genes encode proteins that are important in controlling the integrity of mitochondria while the others code for membrane death receptors. p53 may also induce apoptosis by interfering with the growth factor-mediated survival signals. Although the transactivation-deficient p53 can induce apoptosis, evidence suggests that both the transcription-dependent and independent functions are needed for full apoptotic activity. p73 and p63 are two other members of the p53 family that show homology to p53 in their respective transactivation, DNA-binding and oligomerization domains. Both p73 and p63 transactivate p53-regulated promoters and induce apoptosis. Evidence suggests that both p73 and p63 may mediate apoptosis via some of the same mechanisms that are utilized by p53. However, both p73 and p63 exhibit features that are different from those of p53. Hence, both p73 and p63 are predicted to mediate apoptosis via mechanisms that are completely distinct from those engaged by p53. J. Cell. Physiol. 182:171-181, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- M S Sheikh
- Department of Pharmacology, State University of New York-Health Science Center, Syracuse, NY 13210, USA
| | | |
Collapse
|
42
|
Wood TL, Richert MM, Stull MA, Allar MA. The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammary glands. J Mammary Gland Biol Neoplasia 2000; 5:31-42. [PMID: 10791766 DOI: 10.1023/a:1009511131541] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The insulin-like growth factors are mitogens and survival factors for normal mammary epithelial cells in vitro. Data reviewed here demonstrate that mRNAs for IGF-I and IGF-II, the IGF type I receptor and the IGFBPs are expressed locally in mammary tissue during pubertal and pregnancy-induced growth and differentiation of murine mammary glands. IGF-I, IGF-II and the IGF-IR were expressed in terminal end buds (TEBs) in virgin glands during ductal growth. In addition, IGF-II and IGF-IR mRNAs were expressed in ductal and alveolar epithelium in glands throughout postnatal development. Consistent with these results, IGF-I promoted ductal growth and proliferation in mouse mammary glands in organ culture. In addition to endogenous expression of the IGFs and IGF-IR, the IGFBPs showed a varied pattern of expression in mammary tissue during postnatal development. For example, IGFBP-3 and -5 mRNAs were expressed in TEBs and ducts while IGFBP-2 and -4 mRNAs were expressed in stromal cells immediately surrounding the epithelium. These results support a role for the IGFs and IGFBPs as local mediators of postnatal mammary gland growth and differentiation.
Collapse
Affiliation(s)
- T L Wood
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Over the last decade, the concept of an IGFBP family has been well accepted, based on structural similarities and on functional abilities to bind IGFs with high affinities. The existence of other potential IGFBPs was left open. The discovery of proteins with N-terminal domains bearing striking structural similarities to the N terminus of the IGFBPs, and with reduced, but demonstrable, affinity for IGFs, raised the question of whether these proteins were "new" IGFBPs (22, 23, 217). The N-terminal domain had been uniquely associated with the IGFBPs and has long been considered to be critical for IGF binding. No other function has been confirmed for this domain to date. Thus, the presence of this important IGFBP domain in the N terminus of other proteins must be considered significant. Although these other proteins appear capable of binding IGF, their relatively low affinity and the fact that their major biological actions are likely to not directly involve the IGF peptides suggest that they probably should not be classified within the IGFBP family as provisionally proposed (22, 23). The conservation of this single domain, so critical to high-affinity binding of IGF by the six IGFBPs, in all of the IGFBP-rPs, as well, speaks to its biological importance. Historically, and perhaps, functionally, this has led to the designation of an "IGFBP superfamily". The classification and nomenclature for the IGFBP superfamily, are, of course, arbitrary; what is ultimately relevant is the underlying biology, much of which still remains to be deciphered. The nomenclature for the IGFBP related proteins was derived from a consensus of researchers working in the IGFBP field (52). Obviously, a more general consensus on nomenclature, involving all groups working on each IGFBP-rP, has yet to be reached. Further understanding of the biological functions of each protein should help resolve the nomenclature dilemma. For the present, redesignating these proteins IGFBP-rPs simplifies the multiple names already associated with each IGFBP related protein, and reinforces the concept of a relationship with the IGFBPs. Beyond the N-terminal domain, there is a lack of structural similarity between the IGFBP-rPs and IGFBPs. The C-terminal domains do share similarities to other internal domains found in numerous other proteins. For example, the similarity of the IGFBP C terminus to the thyroglobulin type-I domain shows that the IGFBPs are also structurally related to numerous other proteins carrying the same domain (87). Interestingly, the functions of the different C-terminal domains in members of the IGFBP superfamily include interactions with the cell surface or ECM, suggesting that, even if they share little sequence similarities, the C-terminal domains may be functionally related. The evolutionary conservation of the N-terminal domain and functional studies support the notion that IGFBPs and IGFBP-rPs together form an IGFBP superfamily. A superfamily delineates between closely related (classified as a family) and distantly related proteins. The IGFBP superfamily is therefore composed of distantly related families. The modular nature of the constituents of the IGFBP superfamily, particularly their preservation of an highly conserved N-terminal domain, seems best explained by the process of exon shuffling of an ancestral gene encoding this domain. Over the course of evolution, some members evolved into high-affinity IGF binders and others into low-affinity IGF binders, thereby conferring on the IGFBP superfamily the ability to influence cell growth by both IGF-dependent and IGF-independent means (Fig. 10). A final word, from Stephen Jay Gould (218): "But classifications are not passive ordering devices in a world objectively divided into obvious categories. Taxonomies are human decisions imposed upon nature--theories about the causes of nature's order. The chronicle of historical changes in classification provides our finest insight into conceptual revolutions
Collapse
Affiliation(s)
- V Hwa
- Department of Pediatrics, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
44
|
Pattison ST, Fanayan S, Martin JL. Insulin-like growth factor binding protein-3 is secreted as a phosphoprotein by human breast cancer cells. Mol Cell Endocrinol 1999; 156:131-9. [PMID: 10612431 DOI: 10.1016/s0303-7207(99)00132-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth regulatory activity of the insulin-like growth factor binding proteins (IGFBPs) may be modulated by post-translational modifications such as glycosylation, limited proteolysis and phosphorylation. In this study, we have examined phosphorylation of IGFBP-3 in two breast cancer cell lines: the estrogen receptor negative (ER-ve) Hs578T cell line in which IGFBP-3 is normally expressed, and ER+ve T47D breast cancer cells transfected with IGFBP-3 cDNA (T47D(BP-3)) and therefore expressing IGFBP-3 constitutively. Metabolic labelling with [32P] orthophosphate revealed that both cell lines secreted phosphorylated IGFBP-3 similar in size to plasma IGFBP-3 phosphorylated in vitro with casein kinase II, and that IGFBP-3 phosphorylation was differentially modulated in the two cell lines. In Hs578T cells, retinoic acid (10-100 nM) increased IGFBP-3 phosphorylation to a maximum of 150% of control. IGF-I, but not [LR3]IGF-I, reduced the proportion of phosphorylated IGFBP-3 in Hs578T conditioned medium, consistent with increased release of non-phosphorylated, cell-associated IGFBP-3. By contrast, IGFBP-3 phosphorylation in T47D(BP-3) cells was not affected by retinoic acid or IGF-I, but appeared slightly increased by estradiol. Together these data indicate that phosphorylation of IGFBP-3 in breast cancer cells may be regulated by agents known to affect breast cancer cell proliferation.
Collapse
Affiliation(s)
- S T Pattison
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards NSW, Australia
| | | | | |
Collapse
|
45
|
Yang LM, Tin-U C, Wu K, Brown P. Role of retinoid receptors in the prevention and treatment of breast cancer. J Mammary Gland Biol Neoplasia 1999; 4:377-88. [PMID: 10705921 DOI: 10.1023/a:1018718401126] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinoids are vitamin A-related compounds that have been found to prevent cancer in animals and humans. In this review, we discuss the role of retinoids and their receptors in the treatment and prevention of breast cancer. The retinoid receptors are expressed in normal and malignant breast cells, and are critical for normal development. In breast cells, when bound by retinoid hormones, these proteins regulate proliferation, apoptosis, and differentiation. The mechanism by which retinoids inhibit breast cell growth has not been completely elucidated, however, retinoids have been shown to affect multiple signal transduction pathways, including IGF-, TGFbeta-, and AP-1-dependent pathways. Retinoids have also been shown to suppress the growth and prevent the development of breast cancer in animals. These agents suppress tumorigenesis in carcinogen-treated rats and in transgenic mice, and inhibit the growth of transplanted breast tumors. These promising preclinical results have provided the rationale to test retinoids in clinical trials for the treatment and prevention of breast cancer. Several retinoids, including all trans retinoic acid and 9-cis retinoic acid, have been shown to have modest activity in the treatment of breast cancer, and these agents are now in clinical trials in combination with cytotoxic agents and anti-estrogens. Another retinoid, 4-HPR, is currently being tested in a human cancer prevention trial. Preliminary results suggest that 4-HPR may suppress breast cancer development in premenopausal women. Future clinical trials will focus on testing new synthetic retinoids that have reduced toxicity and enhanced therapeutic and preventive efficacy.
Collapse
Affiliation(s)
- L M Yang
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 78284, USA
| | | | | | | |
Collapse
|
46
|
Yang L, Munoz-Medellin D, Kim HT, Ostrowski J, Reczek P, Brown PH. Retinoic acid receptor antagonist BMS453 inhibits the growth of normal and malignant breast cells without activating RAR-dependent gene expression. Breast Cancer Res Treat 1999; 56:277-91. [PMID: 10573118 DOI: 10.1023/a:1006219411078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To elucidate the role of RAR-dependent gene transcription in inhibiting breast cell growth, we have investigated the ability of retinoids to suppress growth of normal, immortal, and malignant breast cells. We compared the ability of all trans retinoic acid (atRA) to activate retinoid receptors in normal, immortal, and malignant breast cells, with its ability to inhibit the growth of these cells. Our studies demonstrate that normal breast cells are more sensitive to the growth inhibitory effect of atRA than are immortal nonmalignant breast cells and breast cancer cells. atRA activated RAR-dependent gene transcription in both atRA-sensitive and -resistant breast cells as determined by transfection of a RARE-containing reporter gene. These results demonstrate that activation of RAR-dependent gene transcription by atRA is not sufficient to inhibit growth in atRA-resistant breast cancer cells. To determine whether activation of RAR-dependent gene transcription by atRA is necessary for growth inhibition, we tested the growth suppressive effect of a retinoid (BMS453) which binds RAR receptors and transrepresses AP-1 but does not activate RAR-dependent gene expression. This retinoid inhibited the growth of normal breast cells (HMEC and 184) and T47D breast cancer cells. Breast cancer cells which were resistant to atRA, were also resistant to BMS453. Normal human breast cells were most sensitive to the anti-proliferative effects of BMS453. These results indicate that in some breast cells RAR-dependent transactivation is not necessary for retinoids to inhibit growth. Instead, retinoids may suppress growth by inhibiting transcription factors such as AP-1 through transcription factor crosstalk.
Collapse
Affiliation(s)
- L Yang
- Department of Medicine, University of Texas Health Science Center at San Antonio, USA
| | | | | | | | | | | |
Collapse
|
47
|
Yamanaka Y, Fowlkes JL, Wilson EM, Rosenfeld RG, Oh Y. Characterization of insulin-like growth factor binding protein-3 (IGFBP-3) binding to human breast cancer cells: kinetics of IGFBP-3 binding and identification of receptor binding domain on the IGFBP-3 molecule. Endocrinology 1999; 140:1319-28. [PMID: 10067859 DOI: 10.1210/endo.140.3.6566] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) binds to specific membrane proteins located on human breast cancer cells, which may be responsible for mediating the IGF-independent growth inhibitory effects of IGFBP-3. In this study, we evaluated IGFBP-3 binding sites on breast cancer cell membranes by competitive binding studies with IGFBP-1 through -6 and various forms of IGFBP-3, including synthetic IGFBP-3 fragments. Scatchard analysis revealed the existence of high-affinity sites for IGFBP-3 in estrogen receptor-negative Hs578T human breast cancer cells (dissociation constant (Kd) = 8.19 +/- 0.97 x 10(-9) M and 4.92 +/- 1.51 x 10(5) binding sites/cell) and 30-fold fewer receptors in estrogen receptor-positive MCF-7 cells (Kd = 8.49 +/- 0.78 x 10(-9) M and 1.72 +/- 0.31 x 10(4) binding sites/cell), using a one-site model. These data demonstrate binding characteristics of typical receptor-ligand interactions, strongly suggesting an IGFBP-3:IGFBP-3 receptor interaction. Among IGFBPs, only IGFBP-5 showed weak competition, indicating that IGFBP-3 binding to breast cancer cell surfaces is specific and cannot be attributed to nonspecific interaction with glycosaminoglycans. This was confirmed by showing that synthetic IGFBP-3 peptides containing IGFBP-3 glycosaminoglycan-binding domains competed only weakly for IGFBP-3 binding to the cell surface. Rat IGFBP-3 was 20-fold less potent in its ability to compete with human IGFBP-3(Echerichia coli), as well as 10- to 20-fold less potent for cell growth inhibition than human IGFBP-3, suggesting the existence of species specificity in the interaction between IGFBP-3 and the IGFBP-3 receptor. When various IGFBP-3 fragments were evaluated for affinity for the IGFBP-3 receptor, only those fragments that contain the midregion of the IGFBP-3 molecule were able to inhibit 125I-IGFBP-3(Escherichia coli) binding, indicating that the midregion of the IGFBP-3 molecule is responsible for binding to its receptor. These observations demonstrate that specific, high-affinity IGFBP-3 receptors are located on breast cancer cell membranes. These receptors have properties that support the notion that they may mediate the IGF-independent inhibitory actions of IGFBP-3 in breast cancer cells.
Collapse
Affiliation(s)
- Y Yamanaka
- Department of Pediatrics, School of Medicine, Oregon Health Sciences University, Portland 97201-3042, USA
| | | | | | | | | |
Collapse
|
48
|
Yang F, Johnson BJ, White ME, Hathaway MR, Dayton WR. Effect of insulin-like growth factor (IGF)-I and Des (1-3) IGF-I on the level of IGF binding protein-3 and IGF binding protein-3 mRNA in cultured porcine embryonic muscle cells. J Cell Physiol 1999; 178:227-34. [PMID: 10048587 DOI: 10.1002/(sici)1097-4652(199902)178:2<227::aid-jcp12>3.0.co;2-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulin-like growth factor binding protein (IGFBP)-3 effects proliferation and differentiation of numerous cell types by binding to insulin-like growth factors (IGF) and attenuating their activity or by directly affecting cells in an IGF-independent manner. Consequently, IGFBPs produced by specific cells may affect their differentiation and proliferation. In this study we show that embryonic porcine myogenic cells, unlike murine muscle cell lines, produce significant quantities of a binding protein immunologically identified as IGFBP-3. Nonfusing cells subcultured from highly fused porcine myogenic cell cultures do not produce detectable IGFBP-3 protein or mRNA, thus suggesting the IGFBP-3 is produced by muscle cells in the porcine myogenic cell cultures. Treatment of porcine myogenic cultures with 20 ng of IGF-I or 20 ng of Des (1-3) IGF-I/ml serum-free media for 24 h results in a threefold reduction in the level of IGFBP-3 in conditioned media. This reduction is not affected by cell density over a sixfold range. Additionally, treatment for 24 h with 20 ng of IGF-I/ml media results in a sevenfold decrease in the steady-state level of IGFBP-3 mRNA. This IGF-I-induced decrease in IGFBP-3 mRNA level appears to be relatively unique to myogenic cells. IGF-I treatment also causes a fourfold increase in the steady-state level of myogenin mRNA. This increase in myogenin mRNA suggests that, as expected, IGF-I treatment accelerates differentiation of myogenic cells. The simultaneous decrease in IGFBP-3 mRNA and protein that accompanies IGF-I-induced myogenin expression suggests that differentiation of myogenic cells may be preceded or accompanied by decreased production of IGFBP-3.
Collapse
Affiliation(s)
- F Yang
- Laboratory of Growth and Developmental Biology, University of Minnesota, St. Paul, USA
| | | | | | | | | |
Collapse
|
49
|
Tanaka H, Moriwake T, Matsuoka Y, Nakamura T, Seino Y. Potential role of rhIGF-I/IGFBP-3 in maintaining skeletal mass in space. Bone 1998; 22:145S-147S. [PMID: 9600772 DOI: 10.1016/s8756-3282(98)00006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone loss during space flight may be induced by decreased activity of bone formation. To explore a new method for the bone loss in microgravity, the effects of insulin-like growth factor I (IGF-I), a potent stimulator for osteoblast activities, were studied in in vitro and in vivo system. The complex of IGF-I and its specific binding protein, IGFBP-3, may stimulate the osteoblastic activities via prolonged serum half life and increased cellular association of IGF-I. In an ovariectomy combined with neurectomy model, this complex stimulated bone turnover. IGF-I/IGFBP-3 may be a candidate for the treatment of bone loss induced by the microgravity.
Collapse
Affiliation(s)
- H Tanaka
- Department of Pediatrics, Okayama University Medical School, Japan.
| | | | | | | | | |
Collapse
|
50
|
Kleeff J, Korc M. Up-regulation of transforming growth factor (TGF)-beta receptors by TGF-beta1 in COLO-357 cells. J Biol Chem 1998; 273:7495-500. [PMID: 9516449 DOI: 10.1074/jbc.273.13.7495] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the present study we investigated the actions of transforming growth factor (TGF)-beta1 on gene induction and cyclin-dependent kinase inhibitors in relation to TGF-beta receptor modulation in COLO-357 pancreatic cancer cells. TGF-beta1 inhibited the growth of COLO-357 cells in a time- and dose-dependent manner and caused a rapid but transient increase in plasminogen activator inhibitor-I and insulin-like growth factor binding protein-3 mRNA levels. TGF-beta1 caused a delayed but sustained increase in the protein levels of the cyclin-dependent kinase inhibitors p15(Ink4B), p21(Cip1), and p27(Kip1) and a sustained increase in type I and II TGF-beta receptors (TbetaRI and TbetaRII) mRNA and protein levels. The protein synthesis inhibitor cycloheximide (10 microg/ml) completely blocked the TGF-beta1-mediated increase in TbetaRI and TbetaRII expression. Furthermore, a nuclear runoff transcription assay revealed that the increase in receptor mRNA levels was due to newly transcribed RNA. There was a significant increase in TbetaRI and TbetaRII mRNA levels in confluent cells in comparison to subconfluent (</=80% confluent) controls, as well as in serum- starved cells when compared with cells incubated in medium containing 10% fetal bovine serum. COLO-357 cells expressed a normal SMAD4 gene as determined by Northern blot analysis and sequencing. These results indicate that TGF-beta1 modulates a variety of functions in COLO-357 cells and up-regulates TGF-beta receptor expression via a transcriptional mechanism, which has the potential to maximize TGF-beta1-dependent antiproliferative responses.
Collapse
Affiliation(s)
- J Kleeff
- Department of Medicine, University of California, Irvine, California 92697, USA
| | | |
Collapse
|