1
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
2
|
Li H, Liu S, Zhang K, Zhu X, Dai J, Lu Y. Gut microbiome and plasma metabolome alterations in myopic mice. Front Microbiol 2023; 14:1251243. [PMID: 38179454 PMCID: PMC10764480 DOI: 10.3389/fmicb.2023.1251243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Background Myopia is one of the most common eye diseases leading to blurred distance vision. Inflammatory diseases could trigger or exacerbate myopic changes. Although gut microbiota bacteria are associated with various inflammatory diseases, little is known about its role in myopia. Materials and methods The mice were randomly divided into control and model groups, with the model group being attached-30D lens onto the eyes for 3 weeks. Then, mouse cecal contents and plasma were collected to analyze their intestinal microbiota and plasma metabolome. Results We identified that the microbial composition differed considerably between the myopic and non-myopic mice, with the relative abundance of Firmicutes phylum decreased obviously while that of Actinobacteria phylum was increased in myopia. Furthermore, Actinobacteria and Bifidobacterium were positively correlated with axial lengths (ALs) of eyeballs while negatively correlated with refractive diopters. Untargeted metabolomic analysis identified 141 differentially expressed metabolites, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed considerable enrichment mainly in amino acid metabolism pathways. Notably, pathways involved glutamate metabolism including "Glutamine and D-glutamate metabolism" and "Alanine, aspartate and glutamate metabolism" was changed dramatically, which presented as the concentrations of L-Glutamate and L-Glutamine decreased obviously in myopia. Interestingly, microbiome dysbiosis and metabolites alternations in myopia have a disrupting gut barrier feature. We further demonstrated that the gut barrier function was impaired in myopic mice manifesting in decreased expression of Occludin, ZO-1 and increased permeation of FITC-dextran. Discussion Myopic mice had obviously altered gut microbiome and metabolites profiles compared to non-myopic mice. The dysbiosis and plasma metabolomics shift in myopia had an interrupting gut barrier feature. Our study provides new insights into the possible role of the gut microbiota in myopia and reinforces the potential feasibility of microbiome-based therapies in myopia.
Collapse
Affiliation(s)
- Hao Li
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shuyu Liu
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Keke Zhang
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
3
|
Akula JD, Lancos AM, AlWattar BK, De Bruyn H, Hansen RM, Fulton AB. A Simplified Model of Activation and Deactivation of Human Rod Phototransduction-An Electroretinographic Study. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37738060 PMCID: PMC10528468 DOI: 10.1167/iovs.64.12.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Purpose To test the hypothesis that a simple model having properties consistent with activation and deactivation in the rod approximates the whole time course of the photoresponse. Methods Routinely, an exponential of the form f = α·(1 - exp(-(τ·(t - teff)s-1))), with amplitude α, rate constant τ (often scaled by intensity), irreducible delay teff, and time exponent s-1, is fit to the early period of the flash electroretinogram. Notably, s (an integer) represents the three integrating stages in the rod amplification cascade (rhodopsin isomerization, transducin activation, and cGMP hydrolysis). The time course of the photoresponse to a 0.17 cd·s·m-2 conditioning flash (CF) was determined in 21 healthy eyes by presenting the CF plus a bright probe flash (PF) in tandem, separated by interstimulus intervals (ISIs) of 0.01 to 1.4 seconds, and calculating the proportion of the PF a-wave suppressed by the CF at each ISI. To test if similar kinetics describe deactivation, difference of exponential (DoE) functions with common α and teff parameters, respective rate constants for the initiation (I) and quenching (Q) phases of the response, and specified values of s (sI, sQ), were compared to the photoresponse time course. Results As hypothesized, the optimal values of sI and sQ were 3 and 2, respectively. Mean ± SD α was 0.80 ± 0.066, I was 7700 ± 2400 m2·cd-1·s-3, and Q was 1.4 ± 0.47 s-1. Overall, r2 was 0.93. Conclusions A method, including a DoE model with just three free parameters (α, I, Q), that robustly captures the magnitude and time-constants of the complete rod response, was produced. Only two steps integrate to quench the rod photoresponse.
Collapse
Affiliation(s)
- James D. Akula
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Annie M. Lancos
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Bilal K. AlWattar
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hanna De Bruyn
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Ronald M. Hansen
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Anne B. Fulton
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Brahma MM, Takahashi K, Namekata K, Harada T, Goshima Y, Ohshima T. Genetic inhibition of collapsin response mediator protein-2 phosphorylation ameliorates retinal ganglion cell death in normal-tension glaucoma models. Genes Cells 2022; 27:526-536. [PMID: 35703119 DOI: 10.1111/gtc.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Glaucoma is a neurodegenerative disorder caused by the death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is a cause of glaucoma. However, glaucoma often develops with normal IOP and is known as normal-tension glaucoma (NTG). Glutamate neurotoxicity is considered as one of the significant causes of NTG, resulting in excessive stimulation of retinal neurons via the N-methyl-D-aspartate (NMDA) receptors. The present study examined the phosphorylation of collapsin response mediator protein-2 (CRMP2), a protein that is abundantly expressed in neurons and involved in their development. In two mouse models, NMDA-injection and glutamate/aspartate transporter (GLAST) mutant, CRMP2 phosphorylation at the cyclin-dependent kinase-5 (Cdk5) site was elevated in RGCs. We confirmed that the decrease in the number of RGCs and thickness of the inner retinal layer (IRL) could be suppressed after NMDA administration in CRMP2KI/KI mice with genetically inhibited CRMP2 phosphorylation. Next, we investigated GLAST heterozygotes (GLAST+/-) with CRMP2KI/KI (GLAST+/-;CRMP2KI/KI) and GLAST knockout (GLAST-/-) mice with CRMP2KI/KI (GLAST-/-;CRMP2KI/KI) mice and compared them with GLAST+/- and GLAST-/- mice. pCRMP2 (S522) inhibition significantly reduced RGC loss and IRL thinning. These results suggest that the inhibition of CRMP2 phosphorylation could be a novel strategy for treating NTG.
Collapse
Affiliation(s)
- Musukha Mala Brahma
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Kazuya Takahashi
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
5
|
Wang WY, Chen C, Chang J, Chien L, Shih YF, Lin LLK, Pang CP, Wang IJ. Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother 2021; 133:111092. [PMID: 33378986 DOI: 10.1016/j.biopha.2020.111092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
This review provides insights into the mechanism underlying the pathogenesis of myopia and potential targets for clinical intervention. Although the etiology of myopia involves both environmental and genetic factors, recent evidence has suggested that the prevalence and severity of myopia appears to be affected more by environmental factors. Current pharmacotherapeutics are aimed at inhibiting environmentally induced changes in visual input and subsequent changes in signaling pathways during myopia pathogenesis and progression. Recent studies on animal models of myopia have revealed specific molecules potentially involved in the regulation of eye development. Among them, the dopamine receptor plays a critical role in controlling myopia. Subsequent studies have reported pharmacotherapeutic treatments to control myopia progression. In particular, atropine treatment yielded favorable outcomes and has been extensively used; however, current studies are aimed at optimizing its efficacy and confirming its safety. Furthermore, future studies are required to assess the efficacy of combinatorial use of low-dose atropine and contact lenses or orthokeratology.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Camille Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Justine Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Lillian Chien
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Feng Shih
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Luke L K Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, KLN, Hong Kong, China.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
de Melo Reis RA, Freitas HR, de Mello FG. Cell Calcium Imaging as a Reliable Method to Study Neuron-Glial Circuits. Front Neurosci 2020; 14:569361. [PMID: 33122991 PMCID: PMC7566175 DOI: 10.3389/fnins.2020.569361] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Complex dynamic cellular networks have been studied in physiological and pathological processes under the light of single-cell calcium imaging (SCCI), a method that correlates functional data based on calcium shifts operated by different intracellular and extracellular mechanisms integrated with their cell phenotypes. From the classic synaptic structure to tripartite astrocytic model or the recent quadripartite microglia added ensemble, as well as other physiological tissues, it is possible to follow how cells signal spatiotemporally to cellular patterns. This methodology has been used broadly due to the universal properties of calcium as a second messenger. In general, at least two types of receptor operate through calcium permeation: a fast-acting ionotropic receptor channel and a slow-activating metabotropic receptor, added to exchangers/transporters/pumps and intracellular Ca2+ release activated by messengers. These prototypes have gained an enormous amount of information in dynamic signaling circuits. SCCI has also been used as a method to associate phenotypic markers during development and stage transitions in progenitors, stem, vascular cells, neuro- and glioblasts, neurons, astrocytes, oligodendrocytes, and microglia that operate through ion channels, transporters, and receptors. Also, cancer cells or inducible cell lines from human organoids characterized by transition stages are currently being used to model diseases or reconfigure healthy cells in terms of the expression of calcium-binding/permeable molecules and shed light on therapy.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Department of Pathology and Laboratory Medicine, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Fernando Garcia de Mello
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
da Silva Sampaio L, Kubrusly RCC, Colli YP, Trindade PP, Ribeiro-Resende VT, Einicker-Lamas M, Paes-de-Carvalho R, Gardino PF, de Mello FG, De Melo Reis RA. Cannabinoid Receptor Type 1 Expression in the Developing Avian Retina: Morphological and Functional Correlation With the Dopaminergic System. Front Cell Neurosci 2018; 12:58. [PMID: 29662438 PMCID: PMC5890097 DOI: 10.3389/fncel.2018.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 01/19/2023] Open
Abstract
The avian retina has been used as a model to study signaling by different neuro- and gliotransmitters. It is unclear how dopaminergic and cannabinoid systems are related in the retina. Here we studied the expression of type 1 and 2 cannabinoid receptors (CB1 and CB2), as well as monoacylglycerol lipase (MAGL), the enzyme that degrades 2-arachidonoylglycerol (2-AG), during retina development. Our data show that CB1 receptor is highly expressed from embryonic day 5 (E5) until post hatched day 7 (PE7), decreasing its levels throughout development. CB1 is densely found in the ganglion cell layer (GCL) and inner plexiform layer (IPL). CB2 receptor was also found from E5 until PE7 with a decrease in its contents from E9 afterwards. CB2 was mainly present in the lamination of the IPL at PE7. MAGL is expressed in all retinal layers, mainly in the IPL and OPL from E9 to PE7 retina. CB1 and CB2 were found both in neurons and glia cells, but MAGL was only expressed in Müller glia. Older retinas (PE7) show CB1 positive cells mainly in the INL and co-expression of CB1 and tyrosine hydroxylase (TH) are shown in a few cells when both systems are mature. CB1 co-localized with TH and was heavily associated to D1 receptor labeling in primary cell cultures. Finally, cyclic AMP (cAMP) was activated by the selective D1 agonist SKF38393, and inhibited when cultures were treated with WIN55, 212–2 (WIN) in a CB1 dependent manner. The results suggest a correlation between the endocannabinoid and dopaminergic systems (DSs) during the avian retina development. Activation of CB1 limits cAMP accumulation via D1 receptor activation and may influence embryological parameters during avian retina differentiation.
Collapse
Affiliation(s)
- Luzia da Silva Sampaio
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina C C Kubrusly
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Yolanda P Colli
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila P Trindade
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor T Ribeiro-Resende
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratório de Neurobiologia Celular, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Patricia F Gardino
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando G de Mello
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo A De Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Falco F, Barra M, Cammarata M, Cuttitta A, Jia S, Bonanno A, Mazzola S, Wu G. Amino acid composition in eyes from zebrafish (Danio rerio) and sardine (Sardina pilchardus) at the larval stage. SPRINGERPLUS 2016; 5:519. [PMID: 27186483 PMCID: PMC4844574 DOI: 10.1186/s40064-016-2137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022]
Abstract
A comparative study was performed to identify differences in the amino acid composition of the eyes from zebrafish (Danio rerio) and sardine (Sardina pilchardus) larvae and their link to the environmental adaption of the species. Amino acids in the acidic hydrolysates of eyes from 11 zebrafish and 12 sardine were determined with the use of high-performance liquid chromatography involving precolumn derivatization with ortho-phthalaldehyde. Differences in the content of most amino acids were detected between zebrafish and sardine. These amino acids were aspartate, glutamate, serine, glycine, threonine, arginine, methionine, valine, phenylalanine, isoleucine, leucine and lysine. Of particular note, the percentage of methionine in zebrafish eyes was much higher than that in sardine, whereas the opposite was observed for glutamate and glycine. These results indicate that zebrafish and sardine likely have experienced differences in adaptation to environmental changes. We suggest that the amino acid composition of eyes represents a powerful tool to discriminate between species characterized by different lifestyle and inhabiting different environments.
Collapse
Affiliation(s)
- Francesca Falco
- Detached Units of Capo Granitola (TP) and Naples, Institute for Coastal and Marine Environment (IAMC), Consiglio Nazionale delle Ricerche, Capo Granitola (TP), Italy ; Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Marco Barra
- Detached Units of Capo Granitola (TP) and Naples, Institute for Coastal and Marine Environment (IAMC), Consiglio Nazionale delle Ricerche, Capo Granitola (TP), Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo, Italy
| | - Angela Cuttitta
- Detached Units of Capo Granitola (TP) and Naples, Institute for Coastal and Marine Environment (IAMC), Consiglio Nazionale delle Ricerche, Capo Granitola (TP), Italy
| | - Sichao Jia
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Angelo Bonanno
- Detached Units of Capo Granitola (TP) and Naples, Institute for Coastal and Marine Environment (IAMC), Consiglio Nazionale delle Ricerche, Capo Granitola (TP), Italy
| | - Salvatore Mazzola
- Detached Units of Capo Granitola (TP) and Naples, Institute for Coastal and Marine Environment (IAMC), Consiglio Nazionale delle Ricerche, Capo Granitola (TP), Italy
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
9
|
Challenor M, O'Hare Doig R, Fuller P, Giacci M, Bartlett C, Wale CH, Cozens GS, Hool L, Dunlop S, Swaminathan Iyer K, Rodger J, Fitzgerald M. Prolonged glutamate excitotoxicity increases GluR1 immunoreactivity but decreases mRNA of GluR1 and associated regulatory proteins in dissociated rat retinae in vitro. Biochimie 2015; 112:160-71. [DOI: 10.1016/j.biochi.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
|
10
|
Bogdanov P, Hernández C, Corraliza L, Carvalho AR, Simó R. Effect of fenofibrate on retinal neurodegeneration in an experimental model of type 2 diabetes. Acta Diabetol 2015; 52:113-22. [PMID: 25029994 DOI: 10.1007/s00592-014-0610-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/29/2014] [Indexed: 12/28/2022]
Abstract
There is now consistent evidence from two major clinical trials (the Fenofibrate Intervention and Event Lowering in Diabetes and the Action to Control Cardiovascular Risk in Diabetes Eye) that fenofibrate arrests the progression of diabetic retinopathy in type 2 diabetic patients. However, the underlying mechanisms of this beneficial effect remain to be elucidated. The aim of the study was to evaluate the potential effect of fenofibric acid (FA), the active metabolite of fenofibrate, in preventing retinal neurodegeneration in an experimental mouse model of type 2 diabetes. For this purpose, we evaluated a total of 24 diabetic mice (db/db) aged 8 weeks that were randomly assigned to daily oral treatment (by gavage) with FA (100 mg/kg/day) (n = 12) or vehicle (n = 12) for 1 week. Ten non-diabetic mice (db/+) were used as control group. Retinal neurodegeneration was evaluated by measuring glial activation (immunofluorescence and Western blot) and apoptosis. Glutamate/aspartate transporter (GLAST) was assessed by immunofluorescence. Functional abnormalities were assessed by electroretinography (ERG). We observed that diabetic mice presented significantly higher glial activation and apoptosis in ganglion cell layer (GCL) than in age-matched non-diabetic mice. Treatment with FA resulted in a significant decrease in both glial activation and the rate of apoptosis in GCL in comparison with diabetic mice treated with vehicle. In addition, FA prevented GLAST downregulation induced by diabetes. Furthermore, a significant improvement of ERG parameters (oscillatory potential amplitudes and b-wave implicit time) was observed. We conclude that FA prevents retinal neurodegeneration induced by diabetes. Our results suggest that neuroprotection is one of the underlying mechanisms by which fenofibrate exerts its beneficial actions in diabetic retinopathy.
Collapse
Affiliation(s)
- Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Caffeine potentiates the release of GABA mediated by NMDA receptor activation: Involvement of A1 adenosine receptors. Neuroscience 2014; 281:208-15. [DOI: 10.1016/j.neuroscience.2014.09.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 11/21/2022]
|
12
|
The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS One 2014; 9:e97302. [PMID: 24837086 PMCID: PMC4023966 DOI: 10.1371/journal.pone.0097302] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/17/2014] [Indexed: 01/20/2023] Open
Abstract
Background To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse). Methods C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks). The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG)]. Histological markers of neurodegeneration (glial activation and apoptosis) were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST) expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. Results Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01). In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. Conclusions Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the underlying mechanisms of diabetes-induced retinal neurodegeneration and for testing neuroprotective drugs.
Collapse
|
13
|
Miya-Coreixas VS, Maggesissi Santos R, Carpi Santos R, Gardino PF, Calaza K. Regulation of GABA content by glucose in the chick retina. Exp Eye Res 2013; 115:206-15. [DOI: 10.1016/j.exer.2013.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022]
|
14
|
Guimarães-Souza EM, Calaza KC. Selective activation of group III metabotropic glutamate receptor subtypes produces different patterns of γ-aminobutyric acid immunoreactivity and glutamate release in the retina. J Neurosci Res 2012; 90:2349-61. [PMID: 22987212 DOI: 10.1002/jnr.23123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 11/06/2022]
Affiliation(s)
- E M Guimarães-Souza
- Neurobiology of the Retina Laboratory, Neuroscience Program and Departament of Neurobiology, Biology Institute, Federal Fluminense University, Rio de Janeiro, Brazil
| | | |
Collapse
|
15
|
Guimarães-Souza E, Gardino P, De Mello F, Calaza K. A calcium-dependent glutamate release induced by metabotropic glutamate receptors I/II promotes GABA efflux from amacrine cells via a transporter-mediated process. Neuroscience 2011; 179:23-31. [DOI: 10.1016/j.neuroscience.2011.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
16
|
Yahara T, Tachikawa M, Akanuma SI, Hosoya KI. Hypertonicity enhances GABA uptake by cultured rat retinal capillary endothelial cells. Drug Metab Pharmacokinet 2010; 25:611-5. [PMID: 20930424 DOI: 10.2133/dmpk.dmpk-10-nt-057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have reported previously that taurine transporter (TauT) mediates γ-aminobutyric acid (GABA) as a substrate in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells). This study investigates how TauT-mediated GABA transport is regulated in TR-iBRB2 cells under hypertonic conditions. [³H]GABA uptake by TR-iBRB2 cells exposed to 12 h- to 24 h-hypertonic culture medium was significantly greater than that of isotonic culture medium. [³H]GABA uptake by TR-iBRB2 cells was Na(+)-, Cl(-)-, and concentration-dependent with a Michaelis-Menten (K(m)) constant of 3.5 mM under isotonic conditions and K(m) of 0.324 and 5.48 mM under hypertonic conditions. Under hypertonic conditions, [³H]GABA uptake by TR-iBRB2 cells was more potently inhibited by substrates of TauT, such as taurine and β-alanine, than those of GABA transporters such as GABA, nipecotic acid, and betaine. These results suggest that an unknown high-affinity GABA transport process and TauT-mediated GABA transport are enhanced under hypertonic conditions. In conclusion, hypertonicity enhances GABA uptake by cultured rat retinal capillary endothelial cells.
Collapse
Affiliation(s)
- Tohru Yahara
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | |
Collapse
|
17
|
calaza KDC, Gardino PF. Neurochemical phenotype and birthdating of specific cell populations in the chick retina. AN ACAD BRAS CIENC 2010; 82:595-608. [DOI: 10.1590/s0001-37652010000300007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 11/16/2009] [Indexed: 11/21/2022] Open
Abstract
The chick embryo is one of the most traditional models in developing neuroscience and its visual system has been one of the most exhaustively studied. The retina has been used as a model for studying the development of the nervous system. Here, we describe the morphological features that characterize each stage of the retina development and studies of the neurogenesis period of some specific neurochemical subpopulations of retinal cells by using a combination of immunohistochemistry and autoradiography of tritiated-thymidine. It could be concluded that the proliferation period of dopaminergic, GABAergic, cholinoceptive and GABAceptive cells does not follow a common rule of the neurogenesis. In addition, some specific neurochemical cell groups can have a restrict proliferation period when compared to the total cell population.
Collapse
|
18
|
Pohl‐Guimarães F, Calaza KDC, Yamasaki EN, Kubrusly RCC, Melo Reis RA. Ethanol increases GABA release in the embryonic avian retina. Int J Dev Neurosci 2009; 28:189-94. [DOI: 10.1016/j.ijdevneu.2009.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/15/2009] [Accepted: 11/05/2009] [Indexed: 12/24/2022] Open
Affiliation(s)
- Fernanda Pohl‐Guimarães
- Laboratory of Neurochemistry, Program in Neurobiology, Biophysics Institute Carlos Chagas FilhoUFRJRio de JaneiroBrazil
| | - Karin da Costa Calaza
- Laboratory of Neurobiology of the Retina, Program in Neurosciences, Biology Institute, UFF24020140NiteróiRJBrazil
| | - Edna Nanami Yamasaki
- Laboratory of Neurobiology of the Retina, Program in Neurobiology, Biophysics Institute Carlos Chagas FilhoUFRJRio de JaneiroBrazil
| | - Regina Célia Cussa Kubrusly
- Laboratory of Neuropharmacology, Program in NeurosciencesDepartment of Physiology and PharmacologyUFFNiteróiRJBrazil
| | - Ricardo Augusto Melo Reis
- Laboratory of Neurochemistry, Program in Neurobiology, Biophysics Institute Carlos Chagas FilhoUFRJRio de JaneiroBrazil
| |
Collapse
|
19
|
Maggesissi R, Gardino P, Guimarães-Souza E, Paes-de-Carvalho R, Silva R, Calaza K. Modulation of GABA release by nitric oxide in the chick retina: Different effects of nitric oxide depending on the cell population. Vision Res 2009; 49:2494-502. [DOI: 10.1016/j.visres.2009.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 11/17/2022]
|
20
|
Tomi M, Tajima A, Tachikawa M, Hosoya KI. Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2138-42. [DOI: 10.1016/j.bbamem.2008.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/08/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
|
21
|
|
22
|
Peng PH, Ko ML, Chen CF. Epigallocatechin-3-gallate reduces retinal ischemia/reperfusion injury by attenuating neuronal nitric oxide synthase expression and activity. Exp Eye Res 2008; 86:637-46. [PMID: 18289530 DOI: 10.1016/j.exer.2008.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/20/2007] [Accepted: 01/06/2008] [Indexed: 01/17/2023]
Abstract
Retinal ischemia/reperfusion (IR) injury causes profound tissue damage, especially retinal ganglion cell death. The aims of the study were twofold: (1) to investigate the benefits of epigallocatechin-3-gallate (EGCG), the major catechin found in tea, after IR challenge, and (2) to elucidate the mechanism of EGCG inhibition of nitric oxide synthase (NOS) expression. Wistar female rats were divided into four groups: normal control, EGCG with sham operation, retinal IR, and EGCG with IR groups. EGCG (50mg/kg) was administered by intraperitoneal injection 30 min before the experiment. IR injury to a rat's retina was induced by raising intraocular pressure to 150 mmHg for 60 min. With EGCG pretreatment, retinal ganglion cell death from IR was reduced by approximately 10% 3 days afterward. EGCG significantly downregulated IR-induced glial fibrillary acidic protein expression. EGCG treatment also reduced TUNEL-positive cells after IR in the inner retina as well as IR-induced lipid peroxidation. Histological analyses showed fewer neuronal NOS and nicotinamide adenine dinucleotide phosphate diaphorase-positive cells in the retina after IR with EGCG administration. Therefore, EGCG is effective in protecting retinal ganglion cells from IR challenge by ameliorating retinal nitrosactive stress and by regulating cell death through apoptotic pathways.
Collapse
Affiliation(s)
- Pai-Huei Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
23
|
Pacheco-Domínguez RL, Palma-Nicolas JP, López E, López-Colomé AM. The activation of MEK-ERK1/2 by glutamate receptor-stimulation is involved in the regulation of RPE proliferation and morphologic transformation. Exp Eye Res 2007; 86:207-19. [PMID: 18061165 DOI: 10.1016/j.exer.2007.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/15/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
Retinal pigment epithelial (RPE) cells are the main cell type involved in the pathogenesis of proliferative vitreoretinopathy (PVR). As a result from retinal detachment or surgical procedures, RPE comes in contact with glutamate from serum, glial release and the injured retina. The purpose of this study was to explore a possible role for glutamate in the development of PVR, mediated by the receptor-stimulated activation of the ERK1/2 MAPK pathway, the alteration of cell proliferation and the transdifferentiation of RPE cells, using rat RPE cells in culture as a model system. We demonstrated the expression in these cells of Group I metabotropic-and ionotropic AMPA/KA and NMDA glutamate receptors (GluRs), predominantly of the NMDA subtype, which are targeted to the membrane, and exhibit pharmacological and biochemical characteristics equivalent to those previously established in brain tissue. Proliferation was measured by MTS-reduction colorimetric assay, and actin cytoskeleton dynamics was visualized by immunoflurescence using alpha-sma specific antibodies. Activation of metabotropic, AMPA and NMDA receptors by glutamate induced the time-and dose-dependent phosphorylation of ERK1/2, assessed by Western blot analysis, in parallel to a significant increase in cell proliferation and a decrease in alpha-sma expression and its recruitment into stress fibers. These effects were all prevented by the inhibition of MEK. Hence, results suggest that glutamate could be involved in the generation of PVR, through a GluR-mediated increase in proliferation and phenotypic transformation, cause-effect related to the activation of ERK1/2.
Collapse
Affiliation(s)
- Reyna Lizette Pacheco-Domínguez
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, DF, Mexico
| | | | | | | |
Collapse
|
24
|
Reh TA, McCabe K, Kelley MW, Bermingham-McDonogh O. Growth factors in the treatment of degenerative retinal disorders. CIBA FOUNDATION SYMPOSIUM 2007; 196:120-31; discussion 131-4. [PMID: 8866131 DOI: 10.1002/9780470514863.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are currently a number of degenerative conditions, both inherited and acquired, that affect the retina and lead to blindness. Retinal photoreceptors degenerate from inherited conditions, such as retinitis pigmentosa or as a result of light damage or normal ageing; retinal ganglion cells degenerate from optic nerve injury or glaucoma. Current research in this field includes the use of growth factors to: (1) inhibit the degenerative processes; (2) promote regeneration of the retina from the pigmented epithelium; and (3) improve the conditions for transplantation of new cells to the retina by expanding the photoreceptor cell populations in vitro. The results to date have shown that a number of different growth factors promote survival of retinal cells in vitro and in vivo. In addition, some of the same factors can stimulate regeneration in the developing retina and act as mitogens for the retinal progenitor cells. It is likely that a combination of these approaches will ultimately be important for the treatment of the various retinal degenerations.
Collapse
Affiliation(s)
- T A Reh
- Department of Biological Structure, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
25
|
Piehl L, Capani F, Facorro G, López EM, de Celis ER, Pustovrh C, Hager A, Coirini H, López-Costa JJ. Nitric oxide increases in the rat retina after continuous illumination. Brain Res 2007; 1156:112-9. [PMID: 17499222 DOI: 10.1016/j.brainres.2007.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/09/2007] [Accepted: 04/12/2007] [Indexed: 11/20/2022]
Abstract
Continuous illumination (CI) of the retina induces an oxidative stress followed by the degeneration of photoreceptors. This phenomenon may be partially related to the excessive production of nitric oxide (NO). In order to confirm this hypothesis, the aims of this work are to determine NO levels during the illumination of the retina by electron paramagnetic resonance (EPR), and if an increase of NO is found, to characterize the NOS isoform responsible of the increment by using Western blot. Sprague-Dawley rats were continuously illuminated with white light (12,000 lux) for 2, 24, 48 h, 5 and 7 days while control rats were maintained at light/dark cycles of 12/12 h. Using EPR, an increase of NO signal was observed in the light exposed retinas peaking at 24 h of CI. Western blot analysis showed the expression of iNOS in the illuminated retinas with a peak after 24 h of CI, but did not show significant differences of nNOS among illuminated and control retinas. In summary, there is an increase of NO during CI. Further studies will reveal whether this mechanism is responsible for light induced photoreceptor degeneration.
Collapse
Affiliation(s)
- L Piehl
- Cátedra de Física, Facultad de Farmacia y Bioquímica, UBA. Lanais RLBM, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Calaza KC, Gardino PF, de Mello FG. Transporter mediated GABA release in the retina: Role of excitatory amino acids and dopamine. Neurochem Int 2006; 49:769-77. [PMID: 16956697 DOI: 10.1016/j.neuint.2006.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/05/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
In general, the release of neurotransmitters in the central nervous system is accomplished by a calcium-dependent process which constitutes a common feature of exocytosis, a conserved mechanism for transmitter release in all species. However, neurotransmitters can also be released by the reversal of their transporters. In the retina, a large portion of GABA is released by this mechanism, which is under the control of neuroactive agents, such as excitatory amino acids and dopamine. In this review, we will focus on the transporter mediated GABA release and the role played by excitatory amino acids and dopamine in this process. First, we will discuss the works that used radiolabeled GABA to study the outflow of the neurotransmitter and then the works that took into consideration the endogenous pool of GABA and the topography of GABAergic circuits influenced by excitatory amino acids and dopamine.
Collapse
Affiliation(s)
- K C Calaza
- Departamento de Neurobiologia do Instituto de Biologia da UFF, Brazil.
| | | | | |
Collapse
|
27
|
Diederen RMH, La Heij EC, Deutz NEP, Kijlstra A, Kessels AGH, van Eijk HMH, Liem ATA, Dieudonné S, Hendrikse F. Increased glutamate levels in the vitreous of patients with retinal detachment. Exp Eye Res 2006; 83:45-50. [PMID: 16530753 DOI: 10.1016/j.exer.2005.10.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 08/26/2005] [Accepted: 10/22/2005] [Indexed: 10/24/2022]
Abstract
Experimental models have implicated glutamate in the irreversible damage to retinal cells following retinal detachment. In this retrospective study we investigated a possible role for glutamate and other amino acid neurotransmitters during clinical rhegmatogenous retinal detachment (RRD). Undiluted vitreous samples were obtained from 176 patients undergoing pars plana vitrectomy. The study group consisted of 114 patients (114 eyes) with a rhegmatogenous retinal detachment. Controls included 52 eyes with an idiopathic macular hole or idiopathic epiretinal membrane and 10 eyes with a traction retinal detachment due to proliferative diabetic retinopathy. Vitreous concentrations of glutamate, gamma-aminobutyric acid (GABA), taurine, glycine, and aspartate were determined by high-pressure liquid chromatography (HPLC). Multivariate analysis was used to examine a possible association between amino acid neurotransmitter levels and several clinical variables including visual acuity. The mean vitreous concentration of glutamate in eyes with a rhegmatogenous retinal detachment (16.6 +/- 5.6 microM) was significantly higher as compared to the controls (13.1 +/- 5.2 microM) (P = 0.001). Taurine levels were also increased in RRD, whereas no significant difference could be observed in glycine, aspartate and GABA levels when comparing RRD with controls. A correlation was found between increased vitreous glutamate and a lower pre-operative visual acuity. No association was, however, observed between post-operative visual acuity and the level of any of the five amino acid neurotransmitters. RRD was associated with a significantly increased vitreous glutamate concentration. Using visual acuity as a functional parameter in this study, we could not demonstrate a correlation between vitreous glutamate, or any of the other tested amino acid neurotransmitters and visual outcome.
Collapse
Affiliation(s)
- Roselie M H Diederen
- Department of Ophthalmology, University Hospital Maastricht, 6202 AZ, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Calaza KC, Hokoç JN, Gardino PF. GABAergic circuitry in the opossum retina: a GABA release induced by L-aspartate. Exp Brain Res 2006; 172:322-30. [PMID: 16501965 DOI: 10.1007/s00221-005-0338-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/13/2005] [Indexed: 11/26/2022]
Abstract
Glutamate and gamma-amino butyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the central nervous system (CNS), including the retina. Although in a number of studies the retinal source of GABA was identified, in several species, as horizontal, amacrine cells and cells in the ganglion cell layer, nothing was described for the opossum retina. Thus, the first goal of this study was to determine the pattern of GABAergic cell expression in the South America opossum retina by using an immunohistochemical approach for GABA and for its synthetic enzyme, glutamic acid decarboxylase (GAD). GABA and GAD immunoreactivity showed a similar cellular pattern by appearing in a few faint horizontal cells, topic and displaced amacrine cells. In an effort to extend the knowledge of the opossum retinal circuitry, the possible influence of glutamatergic inputs in GABAergic cells was also studied. Retinas were stimulated with different glutamatergic agonists and aspartate (Asp), and the GABA remaining in the tissue was detected by immunohistochemical procedures. The exposure of retinas to NMDA and kainate resulted the reduction of the number of GABA immunoreactive topic and displaced amacrine cells. The Asp treatment also resulted in reduction of the number of GABA immunoreactive amacrine cells but, in contrast, the displaced amacrine cells were not affected. Finally, the Asp effect was totally blocked by MK-801. This result suggests that Asp could be indeed a putative neurotransmitter in this non-placental animal by acting on an amacrine cell sub-population of GABA-positive NMDA-sensitive cells.
Collapse
Affiliation(s)
- K C Calaza
- Departamento de Neurobiologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
29
|
Zucker CL, Nilson JE, Ehinger B, Grzywacz NM. Compartmental localization of gamma-aminobutyric acid type B receptors in the cholinergic circuitry of the rabbit retina. J Comp Neurol 2005; 493:448-59. [PMID: 16261535 PMCID: PMC2849668 DOI: 10.1002/cne.20766] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although many effects of gamma-aminobutyric acid (GABA) on retinal function have been attributed to GABA(A) and GABA(C) receptors, specific retinal functions have also been shown to be mediated by GABA(B) receptors, including facilitation of light-evoked acetylcholine release from the rabbit retina (Neal and Cunningham [1995] J. Physiol. 482:363-372). To explain the results of a rich set of experiments, Neal and Cunningham proposed a model for this facilitation. In this model, GABA(B) receptor-mediated inhibition of glycinergic cells would reduce their own inhibition of cholinergic cells. In turn, muscarinic input from the latter to the glycinergic cells would complete a negative-feedback circuitry. In this study, we have used immunohistochemical techniques to test elements of this model. We report that glycinergic amacrine cells are GABA(B) receptor negative. In contrast, our data reveal the localization of GABA(B) receptors on cholinergic/GABAergic starburst amacrine cells. High-resolution localization of GABA(B) receptors on starburst amacrine cells shows that they are discretely localized to a limited population of its varicosities, the majority of likely synaptic-release sites being devoid of detectable levels of GABA(B) receptors. Finally, we identify a glycinergic cell that is a potential muscarinic receptor-bearing target of GABA(B)-modulated acetylcholine release. This target is the DAPI-3 cell. We propose, based on these data, a modification of the Neal and Cunningham model in which GABA(B) receptors are on starburst, not glycinergic amacrine cells.
Collapse
Affiliation(s)
- Charles L Zucker
- Department Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
30
|
Martins RAP, Silveira MS, Curado MR, Police AI, Linden R. NMDA receptor activation modulates programmed cell death during early post-natal retinal development: a BDNF-dependent mechanism. J Neurochem 2005; 95:244-53. [PMID: 16181428 DOI: 10.1111/j.1471-4159.2005.03360.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate is a classical excitotoxin of the central nervous system (CNS), but extensive work demonstrates neuroprotective roles of this neurotransmitter in developing CNS. Mechanisms of glutamate-mediated neuroprotection are still under scrutiny. In this study, we investigated mediators of glutamate-induced neuroprotection, and tested whether this neurotransmitter controls programmed cell death in the developing retina. The protective effect of N-methyl-d-aspartate (NMDA) upon differentiating cells of retinal explants was completely blocked by a neutralizing antibody to brain-derived neurotrophic factor (BDNF), but not by an antibody to neurotrophin-4 (NT-4). Consistently, chronic activation of NMDA receptor increased the expression of BDNF and trkB mRNA, as well as BDNF protein content, but did not change the content of NT-4 mRNA in retinal tissue. Furthermore, we showed that in vivo inactivation of NMDA receptor by intraperitoneal injections of MK-801 increased natural cell death of specific cell populations of the post-natal retina. Our results show that chronic activation of NMDA receptors in vitro induces a BDNF-dependent neuroprotective state in differentiating retinal cells, and that NMDA receptor activation controls programmed cell death of developing retinal neurons in vivo.
Collapse
Affiliation(s)
- Rodrigo A P Martins
- Laboratorio de Neurogenese, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
31
|
Linden R, Martins RAP, Silveira MS. Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 2004; 24:457-91. [PMID: 15845345 DOI: 10.1016/j.preteyeres.2004.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has long been known that a barrage of signals from neighboring and connecting cells, as well as components of the extracellular matrix, control cell survival. Given the extensive repertoire of retinal neurotransmitters, neuromodulators and neurotrophic factors, and the exhuberant interconnectivity of retinal interneurons, it is likely that various classes of released neuroactive substances may be involved in the control of sensitivity to retinal cell death. The aim of this article is to review evidence that neurotransmitters and neuropeptides control the sensitivity to programmed cell death in the developing retina. Whereas the best understood mechanism of execution of cell death is that of caspase-mediated apoptosis, current evidence shows that not only there are many parallel pathways to apoptotic cell death, but non-apoptotic programs of execution of cell death are also available, and may be triggered either in isolation or combined with apoptosis. The experimental data show that many upstream signaling pathways can modulate cell death, including those dependent on the second messengers cAMP-PKA, calcium and nitric oxide. Evidence for anterograde neurotrophic control is provided by a variety of models of the central nervous system, and the data reviewed here indicate that an early function of certain neurotransmitters, such as glutamate and dopamine, as well as neuropeptides such as pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide is the trophic support of cell populations in the developing retina. This may have implications both regarding the mechanisms of retinal organogenesis, as well as pathological conditions leading to retinal dystrophies and to dysfunctional cellular behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Centro de Ciencias da Saude, Instituto de Biofísica da UFRJ, Cidade Universitária, bloco G, Rio de Janeiro 21949-900, Brazil.
| | | | | |
Collapse
|
32
|
Guenther E, Schmid S, Wheeler-Schilling T, Albach G, Gründer T, Fauser S, Kohler K. Developmental plasticity of NMDA receptor function in the retina and the influence of light. FASEB J 2004; 18:1433-5. [PMID: 15247153 DOI: 10.1096/fj.03-0618fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the early expression of NMDA receptors (NMDARs) in the retina, not much is known about their regulation and involvement in plasticity processes during retinal development and synapse formation. Here we report that NMDAR function in the inner retina is developmentally regulated and controlled by ambient light condition. A prominent down-regulation after eye opening of NMDAR function was observed in rat retinal ganglion cells (RGCs), which was prevented by dark rearing the animals for 1 month but was again induced by subsequent light exposure. As shown by molecular analysis of single RGCs, alterations in the subunit composition of NMDAR did not account for the light-dependent regulation of NMDAR function. Immunocytochemistry showed no differences in the NMDAR protein expression pattern between normal and dark-reared animals. In conclusion, our data clearly demonstrate that NMDAR function is modulated during periods of retinal plasticity independent of structural alterations in its subunit composition and thus different from mechanisms observed in higher visual centers.
Collapse
Affiliation(s)
- Elke Guenther
- Department of Pathophysiology of Vision and Neuro-Ophthalmology, Division of Experimental Ophthalmology, Laboratory for Cell Physiology and Molecular Biology, University Eye Hospital, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Visual disturbances are a common side-effect of many antiepileptic drugs. Non-specific retino- and neurotoxic visual abnormalities, that are often reported with over-dosage and prolonged AED use, include diplopia, blurred vision and nystagmus. Some anticonvulsants are associated with specific visual problems that may be related to the mechanistic properties of the drug, and occur even when the drugs are administered within the recommended daily dose. Vigabatrin, a GABA-transaminase inhibitor, has been associated with bilateral concentric visual field loss, electrophysiological changes, central visual function deficits including reduced contrast sensitivity and abnormal colour perception, and morphological alterations of the fundus and retina. Topiramate, a drug that enhances GABAergic transmission, has been associated with cases of acute closed angle glaucoma, while tiagabine, a GABA uptake inhibitor, has been investigated for a potential GABAergic effect on the visual field. Only mild neurotoxic effects have been identified for patients treated with gabapentin, a drug designed as a cyclic analogue of GABA but exhibiting an unknown mechanism while carbamazepine, an inhibitor of voltage-dependent sodium channels, has been linked with abnormal colour perception and reduced contrast sensitivity. The following review outlines the visual disturbances associated with some of the most commonly prescribed anticonvulsants. For each drug, the ocular site of potential damage and the likely mechanism responsible for the adverse visual effects is described.
Collapse
Affiliation(s)
- Emma J Roff Hilton
- Neurosciences Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7E7, UK
| | | | | |
Collapse
|
34
|
Calaza KDC, de Mello MCF, de Mello FG, Gardino PF. Local differences in GABA release induced by excitatory amino acids during retina development: selective activation of NMDA receptors by aspartate in the inner retina. Neurochem Res 2003; 28:1475-85. [PMID: 14570392 DOI: 10.1023/a:1025662106846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate and GABA are the major excitatory and inhibitory neurotransmitters in the CNS. In the retina, it has been shown that glutamate and aspartate and their agonists kainate and NMDA promote the release of GABA. In the chick retina, at embryonic day 14 (E14), glutamate and kainate were able to induce the release of GABA from amacrine and horizontal cells as detected by GABA-immunoreactivity. NMDA also induced GABA release restricted to amacrine cell population and its projections to the inner plexiform layer (E14 and E18). Although aspartate reduced GABA immunoreactivity, specifically in amacrine cells of E18 retinas, it was not efficient to promote GABA release from retinas at E14. As observed in differentiated retinas, dopamine inhibited the GABA release promoted by NMDA and aspartate but not by kainate. Our data show that different retinal sites respond to distinct EAAs via different receptor systems.
Collapse
Affiliation(s)
- Karin da Costa Calaza
- Departamento de Neurobiologia do Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | | | | | | |
Collapse
|
35
|
Kugler P, Beyer A. Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem Cell Biol 2003; 120:199-212. [PMID: 12898275 DOI: 10.1007/s00418-003-0555-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2003] [Indexed: 12/22/2022]
Abstract
l-Glutamate is the major excitatory transmitter in the vertebrate retina and plays a central role in the transmission of the various retinal neurons. Glutamate is removed from the extracellular space by at least five different glutamate transporters. The cellular distribution of these has been studied so far mainly using immunocytochemistry. In the present study non-radioactive in situ hybridisation using complementary RNA probes was applied in order to identify the cell types of rat retina and optic nerve expressing generic GLT1, GLT1 variant (GLT1v or GLT1B), GLAST and EAAC1. The results were compared with immunocytochemical data achieved using affinity-purified antibodies against transporter peptides. In the immunohistochemical studies the human retina was included. The study showed that in the rat retina GLT1v and EAAC1 were coexpressed in various cell types, i.e. photoreceptor, bipolar, horizontal, amacrine, ganglion and Müller cells, whereas GLAST was only detected in Müller cells and astrocytes. In the rat optic nerve GLT1v and EAAC1 were preferentially expressed in oligodendrocytes, whereas GLAST was revealed to be present mainly in astrocytes. Generic GLT1 could not be detected in the retina or optic nerve. The cellular distribution of glutamate transporters (only immunocytochemistry) in the human retina was very similar to that of the rat retina. Remarkable results of our studies were that generic GLT1 was not detectable in the rat (and human) retina and that GLT1v and EAAC1 were demonstrable in most cell types of the retina (including photoreceptor cells and their terminals).
Collapse
Affiliation(s)
- Peter Kugler
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
36
|
Stasi K, Naskar R, Thanos S, Kouvelas ED, Mitsacos A. Benzodiazepine and kainate receptor binding sites in the RCS rat retina. Graefes Arch Clin Exp Ophthalmol 2003; 241:154-60. [PMID: 12605271 DOI: 10.1007/s00417-002-0611-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Revised: 08/20/2002] [Accepted: 11/14/2002] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The effect of age and photoreceptor degeneration on the kainate subtype of glutamate receptors and on the benzodiazepine-sensitive gamma-aminobutyric acid-A receptors (GABA(A)) in normal and RCS (Royal College of Surgeons) rats were investigated. METHODS [(3)H]Kainate and [(3)H]flunitrazepam were used as radioligands for kainate and GABA(A)/benzodiazepine()receptors, respectively, using the quantitative receptor autoradiography technique. RESULTS In both normal and RCS rat retina we observed that [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were several times higher in inner plexiform layer (IPL) than in outer plexiform layer (OPL) at all four ages studied (P17, P35, P60 and P180). Age-related changes in receptor binding were observed in normal rat retina: [(3)Eta]flunitrazepam binding showed a significant decrease of 25% between P17 and P60 in IPL,and [(3)Eta]kainate binding showed significant decreases between P17 and P35 in both synaptic layers (71% in IPL and 63% in OPL). Degeneration-related changes in benzodiazepine and kainate receptor binding were observed in RCS rat retina. In IPL, [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were higher than in normal retina at P35 (by 24% and 86%, respectively). In OPL, [(3)Eta]flunitrazepam binding was higher in RCS than in normal retina on P35 (74%) and also on P60 (62%). CONCLUSIONS The results indicate that postnatal changes occur in kainate and benzodiazepine receptor binding sites in OPL and IPL of the rat retina up to 6 months of age. The data also suggest that the receptor binding changes observed in the RCS retina could be a consequence of the primary photoreceptor degeneration.
Collapse
Affiliation(s)
- Kalliopi Stasi
- Department of Physiology, Faculty of Medicine, University of Patras, 26500, Patras, Greece.
| | | | | | | | | |
Collapse
|
37
|
Kreitzer MA, Andersen KA, Malchow RP. Glutamate modulation of GABA transport in retinal horizontal cells of the skate. J Physiol 2003; 546:717-31. [PMID: 12562999 PMCID: PMC2342591 DOI: 10.1113/jphysiol.2002.034421] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mM ) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 microM) and SKF89976-A (100 microM), but was unaffected by 100 microM picrotoxin. Prior application of 100 microM glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mM) and thapsigargin (2 nM), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells.
Collapse
Affiliation(s)
- Matthew A Kreitzer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
38
|
Müller F. Processing retinal tissue for in situ hybridization. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 47:85-92. [PMID: 12198805 DOI: 10.1016/s0074-7742(02)47054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- F Müller
- Institut für Biologische Informationsverarbeitung 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
39
|
Sholl-Franco A, Marques PMB, Ferreira CMC, de Araujo EG. IL-4 increases GABAergic phenotype in rat retinal cell cultures: involvement of muscarinic receptors and protein kinase C. J Neuroimmunol 2002; 133:20-9. [PMID: 12446004 DOI: 10.1016/s0165-5728(02)00327-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-4 (IL-4) is an anti-inflammatory cytokine. During injuries, infections and neurodegenerative diseases, high levels of this molecule are expressed in the brain. In the present work, we investigated the effect of IL-4 on GABAergic differentiation of retinal cells kept in vitro. We analyzed either the uptake of [3H]-gamma-aminobutyric acid (GABA) or the expression of glutamic acid decarboxylase (GAD-67) following IL-4 treatment. We have also investigated the pharmacological modulation of the [3H]-GABA uptake by cholinergic activation. Our results demonstrate that IL-4 increases the uptake of [3H]-GABA after 48 h in culture in a dose-dependent manner (0.5-100 U/ml). The maximal effect was obtained with 5 U/ml (75% increase). This effect was blocked by 1 mM of nipecotic acid, demonstrating the involvement of the GAT-1 subtype of GABA transporter. The IL-4 effect depends on M1 muscarinic activity, an increase in intracellular calcium levels, tyrosine kinase activity and protein kinase C (PKC) activity. Treatment with IL-4 for 48 h induced an increase of 90% in the number of GAD- and GABA-immunoreactive cells when compared with control cultures. Our results indicate that IL-4 modulates the GABAergic phenotype of retinal cells in culture. This result can suggest an important role for this cytokine either during the normal development of retinal circuitry or during neuroprotection after injuries.
Collapse
Affiliation(s)
- Alfred Sholl-Franco
- Departamento de Neurobiologia, Programa de Neuroimunologia, Instituto de Biologia, Centro de Estudos Gerais, Universidade Federal Fluminense, CP# 100180, RJ 24001-970, RJ, Niterói, Brazil
| | | | | | | |
Collapse
|
40
|
Cheon EW, Park CH, Kang SS, Cho GJ, Yoo JM, Song JK, Choi WS. Nitric oxide synthase expression in the transient ischemic rat retina: neuroprotection of betaxolol. Neurosci Lett 2002; 330:265-9. [PMID: 12270643 DOI: 10.1016/s0304-3940(02)00804-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Betaxolol is a beta-adrenergic blocker but its neuroprotective action is generally thought to be due to its calcium channel blocking properties. In this study, we investigated neuronal cell damage and changes in the expression of neuronal nitric oxide synthase (nNOS) immunoreactivity in the ischemic retina and its relationship to the neuroprotection of betaxolol treatment after ischemic injury. Using the retina after ischemia, the expression of nNOS was studied by immunocytochemistry. In control retinas, two types of amacrine cells and a class of displaced amacrine cells were nNOS-labeled. After ischemia/reperfusion, the number of nNOS immunoreactive cells increased in both the ganglion cell layer and the inner nuclear layer compared to the control retinas. However, when experiments were carried out on animals that had been treated with betaxolol twice daily after ischemia/reperfusion, the number of nNOS immunoreactive cells decreased compared to the untreated ischemic retinas. These results suggest that an increase in nNOS expression could be associated with the degenerative changes in the ischemic retina, and that betaxolol treatment appears to play a role in protecting retinal tissue from ischemic damage.
Collapse
Affiliation(s)
- Eun Woo Cheon
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, 92 Chilam-dong, Chinju, Kyungnam 660-751, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhao JW, Yang XL. Glutamate transporter EAAC1 is expressed on Müller cells of lower vertebrate retinas. J Neurosci Res 2001; 66:89-95. [PMID: 11599005 DOI: 10.1002/jnr.1200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of glutamate transporter EAAC1 was investigated in carp and bullfrog retinas using Western blotting, immunofluorescence double labeling and confocal laser scanning microscopic techniques. In addition to a variety of retinal neurons, radially oriented elements spanning the whole neural retinas of carp and bullfrog were also EAAC1-immunoreactive, and EAAC1 was found to be predominantly on the cell membrane. Virtually all EAAC1-labeled radial elements were immunopositive to glial fibrillary acidic protein (GFAP), a specific marker for retinal Müller cells of carp and bullfrog, indicating that they were Müller cells. This finding suggests that EAAC1, which has been thought to be an exclusively neuronal type, may be a glial transporter as well. EAAC1 of Müller cells may play an important modulatory role in the retina by making contributions to glutamate homeostasis.
Collapse
Affiliation(s)
- J W Zhao
- Institute of Neurobiology, Fudan University and Shanghai Institute of Physiology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | |
Collapse
|
42
|
Yang XL, Li P, Lu T, Shen Y, Han MH. Physiological and pharmacological characterization of glutamate and GABA receptors on carp retinal neurons. PROGRESS IN BRAIN RESEARCH 2001; 131:277-93. [PMID: 11420948 DOI: 10.1016/s0079-6123(01)31023-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- X L Yang
- Institute of Neurobiology, Fudan University and Shanghai Institute of Physiology, Chinese Academy of Sciences, 220 Han-Dan Road, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
43
|
Abstract
This review provides an overview of the distributions, properties and roles of amino acid transport systems in normal and pathological retinal tissues and discusses the roles of specific identified transporters in the mammalian retina. The retina is used in this context as a vehicle for describing neuronal and glial properties, which are in some, but not all cases comparable to those found elsewhere an the brain. Where significant departures are noted, these are discussed in the context of functional specialisations of the retina and its relationship to adjacent supporting tissues such as the retinal pigment epithelium. Specific examples are given where immunocytochemical labelling for amino acid transporters may yield inaccurate results, possibly because of activity-dependent conformation changes of epitopes in these proteins which render the epitopes more or less accessible to antibodies.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
44
|
Toimela TA, Tähti H. Effects of mercuric chloride exposure on the glutamate uptake by cultured retinal pigment epithelial cells. Toxicol In Vitro 2001; 15:7-12. [PMID: 11259864 DOI: 10.1016/s0887-2333(00)00057-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cytotoxicity of mercuric chloride and the effects of mercuric chloride on glutamate and calcium uptake and the factors regulating glutamate uptake were studied in retinal pigment epithelium (RPE) cell cultures. RPE cells isolated from pig eyes and human RPE cell line (D407) cells were cultured to confluency and further subcultured according to the test protocol in question. The cytotoxicity caused by 15 min of exposure to mercuric chloride (0.01--1000 microM) was evaluated by WST-1 assay based on the activity of mitochondrial dehydrogenases. [(3)H]Glutamate uptake was measured after the cells were exposed to 0.1--100 microM mercuric chloride and the selected regulators of protein kinase C (PKC) pathway: PKC activator SC10, PKC inhibitor chelerythrine chloride, phospholipase A(2)/C inhibitor manoalide, tyrosine kinase inhibitor lavendustin A, competitive NMDA receptor antagonist AP7 and IP(3) receptor antagonist heparin. Intracellular calcium was monitored with Fluo-3 probe starting immediately after the exposure to 1--1000 microM mercuric chloride. Mercuric chloride showed concentration-dependent effects on cell viability, on glutamate uptake and on intracellular calcium concentration. The results give some support to the concept that glutamate uptake is affected by PKC. The PKC inhibitor chelerythrine chloride decreased glutamate uptake by 25%, but the PKC activator SC10 could partly prevent the inhibitory effect of mercuric chloride. Lavendustin A, manoalide and heparin had smaller, but statistically significant, effects. All these substances act on mediators which can regulate the activity of PKC. However, PKC is not likely to be the only regulator of glutamate uptake. The rise observed in [Ca(2+)](i) may initiate various cellular events during mercury intoxication.
Collapse
Affiliation(s)
- T A Toimela
- Tampere University Medical School, FIN-33014 University of Tampere, Finland
| | | |
Collapse
|
45
|
Michel S, Schoch K, Stevenson PA. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 2000; 425:244-56. [PMID: 10954843 DOI: 10.1002/1096-9861(20000918)425:2<244::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We identified putative transmitters of the photoreceptors and circadian pacemaker neurons and found candidates for efferent control in the eye of the marine mollusc Bulla gouldiana. Established antisera against octopamine, dopamine, serotonin, histamine, glutamate, gamma-aminobutyric acid (GABA), and taurine were used, and central ganglia were processed in parallel to evaluate general staining quality. Photoreceptors and circadian pacemaker cells both expressed immunoreactivity for glutamate and taurine. The eye and its sheath were devoid of GABA-like immunoreactive material, and none of the antisera directed against biogenic amines labelled cells or processes in the nervous tissue of the eye. However, dopamine and octopamine antisera stained large spherical granules (diameter 2-3 microm) contained in granular cells that are located in the connective tissue encapsulating the eye and the optic nerve. The serotonin antiserum revealed a sparse distribution of varicose axon fibers in the optic nerve and eye sheath. No histamine-immunoreactive processes were revealed in the eye. The functional significance of these findings for the molluscan eye and its circadian clock is discussed.
Collapse
Affiliation(s)
- S Michel
- Institut für Zoologie, Universität Leipzig, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
46
|
Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E. Electrical multisite stimulation of the isolated chicken retina. Vision Res 2000; 40:1785-95. [PMID: 10814763 DOI: 10.1016/s0042-6989(00)00005-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Visual prostheses such as subretinal implants are intended for electrical multisite excitation of the retinal network. To investigate relevant issues like spatial resolution and operational range, we have developed an in vitro method using microelectrode arrays to stimulate isolated retinae. Ganglion cell activity in the chicken retina evoked by distally applied spatial voltage patterns consisted of fast bursts, transient inhibition and delayed discharges, and depended on the amount, location and spatial pattern of the injected charge. The response was altered or disappeared when synaptic transmission was blocked. Our results indicate that shape perception and object location can be partially achieved with subretinal electrical multisite stimulation.
Collapse
Affiliation(s)
- A Stett
- NMI Natural and Medical Sciences Institute, Markwiesenstrasse 55, D-72770, Reutlingen, Germany.
| | | | | | | | | |
Collapse
|
47
|
Du JL, Yang XL. Subcellular localization and complements of GABA(A) and GABA(C) receptors on bullfrog retinal bipolar cells. J Neurophysiol 2000; 84:666-76. [PMID: 10938294 DOI: 10.1152/jn.2000.84.2.666] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Aminobutyric acid (GABA) receptors on retinal bipolar cells (BCs) are highly relevant to spatial and temporal integration of visual signals in the outer and inner retina. In the present work, subcellular localization and complements of GABA(A) and GABA(C) receptors on BCs were investigated by whole cell recordings and local drug application via multi-barreled puff pipettes in the bullfrog retinal slice preparation. Four types of the BCs (types 1-4) were identified morphologically by injection of Lucifer yellow. According to the ramification levels of the axon terminals and the responses of these cells to glutamate (or kainate) applied at their dendrites, types 1 and 2 of BCs were supposed to be OFF type, whereas types 3 and 4 of BCs might be ON type. Bicuculline (BIC), a GABA(A) receptor antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist, were used to distinguish GABA receptor-mediated responses. In all BCs tested, not only the axon terminals but also the dendrites showed high GABA sensitivity mediated by both GABA(A) and GABA(C) receptors. Subcellular localization and complements of GABA(A) and GABA(C) receptors at the dendrites and axon terminals were highly related to the dichotomy of OFF and ON BCs. In the case of OFF BCs, GABA(A) receptors were rather evenly distributed at the dendrites and axon terminals, but GABA(C) receptors were predominantly expressed at the axon terminals. Moreover, the relative contribution of GABA(C) receptors to the axon terminals was prevalent over that of GABA(A) receptors, while the situation was reversed at the dendrites. In the case of ON BCs, GABA(A) and GABA(C) receptors both preferred to be expressed at the axon terminals; relative contributions of these two GABA receptor subtypes to both the sites were comparable, while GABA(C) receptors were much less expressed than GABA(A) receptors. GABA(A), but not GABA(C) receptors, were expressed clusteringly at axons of a population of BCs. In a minority of BCs, I4AA suppressed the GABA(C) responses at the dendrites, but not at the axon terminal, implying that the GABA(C) receptors at these two sites may be heterogeneous. Taken together, these results suggest that GABA(A) and GABA(C) receptors may play different roles in the outer and inner retina and the differential complements of the two receptors on OFF and ON BCs may be closely related to physiological functions of these cells.
Collapse
Affiliation(s)
- J L Du
- Shanghai Institute of Physiology and Key Laboratory of Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
48
|
Ohia SE, Opere CA, Awe SO, Adams L, Sharif NA. Human, bovine, and rabbit retinal glutamate-induced [3H]D-aspartate release: role in excitotoxicity. Neurochem Res 2000; 25:853-60. [PMID: 10944004 DOI: 10.1023/a:1007525725996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pharmacological basis of glutamate-induced [3H]D-aspartate release was investigated in isolated human, bovine and rabbit retinas. Isolated mammalian retinas were preloaded with [3H]D-aspartate and then prepared for studies of neurotransmitter release using the superfusion method. Release of [3H]D-aspartate was elicited by K+ (50 mM) or by L-glutamate. In bovine retinas, L-glutamate, but not D-glutamate induced an overflow of [3H]D-aspartate that was partially inhibited by low external calcium, omega-conotoxin (10 nM) or nitrendipine (1 microM). Metabotropic glutamate receptor (GLUR) agonists also evoked [3H]D-aspartate release in both bovine and human retinas whereas polyamines only enhanced the excitatory effects of L-glutamate on [3H]D-aspartate release. Antagonists of GLURs and the polyamine site inhibited L-glutamate evoked [3H]D-aspartate overflow with the following rank order of potency: MCPG >ifenprodil > AP-5 > arcaine> MK-801. In conclusion, L-glutamate-induces a stereoselective, calcium-dependent release of [3H]D-aspartate from isolated mammalian retinas that can be mimicked by GLUR agonists (and blocked by both receptor and polyamine site antagonists).
Collapse
Affiliation(s)
- S E Ohia
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy and Allied Health Profession, Creighton University, Omaha, NE 68178, USA.
| | | | | | | | | |
Collapse
|
49
|
Andrade da Costa BL, de Mello FG, Hokoç JN. Transporter-mediated GABA release induced by excitatory amino acid agonist is associated with GAD-67 but not GAD-65 immunoreactive cells of the primate retina. Brain Res 2000; 863:132-42. [PMID: 10773201 DOI: 10.1016/s0006-8993(00)02111-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The release of GABA from amacrine and interplexiform cells after exposure to excitatory amino acids (EAAs) agonists was investigated by immunohistochemistry. Cebus monkey retinas were treated in vitro with 50 microM kainate (KA) or 5 mM L-Glutamate (L-Glu), for 30 min at 37 degrees C. The effects of the EAAs were measured by detecting immunocytochemically the GABA remaining in the tissue after stimulation. L-Glu and KA reduced the number of GABA-immunoreactive perikarya in the innermost part of the inner nuclear layer by approximately 60% and 80%, respectively, as compared to controls. The cell processes in the inner plexiform layer (IPL) were restricted to only three defined bands in the strata 1, 3 and 5, as compared to an intense and homogeneous labeling in the IPL of the untreated retinas. The effect of KA was inhibited by 100 microM CNQX, 100 microM NNC-711, or when Na(+) was replaced by choline. The release of GABA was Ca(2+)-independent, suggesting the mobilization of GABA from the cytoplasmic pool of this neurotransmitter. At least two subsets of retinal neurons including amacrine and interplexiform cells retained GABA-immunoreactivity after stimulation with EAAs, as revealed by glutamic acid decarboxylase (GAD) immunocytochemistry. Our results suggest that non-NMDA receptor activation by KA and glutamate are associated with the efflux of GABA from cells of the inner retina (amacrine and interplexiform cells). The data also show that cells containing GAD-67 released GABA via its transporter, while cells containing exclusively GAD-65 apparently did not release the neurotransmitter by the reversal of the transporter.
Collapse
|
50
|
Calderón F, Rodríguez G, López E, López-Colomé AM. Calcium-independent release of [3H]spermine from chick retina. Brain Res 2000; 854:1-5. [PMID: 10784099 DOI: 10.1016/s0006-8993(99)02157-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spermine has been shown to influence NMDA receptor function through an interaction at the coagonist site for glycine in the central nervous system (CNS) and the retina. In order to support a role for spermine as neurotransmitter or neuromodulator in the chick retina, specific stimulated-release of spermine should be demonstrated. Isolated chick retinas, preloaded with [3H]spermine, were stimulated with 1 mM NMDA and other glutamate agonists at ionotropic receptors, in a continuous superfusion system. [3H]spermine was released from the retina by depolarization with 50 mM KCl, in a Ca2+-independent manner. Inhibition of Na+/K+-ATPase by ouabain or digitoxigenin also induced spermine release following 36 min in the presence of the drugs; such effect seems unrelated to changes in Na+ electrochemical gradients, since nigericin and veratrine did not induce release in Na+ containing medium. The lack of effect of glutamate, NMDA and kainate at 1 mM concentration, suggests that release of spermine in the retina is mediated by the reversal of uptake and not necessarily linked to EAA-receptor activation.
Collapse
Affiliation(s)
- F Calderón
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico DF
| | | | | | | |
Collapse
|