1
|
Naskar A, Bhanja KK, Roy RK, Patra N. Role of the Residue Q1919 in Increasing Kinase Activity of G2019S LRRK2 Kinase: A Computational Study. Chemphyschem 2023; 24:e202300306. [PMID: 37584472 DOI: 10.1002/cphc.202300306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Mutations in multi-domain leucine-rich repeat kinase 2 (LRRK2) have been an interest to researchers as these mutations are associated with Parkinson's disease. G2019S mutation in LRRK2 kinase domain leads to the formation of additional hydrogen bonds by S2019 which results in stabilization of the active state of the kinase, thereby increasing kinase activity. Two additional hydrogen bonds of S2019 are reported separately. Here, a mechanistic picture of the formation of additional hydrogen bonds of S2019 with Q1919 (also with E1920) is presented using 'active' Roco4 kinase as a homology model and its relationship with the stabilization of the 'active' G2019S LRRK2 kinase. A conformational flipping of residue Q1919 was found which helped to form stable hydrogen bond with S2019 and made 'active' state more stable in G2019S LRRK2. Two different states were found within the 'active' kinase with respect to the conformational change (flipping) in Q1919. Two doubly-mutated systems, G2019S/Q1919A and G2019S/E1920 K, were studied separately to check the effect of Q1919 and E1920. For both cases, the stable S2 state was not formed, leading to a decrease in kinase activity. These results indicate that both the additional hydrogen bonds of S2019 (with Q1919 and E1920) are necessary to stabilize the active G2019S LRRK2.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| | - Kousik Kumar Bhanja
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| | - Rakesh Kumar Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, India
| |
Collapse
|
2
|
Naskar A, Bhanja KK, Roy RK, Patra N. Structural insight into G2019S mutated LRRK2 kinase and brain-penetrant type I inhibitor complex: a molecular dynamics approach. J Biomol Struct Dyn 2023; 42:10129-10149. [PMID: 37702159 DOI: 10.1080/07391102.2023.2255675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
More than 40 mutations in the multidomain leucine-rich repeat kinase 2 (LRRK2) are found and mutation G2019S in the kinase domain is the most concerned with Parkinson's disease (PD). The discovery of the various types of inhibitors has largely emerged recently. However, the comparative study on molecular insight in WT and G2019S LRRK2 kinase domain upon binding of the inhibitors has not yet been explored in detail. This work considered five ATP-competitive Type I inhibitors complexed with WT and mutated LRRK2 kinase. Three reported potent and brain-penetrant inhibitors, GNE-7915, PF-06447475 and MLi-2 (comp1, comp2 and comp3 respectively) and also, another two inhibitors, Pyrrolo[2,3-b] pyridine derivative (comp4) and Pyrrolo[2,3-d] pyrimidine derivative (comp5), were used. In this work, classical and accelerated molecular dynamics (cMD and aMD) simulations were performed for a total of 12 systems (apo and holo). This study found structural and thermodynamic stability for all the inhibitors. Comparatively larger molecules (size 15.3 - 15.4 Å), comp1, comp3 and comp5, showed more selectivity towards mutated LRRK2 kinase in terms of flexibility of residues, compactness and dynamics of kinase, the stability inside the binding-pocket. Also, inhibitors comp3 and comp5 showed higher binding affinity towards G2019S LRRK2 among the five. Residues, E1948 and A1950 (in hinge region) were observed mainly to form hydrogen bonds with inhibitors. Finally, MLi-2 showed a conformational rearrangement by dihedral flipping in both WT and mutated systems but got stability in G2019S LRRK2. This work could potentially help design more improved and effective Type I inhibitors for G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Kousik K Bhanja
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| |
Collapse
|
3
|
Rahimi M, Taghdir M, Abasi Joozdani F. Dynamozones are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease. Sci Rep 2023; 13:14179. [PMID: 37648682 PMCID: PMC10469195 DOI: 10.1038/s41598-023-40818-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Proteins are not static but are flexible molecules that can adopt many different conformations. The HIV-1 protease is an important target for the development of therapies to treat AIDS, due to its critical role in the viral life cycle. We investigated several dynamics studies on the HIV-1 protease families to illustrate the significance of examining the dynamic behaviors and molecular motions for an entire understanding of their dynamics-structure-function relationships. Using computer simulations and principal component analysis approaches, the dynamics data obtained revealed that: (i) The flap regions are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease; (ii) There are dynamic structural regions in some proteins that contribute to the biological function and allostery of proteins via appropriate flexibility. These regions are a clear sign of the evolution of conformational dynamics of proteins, which we call dynamozones. The flap regions are one of the most important dynamozones members that are critical for HIV-1 protease function. Due to the existence of other members of dynamozones in different proteins, we propose to consider dynamozones as a footprint of the evolution of the conformational dynamics of proteins.
Collapse
Affiliation(s)
- Mohammad Rahimi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran
| |
Collapse
|
4
|
Three-Dimensional Interactions Analysis of the Anticancer Target c-Src Kinase with Its Inhibitors. Cancers (Basel) 2020; 12:cancers12082327. [PMID: 32824733 PMCID: PMC7466017 DOI: 10.3390/cancers12082327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Src family kinases (SFKs) constitute the biggest family of non-receptor tyrosine kinases considered as therapeutic targets for cancer therapy. An aberrant expression and/or activation of the proto-oncogene c-Src kinase, which is the oldest and most studied member of the family, has long been demonstrated to play a major role in the development, growth, progression and metastasis of numerous human cancers, including colon, breast, gastric, pancreatic, lung and brain carcinomas. For these reasons, the pharmacological inhibition of c-Src activity represents an effective anticancer strategy and a few compounds targeting c-Src, together with other kinases, have been approved as drugs for cancer therapy, while others are currently undergoing preclinical studies. Nevertheless, the development of potent and selective inhibitors of c-Src aimed at properly exploiting this biological target for the treatment of cancer still represents a growing field of study. In this review, the co-crystal structures of c-Src kinase in complex with inhibitors discovered in the past two decades have been described, highlighting the key ligand-protein interactions necessary to obtain high potency and the features to be exploited for addressing selectivity and drug resistance issues, thus providing useful information for the design of new and potent c-Src kinase inhibitors.
Collapse
|
5
|
Meshram RJ, Shirsath A, Aouti S, Bagul K, Gacche RN. Molecular modeling and simulation study of homoserine kinase as an effective leishmanial drug target. J Mol Model 2020; 26:218. [PMID: 32720228 DOI: 10.1007/s00894-020-04473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/14/2020] [Indexed: 11/25/2022]
Abstract
Leishmaniasis is a tropical neglected disease that imposes major health concerns in many endemic countries worldwide and requires urgent attention to the identification of new drug targets as well as drug candidates. In the current study, we propose homoserine kinase (HSK) inhibition as a strategy to induce pathogen mortality via generating threonine deficiency. We introduce a homology-based molecular model of leishmanial HSK that appears to possess all conserved structural as well as functional features in the GHMP kinase family. Furthermore, 200 ns molecular dynamics data of the enzyme in open and closed state attempts to provide the mechanistic details involved in the substrate as well as phosphate binding to this enzyme. We discuss the structural and functional significance of movements involved in various loops (motif 1, 2, 3) and lips (upper and lower) in the transition of leishmanial HSK from closed to open state. Virtual screening data of more than 40,000 compounds from the present investigation tries to identify a few potential HSK inhibitors that possess important features to act as efficient HSK inhibitors. These compounds can be considered an effective starting point for the identification of novel drug-like scaffolds. We hope the structural wealth that is offered in this report will be utilized in designing competent experimental and therapeutic interventions for leishmaniasis management. Graphical abstract.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Akshay Shirsath
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Snehal Aouti
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Kamini Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| |
Collapse
|
6
|
Solorza J, Recabarren R, Alzate-Morales J. Molecular Insights into the Trapping Effect of Ca 2+ in Protein Kinase A: A Molecular Dynamics Study. J Chem Inf Model 2020; 60:898-914. [PMID: 31804819 DOI: 10.1021/acs.jcim.9b00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinase A has become a model system for the study of kinases, and therefore, a comprehensive understanding of the underlying molecular mechanisms in its catalytic cycle is of crucial importance. One of the aspects that has received recent attention is the role that metal cofactors play in the catalytic cycle. Although Mg2+ is the well-known physiological ion used by protein kinases, Ca2+ ions can also assist the phosphoryl transfer reaction but with lower catalytic activities. This inhibitory effect has been attributed to the ability of Ca2+ to trap the reaction products at the active site, and it has been proposed as a possible regulatory mechanism of the enzyme. Thus, in order to get a clearer understanding of these molecular events, computational simulations in the product state of PKA, in the presence of Mg2+ and Ca2+ ions, were performed through molecular dynamics (MD). Different protonation states of the active site were considered in order to model the different mechanistic pathways that have been proposed. Our results show that different protonation states of the phosphorylated serine residue at the peptide substrate (pSer21), as well as the protonation state of residue Asp166, can have a marked influence on the flexibility of regions surrounding the active site. This is the case of the glycine-rich loop, a structural motif that is directly involved in the release of the products from the PKA active site. MD simulations were capable to reproduce the crystallographic conformations but also showed other conformations not previously reported in the crystal structures that may be involved in enhancing the affinity of pSP20 to PKA in the presence of Ca2+. Hydrogen bonding interactions at the PKA-pSP20 interface were influenced whether by the protonation state of the active site or by the metal cofactor used by the enzyme. Altogether, our results provide molecular aspects into the inhibitory mechanism of Ca2+ in PKA and suggest which is the most probable protonation state of the phosphorylated product at the active site.
Collapse
Affiliation(s)
- Jocelyn Solorza
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile
| | - Rodrigo Recabarren
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile
| |
Collapse
|
7
|
Bellinzoni M, Wehenkel AM, Durán R, Alzari PM. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Microbes Infect 2019; 21:222-229. [PMID: 31254628 DOI: 10.1016/j.micinf.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphorylation is known to be one of the keystones of signal sensing and transduction in all living organisms. Once thought to be essentially confined to the eukaryotic kingdoms, reversible phosphorylation on serine, threonine and tyrosine residues, has now been shown to play a major role in many prokaryotes, where the number of Ser/Thr protein kinases (STPKs) equals or even exceeds that of two component systems. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is one of the most studied organisms for the role of STPK-mediated signaling in bacteria. Driven by the interest and tractability of these enzymes as potential therapeutic targets, extensive studies revealed the remarkable conservation of protein kinases and their cognate phosphatases across evolution, and their involvement in bacterial physiology and virulence. Here, we present an overview of the current knowledge of mycobacterial STPKs structures and kinase activation mechanisms, and we then focus on PknB and PknG, two well-characterized STPKs that are essential for the intracellular survival of the bacillus. We summarize the mechanistic evidence that links PknB to the regulation of peptidoglycan synthesis in cell division and morphogenesis, and the major findings that establishes PknG as a master regulator of central carbon and nitrogen metabolism. Two decades after the discovery of STPKs in M. tuberculosis, the emerging landscape of O-phosphosignaling is starting to unveil how eukaryotic-like kinases can be engaged in unique, non-eukaryotic-like, signaling mechanisms in mycobacteria.
Collapse
Affiliation(s)
- Marco Bellinzoni
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Anne Marie Wehenkel
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Mataojo 2020, Montevideo 11400, Uruguay
| | - Pedro M Alzari
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
8
|
Bellinzoni M, Wehenkel AM, Durán R, Alzari PM. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Genes Immun 2019; 20:383-393. [DOI: 10.1038/s41435-019-0069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
|
9
|
Sonti R, Hertel-Hering I, Lamontanara AJ, Hantschel O, Grzesiek S. ATP Site Ligands Determine the Assembly State of the Abelson Kinase Regulatory Core via the Activation Loop Conformation. J Am Chem Soc 2018; 140:1863-1869. [PMID: 29319304 DOI: 10.1021/jacs.7b12430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The constituent SH3, SH2, and kinase domains of the Abl kinase regulatory core can adopt an assembled (inactive) or a disassembled (active) conformation. We show that this assembly state strictly correlates with the conformation of the kinase activation loop induced by a total of 14 ATP site ligands, comprising all FDA-approved Bcr-Abl inhibiting drugs. The disassembly of the core by certain (type II) ligands can be explained by an induced push on the kinase N-lobe via A- and P-loop toward the SH3 domain. A similar sized P-loop motion is expected during nucleotide binding and release, which would be impeded in the assembled state, in agreement with its strongly reduced kinase activity.
Collapse
Affiliation(s)
- Rajesh Sonti
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| | - Ines Hertel-Hering
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| | - Allan Joaquim Lamontanara
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne, Switzerland
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
10
|
La Sala G, Riccardi L, Gaspari R, Cavalli A, Hantschel O, De Vivo M. HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase. J Chem Theory Comput 2016; 12:5563-5574. [DOI: 10.1021/acs.jctc.6b00600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Andrea Cavalli
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Oliver Hantschel
- Swiss
Institute for Experimental Cancer Research (ISREC), School of Life
Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ISREC Foundation Chair in Translational Oncology, 1015 Lausanne, Switzerland
| | - Marco De Vivo
- IAS-S/INM-9 Computational Biomedicine Forschungszentrum, Jülich Wilhelm-Johnen-Staße, 52428 Jülich, Germany
| |
Collapse
|
11
|
Krishna KH, Vadlamudi Y, Kumar MS. Viral Evolved Inhibition Mechanism of the RNA Dependent Protein Kinase PKR's Kinase Domain, a Structural Perspective. PLoS One 2016; 11:e0153680. [PMID: 27088597 PMCID: PMC4835081 DOI: 10.1371/journal.pone.0153680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
The protein kinase PKR activated by viral dsRNA, phosphorylates the eIF2α, which inhibit the mechanism of translation initiation. Viral evolved proteins mimicking the eIF2α block its phosphorylation and help in the viral replication. To decipher the molecular basis for the PKR’s substrate and inhibitor interaction mechanisms, we carried the molecular dynamics studies on the catalytic domain of PKR in complex with substrate eIF2α, and inhibitors TAT and K3L. The studies conducted show the altered domain movements of N lobe, which confers open and close state to the substrate-binding cavity. In addition, PKR exhibits variations in the secondary structural transition of the activation loop residues, and inter molecular contacts with the substrate and the inhibitors. Phosphorylation of the P+1 loop at the Thr-451 increases the affinity of the binding proteins exhibiting its role in the phosphorylation events. The implications of structural mechanisms uncovered will help to understand the basis of the evolution of the host-viral and the viral replication mechanisms.
Collapse
Affiliation(s)
- K. Hari Krishna
- Centre for Bioinformatics, Pondicherry University, Kalapet, Pondicherry, India
| | | | - Muthuvel Suresh Kumar
- Centre for Bioinformatics, Pondicherry University, Kalapet, Pondicherry, India
- * E-mail:
| |
Collapse
|
12
|
Pucheta-Martínez E, Saladino G, Morando MA, Martinez-Torrecuadrada J, Lelli M, Sutto L, D’Amelio N, Gervasio FL. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase. Sci Rep 2016; 6:24235. [PMID: 27063862 PMCID: PMC4827121 DOI: 10.1038/srep24235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.
Collapse
Affiliation(s)
| | - Giorgio Saladino
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Maria Agnese Morando
- Center of Technological Development in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Jorge Martinez-Torrecuadrada
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Moreno Lelli
- Centre de RMN à Très Hauts Champs, Institut de Sciences Analytiques, (CNRS/ENS Lyon/Universitè CB Lyon 1), 69100 Villeurbanne, France
| | - Ludovico Sutto
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Nicola D’Amelio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016; 116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Papaleo
- Computational
Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giorgio Saladino
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Lambrughi
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, National Cancer Institute Frederick, Frederick, Maryland 21702, United States
- Sackler Institute
of Molecular Medicine, Department of Human Genetics and Molecular
Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Das A, Gerlits O, Parks JM, Langan P, Kovalevsky A, Heller WT. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation. Structure 2015; 23:2331-2340. [PMID: 26585512 DOI: 10.1016/j.str.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg(2+) binds first to the M1 site as a complex with ATP and is followed by Mg(2+) binding to the M2 site. Concurrently, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. Lastly, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.
Collapse
Affiliation(s)
- Amit Das
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Oksana Gerlits
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William T Heller
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
15
|
Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev 2015; 40:41-56. [DOI: 10.1093/femsre/fuv041] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 11/14/2022] Open
|
16
|
Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2. Int J Mol Sci 2015; 16:9314-40. [PMID: 25918937 PMCID: PMC4463590 DOI: 10.3390/ijms16059314] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP) binding site (Site I) and two non-competitive binding sites (Site II and III). In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV). All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate). In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.
Collapse
|
17
|
The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion. PLoS Comput Biol 2014; 10:e1003863. [PMID: 25299346 PMCID: PMC4191882 DOI: 10.1371/journal.pcbi.1003863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022] Open
Abstract
Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors. The Abl kinase is a key player in many crucial cellular processes. It is also an important anti-cancer drug target, because a mutation leading to the fusion protein Bcr-Abl is the main cause for chronic myeloid leukemia (CML). Abl inhibitors are currently the only pharmaceutical treatment for CML. There are two main difficulties associated with the development of kinase inhibitors: the high similarity between active sites of different kinases, which makes selectivity a challenge, and mutations leading to resistance, which make it mandatory to search for alternative drugs. One important factor controlling Abl is the interplay between the catalytic domain and an SH2 domain. We used computer simulations to understand how the interactions between the domains modify the dynamic of the kinase and detected both local and global effects. Based on our computer model, we suggested mutations that should alter the domain-domain interplay. Consequently, we tested the mutants experimentally and found that they support our hypothesis. We propose that our findings can be of help for the development of new classes of Abl inhibitors, which would modify the domain-domain interplay instead of interfering directly with the active site.
Collapse
|
18
|
Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema PJ, de Laureto PP, Nikolaev Y, Oliveira AP, Picotti P. Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 2014; 32:1036-44. [PMID: 25218519 DOI: 10.1038/nbt.2999] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/25/2014] [Indexed: 01/28/2023]
Abstract
Changes in protein conformation can affect protein function, but methods to probe these structural changes on a global scale in cells have been lacking. To enable large-scale analyses of protein conformational changes directly in their biological matrices, we present a method that couples limited proteolysis with a targeted proteomics workflow. Using our method, we assessed the structural features of more than 1,000 yeast proteins simultaneously and detected altered conformations for ~300 proteins upon a change of nutrients. We find that some branches of carbon metabolism are transcriptionally regulated whereas others are regulated by enzyme conformational changes. We detect structural changes in aggregation-prone proteins and show the functional relevance of one of these proteins to the metabolic switch. This approach enables probing of both subtle and pronounced structural changes of proteins on a large scale.
Collapse
Affiliation(s)
- Yuehan Feng
- 1] Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland. [2]
| | - Giorgia De Franceschi
- 1] Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland. [2] CRIBI Biotechnology Centre, University of Padua, Padua, Italy. [3]
| | - Abdullah Kahraman
- 1] Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland. [2]
| | - Martin Soste
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andre Melnik
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul J Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Yaroslav Nikolaev
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ana Paula Oliveira
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Gerlits O, Das A, Keshwani MM, Taylor S, Waltman MJ, Langan P, Heller WT, Kovalevsky A. Metal-free cAMP-dependent protein kinase can catalyze phosphoryl transfer. Biochemistry 2014; 53:3179-86. [PMID: 24786636 PMCID: PMC4030786 DOI: 10.1021/bi5000965] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-ray structures of several ternary product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with no bound metal ions and with Na(+) or K(+) coordinated at two metal-binding sites. The metal-free PKAc and the enzyme with alkali metals were able to facilitate the phosphoryl transfer reaction. In all studied complexes, the ATP and the substrate peptide (SP20) were modified into the products ADP and the phosphorylated peptide. The products of the phosphotransfer reaction were also found when ATP-γS, a nonhydrolyzable ATP analogue, reacted with SP20 in the PKAc active site containing no metals. Single turnover enzyme kinetics measurements utilizing (32)P-labeled ATP confirmed the phosphotransferase activity of the enzyme in the absence of metal ions and in the presence of alkali metals. In addition, the structure of the apo-PKAc binary complex with SP20 suggests that the sequence of binding events may become ordered in a metal-free environment, with SP20 binding first to prime the enzyme for subsequent ATP binding. Comparison of these structures reveals conformational and hydrogen bonding changes that might be important for the mechanism of catalysis.
Collapse
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ray S, Bender S, Kang S, Lin R, Glicksman MA, Liu M. The Parkinson disease-linked LRRK2 protein mutation I2020T stabilizes an active state conformation leading to increased kinase activity. J Biol Chem 2014; 289:13042-53. [PMID: 24695735 DOI: 10.1074/jbc.m113.537811] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of leucine-rich repeat kinase 2 (LRRK2) mutation I2020T on its kinase activity has been controversial, with both increased and decreased effects being reported. We conducted steady-state and pre-steady-state kinetic studies on LRRKtide and its analog LRRKtide(S). Their phosphorylation differs by the rate-limiting steps: product release is rate-limiting for LRRKtide and phosphoryl transfer is rate-limiting for LRRKtide(S). As a result, we observed that the I2020T mutant is more active than wild type (WT) LRRK2 for LRRKtide(S) phosphorylation, whereas it is less active than WT for LRRKtide phosphorylation. Our pre-steady-state kinetic data suggest that (i) the I2020T mutant accelerates the rates of phosphoryl transfer of both reactions by 3-7-fold; (ii) this increase is masked by a rate-limiting product release step for LRRKtide phosphorylation; and (iii) the observed lower activity of the mutant for LRRKtide phosphorylation is a consequence of its instability: the concentration of the active form of the mutant is 3-fold lower than WT. The I2020T mutant has a dramatically low KATP and therefore leads to resistance to ATP competitive inhibitors. Two well known DFG-out or type II inhibitors are also weaker toward the mutant because they inhibit the mutant in an unexpected ATP competitive mechanism. The I2020 residue lies next to the DYG motif of the activation loop of the LRRK2 kinase domain. Our modeling and metadynamic simulations suggest that the I2020T mutant stabilizes the DYG-in active conformation and creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP competitive fashion.
Collapse
Affiliation(s)
- Soumya Ray
- From the Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, and
| | | | | | | | | | | |
Collapse
|
21
|
Odendall C, Rolhion N, Förster A, Poh J, Lamont DJ, Liu M, Freemont PS, Catling AD, Holden DW. The Salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Cell Host Microbe 2013; 12:657-68. [PMID: 23159055 PMCID: PMC3510437 DOI: 10.1016/j.chom.2012.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/27/2012] [Accepted: 09/25/2012] [Indexed: 01/09/2023]
Abstract
After host cell entry, Salmonella replicate in membrane-bound compartments, which accumulate a dense meshwork of F-actin through the kinase activity of the Salmonella SPI-2 type III secretion effector SteC. We find that SteC promotes actin cytoskeleton reorganization by activating a signaling pathway involving the MAP kinases MEK and ERK, myosin light chain kinase (MLCK) and Myosin IIB. Specifically, SteC phosphorylates MEK directly on serine 200 (S200), a previously unstudied phosphorylation site. S200 phosphorylation is predicted to displace a negative regulatory helix causing autophosphorylation on the known MEK activatory residues, S218 and S222. In support of this, substitution of S200 with alanine prevented phosphorylation on S218 and S222, and phosphomimetic mutations of S200 stimulated phosphorylation of these residues. Both steC-null and kinase-deficient mutant strains displayed enhanced replication in infected cells, suggesting that SteC manipulates the actin cytoskeleton to restrain bacterial growth, thereby regulating virulence.
Collapse
Affiliation(s)
- Charlotte Odendall
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gerlits O, Waltman MJ, Taylor S, Langan P, Kovalevsky A. Insights into the phosphoryl transfer catalyzed by cAMP-dependent protein kinase: an X-ray crystallographic study of complexes with various metals and peptide substrate SP20. Biochemistry 2013; 52:3721-7. [PMID: 23672593 PMCID: PMC3666212 DOI: 10.1021/bi400066a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
X-ray
structures of several ternary substrate and product complexes
of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have
been determined with different bound metal ions. In the PKAc complexes,
Mg2+, Ca2+, Sr2+, and Ba2+ metal ions could bind to the active site and facilitate the phosphoryl
transfer reaction. ATP and a substrate peptide (SP20) were modified,
and the reaction products ADP and the phosphorylated peptide were
found trapped in the enzyme active site. Finally, we determined the
structure of a pseudo-Michaelis complex containing Mg2+, nonhydrolyzable AMP-PCP (β,γ-methyleneadenosine 5′-triphosphate)
and SP20. The product structures together with the pseudo-Michaelis
complex provide snapshots of different stages of the phosphorylation
reaction. Comparison of these structures reveals conformational, coordination,
and hydrogen bonding changes that might occur during the reaction
and shed new light on its mechanism, roles of metals, and active site
residues.
Collapse
Affiliation(s)
- Oksana Gerlits
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87544, United States
| | | | | | | | | |
Collapse
|
23
|
Liu M, Bender SA, Cuny GD, Sherman W, Glicksman M, Ray SS. Type II kinase inhibitors show an unexpected inhibition mode against Parkinson's disease-linked LRRK2 mutant G2019S. Biochemistry 2013; 52:1725-36. [PMID: 23379419 PMCID: PMC3966205 DOI: 10.1021/bi3012077] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of well-known type II inhibitors (ATP-noncompetitive) that bind kinases in their DFG-out conformation were tested against wild-type LRRK2 and the most common Parkinson's disease-linked mutation, G2019S. We found that traditional type II inhibitors exhibit surprising variability in their inhibition mechanism between the wild type (WT) and the G2019S mutant of LRRK2. The type II kinase inhibitors were found to work in an ATP-competitive fashion against the G2019S mutant, whereas they appear to follow the expected noncompetitive mechanism against WT. Because the G2019S mutation lies in the DXG motif (DYG in LRRK2 but DFG in most other kinases) of the activation loop, we explored the structural consequence of the mutation on loop dynamics using an enhanced sampling method called metadynamics. The simulations suggest that the G2019S mutation stabilizes the DYG-in state of LRRK2 through a series of hydrogen bonds, leading to an increase in the conformational barrier between the active and inactive forms of the enzyme and a relative stabilization of the active form. The conformational bias toward the active form of LRRK2 mutants has two primary consequences. (1) The mutant enzyme becomes hyperactive, a known contributor to the Parkinsonian phenotype, as a consequence of being "locked" into the activated state, and (2) the mutation creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP-competitive fashion. Our results suggest that developing type II inhibitors, which are generally considered superior to type I inhibitors because of desirable selectivity profiles, might be especially challenging for the G2019S LRRK2 mutant.
Collapse
Affiliation(s)
- Min Liu
- Harvard NeuroDiscovery Center, Harvard University, 65 Landsdowne St., #452, Cambridge, MA 02139
| | | | - Gregory D Cuny
- Harvard NeuroDiscovery Center, Harvard University, 65 Landsdowne St., #452, Cambridge, MA 02139
| | - Woody Sherman
- Schrodinger, 120 W. 45 Street, New York, NY, 10036
- Proteus Discovery Inc. 411 Massachusetts avenue, Cambridge, MA 02139-410
| | - Marcie Glicksman
- Harvard NeuroDiscovery Center, Harvard University, 65 Landsdowne St., #452, Cambridge, MA 02139
| | - Soumya S. Ray
- Harvard NeuroDiscovery Center, Harvard University, 65 Landsdowne St., #452, Cambridge, MA 02139
- Department of Neurology, Brigham and Women’s Hospital
- Center for Neurologic Diseases, Brigham and Women’s Hospital
- Proteus Discovery Inc. 411 Massachusetts avenue, Cambridge, MA 02139-410
| |
Collapse
|
24
|
Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamic regulation of Abl kinases. J Biol Chem 2013; 288:5443-50. [PMID: 23316053 DOI: 10.1074/jbc.r112.438382] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity.
Collapse
Affiliation(s)
- Shoghag Panjarian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
25
|
Oruganty K, Kannan N. Design principles underpinning the regulatory diversity of protein kinases. Philos Trans R Soc Lond B Biol Sci 2012; 367:2529-39. [PMID: 22889905 PMCID: PMC3415841 DOI: 10.1098/rstb.2012.0015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation in eukaryotes is carried out by a large and diverse family of protein kinases, which display remarkable diversity and complexity in their modes of regulation. The complex modes of regulation have evolved as a consequence of natural selection operating on protein kinase sequences for billions of years. Here we describe how quantitative comparisons of protein kinase sequences from diverse organisms, in particular prokaryotes, have contributed to our understanding of the structural organization and evolution of allosteric regulation in the protein kinase domain. An emerging view from these studies is that regulatory diversity and complexity in the protein kinase domain evolved in a ‘modular’ fashion through elaboration of an ancient core component, which existed before the emergence of eukaryotes. The core component provided the conformational flexibility required for ATP binding and phosphoryl transfer in prokaryotic kinases, but evolved into a highly regulatable domain in eukaryotes through the addition of exaggerated structural features that facilitated tight allosteric control. Family and group-specific features are built upon the core component in eukaryotes to provide additional layers of control. We propose that ‘modularity’ and ‘conformational flexibility’ are key evolvable traits of the protein kinase domain that contributed to its extensive regulatory diversity and complexity.
Collapse
Affiliation(s)
- Krishnadev Oruganty
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
26
|
Klopffleisch K, Issinger OG, Niefind K. Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands: a tool to study the unique hinge-region plasticity of the enzyme without packing bias. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:883-92. [PMID: 22868753 DOI: 10.1107/s0907444912016587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 04/16/2012] [Indexed: 12/13/2022]
Abstract
A low-resolution structure of the catalytic subunit CK2α of human protein kinase CK2 (formerly known as casein kinase 2) in complex with the ATP-competitive inhibitor resorufin is presented. The structure supplements previous human CK2α structures in which the interdomain hinge/helix αD region adopts a closed conformation correlating to a canonically established catalytic spine as is typical for eukaryotic protein kinases. In the corresponding crystal packing the hinge/helix αD region is nearly unaffected by crystal contacts, so that largely unbiased conformational adaptions are possible. This is documented by published human CK2α structures with the same crystal packing but with an open hinge/helix αD region, one of which has been redetermined here with a higher symmetry. An overview of all published human CK2α crystal packings serves as the basis for a discussion of the factors that determine whether the open or the closed hinge/helix αD conformation is adopted. Lyotropic salts in crystallization support the closed conformation, in which the Phe121 side chain complements the hydrophobic catalytic spine ensemble. Consequently, genuine ligand effects on the hinge/helix αD conformation can be best studied under moderate salt conditions. Ligands that stabilize either the open or the closed conformation by hydrogen bonds are known, but a general rule is not yet apparent.
Collapse
Affiliation(s)
- Karsten Klopffleisch
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Otto-Fischer-Strasse 12-14, D-50674 Köln, Germany
| | | | | |
Collapse
|
27
|
Baños-Sanz JI, Sanz-Aparicio J, Whitfield H, Hamilton C, Brearley CA, González B. Conformational changes in inositol 1,3,4,5,6-pentakisphosphate 2-kinase upon substrate binding: role of N-terminal lobe and enantiomeric substrate preference. J Biol Chem 2012; 287:29237-49. [PMID: 22745128 DOI: 10.1074/jbc.m112.363671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP(5). Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP(5) 2-K, which shed light on aspects of substrate recognition. However, failure of IP(5) 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP(5) 2-K in its different conformations by crystallography. Thus, the IP(5) 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP(5) 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg(130) mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP(5) 2-K in mammals.
Collapse
Affiliation(s)
- José Ignacio Baños-Sanz
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Kovalevsky AY, Johnson H, Hanson BL, Waltman MJ, Fisher SZ, Taylor S, Langan P. Low- and room-temperature X-ray structures of protein kinase A ternary complexes shed new light on its activity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:854-60. [PMID: 22751671 DOI: 10.1107/s0907444912014886] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 11/10/2022]
Abstract
Post-translational protein phosphorylation by protein kinase A (PKA) is a ubiquitous signalling mechanism which regulates many cellular processes. A low-temperature X-ray structure of the ternary complex of the PKA catalytic subunit (PKAc) with ATP and a 20-residue peptidic inhibitor (IP20) at the physiological Mg(2+) concentration of ∼0.5 mM (LT PKA-MgATP-IP20) revealed a single metal ion in the active site. The lack of a second metal in LT PKA-MgATP-IP20 renders the β- and γ-phosphoryl groups of ATP very flexible, with high thermal B factors. Thus, the second metal is crucial for tight positioning of the terminal phosphoryl group for transfer to a substrate, as demonstrated by comparison of the former structure with that of the LT PKA-Mg(2)ATP-IP20 complex obtained at high Mg(2+) concentration. In addition to its kinase activity, PKAc is also able to slowly catalyze the hydrolysis of ATP using a water molecule as a substrate. It was found that ATP can be readily and completely hydrolyzed to ADP and a free phosphate ion in the crystals of the ternary complex PKA-Mg(2)ATP-IP20 by X-ray irradiation at room temperature. The cleavage of ATP may be aided by X-ray-generated free hydroxyl radicals, a very reactive chemical species, which move rapidly through the crystal at room temperature. The phosphate anion is clearly visible in the electron-density maps; it remains in the active site but slides about 2 Å from its position in ATP towards Ala21 of IP20, which mimics the phosphorylation site. The phosphate thus pushes the peptidic inhibitor away from the product ADP, while resulting in dramatic conformational changes of the terminal residues 24 and 25 of IP20. X-ray structures of PKAc in complex with the nonhydrolysable ATP analogue AMP-PNP at both room and low temperature demonstrated no temperature effects on the conformation and position of IP20.
Collapse
Affiliation(s)
- Andrey Y Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Rakette S, Donat S, Ohlsen K, Stehle T. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB. PLoS One 2012; 7:e39136. [PMID: 22701750 PMCID: PMC3372466 DOI: 10.1371/journal.pone.0039136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/18/2012] [Indexed: 11/29/2022] Open
Abstract
Effective treatment of infections caused by the bacterium Staphylococcus aureus remains a worldwide challenge, in part due to the constant emergence of new strains that are resistant to antibiotics. The serine/threonine kinase PknB is of particular relevance to the life cycle of S. aureus as it is involved in the regulation of purine biosynthesis, autolysis, and other central metabolic processes of the bacterium. We have determined the crystal structure of the kinase domain of PknB in complex with a non-hydrolyzable analog of the substrate ATP at 3.0 Å resolution. Although the purified PknB kinase is active in solution, it crystallized in an inactive, autoinhibited state. Comparison with other bacterial kinases provides insights into the determinants of catalysis, interactions of PknB with ligands, and the pathway of activation.
Collapse
Affiliation(s)
- Sonja Rakette
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Stefanie Donat
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kukimoto-Niino M, Yoshikawa S, Takagi T, Ohsawa N, Tomabechi Y, Terada T, Shirouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokoshi Y, Yokoyama S. Crystal structure of the Ca²⁺/calmodulin-dependent protein kinase kinase in complex with the inhibitor STO-609. J Biol Chem 2011; 286:22570-9. [PMID: 21504895 PMCID: PMC3121401 DOI: 10.1074/jbc.m111.251710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaMK) kinase (CaMKK) is a member of the CaMK cascade that mediates the response to intracellular Ca(2+) elevation. CaMKK phosphorylates and activates CaMKI and CaMKIV, which directly activate transcription factors. In this study, we determined the 2.4 Å crystal structure of the catalytic kinase domain of the human CaMKKβ isoform complexed with its selective inhibitor, STO-609. The structure revealed that CaMKKβ lacks the αD helix and that the equivalent region displays a hydrophobic molecular surface, which may reflect its unique substrate recognition and autoinhibition. Although CaMKKβ lacks the activation loop phosphorylation site, the activation loop is folded in an active-state conformation, which is stabilized by a number of interactions between amino acid residues conserved among the CaMKK isoforms. An in vitro analysis of the kinase activity confirmed the intrinsic activity of the CaMKKβ kinase domain. Structure and sequence analyses of the STO-609-binding site revealed amino acid replacements that may affect the inhibitor binding. Indeed, mutagenesis demonstrated that the CaMKKβ residue Pro(274), which replaces the conserved acidic residue of other protein kinases, is an important determinant for the selective inhibition by STO-609. Therefore, the present structure provides a molecular basis for clarifying the known biochemical properties of CaMKKβ and for designing novel inhibitors targeting CaMKKβ and the related protein kinases.
Collapse
Affiliation(s)
| | - Seiko Yoshikawa
- From the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Tetsuo Takagi
- From the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Noboru Ohsawa
- From the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Yuri Tomabechi
- From the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Takaho Terada
- From the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Mikako Shirouzu
- From the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
| | - Atsushi Suzuki
- the National Institute for Physiological Sciences, Aichi 444-8585, and
| | - Suni Lee
- the National Institute for Physiological Sciences, Aichi 444-8585, and
| | | | | | | | | | | | - Shigeyuki Yokoyama
- From the RIKEN Systems and Structural Biology Center, Yokohama 230-0045
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol 2008; 15:321-9. [PMID: 18297086 DOI: 10.1038/nsmb.1395] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 01/28/2008] [Indexed: 12/29/2022]
Abstract
Although the biological significance of protein phosphorylation in cellular signaling is widely appreciated, methods to directly detect these post-translational modifications in situ are lacking. Here we introduce the application of high-resolution NMR spectroscopy for observing de novo protein phosphorylation in vitro and in Xenopus laevis egg extracts and whole live oocyte cells. We found that the stepwise modification of adjacent casein kinase 2 (CK2) substrate sites within the viral SV40 large T antigen regulatory region proceeded in a defined order and through intermediate substrate release. This kinase mechanism contrasts with a more intuitive mode of CK2 action in which the kinase would remain substrate bound to perform both modification reactions without intermediate substrate release. For cellular signaling pathways, the transient availability of partially modified CK2 substrates could exert important switch-like regulatory functions.
Collapse
|
32
|
Ngo JCK, Gullingsrud J, Giang K, Yeh MJ, Fu XD, Adams JA, McCammon JA, Ghosh G. SR protein kinase 1 is resilient to inactivation. Structure 2007; 15:123-33. [PMID: 17223538 DOI: 10.1016/j.str.2006.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/27/2006] [Accepted: 11/29/2006] [Indexed: 11/25/2022]
Abstract
SR protein kinase 1 (SRPK1) is a constitutively active kinase, which processively phosphorylates multiple serines within its substrates, ASF/SF2. We describe crystallographic, molecular dynamics, and biochemical results that shed light on how SRPK1 preserves its constitutive active conformation. Our structure reveals that unlike other known active kinase structures, the activation loop remains in an active state without any specific intraprotein interactions. Moreover, SRPK1 remains active despite extensive mutation to the activation segment. Molecular dynamics simulations reveal that SRPK1 partially absorbs the effect of mutations by forming compensatory interactions that maintain a catalytically competent chemical environment. Furthermore, SRPK1 is similarly resistant to deletion of its spacer loop region. Based upon a model of SRPK1 bound to a segment encompassing the docking motif and active-site peptide of ASF/SF2, we suggest a mechanism for processive phosphorylation and propose that the atypical resiliency we observed is critical for SRPK1's processive activity.
Collapse
Affiliation(s)
- Jacky Chi Ki Ngo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE. Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 2007; 20:3372-81. [PMID: 17182865 PMCID: PMC1698445 DOI: 10.1101/gad.1485406] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report experiments that infer a radical reorientation of tyrosine-phosphorylated parallel STAT1 dimers to an antiparallel form. Such a change in structure allows easy access to a phosphatase. With differentially epitope-tagged molecules, we show that the two monomers of a dimer remain together during dephosphorylation although they most likely undergo spatial reorientation. Extensive single amino acid mutagenesis within crystallographically established domains, manipulation of amino acids in an unstructured tether that connects the N-terminal domain (ND) to the core of the protein, and the demonstration that overexpressed ND can facilitate dephosphorylation of a core molecule lacking an ND all support this model: When the tyrosine-phosphorylated STAT1 disengages from DNA, the ND dimerizes and somehow assists in freeing the reciprocal pY-SH2 binding between the monomers of the dimer while ND ND dimerization persists. The core of the monomers rotate allowing reciprocal association of the coiled:coil and DNA-binding domains to present pY at the two ends of an antiparallel dimer for ready dephosphorylation.
Collapse
Affiliation(s)
- Claudia Mertens
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021, USA
| | - Minghao Zhong
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021, USA
| | - Ravi Krishnaraj
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021, USA
| | - Wenxin Zou
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaomin Chen
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - James E. Darnell
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021, USA
- Corresponding author.E-MAIL ; FAX (212) 327-8801
| |
Collapse
|
34
|
Datta R, Das I, Sen B, Chakraborty A, Adak S, Mandal C, Datta A. Mutational analysis of the active-site residues crucial for catalytic activity of adenosine kinase from Leishmania donovani. Biochem J 2006; 387:591-600. [PMID: 15606359 PMCID: PMC1134988 DOI: 10.1042/bj20041733] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leishmania donovani adenosine kinase (LdAdK) plays a pivotal role in scavenging of purines from the host. Exploiting interspecies homology and structural co-ordinates of the enzyme from other sources, we generated a model of LdAdK that led us to target several amino acid residues (namely Gly-62, Arg-69, Arg-131 and Asp-299). Replacement of Gly-62 with aspartate caused a drastic reduction in catalytic activity, with decreased affinity for either substrate. Asp-299 was found to be catalytically indispensable. Mutation of either Arg-131 or Arg-69 caused a significant reduction in kcat. R69A (Arg-69-->Ala) and R131A mutants exhibited unaltered K(m) for either substrate, whereas ATP K(m) for R69K increased 6-fold. Importance of both of the arginine residues was reaffirmed by the R69K/R131A double mutant, which exhibited approx. 0.5% residual activity with a large increase in ATP K(m). Phenylglyoxal, which inhibits the wild-type enzyme, also inactivated the arginine mutants to different extents. Adenosine protected both of the Arg-69 mutants, but not the R131A variant, from inactivation. Binding experiments revealed that the AMP-binding property of R69K or R69A and D299A mutants remained largely unaltered, but R131A and R69K/R131A mutants lost their AMP binding ability significantly. The G62D mutant did not bind AMP at all. Free energy calculations indicated that Arg-69 and Arg-131 are functionally independent. Thus, apart from the mandatory requirement of flexibility around the diglycyl (Gly-61-Gly-62) motif, our results identified Asp-299 and Arg-131 as key catalytic residues, with the former functioning as the proton abstractor from the 5'-OH of adenosine, while the latter acts as a bidentate electrophile to stabilize the negative charge on the leaving group during the phosphate transfer. Moreover, the positive charge distribution of Arg-69 probably helps in maintaining the flexibility of the alpha-3 helix needed for proper domain movement. These findings provide the first comprehensive biochemical evidence implicating the mechanistic roles of the functionally important residues of this chemotherapeutically exploitable enzyme.
Collapse
Affiliation(s)
- Rupak Datta
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ishita Das
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Banibrata Sen
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Anutosh Chakraborty
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Chhabinath Mandal
- †Division of Drug Design, Development and Molecular Modelling, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Alok K. Datta
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Noble M, Barrett P, Endicott J, Johnson L, McDonnell J, Robertson G, Zawaira A. Exploiting structural principles to design cyclin-dependent kinase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:58-64. [PMID: 16361058 DOI: 10.1016/j.bbapap.2005.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/12/2005] [Accepted: 08/12/2005] [Indexed: 11/30/2022]
Abstract
Although cyclin-dependent kinases (CDKs) have been extensively targeted in anti cancer drug design, no CDK inhibitor has yet been approved for use in cancer therapy. While this may in part be because inhibitors clinically evaluated to date have not demonstrated clean inhibition of a single CDK, another contributing factor is an apparent latent functional redundancy in the CDK cell-cycle regulatory system. This further complicates the already challenging goal of targeting CDKs, since it implies that a therapeutically useful inhibitor will have to selectively inhibit more than one CDK family member among the complement of cellular proteins. Despite these difficulties, achieving an appropriate profile of CDK inhibition may yet be possible using ATP-competitive inhibitors, thanks to advances in computational and experimental methods of drug design. However, as an alternative to ATP-competitive inhibitors, inhibitors that interfere with a CDK-specific protein:protein interaction, such as that which occurs at the recruitment site found on several cyclins, may offer a route to a therapeutically useful inhibitory profile.
Collapse
Affiliation(s)
- Martin Noble
- Laboratory of Molecular Biophysics and Department of Biochemistry, The Rex Richards Building, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Breitenlechner CB, Kairies NA, Honold K, Scheiblich S, Koll H, Greiter E, Koch S, Schäfer W, Huber R, Engh RA. Crystal structures of active SRC kinase domain complexes. J Mol Biol 2005; 353:222-31. [PMID: 16168436 DOI: 10.1016/j.jmb.2005.08.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 01/13/2023]
Abstract
c-Src was the first proto-oncoprotein to be identified, and has become the focus of many drug discovery programs. Src structures of a major inactive form have shown how the protein kinase is rigidified by several interdomain interactions; active configurations of Src are generated by release from this "assembled" or "bundled" form. Despite the importance of Src as a drug target, there is relatively little structural information available regarding the presumably more flexible active forms. Here we report three crystal structures of a dimeric active c-Src kinase domain, in an apo and two ligand complexed forms, with resolutions ranging from 2.9A to 1.95A. The structures show how the kinase domain, in the absence of the rigidifying interdomain interactions of the inactivation state, adopts a more open and flexible conformation. The ATP site inhibitor CGP77675 binds to the protein kinase with canonical hinge hydrogen bonds and also to the c-Src specific threonine 340. In contrast to purvalanol B binding in CDK2, purvalanol A binds in c-Src with a conformational change in a more open ATP pocket.
Collapse
|
37
|
Scheeff ED, Bourne PE. Structural evolution of the protein kinase-like superfamily. PLoS Comput Biol 2005; 1:e49. [PMID: 16244704 PMCID: PMC1261164 DOI: 10.1371/journal.pcbi.0010049] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 09/08/2005] [Indexed: 11/19/2022] Open
Abstract
The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs), appear to have distinct evolutionary histories. While the PIPKs probably have an evolutionary relationship with the rest of the kinase superfamily, the relationship appears to be very distant (and perhaps indirect). Conversely, the alpha-kinases appear to be an exception to the scenario of early divergence for the atypical kinases: they apparently arose relatively recently in eukaryotes. We present possible scenarios for the derivation of the alpha-kinases from an extant kinase fold.
Collapse
Affiliation(s)
- Eric D Scheeff
- San Diego Supercomputer Center, University of California, San Diego, California, United States of America.
| | | |
Collapse
|
38
|
Kannan N, Neuwald AF. Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J Mol Biol 2005; 351:956-72. [PMID: 16051269 DOI: 10.1016/j.jmb.2005.06.057] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
Statistical analysis of the functional constraints acting on eukaryotic protein kinases (EPKs) and on distantly related kinases suggests that EPK regulatory mechanisms evolved around an ancient structural component whose most distinctive features include the HxD-motif adjoining the catalytic loop, the F-helix, an F-helix aspartate, and the DFG-motif adjoined to the activation loop. The HxD-histidine constitutes a convergence point for signal integration, as conserved interactions link it to key catalytic residues, to the F-helix aspartate, and to both ends of the DFG-motif. These and other conserved features appear to be associated with DFG conformational changes and with coordinated movements possibly associated with phosphate transfer and ADP release. The EPKs have acquired structural features that link this core component to likely substrate-interacting regions at either end of the F-helix (most notably involving an F-helix tryptophan) and to three regions undergoing conformational changes upon kinase activation: the activation segment, the C-helix, and the nucleotide-binding pocket.
Collapse
Affiliation(s)
- Natarajan Kannan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
39
|
LaRonde-LeBlanc N, Wlodawer A. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. Structure 2005; 12:1585-94. [PMID: 15341724 DOI: 10.1016/j.str.2004.06.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/11/2004] [Accepted: 06/12/2004] [Indexed: 10/26/2022]
Abstract
The RIO family of atypical serine/threonine kinases contains two subfamilies, Rio1 and Rio2, highly conserved from archaea to man. Both RIO proteins from Saccharomyces cerevisiae catalyze serine phosphorylation in vitro, and the presence of conserved catalytic residues is required for cell viability. The activity of Rio2 is necessary for rRNA cleavage in 40S ribosomal subunit maturation. We solved the X-ray crystal structure of Archaeoglobus fulgidus Rio2, with and without bound nucleotides, at 2.0 A resolution. The C-terminal RIO domain is indeed structurally homologous to protein kinases, although it differs from known serine kinases in ATP binding and lacks the regions important for substrate binding. Unexpectedly, the N-terminal Rio2-specific domain contains a winged helix fold, seen primarily in DNA-binding proteins. These discoveries have implications in determining the target and function of RIO proteins and define a distinct new family of protein kinases.
Collapse
Affiliation(s)
- Nicole LaRonde-LeBlanc
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, NCI-Frederick, MD 21702, USA
| | | |
Collapse
|
40
|
Zhu G, Fujii K, Belkina N, Liu Y, James M, Herrero J, Shaw S. Exceptional Disfavor for Proline at the P+1 Position among AGC and CAMK Kinases Establishes Reciprocal Specificity between Them and the Proline-directed Kinases. J Biol Chem 2005; 280:10743-8. [PMID: 15647260 DOI: 10.1074/jbc.m413159200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To precisely regulate critical signaling pathways, two kinases that phosphorylate distinct sites on the same protein substrate must have mutually exclusive specificity. Evolution could assure this by designing families of kinase such as basophilic kinases and proline-directed kinase with distinct peptide specificity; their reciprocal peptide specificity would have to be very complete, since recruitment of substrate allows phosphorylation of even rather poor phosphorylation sites in a protein. Here we report a powerful evolutionary strategy that assures distinct substrates for basophilic kinases (PKA, PKG and PKC (AGC) and calmodulin-dependent protein kinase (CAMK)) and proline-directed kinase, namely by the presence or absence of proline at the P + 1 position in substrates. Analysis of degenerate and non-degenerate peptides by in vitro kinase assays reveals that proline at the P + 1 position in substrates functions as a "veto" residue in substrate recognition by AGC and CAMK kinases. Furthermore, analysis of reported substrates of two typical basophilic kinases, protein kinase C and protein kinase A, shows the lowest occurrence of proline at the P + 1 position. Analysis of crystal structures and sequence conservation provides a molecular basis for this disfavor and illustrate its generality.
Collapse
Affiliation(s)
- Guozhi Zhu
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Foster R, Griffith R, Ferrao P, Ashman L. Molecular basis of the constitutive activity and STI571 resistance of Asp816Val mutant KIT receptor tyrosine kinase. J Mol Graph Model 2004; 23:139-52. [PMID: 15363456 DOI: 10.1016/j.jmgm.2004.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
The receptor tyrosine kinase, KIT, displays activating mutations in the kinase domain, which are associated with various cancers. We have used homology modelling based on the crystal structures of the insulin receptor kinase in active and inactive conformations to predict the corresponding structures of the KIT kinase domain. We have prepared four KIT models, one each for the active and inactive conformations of the wild-type and of the Asp816Val mutant proteins. We have also placed ATP into the active conformations and the inhibitor, STI571, into the inactive conformations. All models have been fully energy minimised. The molecular modelling studies described here explain (i) why Asp816Val KIT is constitutively active, (ii) why the nature of the substituting amino acid at residue 816 is relatively unimportant, and (iii) why the Asp816Val substitution confers resistance to the KIT-inhibitory drug STI571. The models will be valuable for predicting other kinase inhibitory drugs that may be active on wild-type and mutant forms of KIT. During the course of this work, a crystal structure of the active conformation of the KIT kinase domain has been published. Our model of the active conformation of the Asp816Val mutant is strikingly similar to this crystal structure, whereas our model of the active conformation of the wild-type kinase domain of KIT differs from the crystal structure in some respects. The reasons for this apparent discrepancy are discussed.
Collapse
Affiliation(s)
- Rowan Foster
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan NSW 2308, Australia
| | | | | | | |
Collapse
|
42
|
Hoofnagle AN, Stoner JW, Lee T, Eaton SS, Ahn NG. Phosphorylation-dependent changes in structure and dynamics in ERK2 detected by SDSL and EPR. Biophys J 2004; 86:395-403. [PMID: 14695281 PMCID: PMC1303804 DOI: 10.1016/s0006-3495(04)74115-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitogen-activated protein kinases are regulated by occupancy at two phosphorylation sites near the active site cleft. Previous studies using hydrogen exchange to investigate the canonical mitogen-activated protein kinase, extracellular signal-regulated protein kinase-2, have shown that phosphorylation alters backbone conformational mobility >10 A distal to the site of phosphorylation, including decreased mobility within amino acids 102-105 and increased mobility within 108-109. To further describe changes after enzyme activation, site-directed spin labeling at amino acids 101, 105-109, 111, 112 and electron paramagnetic resonance spectroscopy were used to investigate this region. The anisotropic hyperfine splitting of the spin labels in glassy samples was unchanged by phosphorylation, consistent with previous crystallographic studies that indicate no structural change in this region. At positions 101, 111, and 112, the mobility of the spin label was unchanged by diphosphorylation, consistent with little or no conformational change. However, diphosphorylation caused small but significant changes in rotational diffusion rates at positions 105-108 and altered proportions of probe in a motionally constrained state at positions 105, 107, and 109. Thus, electron paramagnetic resonance indicates reproducible changes in nanosecond side-chain mobilities at specific residues within the interdomain region, far from the site of phosphorylation and conformational change.
Collapse
Affiliation(s)
- Andrew N Hoofnagle
- School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Whitchurch CB, Leech AJ, Young MD, Kennedy D, Sargent JL, Bertrand JJ, Semmler ABT, Mellick AS, Martin PR, Alm RA, Hobbs M, Beatson SA, Huang B, Nguyen L, Commolli JC, Engel JN, Darzins A, Mattick JS. Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol Microbiol 2004; 52:873-93. [PMID: 15101991 DOI: 10.1111/j.1365-2958.2004.04026.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.
Collapse
Affiliation(s)
- Cynthia B Whitchurch
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu F, Johnson EF, Austin DJ, Anderson KS. Adenosine-anchored triphosphate subsite probing: distinguishing between HER-2 and HER-4 tyrosine protein kinases. Bioorg Med Chem Lett 2004; 13:3587-92. [PMID: 14505676 DOI: 10.1016/s0960-894x(03)00761-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A strategy of full-site occupancy and stereospecific recognition in the triphosphate subsite was used to specifically inhibit two protein kinases HER-2 and HER-4 from the EGFR family. The SAR profiles of a panel of adenosine-anchored bicyclic heterocycles against HER-2 and HER-4 indicated that specificity can be derived for highly homologous protein kinases from stereospecific recognition in the triphosphate-subsite.
Collapse
Affiliation(s)
- Fei Liu
- Department of Chemistry, 225 Prospect Street, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
46
|
Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr–Abl tyrosine kinases. Nat Rev Mol Cell Biol 2004; 5:33-44. [PMID: 14708008 DOI: 10.1038/nrm1280] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prototypic non-receptor tyrosine kinase c-Abl is implicated in various cellular processes. Its oncogenic counterpart, the Bcr-Abl fusion protein, causes certain human leukaemias. Recent insights into the structure and regulation of the c-Abl and Bcr-Abl tyrosine kinases have changed the way we look at these enzymes.
Collapse
Affiliation(s)
- Oliver Hantschel
- Developmental Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
47
|
Ortiz-Lombardía M, Pompeo F, Boitel B, Alzari PM. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J Biol Chem 2003; 278:13094-100. [PMID: 12551895 DOI: 10.1074/jbc.m300660200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the advent of the sequencing programs of prokaryotic genomes, many examples of the presence of serine/threonine protein kinases in these organisms have been identified. Moreover, these kinases could be classified as homologues of those belonging to the well characterized superfamily of the eukaryotic serine/threonine and tyrosine kinases. Eleven such kinases were recognized in the genome of Mycobacterium tuberculosis. Here we report the crystal structure of an active form of PknB, one of the four M. tuberculosis kinases that are conserved in the downsized genome of Mycobacterium leprae and are therefore presumed to play an important role in the processes that regulate the complex life cycle of mycobacteria. Our structure confirms again the extraordinary conservation of the protein kinase fold and constitutes a landmark that extends this conservation across the evolutionary distance between high eukaryotes and eubacteria. The structure of PknB, in complex with a nucleotide triphosphate analog, reveals an enzyme in the active state with an unprecedented arrangement of the Gly-rich loop associated with a new conformation of the nucleotide gamma-phosphoryl group. It presents as well a partially disordered activation loop, suggesting an induced fit mode of binding for the so far unknown substrates of this kinase or for some modulating factor(s).
Collapse
Affiliation(s)
- Miguel Ortiz-Lombardía
- Unité de Biochimie Structurale, URA 2185 CNRS, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris, cedex 15, France
| | | | | | | |
Collapse
|
48
|
Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 2003; 112:845-57. [PMID: 12654250 DOI: 10.1016/s0092-8674(03)00191-0] [Citation(s) in RCA: 347] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The c-Abl tyrosine kinase is inhibited by mechanisms that are poorly understood. Disruption of these mechanisms in the Bcr-Abl oncoprotein leads to several forms of human leukemia. We found that like Src kinases, c-Abl 1b is activated by phosphotyrosine ligands. Ligand-activated c-Abl is particularly sensitive to the anti-cancer drug STI-571/Gleevec/imatinib (STI-571). The SH2 domain-phosphorylated tail interaction in Src kinases is functionally replaced in c-Abl by an intramolecular engagement of the N-terminal myristoyl modification with the kinase domain. Functional studies coupled with structural analysis define a myristoyl/phosphotyrosine switch in c-Abl that regulates docking and accessibility of the SH2 domain. This mechanism offers an explanation for the observed cellular activation of c-Abl by tyrosine-phosphorylated proteins, the intracellular mobility of c-Abl, and it provides new insights into the mechanism of action of STI-571.
Collapse
Affiliation(s)
- Oliver Hantschel
- Developmental Biology Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Shima D, Yugami M, Tatsuno M, Wada T, Yamaguchi Y, Handa H. Mechanism of H-8 inhibition of cyclin-dependent kinase 9: study using inhibitor-immobilized matrices. Genes Cells 2003; 8:215-23. [PMID: 12622719 DOI: 10.1046/j.1365-2443.2003.00627.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Positive transcription elongation factor b (P-TEFb), which phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII), is comprised of the catalytic subunit cyclin-dependent kinase 9 (CDK9) and the regulatory subunit cyclin T. The kinase activity and transcriptional activation potential of P-TEFb is sensitive to various compounds, including H-8, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), and flavopiridol. RESULTS We investigated the molecular mechanism of the H-8 inhibition of CDK9 using matrices to which H-9, an amino derivative of H-8, was immobilized. CDK9 bound specifically to H-9, and this interaction was competitively inhibited by ATP and DRB, but not by flavopiridol. Mutational analyses demonstrated that the central region of CDK9, which encompasses the T-loop region, was important for its binding to H-9. CONCLUSIONS H-9-immobilized latex beads are useful for trapping CDK9 and a subset of kinases from crude cell extracts. The flavopiridol-binding region of CDK9 is most likely different from its H-9-binding region. These biochemical data support previously reported observations which were based on crystallographic data.
Collapse
Affiliation(s)
- Daisuke Shima
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Meinhart A, Alonso JC, Sträter N, Saenger W. Crystal structure of the plasmid maintenance system epsilon/zeta: functional mechanism of toxin zeta and inactivation by epsilon 2 zeta 2 complex formation. Proc Natl Acad Sci U S A 2003; 100:1661-6. [PMID: 12571357 PMCID: PMC149889 DOI: 10.1073/pnas.0434325100] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death in prokaryotes is frequently found as postsegregational killing. It relies on antitoxin/toxin systems that secure stable inheritance of low and medium copy number plasmids during cell division and kill cells that have lost the plasmid. The broad-host-range, low-copy-number plasmid pSM19035 from Streptococcus pyogenes carries the genes encoding the antitoxin/toxin system epsilon/zeta and antibiotic resistance proteins, among others. The crystal structure of the biologically nontoxic epsilon(2)zeta(2) protein complex at a 1.95-A resolution and site-directed mutagenesis showed that free zeta acts as phosphotransferase by using ATPGTP. In epsilon(2)zeta(2), the toxin zeta is inactivated because the N-terminal helix of the antitoxin epsilon blocks the ATPGTP-binding site. To our knowledge, this is the first prokaryotic postsegregational killing system that has been entirely structurally characterized.
Collapse
Affiliation(s)
- Anton Meinhart
- Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|