1
|
Jackson MB, Chiang CW, Cheng J. Fusion pore flux controls the rise-times of quantal synaptic responses. J Gen Physiol 2024; 156:e202313484. [PMID: 38860965 PMCID: PMC11167452 DOI: 10.1085/jgp.202313484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
The release of neurotransmitter from a single synaptic vesicle generates a quantal response, which at excitatory synapses in voltage-clamped neurons is referred to as a miniature excitatory postsynaptic current (mEPSC). We analyzed mEPSCs in cultured mouse hippocampal neurons and in HEK cells expressing postsynaptic proteins enabling them to receive synaptic inputs from cocultured neurons. mEPSC amplitudes and rise-times varied widely within and between cells. In neurons, mEPSCs with larger amplitudes had longer rise-times, and this correlation was stronger in neurons with longer mean rise-times. In HEK cells, this correlation was weak and unclear. Standard mechanisms thought to govern mEPSCs cannot account for these results. We therefore developed models to simulate mEPSCs and assess their dependence on different factors. Modeling indicated that longer diffusion times for transmitters released by larger vesicles to reach more distal receptors cannot account for the correlation between rise-time and amplitude. By contrast, incorporating the vesicle size dependence of fusion pore expulsion time recapitulated experimental results well. Larger vesicles produce mEPSCs with larger amplitudes and also take more time to lose their content. Thus, fusion pore flux directly contributes to mEPSC rise-time. Variations in fusion pores account for differences among neurons, between neurons and HEK cells, and the correlation between rise-time and the slope of rise-time versus amplitude plots. Plots of mEPSC amplitude versus rise-time are sensitive to otherwise inaccessible properties of a synapse and offer investigators a means of assessing the role of fusion pores in synaptic release.
Collapse
Affiliation(s)
- Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin—Madison, Madison, WI, USA
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin—Madison, Madison, WI, USA
| | - Jinbo Cheng
- Department of Neuroscience, University of Wisconsin—Madison, Madison, WI, USA
| |
Collapse
|
2
|
Hao Y, Toulmé E, König B, Rosenmund C, Plested AJR. Targeted sensors for glutamatergic neurotransmission. eLife 2023; 12:e84029. [PMID: 36622100 PMCID: PMC9917459 DOI: 10.7554/elife.84029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Optical report of neurotransmitter release allows visualisation of excitatory synaptic transmission. Sensitive genetically-encoded fluorescent glutamate reporters operating with a range of affinities and emission wavelengths are available. However, without targeting to synapses, the specificity of the fluorescent signal is uncertain, compared to sensors directed at vesicles or other synaptic markers. We fused the state-of-the-art reporter iGluSnFR to glutamate receptor auxiliary proteins in order to target it to postsynaptic sites. Chimeras of Stargazin and gamma-8 that we named SnFR-γ2 and SnFR-γ8, were enriched at synapses, retained function and reported spontaneous glutamate release in rat hippocampal cells, with apparently diffraction-limited spatial precision. In autaptic mouse neurons cultured on astrocytic microislands, evoked neurotransmitter release could be quantitatively detected at tens of synapses in a field of view whilst evoked currents were recorded simultaneously. These experiments revealed a specific postsynaptic deficit from Stargazin overexpression, resulting in synapses with normal neurotransmitter release but without postsynaptic responses. This defect was reverted by delaying overexpression. By working at different calcium concentrations, we determined that SnFR-γ2 is a linear reporter of the global quantal parameters and short-term synaptic plasticity, whereas iGluSnFR is not. On average, half of iGluSnFR regions of interest (ROIs) showing evoked fluorescence changes had intense rundown, whereas less than 5% of SnFR-γ2 ROIs did. We provide an open-source analysis suite for extracting quantal parameters including release probability from fluorescence time series of individual and grouped synaptic responses. Taken together, postsynaptic targeting improves several properties of iGluSnFR and further demonstrates the importance of subcellular targeting for optogenetic actuators and reporters.
Collapse
Affiliation(s)
- Yuchen Hao
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Estelle Toulmé
- Institute for Neurophysiology, Charité - Universitätsmedizin BerlinBerlinGermany
| | - Benjamin König
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Christian Rosenmund
- Institute for Neurophysiology, Charité - Universitätsmedizin BerlinBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Andrew JR Plested
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| |
Collapse
|
3
|
Gradwell MA, Smith KM, Dayas CV, Smith DW, Hughes DI, Callister RJ, Graham BA. Altered Intrinsic Properties and Inhibitory Connectivity in Aged Parvalbumin-Expressing Dorsal Horn Neurons. Front Neural Circuits 2022; 16:834173. [PMID: 35874431 PMCID: PMC9305305 DOI: 10.3389/fncir.2022.834173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of pain symptoms such as allodynia are known to increase with age. Parvalbumin expressing interneurons (PVINs) within the dorsal horn (DH) of the spinal cord play an important role in allodynia whereby their inhibitory connections prevent innocuous touch information from exciting nociceptive pathways. Here we ask whether the functional properties of PVINs are altered by aging, comparing their functional properties in adult (3–7 month) and aged mice (23–28 month). Patch clamp recordings were made from PVINs in laminae IIi-III of parasagittal spinal cord slices. The intrinsic excitability of PVINs changed with age. Specifically, AP discharge shifted from initial bursting to tonic firing, and firing duration during current injection increased. The nature of excitatory synaptic input to PVINs also changed with age with larger but less frequent spontaneous excitatory currents occurring in aged mice, however, the net effect of these differences produced a similar level of overall excitatory drive. Inhibitory drive was also remarkably similar in adult and aged PVINs. Photostimulation of ChR2 expressing PVINs was used to study inhibitory connections between PVINs and unidentified DH neurons and other PVINs. Based on latency and jitter, monosynaptic PVIN to unidentified-cell and PVIN-PVIN connections were compared in adult and aged mice, showing that PVIN to unidentified-cell connection strength increased with age. Fitting single or double exponentials to the decay phase of IPSCs showed there was also a shift from mixed (glycinergic and GABAergic) to GABAergic inhibitory transmission in aged animals. Overall, our data suggest the properties of PVIN neurons in aged animals enhance their output in spinal circuits in a manner that would blunt allodynia and help maintain normal sensory experience during aging.
Collapse
Affiliation(s)
- Mark A. Gradwell
- Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Kelly M. Smith
- Centre for Neuroscience, Science Tower, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher V. Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Douglas W. Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett A. Graham,
| |
Collapse
|
4
|
Hao Y, Plested AJ. Seeing glutamate at central synapses. J Neurosci Methods 2022; 375:109531. [DOI: 10.1016/j.jneumeth.2022.109531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
|
5
|
Chiang CW, Shu WC, Wan J, Weaver BA, Jackson MB. Recordings from neuron-HEK cell cocultures reveal the determinants of miniature excitatory postsynaptic currents. J Gen Physiol 2021; 153:211910. [PMID: 33755721 PMCID: PMC7992392 DOI: 10.1085/jgp.202012849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.
Collapse
Affiliation(s)
- Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wen-Chi Shu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jun Wan
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Beth A Weaver
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
6
|
Kramvis I, van Westen R, Lammertse HCA, Riga D, Heistek TS, Loebel A, Spijker S, Mansvelder HD, Meredith RM. Dysregulated Prefrontal Cortex Inhibition in Prepubescent and Adolescent Fragile X Mouse Model. Front Mol Neurosci 2020; 13:88. [PMID: 32528248 PMCID: PMC7264168 DOI: 10.3389/fnmol.2020.00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Changes in excitation and inhibition are associated with the pathobiology of neurodevelopmental disorders of intellectual disability and autism and are widely described in Fragile X syndrome (FXS). In the prefrontal cortex (PFC), essential for cognitive processing, excitatory connectivity and plasticity are found altered in the FXS mouse model, however, little is known about the state of inhibition. To that end, we investigated GABAergic signaling in the Fragile X Mental Retardation 1 (FMR1) knock out (Fmr1-KO) mouse medial PFC (mPFC). We report changes at the molecular, and functional levels of inhibition at three (prepubescence) and six (adolescence) postnatal weeks. Functional changes were most prominent during early postnatal development, resulting in stronger inhibition, through increased synaptic inhibitory drive and amplitude, and reduction of inhibitory short-term synaptic depression. Noise analysis of prepubescent post-synaptic currents demonstrated an increased number of receptors opening during peak current in Fmr1-KO inhibitory synapses. During adolescence amplitudes and plasticity changes normalized, however, the inhibitory drive was now reduced in Fmr1-KO, while synaptic kinetics were prolonged. Finally, adolescent GABAA receptor subunit α2 and GABAB receptor subtype B1 expression levels were different in Fmr1-KOs than WT littermate controls. Together these results extend the degree of synaptic GABAergic alterations in FXS, now to the mPFC of Fmr1-KO mice, a behaviourally relevant brain region in neurodevelopmental disorder pathology.
Collapse
Affiliation(s)
- Ioannis Kramvis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Rhodé van Westen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Hanna C A Lammertse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Danai Riga
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Alex Loebel
- Department of Neurobiology, Ludwig-Maximilians Universitat, Munich, Germany
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
7
|
Proportional Downscaling of Glutamatergic Release Sites by the General Anesthetic Propofol at Drosophila Motor Nerve Terminals. eNeuro 2020; 7:ENEURO.0422-19.2020. [PMID: 32019872 PMCID: PMC7053172 DOI: 10.1523/eneuro.0422-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 01/12/2023] Open
Abstract
Propofol is the most common general anesthetic used for surgery in humans, yet its complete mechanism of action remains elusive. In addition to potentiating inhibitory synapses in the brain, propofol also impairs excitatory neurotransmission. We use electrophysiological recordings from individual glutamatergic boutons in male and female larval Drosophila melanogaster motor nerve terminals to characterize this effect. We recorded from two bouton types, which have distinct presynaptic physiology and different average numbers of release sites or active zones. We show that a clinically relevant dose of propofol (3 μm) impairs neurotransmitter release similarly at both bouton types by decreasing the number of active release sites by half, without affecting release probability. In contrast, an analog of propofol has no effect on glutamate release. Coexpressing a truncated syntaxin1A protein in presynaptic boutons completely blocked this effect of propofol. Overexpressing wild-type syntaxin1A in boutons also conferred a level of resistance by increasing the number of active release sites to a physiological ceiling set by the number of active zones or T-bars, and in this way counteracting the effect of propofol. These results point to the presynaptic release machinery as a target for the general anesthetic. Proportionally equivalent effects of propofol on the number of active release sites across the different bouton types suggests that glutamatergic circuits that involve smaller boutons with fewer release sites may be more vulnerable to the presynaptic effects of the drug.
Collapse
|
8
|
Ge D, Noakes PG, Lavidis NA. What are Neurotransmitter Release Sites and Do They Interact? Neuroscience 2020; 425:157-168. [DOI: 10.1016/j.neuroscience.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022]
|
9
|
The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores. J Neurosci 2018; 38:7179-7191. [PMID: 30012692 DOI: 10.1523/jneurosci.0721-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 01/08/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins synaptobrevin (Syb), syntaxin, and SNAP-25 function in Ca2+-triggered exocytosis in both endocrine cells and neurons. The transmembrane domains (TMDs) of Syb and syntaxin span the vesicle and plasma membrane, respectively, and influence flux through fusion pores in endocrine cells as well as fusion pores formed during SNARE-mediated fusion of reconstituted membranes. These results support a model for exocytosis in which SNARE TMDs form the initial fusion pore. The present study sought to test this model in synaptic terminals. Patch-clamp recordings of miniature EPSCs (mEPSCs) were used to probe fusion pore properties in cultured hippocampal neurons from mice of both sexes. Mutants harboring tryptophan at four different sites in the Syb TMD reduced the rate-of-rise of mEPSCs. A computer model that simulates glutamate diffusion and receptor activation kinetics could account for this reduction in mEPSC rise rate by slowing the flux of glutamate through synaptic fusion pores. TMD mutations introducing positive charge also reduced the mEPSC rise rate, but negatively charged residues and glycine, which should have done the opposite, had no effect. The sensitivity of mEPSCs to pharmacological blockade of receptor desensitization was enhanced by a mutation that slowed the mEPSC rate-of-rise, suggesting that the mutation prolonged the residence of glutamate in the synaptic cleft. The same four Syb TMD residues found here to influence synaptic release were found previously to influence endocrine release, leading us to propose that a similar TMD-lined fusion pore functions widely in Ca2+-triggered exocytosis in mammalian cells.SIGNIFICANCE STATEMENT SNARE proteins function broadly in biological membrane fusion. Evidence from non-neuronal systems suggests that SNARE proteins initiate fusion by forming a fusion pore lined by transmembrane domains, but this model has not yet been tested in synapses. The present study addressed this question by testing mutations in the synaptic vesicle SNARE synaptobrevin for an influence on the rise rate of miniature synaptic currents. These results indicate that synaptobrevin's transmembrane domain interacts with glutamate as it passes through the fusion pore. The sites in synaptobrevin that influence this flux are identical to those shown previously to influence flux through endocrine fusion pores. Thus, SNARE transmembrane domains may function in the fusion pores of Ca2+-triggered exocytosis of both neurotransmitters and hormones.
Collapse
|
10
|
Bird AD, Wall MJ, Richardson MJE. Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release. Front Comput Neurosci 2016; 10:116. [PMID: 27932970 PMCID: PMC5122579 DOI: 10.3389/fncom.2016.00116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches have been applied to make more efficient use of the data collected in paired intracellular recordings. Methods have been developed that either provide a complete model of the distribution of amplitudes for isolated responses or approximate the amplitude distributions of a train of post-synaptic potentials, with correct short-term synaptic dynamics but neglecting correlations. In both cases the methods provided significantly improved inference of model parameters as compared to existing mean-variance fitting approaches. However, for synapses with high release probability, low vesicle number or relatively low restock rate and for data in which only one or few repeats of the same pattern are available, correlations between serial events can allow for the extraction of significantly more information from experiment: a more complete Bayesian approach would take this into account also. This has not been possible previously because of the technical difficulty in calculating the likelihood of amplitudes seen in correlated post-synaptic potential trains; however, recent theoretical advances have now rendered the likelihood calculation tractable for a broad class of synaptic dynamics models. Here we present a compact mathematical form for the likelihood in terms of a matrix product and demonstrate how marginals of the posterior provide information on covariance of parameter distributions. The associated computer code for Bayesian parameter inference for a variety of models of synaptic dynamics is provided in the Supplementary Material allowing for quantal and dynamical parameters to be readily inferred from experimental data sets.
Collapse
Affiliation(s)
- Alex D Bird
- Theoretical Neuroscience Group, Warwick Systems Biology Centre, University of WarwickCoventry, UK; Ernst Strüngmann Institute for Neuroscience, Max Planck SocietyFrankfurt, Germany; Frankfurt Institute for Advanced StudiesFrankfurt, Germany
| | - Mark J Wall
- School of Life Sciences, University of Warwick Coventry, UK
| | - Magnus J E Richardson
- Theoretical Neuroscience Group, Warwick Systems Biology Centre, University of WarwickCoventry, UK; Warwick Mathematics Institute, University of WarwickCoventry, UK
| |
Collapse
|
11
|
Thanawala MS, Regehr WG. Determining synaptic parameters using high-frequency activation. J Neurosci Methods 2016; 264:136-152. [PMID: 26972952 DOI: 10.1016/j.jneumeth.2016.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The specific properties of a synapse determine how neuronal activity evokes neurotransmitter release. Evaluating changes in synaptic properties during sustained activity is essential to understanding how genetic manipulations and neuromodulators regulate neurotransmitter release. Analyses of postsynaptic responses to high-frequency stimulation have provided estimates of the size of the readily-releasable pool (RRP) of vesicles (N0) and the probability of vesicular release (p) at multiple synapses. NEW METHOD Here, we introduce a model-based approach at the calyx of Held synapse in which depletion and the rate of replenishment (R) determine the number of available vesicles, and facilitation leads to a use-dependent increase in p when initial p is low. RESULTS When p is high and R is low, we find excellent agreement between estimates based on all three methods and the model. However, when p is low or when significant replenishment occurs between stimuli, estimates of different methods diverge, and model estimates are between the extreme estimates provided by the other approaches. COMPARISON WITH OTHER METHODS We compare our model-based approach to three other approaches that rely on different simplifying assumptions. Our findings suggest that our model provides a better estimate of N0 and p than previously-established methods, likely due to inaccurate assumptions about replenishment. More generally, our findings suggest that approaches commonly used to estimate N0 and p at other synapses are often applied under experimental conditions that yield inaccurate estimates. CONCLUSIONS Careful application of appropriate methods can greatly improve estimates of synaptic parameters.
Collapse
Affiliation(s)
- Monica S Thanawala
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Gerkin RC, Nauen DW, Xu F, Bi GQ. Homeostatic regulation of spontaneous and evoked synaptic transmission in two steps. Mol Brain 2013; 6:38. [PMID: 23965342 PMCID: PMC3765453 DOI: 10.1186/1756-6606-6-38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background During development both Hebbian and homeostatic mechanisms regulate synaptic efficacy, usually working in opposite directions in response to neuronal activity. Homeostatic plasticity has often been investigated by assaying changes in spontaneous synaptic transmission resulting from chronic circuit inactivation. However, effects of inactivation on evoked transmission have been less frequently reported. Importantly, contributions from the effects of circuit inactivation and reactivation on synaptic efficacy have not been individuated. Results Here we show for developing hippocampal neurons in primary culture that chronic inactivation with TTX results in increased mean amplitude of miniature synaptic currents (mEPSCs), but not evoked synaptic currents (eEPSCs). However, changes in quantal properties of transmission, partially reflected in mEPSCs, accurately predicted higher-order statistical properties of eEPSCs. The classical prediction of homeostasis – increased strength of evoked transmission – was realized after explicit circuit reactivation, in the form of cells’ pairwise connection probability. In contrast, distributions of eEPSC amplitudes for control and inactivated-then-reactivated groups matched throughout. Conclusions Homeostatic up-regulation of evoked synaptic transmission in developing hippocampal neurons in primary culture requires both the inactivation and reactivation stages, leading to a net increase in functional circuit connectivity.
Collapse
Affiliation(s)
- Richard C Gerkin
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
13
|
Meriney SD, Dittrich M. Organization and function of transmitter release sites at the neuromuscular junction. J Physiol 2013; 591:3159-65. [PMID: 23613535 PMCID: PMC3717219 DOI: 10.1113/jphysiol.2012.248625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/09/2013] [Indexed: 12/18/2022] Open
Abstract
The neuromuscular junction is known as a strong and reliable synapse. It is strong because it releases an excess of chemical transmitter, beyond what is required to bring the postsynaptic muscle cell to threshold. Because the synapse can sustain suprathreshold muscle activation during short trains of action potentials, it is also reliable. The presynaptic mechanisms that lead to reliability during short trains of activity have only recently been elucidated. It appears that there are relatively few calcium channels in individual active zones, that channels open with a low probability during action potential stimulation and that even if channels open the resulting calcium flux only rarely triggers vesicle fusion. Thus, each synaptic vesicle may only associate with a small number of calcium channels, forming an unreliable single vesicle release site. Strength and reliability of the neuromuscular junction emerge as a result of its assembly from thousands of these unreliable single vesicle release sites. Hence, these synapses are strong while at the same time only releasing a small subset of available docked vesicles during each action potential, thus conserving transmitter release resources. This prevents significant depression during short trains of action potential activity and confers reliability.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
14
|
Bhumbra GS, Beato M. Reliable evaluation of the quantal determinants of synaptic efficacy using Bayesian analysis. J Neurophysiol 2013; 109:603-20. [PMID: 23076101 PMCID: PMC3574980 DOI: 10.1152/jn.00528.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/10/2012] [Indexed: 11/22/2022] Open
Abstract
Communication between neurones in the central nervous system depends on synaptic transmission. The efficacy of synapses is determined by pre- and postsynaptic factors that can be characterized using quantal parameters such as the probability of neurotransmitter release, number of release sites, and quantal size. Existing methods of estimating the quantal parameters based on multiple probability fluctuation analysis (MPFA) are limited by their requirement for long recordings to acquire substantial data sets. We therefore devised an algorithm, termed Bayesian Quantal Analysis (BQA), that can yield accurate estimates of the quantal parameters from data sets of as small a size as 60 observations for each of only 2 conditions of release probability. Computer simulations are used to compare its performance in accuracy with that of MPFA, while varying the number of observations and the simulated range in release probability. We challenge BQA with realistic complexities characteristic of complex synapses, such as increases in the intra- or intersite variances, and heterogeneity in release probabilities. Finally, we validate the method using experimental data obtained from electrophysiological recordings to show that the effect of an antagonist on postsynaptic receptors is correctly characterized by BQA by a specific reduction in the estimates of quantal size. Since BQA routinely yields reliable estimates of the quantal parameters from small data sets, it is ideally suited to identify the locus of synaptic plasticity for experiments in which repeated manipulations of the recording environment are unfeasible.
Collapse
Affiliation(s)
- G S Bhumbra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
| | | |
Collapse
|
15
|
Xu S, Wu H, Wang X, Shen X, Guo X, Shen R, Wang F. Tumor suppressor menin mediates peripheral nerve injury-induced neuropathic pain through potentiating synaptic plasticity. Neuroscience 2012; 223:473-85. [PMID: 22858595 DOI: 10.1016/j.neuroscience.2012.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/21/2012] [Accepted: 07/24/2012] [Indexed: 11/16/2022]
Abstract
Synaptic plasticity is a crucial step in the development of central sensitization in the pathogenesis of neuropathic hyperalgesia. Menin, the product of the multiple endocrine neoplasia type 1 (MEN1) gene, possesses the property of synaptogenesis which plays an essential role in neuronal activity. We tested the contributing role of spinal menin in peripheral nerve injury-induced neuropathic hypersensitivity through modulating neuronal synaptic plasticity. After approval by the Institutional Animal Care and Use Committee, nociceptive responses were detected with von Frey filaments and thermal plate after spared nerve injury in C57BL/6 mice who were treated with either intrathecal antisense oligonucleotide of MEN1 (ASO) or vehicle. Extracellular spontaneous discharge frequency, field excitatory postsynaptic potential (fEPSP), and monosynaptic excitatory postsynaptic currents (EPSCs) were measured electrophysiologically. Intrathecal ASO alleviated nerve injury-induced mechanical and thermal hypersensitivity. Upregulated spinal menin after nerve injury colocalized with NeuN in the superficial laminae; genetic knockdown of spinal menin reduced nerve injury induced in vivo spontaneous activity and instantaneous frequency and in vitro field potentials; ASO decreased the frequency and amplitude of monosynaptic EPSCs, and reduced synaptic strength and total charge. Collectively, these findings highlight the role of upregulated neuronal menin in the spinal cord in potentiating spinal synaptic plasticity in peripheral nerve injury-induced neuropathic hypersensitivity.
Collapse
Affiliation(s)
- S Xu
- State Key Laboratory of Reproductive Medicine, Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 210004, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells. J Neurosci 2011; 31:14763-74. [PMID: 21994392 DOI: 10.1523/jneurosci.6788-10.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9α10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier.
Collapse
|
17
|
Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 2008; 28:2435-46. [PMID: 18322089 DOI: 10.1523/jneurosci.4402-07.2008] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Single action potentials (APs) backpropagate into the higher-order dendrites of striatal spiny projection neurons during cortically driven "up" states. The timing of these backpropagating APs relative to the arriving corticostriatal excitatory inputs determines changes in dendritic calcium concentration. The question arises to whether this spike-timing relative to cortical excitatory inputs can also induce synaptic plasticity at corticostriatal synapses. Here we show that timing of single postsynaptic APs relative to the cortically evoked EPSP determines both the direction and the strength of synaptic plasticity in spiny projection neurons. Single APs occurring 30 ms before the cortically evoked EPSP induced long-term depression (LTD), whereas APs occurring 10 ms after the EPSP induced long-term potentiation (LTP). The amount of plasticity decreased as the time between the APs and EPSPs was increased, with the resulting spike-timing window being broader for LTD than for LTP. In addition, we show that dopamine receptor activation is required for this spike-timing-dependent plasticity (STDP). Blocking dopamine D(1)/D(5) receptors prevented both LTD and LTP induction. In contrast, blocking dopamine D(2) receptors delayed, but did not prevent, LTD and sped induction of LTP. We conclude (1) that, in combination with cortical inputs, single APs evoked in spiny projection neurons can induce both LTP and LTD of the corticostriatal pathway; (2) that the strength and direction of these synaptic changes depend deterministically on the AP timing relative to the arriving cortical inputs; (3) that, whereas dopamine D(2) receptor activation modulates the initial phase of striatal STDP, dopamine D(1)/D(5) receptor activation is critically required for striatal STDP. Thus, the timing of APs relative to cortical inputs alone is not enough to induce corticostriatal plasticity, implying that ongoing activity does not affect synaptic strength unless dopamine receptors are activated.
Collapse
|
18
|
Granseth B, Odermatt B, Royle SJ, Lagnado L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 2006; 51:773-86. [PMID: 16982422 DOI: 10.1016/j.neuron.2006.08.029] [Citation(s) in RCA: 506] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 08/03/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
The maintenance of synaptic transmission requires that vesicles be recycled after releasing neurotransmitter. Several modes of retrieval have been proposed to operate at small synaptic terminals of central neurons, including a fast "kiss-and-run" mechanism that releases neurotransmitter through a fusion pore. Using an improved fluorescent reporter comprising pHluorin fused to synaptophysin, we find that only a slow mode of endocytosis (tau = 15 s) operates at hippocampal synapses when vesicle fusion is triggered by a single nerve impulse or short burst. This retrieval mechanism is blocked by overexpression of the C-terminal fragment of AP180 or by knockdown of clathrin using RNAi, and it is associated with the movement of clathrin and vesicle proteins out of the synapse. These results indicate that clathrin-mediated endocytosis is the major, if not exclusive, mechanism of vesicle retrieval after physiological stimuli.
Collapse
Affiliation(s)
- Björn Granseth
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
19
|
Volgushev M, Kudryashov I, Chistiakova M, Mukovski M, Niesmann J, Eysel UT. Probability of Transmitter Release at Neocortical Synapses at Different Temperatures. J Neurophysiol 2004; 92:212-20. [PMID: 14999046 DOI: 10.1152/jn.01166.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The probability of transmitter release at synaptic terminals is one of the key characteristics of communication between nerve cells because it determines both the strength and dynamic properties of synaptic connections. To assess the distribution of the release probabilities at excitatory synapses on supragranular pyramidal cells in rat visual cortex, we have used the MK-801, a blocker of the open N-methyl-d-aspartate (NMDA) receptor-gated channels. With this method, the release probability can be calculated from the time course of the blockade of NMDA-receptor mediated postsynaptic currents in the presence of MK-801. At temperatures >32°C, the distribution of release probabilities covered the range from 0.05 to 0.43 [mean: 0.171 ± 0.012 (SE), n = 65], being skewed toward low values. When estimated at room temperature (22–25°C), the release probabilities were significantly lower (mean: 0.123 ± 0.009, n = 54), and almost the whole distribution was restricted to values <0.2. Furthermore, warming from room temperature to >32°C led to a pronounced overshooting increase of the release probability. Taken together, the results of the present study show that release probabilities at synapses formed onto layer 2/3 pyramidal cells in the visual cortex vary significantly, but values >0.3 are rare and the results obtained either at room or variable temperature differ significantly from those made under conditions of constant temperature in the physiological range.
Collapse
Affiliation(s)
- Maxim Volgushev
- Ruhr-University Bochum, Department of Neurophysiology, MA 4/149, D-44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Bekkers JM. Convolution of mini distributions for fitting evoked synaptic amplitude histograms. J Neurosci Methods 2004; 130:105-14. [PMID: 14667540 DOI: 10.1016/j.jneumeth.2003.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
According to a basic formulation of the quantal model, evoked synaptic currents are made up of a linear summation of uniquantal synaptic currents, which in turn are equivalent to the spontaneous miniature synaptic currents ('minis') that often persist when evoked neurotransmitter release is blocked. Here I describe a convolution method for calculating linear summations of the 'mini' amplitude distribution, which can then be fitted to the measured amplitude distribution for evoked synaptic currents. Provided certain conditions are satisfied, this method can give information about the statistics of neurotransmitter release even when clear quantal peaks are not apparent in the evoked amplitude distribution. The method is illustrated by an experiment in which the appropriate minis are identified with the asynchronous excitatory postsynaptic currents that follow synaptic stimulation when the cell is bathed in strontium. Finally, I discuss the assumptions behind the convolution method, and the conditions under which the properties of the minis are likely to be appropriate for an analysis of this type.
Collapse
Affiliation(s)
- John M Bekkers
- Division of Neuroscience, John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
21
|
Clements JD. Variance-mean analysis: a simple and reliable approach for investigating synaptic transmission and modulation. J Neurosci Methods 2004; 130:115-25. [PMID: 14667541 DOI: 10.1016/j.jneumeth.2003.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms underlying synaptic plasticity can be investigated by analyzing synaptic amplitude fluctuations before and after a synaptic modulation. However, many older fluctuation analysis techniques rely on models of synaptic transmission that incorporate unrealistic simplifying assumptions or have too many free parameters. As a result, these techniques have sometimes produced counterintuitive or contradictory results. In contrast, the variance-mean (V-M) technique requires fewer assumptions and is more robust than previous approaches. It achieves these improvements by focusing on two key parameters of synaptic transmission, the average probability that a vesicle is released from a synaptic terminal following a presynaptic stimulus (Pav), and the average amplitude of the postsynaptic response to a vesicle of transmitter (Qav). To apply V-M analysis, a fluctuating postsynaptic current (PSC) is recorded at several different extracellular Ca2+ or Cd2+ concentrations. The variance of the PSC amplitude is plotted against the mean amplitude at each concentration, forming a parabola. The degree of parabolic curvature estimates Pav, and the limiting slope under low release conditions estimates Qav. The shape of the V-M parabola changes in characteristic ways following each of the three standard forms of synaptic modulation: a change in Qav (postsynaptic), a change in Pav (presynaptic), or a change in the number of terminals (N). The approach does not require specialized software, and can even be implemented as a purely graphical technique. V-M analysis has been used to investigate the site of expression of long-term potentiation and the mechanisms underlying paired-pulse depression. This report presents a detailed mathematical development of the technique, and explores the limiting conditions under which it can confidently be applied. V-M analysis requires fewer than 100 PSC amplitude measurements to accurately estimate Pav and Qav, and it can reliably identify whether a synaptic modulation occurs at a pre- or postsynaptic site. In contrast to other techniques, V-M analysis is largely insensitive to recording noise, nonuniform modulation and intrinsic variability of the unitary synaptic amplitude.
Collapse
Affiliation(s)
- John D Clements
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
22
|
Ruiz O, Rudomín P. Identifying the components of a postsynaptic potential and their amplitude, latency and shape fluctuations: analysis by means of autocovariance functions and a stochastic infinite cable model. J Neurosci Methods 2003; 124:1-26. [PMID: 12648762 DOI: 10.1016/s0165-0270(02)00368-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to amplitude fluctuations, physiological mechanisms may introduce latency and shape fluctuations in the components of a postsynaptic potential (PSP). Latency fluctuations may be originated mainly by presynaptic factors. Shape fluctuations may be produced by changes in the background synaptic activity received by the postsynaptic neuron, which affect the cell membrane resistance. This article aims to develop a unified approach for the analysis of amplitude, latency and shape fluctuations in the components of a PSP. The analysis is based on: (i) the Autocovariance Functions of the PSP (ACOVs); (ii) a mathematical model able to predict the average and ACOVs of a PSP with specified components and fluctuations (the 'Stochastic Infinite Cable Model' (SICM)); and (iii) a procedure to estimate the SICM parameters that best reproduce the average and ACOVs of a given PSP (the 'SICM-based PSP identification procedure' (SICM-IP)). The SICM-IP is tested with simulated PSPs. The results obtained support the feasibility of the approach.
Collapse
Affiliation(s)
- Octavio Ruiz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México DF 07360, Mexico.
| | | |
Collapse
|
23
|
Lim R, Oleskevich S, Few AP, Leao RN, Walmsley B. Glycinergic mIPSCs in mouse and rat brainstem auditory nuclei: modulation by ruthenium red and the role of calcium stores. J Physiol 2003; 546:691-9. [PMID: 12562997 PMCID: PMC2342600 DOI: 10.1113/jphysiol.2002.035071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded in central neurons are usually highly variable in amplitude due to many factors such as intrinsic postsynaptic channel fluctuations at each release site, site-to-site variability between release sites, electrotonic attenuation due to variable dendritic locations of synapses, and the possibility of synchronous multivesicular release. A detailed knowledge of these factors is essential for the interpretation of mIPSC amplitude distributions and mean quantal size. We have studied glycinergic mIPSCs in two auditory brainstem nuclei, the rat anteroventral cochlear nucleus (AVCN) and the mouse medial nucleus of the trapezoid body (MNTB). Our previous results have demonstrated the location of glycinergic synapses on these neurons to be somatic, thus avoiding electrotonic complications. Spontaneous glycinergic mIPSCs were recorded from AVCN and MNTB neurons in brainstem slices, in the presence of TTX to block action potentials, and 6-cyano-7-nitroquinoxaline-2, 3-dione, (+/-)-2-amino-5-phosphonopentanoic acid and bicuculline to block glutamatergic and GABAergic synaptic currents. Ruthenium red (RuR), which was used to increase the frequency of mIPSCs, significantly changed the shape of most (90 %) mIPSC amplitude distributions by increasing the proportion of large-amplitude mIPSCs. The possibility was investigated (following previous evidence at GABAergic synapses) that large-amplitude glycinergic mIPSCs are due to synchronous multivesicular release initiated by presynaptic calcium sparks from ryanodine-sensitive calcium stores. Interval analysis of mIPSCs indicated that the number of potentially undetected (asynchrony < 0.5 ms) multivesicular mIPSCs was low in comparison with the number of large-amplitude mIPSCs. Ryanodine, thapsigargin and calcium-free perfusate did not reduce the frequency of large-amplitude mIPSCs (> 150 pA), arguing against a significant role for presynaptic calcium stores. Our results support previous evidence suggesting that RuR increases miniature postsynaptic current (mSC) frequency by a mechanism that does not involve presynaptic calcium stores. Our results also indicate that at glycinergic synapses in the AVCN and MNTB, site-to-site variability in mIPSC amplitude, rather than multivesicular release, is a major factor underlying the large range of amplitudes of glycinergic mIPSCs.
Collapse
Affiliation(s)
- Rebecca Lim
- Synaptic Structure and Function Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
24
|
Rosato-Siri M, Grandolfo M, Ballerini L. Activity-dependent modulation of GABAergic synapses in developing rat spinal networks in vitro. Eur J Neurosci 2002; 16:2123-35. [PMID: 12473080 DOI: 10.1046/j.1460-9568.2002.02291.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of activity-dependent plasticity in modulating inhibitory synapses was investigated in embryonic rat spinal cord slice cultures, by chronic exposure to non-NMDA receptor blockers. GABAergic synaptic efficacy in control and chronic-treated cultures was investigated by patch-recordings from visually identified spinal interneurons. In both culture groups proximal stimulation induced the appearance of postsynaptic currents (PSCs), which were fully antagonized by 20 microM bicuculline application and reverse polarity at potential values close to those reported for spontaneous GABAergic PSCs. In chronically treated cells GABAergic evoked PSCs displayed a larger failure rate and a smaller coefficient of variation of mean PSC amplitude, when compared to controls. As opposed to controls, chronic GABAergic evoked PSCs did not facilitate upon paired-pulse stimulation. Facilitation at chronic synapses was observed when extracellular calcium levels were decreased below physiological values (< 2 mM). Kainate was used to disclose any functional differences between control and treated slices. In accordance with the presynaptic action of kainate, the application of this drug along with GYKI, an AMPA receptor selective antagonist, changed, with analogous potency, short-term plasticity of GABAergic synapses from control and treated cultures. Nevertheless, in chronic cultures, the downstream effects of such activation unmasked short-term depression. Ultrastructural analysis of synapses in chronically treated cultures showed a reduction both in symmetric synapses and in the number of vesicles at symmetric terminals. Thus, based on electrophysiological and ultrastructural data, it could be suggested that during the development of spinal circuits, GABAergic synapses are modulated by glutamatergic transmission, and thus implying that excitatory transmission regulates the strength of GABAergic synapses.
Collapse
Affiliation(s)
- Marcelo Rosato-Siri
- Biophysics Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies (SISSA), via Beirut 2-4, 34014 Trieste, Italy
| | | | | |
Collapse
|
25
|
Fedulova SA, Veselovsky NS. Quantal GABA release in hippocampal synapses: role of local Ca2+ dynamics within the single terminals. Eur J Pharmacol 2002; 447:163-71. [PMID: 12151008 DOI: 10.1016/s0014-2999(02)01840-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Results of recent studies dedicated to the mechanisms of neurotransmission at a single inhibitory synaptic terminal in cultured neurones support the hypothesis that multiple quanta of neurotransmitter are released during excitation of inhibitory and excitatory central synapses. This is an important consideration as previous less direct measurements have suggested that a synapse can release no more than one quantum. Neurotransmitter release during long stimuli may occur at certain times with maximal probability, keeping the mean inter-release interval constant. This interval is not determined directly by vesicle depletion and moreover, each release event is independent of previous ones. The recent data also suggest that constant Ca(2+) influx is an important determinant of neurotransmitter release. It is speculated that the neurotransmitter release is regulated by a superposition of two processes: a continuous homogeneous process, (i.e. background Ca(2+) influx), and a periodic process that acts as a synchronizing factor of the release at definite moments.
Collapse
Affiliation(s)
- S A Fedulova
- Bogmoletz Institute of Physiology, Bogomoletz Street 4, Kiev-24, GSP 252601, Ukraine.
| | | |
Collapse
|
26
|
Akaike N, Murakami N, Katsurabayashi S, Jin YH, Imazawa T. Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampal neuron. Neurosci Res 2002; 42:187-95. [PMID: 11900828 DOI: 10.1016/s0168-0102(01)00320-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Evoked inhibitory postsynaptic currents (eIPSCs) generated from a single GABAergic bouton were recorded and the functional properties were investigated. Native single boutons attached to mechanically dissociated rat hippocampal CA1 neurons, namely "synaptic bouton" preparation, were visualized with FM 1-43 dye and selectively stimulated by a glass pipette directed to a single bouton by focal stimulation. The GABAergic eIPSCs were elicited in like all-or-none fashion regarding both stimulus strength and pipette location, thus indicating that the eIPSCs result from the activation of a single bouton. The GABA release from the boutons was action potential dependent since eIPSCs were blocked in the presence of either voltage-dependent Na(+) or Ca(2+)channel blocker. Even in the presence of tetrodotoxin (TTX), eIPSCs could be elicited by additional application of a voltage-dependent K(+) channel blocker, 4-AP. The GABA release depended on external Ca(2+) concentration. Amplitude histogram of eIPSCs did not follow Poisson distribution or show discrete peaks. As a result, this new experimental approach using both focal stimulation and a synaptic bouton preparation allows for a detailed study of the native synaptic machinery in nerve terminals measuring smaller than 1 microm in size in the CNS.
Collapse
Affiliation(s)
- Norio Akaike
- Cellular and System Physiology, Department of Phychosomatic Medicine, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
27
|
Fuhrmann G, Segev I, Markram H, Tsodyks M. Coding of temporal information by activity-dependent synapses. J Neurophysiol 2002; 87:140-8. [PMID: 11784736 DOI: 10.1152/jn.00258.2001] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic transmission in the neocortex is dynamic, such that the magnitude of the postsynaptic response changes with the history of the presynaptic activity. Therefore each response carries information about the temporal structure of the preceding presynaptic input spike train. We quantitatively analyze the information about previous interspike intervals, contained in single responses of dynamic synapses, using methods from information theory applied to experimentally based deterministic and probabilistic phenomenological models of depressing and facilitating synapses. We show that for any given dynamic synapse, there exists an optimal frequency of presynaptic spike firing for which the information content is maximal; simple relations between this optimal frequency and the synaptic parameters are derived. Depressing neocortical synapses are optimized for coding temporal information at low firing rates of 0.5-5 Hz, typical to the spontaneous activity of cortical neurons, and carry significant information about the timing of up to four preceding presynaptic spikes. Facilitating synapses, however, are optimized to code information at higher presynaptic rates of 9-70 Hz and can represent the timing of over eight presynaptic spikes.
Collapse
Affiliation(s)
- Galit Fuhrmann
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
28
|
Llano I, González J, Caputo C, Lai FA, Blayney LM, Tan YP, Marty A. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat Neurosci 2000; 3:1256-65. [PMID: 11100146 DOI: 10.1038/81781] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular mechanisms responsible for large miniature currents in some brain synapses remain undefined. In Purkinje cells, we found that large-amplitude miniature inhibitory postsynaptic currents (mIPSCs) were inhibited by ryanodine or by long-term removal of extracellular Ca2+. Two-photon Ca2+ imaging revealed random, ryanodine-sensitive intracellular Ca2+ transients, spatially constrained at putative presynaptic terminals. At high concentration, ryanodine decreased action-potential-evoked rises in intracellular Ca2+. Immuno-localization showed ryanodine receptors in these terminals. Our data suggest that large mIPSCs are multivesicular events regulated by Ca2+ release from ryanodine-sensitive presynaptic Ca2+ stores.
Collapse
Affiliation(s)
- I Llano
- Arbeitsgruppe Zelluläre Neurobiologie, Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The mode of operation of synaptic transmission has been primarily worked out at the vertebrate neuromuscular junction, thus providing a framework for the interpretation of studies at central synapses. However, differences have been found between the two systems, and a coherent model is still lacking for central synapses. Research in this area revolves around several questions. (1) Is the variability of quantal amplitudes determined pre- or postsynaptically? (2) What is the occupancy of postsynaptic receptors following the release of a synaptic vesicle? And (3) does multivesicular release occur at single release sites following one presynaptic action potential? To answer these questions, it is essential to investigate synaptic processes at the level of single release sites. This is technically difficult because of the complex morphology and small dimensions of central synapses. Nevertheless significant advances have been made in the past few years.
Collapse
Affiliation(s)
- C Auger
- Department of Physiology, University College London, London, UK.
| | | |
Collapse
|
30
|
Oleskevich S, Clements J, Walmsley B. Release probability modulates short-term plasticity at a rat giant terminal. J Physiol 2000; 524 Pt 2:513-23. [PMID: 10766930 PMCID: PMC2269875 DOI: 10.1111/j.1469-7793.2000.00513.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Modulation of release probability is a major factor underlying short-term synaptic plasticity in the central nervous system. We have investigated the relationship between release probability ((Pr) and paired-pulse modulation at a large auditory calyceal synapse containing many transmitter release sites. Whole-cell patch electrode recordings were made of excitatory postsynaptic currents (EPSCs), evoked by stimulation of auditory nerve fibres giving rise to the endbulbs of Held. 2. Quantitative estimates of Pr and quantal amplitude were obtained using the recently developed variance-mean analysis technique. Release probability conditions were modulated by bath application of cadmium, elevated calcium and protein kinase C activation by phorbol esters. 3. Our results show that, under physiological conditions, most sites released neurotransmitter following a single presynaptic nerve impulse, with a mean Pr of 0.6. The mean quantal amplitude was 44 pA, which was consistent with the mean amplitude of miniature EPSCs (47 pA). 4. Under high release probability conditions with elevated calcium or phorbol esters, Pr at all sites approached 1.0. At these high Pr values, variance-mean analysis indicated a significant postsynaptic contribution to paired-pulse depression. The miniature EPSC amplitudes were decreased following stimulation in elevated calcium, confirming a postsynaptic component of paired-pulse depression at this glutamatergic connection. 5. A notable feature was the large variability between neurons in the relationship between paired-pulse ratio and Pr. Based on current models of vesicle release and ultrastructural evidence, we suggest that this variability may be partly due to morphological differences between endbulb specializations, particularly in the ratio of fusion-ready to reserve populations of vesicles at endbulb release sites.
Collapse
Affiliation(s)
- S Oleskevich
- Division of Neuroscience, The John Curtin School of Medical Research, and Division of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
31
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
32
|
Abstract
Short-term synaptic plasticity has a key role in information processing in the CNS, whereas memories can be formed through long-lasting changes in synaptic strength. Despite the importance of these phenomena, it remains difficult to determine whether a synaptic modulation is expressed at a presynaptic or postsynaptic site. This article describes a new approach that, in its simplest form, can identify the site of expression by direct graphical means. A more-sophisticated form of the technique can quantify functional synaptic properties and determine which of these properties is altered following a modulation of synaptic strength.
Collapse
Affiliation(s)
- J D Clements
- Division of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
33
|
Ling DS, Benardo LS. Restrictions on inhibitory circuits contribute to limited recruitment of fast inhibition in rat neocortical pyramidal cells. J Neurophysiol 1999; 82:1793-807. [PMID: 10515969 DOI: 10.1152/jn.1999.82.4.1793] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To further define the operational boundaries on fast inhibition in neocortex, whole cell recordings were made from layer V pyramidal neurons in neocortical slices to evaluate evoked inhibitory postsynaptic currents (IPSCs) and spontaneous miniature IPSCs (mIPSCs). Stimulating electrodes were placed in layers VI and I/II to determine whether simultaneous stimulation of deep and superficial laminae could extend the magnitude of maximal IPSCs evoked by deep-layer stimulation alone. The addition of superficial-layer stimulation did not increase maximal IPSC amplitude, confirming the strict limit on fast inhibition. Spontaneous miniature IPSCs were recorded in the presence of tetrodotoxin. The frequency of spontaneous mIPSCs ranged from 10.0 to 33.1 Hz. mIPSC amplitude varied considerably, with a range of 5. 0-128.2 pA and a mean value of 20.7+/-4.1 pA (n = 12 cells). The decay phase of miniature IPSCs was best fit by a single exponential, similar to evoked IPSCs. The mean time constant of decay was 6.4+/-0.6 ms, with a range of 0.2-20.1 ms. The mean 10-90% rise time was 1.9+/-0.2 ms, ranging from 0.2 to 6.3 ms. Evaluation of mIPSC kinetics revealed no evidence of dendritic filtering. Amplitude histograms of mIPSCs exhibited skewed distributions with several discernable peaks that, when fit with Gaussian curves, appeared to be spaced equidistantly, suggesting that mIPSC amplitudes varied quantally. The mean separation of Gaussian peaks ranged from 6.1 to 7.8 pA. The quantal distributions did not appear to be artifacts of noise. Exposure to saline containing low Ca(2+) and high Mg(2+) concentrations reduced the number of histogram peaks, but did not affect the quantal size. Mean mIPSC amplitude and quantal size varied with cell holding potential in a near-linear manner. Statistical evaluation of amplitude histograms verified the multimodality of mIPSC amplitude distributions and corroborated the equidistant spacing of peaks. Comparison of mIPSC values with published data from single GABA channel recordings suggests that the mean mIPSC conductance corresponds to the activation of 10-20 GABA(A) receptor channels, and that the release of a single inhibitory quantum opens 3-6 channels. Further comparison of mIPSCs with evoked inhibitory events suggests that a single interneuron may form, on average, 4-12 functional synapses with a pyramidal cell, and that 10-12 individual interneurons are engaged during recruitment of maximal population IPSCs. This suggests that inhibitory circuits are much more restricted in both the size of the unit events and effective number of connections when compared with excitatory inputs.
Collapse
Affiliation(s)
- D S Ling
- Department of Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | |
Collapse
|
34
|
Poskitt DS, Doğançay K, Chung SH. A new analytical method of studying post-synaptic currents. Math Biosci 1999; 161:15-41. [PMID: 10546439 DOI: 10.1016/s0025-5564(99)00038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A powerful methodology for analyzing post-synaptic currents recorded from central neurons is presented. An unknown quantity of transmitter molecules released from presynaptic terminals by electrical stimulation of nerve fibers generates a post-synaptic response at the synaptic site. The current induced at the synaptic junction is assumed to rise rapidly and decay slowly with its peak amplitude being proportional to the number of released transmitter molecules. The signal so generated is then distorted by the cable properties of the dendrite, modeled as a time-invariant, linear filter with unknown parameters. The response recorded from the cell body of the neuron following the electrical stimulation is contaminated by zero-mean, white, Gaussian noise. The parameters of the signal are then evaluated from the observation sequence using a quasi-profile likelihood estimation procedure. These parameter values are then employed to deconvolve each measured post-synaptic response to produce an optimal estimate of the transmembrane current flux. From these estimates we derive the amplitude of the synaptic current and the relative amount of transmitter molecules that elicited each response. The underlying amplitude fluctuations in the entire data sequence are investigated using a non-parametric technique based on kernel smoothing procedures. The effectiveness of the new methodology is illustrated in various simulation examples.
Collapse
Affiliation(s)
- D S Poskitt
- Department of Statistics, Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
35
|
Fedulova SA, Vasilyev DV, Isaeva EV, Romanyuk SG, Veselovsky NS. Possibility of multiquantal transmission at single inhibitory synapse in cultured rat hippocampal neurons. Neuroscience 1999; 92:1217-30. [PMID: 10426479 DOI: 10.1016/s0306-4522(99)00084-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Miniature, spontaneous and evoked inhibitory postsynaptic currents were studied using the whole-cell patch-clamp technique on synaptically connected cultured hippocampal neurons, at a holding potential of -75 mV. All experiments were done in tetrodotoxin-containing solution to exclude an action potential generation. Spontaneous miniature inhibitory postsynaptic currents were observed in Ca2+-free solution. The distribution of miniature inhibitory postsynaptic currents was skewed to larger current amplitudes and could be fitted reliably by one Gaussian with the mean at 10.0 +/- 1.2 pA (n = 7). Spontaneously occurring whole-cell spontaneous inhibitory postsynaptic currents were recorded in physiological solution (Ca2+ 2 mM). The average amplitude of spontaneously occurring currents depended on membrane potential and reversed at -18 +/- 5 mV (n = 5). The amplitude distribution of spontaneous inhibitory postsynaptic currents had one peak clearly detectable with the mean of 20.0 +/- 2.0 pA (n = 6) or 10.0 +/- 2.0 pA (n = 2). Inhibitory postsynaptic stimulus-evoked currents arose in responses to gradual activation of neurotransmitter release by direct extracellular electrical stimulation of a single presynaptic bouton by short depolarizing pulses. The current-voltage relation of the averaged amplitudes of evoked inhibitory postsynaptic currents was linear and reversed at potential predicted by the Nernst equation for corresponding intra- and extracellular Cl- concentrations. The time-course of decay of miniature, spontaneous and evoked inhibitory postsynaptic currents was fitted by a sum of two exponents and their time-constants were the same in the range of standard deviation. The stimulus-evoked inhibitory postsynaptic currents fluctuated with regard to the discrete aliquot values of their peak amplitudes in all the investigated synapses from a measurable minimum of about 8 pA to 200 pA. The evoked inhibitory postsynaptic currents were assumed as superimposition of statistically independent quantal events. Fitting amplitude histograms of evoked inhibitory postsynaptic currents with several Gaussian curves resulted in peaks that were equidistant with the mean space of 20 +/- 3 pA (n = 10), which was assumed as one quantum (quantum size) to construct the Poisson's distribution. A possibility of simultaneous multiquantal release at single inhibitory synapses of rat hippocampal neurons was discussed.
Collapse
Affiliation(s)
- S A Fedulova
- Center of Molecular Physiology, National Academy of Science, Kiev, Ukraine
| | | | | | | | | |
Collapse
|
36
|
Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79:1019-88. [PMID: 10390521 DOI: 10.1152/physrev.1999.79.3.1019] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary function of the presynaptic nerve terminal is to release transmitter quanta and thus activate the postsynaptic target cell. In almost every step leading to the release of transmitter quanta, there is a substantial involvement of ion channels. In this review, the multitude of ion channels in the presynaptic terminal are surveyed. There are at least 12 different major categories of ion channels representing several tens of different ion channel types; the number of different ion channel molecules at presynaptic nerve terminals is many hundreds. We describe the different ion channel molecules at the surface membrane and inside the nerve terminal in the context of their possible role in the process of transmitter release. Frequently, a number of different ion channel molecules, with the same basic function, are present at the same nerve terminal. This is especially evident in the cases of calcium channels and potassium channels. This abundance of ion channels allows for a physiological and pharmacological fine tuning of the process of transmitter release and thus of synaptic transmission.
Collapse
Affiliation(s)
- A Meir
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons. J Neurosci 1999. [PMID: 10212296 DOI: 10.1523/jneurosci.19-09-03367.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxytocin (OT) and vasopressin (VP) hormone release from neurohypophysial terminals is controlled by the firing pattern of neurosecretory cells located in the hypothalamic supraoptic (SON) and paraventricular nuclei. Although glutamate is a key modulator of the electrical activity of both OT and VP neurons, a differential contribution of AMPA receptors (AMPARs) and NMDA receptors (NMDARs) has been proposed to mediate glutamatergic influences on these neurons. In the present study we examined the distribution and functional properties of synaptic currents mediated by AMPARs and NMDARs in immunoidentified SON neurons. Our results suggest that the properties of AMPA-mediated currents in SON neurons are controlled in a cell type-specific manner. OT neurons displayed AMPA-mediated miniature EPSCs (mEPSCs) with larger amplitude and faster decay kinetics than VP neurons. Furthermore, a peak-scaled nonstationary noise analysis of mEPSCs revealed a larger estimated single-channel conductance of AMPARs expressed in OT neurons. High-frequency summation of AMPA-mediated excitatory postsynaptic potentials was smaller in OT neurons. In both cell types, AMPA-mediated synaptic currents showed inward rectification, which was more pronounced in OT neurons, and displayed Ca2+ permeability. On the other hand, NMDA-mediated mEPSCs of both cell types had similar amplitude and kinetic properties. The cell type-specific expression of functionally different AMPARs can contribute to the adoption of different firing patterns by these neuroendocrine neurons in response to physiological stimuli.
Collapse
|
38
|
Abstract
Many studies of synaptic transmission have assumed a parametric model to estimate the mean quantal content and size or the effect upon them of manipulations such as the induction of long-term potentiation. Classical tests of fit usually assume that model parameters have been selected independently of the data. Therefore, their use is problematic after parameters have been estimated. We hypothesized that Monte Carlo (MC) simulations of a quantal model could provide a table of parameter-independent critical values with which to test the fit after parameter estimation, emulating Lilliefors's tests. However, when we tested this hypothesis within a conventional quantal model, the empirical distributions of two conventional goodness-of-fit statistics were affected by the values of the quantal parameters, falsifying the hypothesis. Notably, the tests' critical values increased when the combined variances of the noise and quantal-size distributions were reduced, increasing the distinctness of quantal peaks. Our results support two conclusions. First, tests that use a predetermined critical value to assess the fit of a quantal model after parameter estimation may operate at a differing unknown level of significance for each experiment. Second, a MC test enables a valid assessment of the fit of a quantal model after parameter estimation.
Collapse
Affiliation(s)
- A C Greenwood
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
39
|
Bekkers JM, Clements JD. Quantal amplitude and quantal variance of strontium-induced asynchronous EPSCs in rat dentate granule neurons. J Physiol 1999; 516 ( Pt 1):227-48. [PMID: 10066937 PMCID: PMC2269216 DOI: 10.1111/j.1469-7793.1999.227aa.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Excitatory postsynaptic currents (EPSCs) were recorded from granule cells of the dentate gyrus in acute slices of 17- to 21-day-old rats (22-25 C) using tissue cuts and minimal extracellular stimulation to selectively activate a small number of synaptic contacts. 2. Adding millimolar Sr2+ to the external solution produced asynchronous EPSCs (aEPSCs) lasting for several hundred milliseconds after the stimulus. Minimally stimulated aEPSCs resembled miniature EPSCs (mEPSCs) recorded in the same cell but differed from them in ways expected from the greater range of dendritic filtering experienced by mEPSCs. aEPSCs had the same stimulus threshold as the synchronous EPSCs (sEPSCs) that followed the stimulus with a brief latency. aEPSCs following stimulation of distal inputs had a slower mean rise time than those following stimulation of proximal inputs. These results suggest that aEPSCs arose from the same synapses that generated sEPSCs. 3. Proximally elicited aEPSCs had a mean amplitude of 6.7 +/- 2.2 pA (+/- s.d., n = 23 cells) at -70 mV and an amplitude coefficient of variation of 0. 46 +/- 0.08. 4. The amplitude distributions of sEPSCs never exhibited distinct peaks. 5. Monte Carlo modelling of the shapes of aEPSC amplitude distributions indicated that our data were best explained by an intrasite model of quantal variance. 6. It is concluded that Sr2+-evoked aEPSCs are uniquantal events arising at synaptic terminals that were recently invaded by an action potential, and so provide direct information about the quantal amplitude and quantal variance at those terminals. The large quantal variance obscures quantization of the amplitudes of evoked sEPSCs at this class of excitatory synapse.
Collapse
Affiliation(s)
- J M Bekkers
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
40
|
Abstract
We used electron tomography to map the three-dimensional architecture of the ribbon-class afferent synapses in frog saccular hair cells. The synaptic body (SB) at each synapse was nearly spherical (468 +/- 65 nm diameter; mean +/- SD) and was covered by a monolayer of synaptic vesicles (34.3 nm diameter; 8.8% coefficient of variation), many of them tethered to it by approximately 20-nm-long filaments, at an average density of 55% of close-packed (376 +/- 133 vesicles per SB). These vesicles could support approximately 900 msec of exocytosis at the reported maximal rate, which the cells can sustain for at least 2 sec, suggesting that replenishment of vesicles on the SB is not rate limiting. Consistent with this interpretation, prolonged K+ depolarization did not deplete vesicles on the SB. The monolayer of SB-associated vesicles remained after cell lysis in the presence of 4 mM Ca2+, indicating that the association is tight and Ca2+-resistant. The space between the SB and the plasma membrane contained numerous vesicles, many of which ( approximately 32 per synapse) were in contact with the plasma membrane. This number of docked vesicles could support maximal exocytosis for at most approximately 70 msec. Additional docked vesicles were seen within a few hundred nanometers of the synapse and occasionally at greater distances. The presence of omega profiles on the plasma membrane around active zones, in the same locations as coated pits and coated vesicles labeled with an extracellular marker, suggests that local membrane recycling may contribute to the three- to 14-fold greater abundance of vesicles in the cytoplasm (not associated with the SB) near synapses than in nonsynaptic regions.
Collapse
|
41
|
Yoshimura Y, Kimura F, Tsumoto T. Estimation of single channel conductance underlying synaptic transmission between pyramidal cells in the visual cortex. Neuroscience 1999; 88:347-52. [PMID: 10197757 DOI: 10.1016/s0306-4522(98)00382-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Axon collaterals originating from pyramidal cells are one of the most abundant presynaptic elements in the neocortical circuits. To understand a quantitative aspect of synaptic transmission between pyramidal cells, we attempted to estimate single channel conductance by applying non-stationary noise analysis to unitary excitatory postsynaptic currents. Simultaneous recordings were carried out in two pyramidal cells of superficial layers in visual cortical slices. Unitary postsynaptic currents, which were evoked by action potentials of presynaptic cells impaled with conventional sharp electrodes, were recorded from postsynaptic cells with whole-cell patch clamp techniques. Estimated single channel conductance was 12.8 3.8(S.D.) pS for kittens and 10.4 +/- 1.5 pS for rats. Dividing these values by the conductance for unitary postsynaptic currents, we calculated the number of non-N-methyl-D-aspartate receptor channels activated during the postsynaptic currents. The obtained estimates were 52 (kittens) and 41 (rats). To further estimate the number of channels involved in each quantal event, we analysed amplitude histograms of miniature and spike-evoked excitatory postsynaptic currents. The derived number of estimates from these two kinds of histograms agreed quite well; about 20 channels were required for individual quantal events. Assuming open probability of non-N-methyl-D-aspartate receptor channels to be 0.7, our results suggest that the number of channels available for synaptic transmission between individual pyramidal cells would be 74 (kittens) and 59 (rats). We propose that at pyramidal-pyramidal synapses, the number of open channels is several times smaller than that previously reported for the synapses between geniculo-cortical afferent and layer IV spiny stellate cells.
Collapse
Affiliation(s)
- Y Yoshimura
- Department of Neurophysiology, Biomedical Research Center, Osaka University Medical School, Suita, Japan
| | | | | |
Collapse
|
42
|
Wall MJ, Usowicz MM. Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse. Nat Neurosci 1998; 1:675-82. [PMID: 10196583 DOI: 10.1038/3677] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In many studies of central synaptic transmission, the quantal properties of miniature synaptic events do not match those derived from synaptic events evoked by action potentials. Here we show that at mossy fiber-granule cell (MF-gc) synapses of mature cerebellum, evoked excitatory postsynaptic currents (EPSCs) are multiquantal, and their amplitudes vary in discrete steps, whereas miniature (m)EPSCs are monoquantal or multiquantal with quantal parameters identical to those of the EPSCs. In contrast, at immature MF-gc synapses, EPSCs are multiquantal, but their amplitudes do not vary in discrete steps, whereas most mEPSCs seem to be monoquantal with a broad and skewed amplitude distribution. The results demonstrate that quantal variance decreases during synaptic development. They also directly confirm the quantal hypothesis of neurotransmission at a mature brain synapse.
Collapse
Affiliation(s)
- M J Wall
- Department of Pharmacology, University of Bristol, UK
| | | |
Collapse
|
43
|
Abstract
The purpose of the present work was to test the hypothesis that no more than one vesicle of transmitter can be liberated by an action potential at a single release site. Spontaneous and evoked IPSCs were recorded from interneurons in the molecular layer of cerebellar slices. Evoked IPSCs were obtained using either extracellular stimulation or paired recordings of presynaptic and postsynaptic neurons. Connections were identified as single-site synapses when evoked current amplitudes could be grouped into one peak that was well separated from the background noise. Peak amplitudes ranged from 30 to 298 pA. Reducing the release probability by lowering the external Ca2+ concentration or adding Cd2+ failed to reveal smaller quantal components. Some spontaneous IPSCs (1.4-2.4%) and IPSCs evoked at single-site synapses (2-6%) were followed within <5 msec by a secondary IPSC that could not be accounted for by random occurrence of background IPSCs. Nonlinear summation of closely timed events indicated that they involved activation of a common set of receptors and therefore that several vesicles could be released at the same release site by one action potential. An average receptor occupancy of 0.70 was calculated after single release events. At some single-site connections, two closely spaced amplitude peaks were resolved, presumably reflecting single and double vesicular release. Consistent with multivesicular release, kinetics of onset, decay, and latency were correlated to IPSC amplitude. We conclude that the one-site, one-vesicle hypothesis does not hold at interneuron-interneuron synapses.
Collapse
|
44
|
Edelstein SJ, Changeux JP. Allosteric transitions of the acetylcholine receptor. ADVANCES IN PROTEIN CHEMISTRY 1998; 51:121-84. [PMID: 9615170 DOI: 10.1016/s0065-3233(08)60652-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Kondo S, Marty A. Synaptic currents at individual connections among stellate cells in rat cerebellar slices. J Physiol 1998; 509 ( Pt 1):221-32. [PMID: 9547395 PMCID: PMC2230939 DOI: 10.1111/j.1469-7793.1998.221bo.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Unitary inhibitory synaptic connections among stellate cells were studied in rat cerebellar slices. Presynaptic action potentials and inhibitory postsynaptic currents (IPSCs) were simultaneously recorded by loose cell-attached and tight-seal whole-cell recording, respectively. 2. Several types of synaptic connections were distinguished on the basis of the shape of the amplitude distribution of successfully evoked currents. For simple synapses, which presumably arise at single release sites, these histograms could be fitted to a single Gaussian (5 cases). In four additional cases a small amplitude component (< 50 pA) was superimposed to a single Gaussian peak. The small events had slow rise times and widely distributed amplitudes. Finally eleven histograms showed two or more Gaussian components and were classified as complex connections. 3. Failure rates ranged from 0.06 to 0.85 for unitary connections (n = 20) and from 0.59 to 0.78 for simple synapses (n = 5). 4. Coefficient of variation values derived from Gaussian fits to simple synapse histograms ranged between 0.20 and 0.38 (n = 5). 5. In simple synapses peak current amplitudes were positively correlated to both current rise time and decay half-width. 6. Intervals between presynaptic action potentials were widely distributed. During stationary periods there was no correlation between interspike interval and amplitude size, success rate or latency. In some experiments, episodes with shorter interspike intervals were observed. During these periods, amplitude and success rate decreased, and the latency increased. Thus, IPSC characteristics depend on the mean frequency of presynaptic spikes, but not on random fluctuations of interspike intervals during stationary periods.
Collapse
Affiliation(s)
- S Kondo
- Arbeitsgruppe Zelluräre Neurobiologie, Max-Planck-Institut für biophysikalische Chemie, D-37070 Göttingen, Germany.
| | | |
Collapse
|
46
|
Xiang Z, Brown TH. Complex synaptic current waveforms evoked in hippocampal pyramidal neurons by extracellular stimulation of dentate gyrus. J Neurophysiol 1998; 79:2475-84. [PMID: 9582221 DOI: 10.1152/jn.1998.79.5.2475] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Excitatory postsynaptic currents (EPSCs) evoked in hippocampal CA3 pyramidal neurons by extracellular stimulation of the dentate gyrus typically exhibit complex waveforms. They commonly have inflections or notches on the rising phase; the decay phase may exhibit notches or other obvious departures from a simple monoexponential decline; they often display considerable variability in the latency from stimulation to the peak current; and the rise times tend to be long. One hypothesis is that these complex EPSC waveforms might result from excitation via other CA3 pyramidal cells that were recruited antidromically or trans-synaptically by the stimulus due to the complex anatomy of this region. An alternative hypothesis is that EPSC complexity does not emerge from the functional anatomy but rather reflects an unusual physiological property, intrinsic to excitation-secretion coupling in mossy-fiber (mf) synaptic terminals, that causes asynchronous quantal release. We evaluated certain predictions of our anatomic hypothesis by adding a pharmacological agent to the normal bathing medium that should suppress di- or polysynaptic responses. For this purpose we used baclofen (3 microM), a selective agonist for the gamma-aminobutyric acid B receptor. The idea was that baclophen should discriminate against polysynaptic versus monosynaptic inputs by hyperpolarizing the cells, bringing them further from spike threshold and possibly also through inhibitory presynaptic actions. Whole cell recordings were done from visually preselected CA3 pyramidal neurons and EPSCs were evoked by fine bipolar electrodes positioned into the granule cell layer of the dentate. To the extent that the EPSC complexity reflects di- or polysynaptic responses, we predicted baclofen to reduce the number of notches on the rising and decay phases, reduce the variance in latency to peak of the EPSCs, decrease the amplitudes and rise times of the individual and averaged EPSCs, and increase the apparent failures in evoked EPSCs. All of these predictions were confirmed, in support of the hypothesis that these complex EPSC waveforms commonly reflect di- or polysynaptic responses. We also documented a distinctly different, intermittent, form of EPSC complexity, which also is predicted and easily explained by our anatomic hypothesis. In particular, the results were in accord with the suggestion that stimulation of the dentate gyrus might antidromically stimulate axon collaterals of CA3 neurons that make recurrent synapses onto the recorded cell. We conclude that the overall pattern of results is consistent with expectations based on the functional anatomy. The explanation does not demand a special type of intrinsic asynchronous mechanism for excitation-secretion coupling in the mf synapses.
Collapse
Affiliation(s)
- Z Xiang
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
47
|
Delacour J, Lévy JC, Mercier D. A 'Neural Sampling Theory (NST)' of learning and memory mechanisms. Biosystems 1998; 44:231-44. [PMID: 9460562 DOI: 10.1016/s0303-2647(97)00055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of the Neural Sampling Theory (NST) is to propose a plausible neurobiological explanation for some general properties of learning and memory (LM) phenomena, based on the parallelism and redundancy of the nervous system organization; on the psychological side, the NST is inspired by the Stimulus Sampling and Encoding Variability theories. The sampling process which is its core, is not purely random; it depends on temporal and intensity factors. The NST may be implemented at different levels of the nervous system: synapse, neuron, assembly of neurons. Moreover, it may be incorporated in other formal models and improve their degree of neural realism. For instance it allows to give a more realistic representation of the connection weight in the connectionist models and of the noisy character of the nervous system.
Collapse
Affiliation(s)
- J Delacour
- Laboratoire de Psychophysiologie, Université Paris 7, Sevres, France.
| | | | | |
Collapse
|
48
|
Abstract
Our appreciation of the relationship between synaptic structure and function, and in particular our understanding of quantal synaptic transmission, is derived from classical studies on the neuromuscular junction. However, physiological studies of quantal transmission at mammalian CNS synapses have produced a variety of results, and thus no consensus of opinion has emerged. This variability could be due, in part, to experimental and analytical limitations or to differences in the structural and functional features of central synapses, or both. Some of the experimental limitations have recently been overcome by the use of novel preparations that permit direct measurement of quantal synaptic events in the CNS. Although these studies reveal similarities between the synaptic mechanisms of the neuromuscular junction and CNS synapses, important differences and specializations are also evident. The purpose of this review is to highlight the structural and functional diversity of synapses in the mammalian CNS, and to discuss the potential relevance of structural features to synaptic function.
Collapse
Affiliation(s)
- B Walmsley
- Neuroscience Division, John Curtin School of Medical Research, Australian National University, Canberra, ACT
| | | | | |
Collapse
|
49
|
Castro-Alamancos MA. Short-term plasticity in thalamocortical pathways: cellular mechanisms and functional roles. Rev Neurosci 1997; 8:95-116. [PMID: 9344181 DOI: 10.1515/revneuro.1997.8.2.95] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Information reaches the neocortex through different types of thalamocortical pathways. These differ in many morphological and physiological properties. One interesting aspect in which thalamocortical pathways differ is in their temporal dynamics, such as their short-term plasticity. Primary pathways display frequency-dependent depression, while secondary pathways display frequency-dependent enhancement. The cellular mechanisms underlying these dynamic responses involve pre- and post-synaptic and circuit properties. They may serve to synchronize, amplify and/or filter neural activity in neocortex depending on behavioral demands, and thus to adapt each pathway to its specific function.
Collapse
|
50
|
Abstract
Thalamocortical synapses inform the cerebral neocortex about the external and internal worlds. The thalamus produces myriad thalamocortical pathways that vary in morphological, physiological, pharmacological and functional properties. All these features are of great importance for understanding how information is acquired, integrated, processed, stored and retrieved by the thalamocortical system. This paper reviews the properties of the afferents from thalamus to cortex, and identifies some of the gaps in our knowledge of thalamocortical pathways.
Collapse
|