1
|
Doron R, Rozevich L, Bregman-Yemini N, Yadid G. The influence of chronic or acute DHEA exposure on β-endorphin levels in the nucleus accumbens. Eur J Pharmacol 2025; 996:177446. [PMID: 40023360 DOI: 10.1016/j.ejphar.2025.177446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND As cocaine dependence becomes highly prevalent among a diverse population, there is a need for innovative treatments that target both the physiological and behavioral aspects of addiction. We have previously published that Dehydroepiandrosterone (DHEA), a neurosteroid, reduces cocaine-seeking behavior and relapse for cocaine use. As drug addiction manifestation is affected by upregulation of β-endorphin levels in the Nucleus Accumbens (NAc), which is vital for the brain's reward system and to the rewarding properties of drugs, the current study aims to determine the effects of DHEA on β-endorphin levels in the NAc and its implications for cocaine addiction treatment. METHODS Utilizing Male Sprague-Dawley rats, DHEA was administered acutely (30 nM and 300 nM) directly into the NAc or as a chronic (14-day) intraperitoneal (i.p.) treatment, and β-endorphin levels were evaluated using microdialysis. RESULTS Our results revealed that acute DHEA administration significantly increased β-endorphin levels in the NAc, similar to the response elicited by cocaine. Conversely, chronic DHEA treatment prevents cocaine-induced β-endorphin upregulation in the NAc. CONCLUSIONS Our findings reveal the dual mechanisms by which DHEA alters β-endorphin levels, highlighting its potential as a therapeutic agent to decrease the rewarding effects of cocaine, by maintaining β-endorphin stability in the NAc. This novel insight may explain the mechanism by which DHEA reduces drug-seeking behavior, suggesting that DHEA may be a viable candidate for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Ravid Doron
- Department of Education and Psychology, The Open University, Israel.
| | - Lilach Rozevich
- Health Division, Maccabi Healthcare Services, Tel Aviv, Israel; Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel; The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Ramat-Gan, Israel
| | - Noa Bregman-Yemini
- Department of Education and Psychology, The Open University, Israel; Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - Gal Yadid
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel; The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Jang IS, Nakamura M. Pregnenolone sulfate potentiates tetrodotoxin-resistant Na + channels to increase the excitability of dural afferent neurons in rats. J Headache Pain 2025; 26:42. [PMID: 40000932 PMCID: PMC11863801 DOI: 10.1186/s10194-025-01968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Although peripheral administration of pregnenolone sulfate (PS) has been reported to produce pronociceptive effects, the mechanisms by which PS modulates the excitability of nociceptive neurons are poorly understood. Here, we report on the excitatory role of PS in peripheral nociceptive neurons, focusing on its effects on tetrodotoxin-resistant (TTX-R) Na+ channels. METHODS TTX-R Na+ current (INa) mediated by NaV1.8 was recorded from acutely isolated small-sized dural afferent neurons of rats, identified with the retrograde fluorescent dye DiI, using a whole-cell patch-clamp technique. RESULTS Transcripts for enzymes and transporters involved in PS biosynthesis were detected in the ophthalmic branch of the trigeminal ganglia. In voltage-clamp mode, PS preferentially potentiated the TTX-R persistent INa, a small non-inactivating current during sustained depolarization. PS shifted the voltage-inactivation relationship toward a depolarizing range. PS also delayed the onset of inactivation and accelerated the recovery from inactivation of TTX-R Na+ channels. Additionally, PS decreased the extent of use-dependent inhibition of TTX-R Na+ channels. In current-clamp mode, PS hyperpolarized dural afferent neurons by increasing the leak K+ conductance. Nevertheless, PS decreased the rheobase current-the minimum current required to generate action potentials-and increased the number of action potentials elicited by depolarizing current stimuli. CONCLUSION We have shown that the excitatory neurosteroid PS preferentially potentiates TTX-R persistent INa and reduces the inactivation of TTX-R Na+ channels, resulting in increased excitability of dural afferent neurons. The potential role of endogenous PS in migraine pathology warrants further investigation.
Collapse
Affiliation(s)
- Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
- Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| | - Michiko Nakamura
- Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| |
Collapse
|
3
|
Perovic M, Pavlovic D, Palmer Z, Udo MSB, Citadin CT, Rodgers KM, Wu CYC, Zhang Q, Lin HW, Tesic V. Modulation of GABAergic system as a therapeutic option in stroke. Exp Neurol 2025; 384:115050. [PMID: 39522803 DOI: 10.1016/j.expneurol.2024.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Stroke is one of the leading causes of death and permanent adult disability worldwide. Despite the improvements in reducing the rate and mortality, the societal burden and costs of treatment associated with stroke management are increasing. Most of the therapeutic approaches directly targeting ischemic injury have failed to reduce short- and long-term morbidity and mortality and more effective therapeutic strategies are still needed to promote post-stroke functional recovery. Decades of stroke research have been focused on hyperexcitability and glutamate-induced excitotoxicity in the acute phase of ischemia and their relation to motor deficits. Recent advances in understanding the pathophysiology of stroke have been made with several lines of evidence suggesting that changes in the neurotransmission of the major inhibitory system via γ-Aminobutyric acid (GABA) play a particularly important role in functional recovery and deserve further attention. The present review provides an overview of how GABAergic neurotransmission changes correlate with stroke recovery and outlines GABAergic system modulators with special emphasis on neurosteroids that have been shown to affect stroke pathogenesis or plasticity or to protect against cognitive decline. Supporting evidence from both animal and human clinical studies is presented and the potential for GABA signaling-targeted therapies for stroke is discussed to translate this concept to human neural repair therapies. Age and sex are considered crucial parameters related to the pathophysiology of stroke and important factors in the development of therapeutic pharmacological strategies. Future work is needed to deepen our knowledge of the neurochemical changes after stroke, extend the conceptual framework, and allow for the development of more effective interventions that include the modulation of the inhibitory system.
Collapse
Affiliation(s)
- Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Damjan Pavlovic
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Zoe Palmer
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Mariana S B Udo
- Department of Neurology, University of Texas Houston Health Science Center, TX, USA
| | - Cristiane T Citadin
- Department of Neurology, University of Texas Houston Health Science Center, TX, USA
| | - Krista M Rodgers
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Celeste Yin-Chien Wu
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, University of Texas Houston Health Science Center, TX, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
4
|
Traiffort E, Kassoussi A, Zahaf A. Revisiting the role of sexual hormones in the demyelinated central nervous system. Front Neuroendocrinol 2025; 76:101172. [PMID: 39694337 DOI: 10.1016/j.yfrne.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Sex-related differences characterize multiple sclerosis, an autoimmune, inflammatory and neurodegenerative disease displaying higher incidence in females as well as discrepancies in susceptibility and progression. Besides clinical specificities, molecular and cellular differences related to sex hormones were progressively uncovered improving our understanding of the mechanisms involved in this disabling disease. The most recent findings may give rise to the identification of novel therapeutic perspectives that could meet the urgent need for a treatment preventing the transition from the recurrent- to the progressive form of the disease. The present review is an update of our current knowledge about progestagens, androgens and estrogens in the context of CNS demyelination including their synthesis, the impact of their dysregulation, the preclinical and clinical data presently available, the main molecular dimorphisms related to these hormones and their age-related changes and relationship with failure of spontaneous remyelination, likely impacting the inexorable progression of multiple sclerosis towards irreversible disabilities.
Collapse
Affiliation(s)
| | | | - Amina Zahaf
- U1195 Inserm, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Baron M, Devor M. Neurosteroids foster sedation by engaging tonic GABA A-Rs within the mesopontine tegmental anesthesia area (MPTA). Neurosci Lett 2024; 843:138030. [PMID: 39490574 DOI: 10.1016/j.neulet.2024.138030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Neurosteroids are endogenous molecules with anxiolytic, anticonvulsant, sleep-promoting and sedative effects. They are biosynthesized de novo within the brain, among other tissues, and are thought to act primarily as positive allosteric modulators of high-affinity extrasynaptic GABAAδ-receptors. The location of action of neurosteroids in the brain, however, remains unknown. We have demonstrated that GABAergic anesthetics act within the brainstem mesopontine tegmental anesthesia area (MPTA) to induce and maintain anesthetic loss-of-consciousness. Here we asked whether endogenous and synthetic neurosteroids might also act in the MPTA to induce their suppressive effects. Direct exposure of the MPTA to the endogenous neurosteroids pregnenolone and progesterone, their metabolites testosterone, allopregnanolone and 3α5α-THDOC, and the synthetic neurosteroids ganaxolone and alphaxalone, was found to be pro-anesthetic. Although we cannot rule out additional sites of action, results of this study suggest that the suppressive effects of neurosteroids are due, at least in part, to actions within the MPTA, presumably by recruitment of dedicated neuronal circuitry. This undermines the usual presumption that neurosteroids, like other sedatives, endogenous somnogens and anesthetics, act by nonspecific global distribution.
Collapse
Affiliation(s)
- Mark Baron
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Marshall Devor
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Neufeld PM, Nettersheim RA, Matschke V, Vorgerd M, Stahlke S, Theiss C. Unraveling the gut-brain axis: the impact of steroid hormones and nutrition on Parkinson's disease. Neural Regen Res 2024; 19:2219-2228. [PMID: 38488556 PMCID: PMC11034592 DOI: 10.4103/1673-5374.391304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
This comprehensive review explores the intricate relationship between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the context of the gut-brain axis. The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease, encompassing diverse components such as the gut microbiota, immune system, metabolism, and neural pathways. The gut microbiome, profoundly influenced by dietary factors, emerges as a key player. Nutrition during the first 1000 days of life shapes the gut microbiota composition, influencing immune responses and impacting both child development and adult health. High-fat, high-sugar diets can disrupt this delicate balance, contributing to inflammation and immune dysfunction. Exploring nutritional strategies, the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk. Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders. Beyond nutrition, emerging research uncovers potential interactions between steroid hormones, nutrition, and Parkinson's disease. Progesterone, with its anti-inflammatory properties and presence in the nervous system, offers a novel option for Parkinson's disease therapy. Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects. The review addresses the hypothesis that α-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve. Gastrointestinal symptoms preceding motor symptoms support this hypothesis. Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances, emphasizing the potential of microbiota-based interventions. In summary, this review uncovers the complex web of interactions between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the gut-brain axis framework. Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Paula Maria Neufeld
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Ralf A. Nettersheim
- Department of Visceral Surgery, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Hogan A, Mut M. Neurosteroids in Glioma: A Novel Therapeutic Concept. Life (Basel) 2024; 14:975. [PMID: 39202716 PMCID: PMC11355226 DOI: 10.3390/life14080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Glioma, a diverse group of brain and spinal cord tumors arising from glial cells, is characterized by varying degrees of malignancy, with some types exhibiting highly aggressive behavior, rapid proliferation, and invasive growth patterns, posing significant therapeutic challenges. This review delves into the complex interactions between glioma cells, neurotransmitters, and neurosteroids, emphasizing their potential as therapeutic targets. Key neurotransmitters, like glutamate and gamma-aminobutyric acid (GABA), play crucial roles in glioma growth, invasion, and treatment response. This review examines the involvement of neurosteroids in glioma biology and explores innovative therapeutic strategies targeting these systems. It encompasses the biosynthesis and mechanisms of neurosteroids, interactions between gliomas and neurotransmitters, the spatial distribution of neurosteroid synthesis in gliomas, the role of ion channels, hormonal influences, enzyme modulation, and the neuroimmune system in glioma progression. Additionally, it highlights the potential of neurosteroids to modulate these pathways for therapeutic benefit.
Collapse
Affiliation(s)
- Ava Hogan
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA;
| | - Melike Mut
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Szabó F, Köves K, Gál L. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation-Recent Knowledge on the Molecular Background. Int J Mol Sci 2024; 25:6531. [PMID: 38928237 PMCID: PMC11203711 DOI: 10.3390/ijms25126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Collapse
Affiliation(s)
- Flóra Szabó
- Division of Gastroenterology and Nutrition, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Levente Gál
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
9
|
Vadlamudi L, Ashley DP, Voinescu PE. Insights into neurosteroids and their role in women with epilepsy. Front Glob Womens Health 2024; 5:1363470. [PMID: 38933454 PMCID: PMC11203993 DOI: 10.3389/fgwh.2024.1363470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Epilepsy, is a serious neurological condition, characterized by recurring, unprovoked seizures and affects over 50 million people worldwide. Epilepsy has an equal prevalence in males and females, and occurs throughout the life span. Women with epilepsy (WWE) present with unique challenges due to the cyclical fluctuation of sex steroid hormone concentrations during their life course. These shifts in sex steroid hormones and their metabolites are intricately intertwined with seizure susceptibility and affect epilepsy during the life course of women in a complex manner. Here we present a review encompassing neurosteroids-steroids that act on the brain regardless of their site of synthesis in the body; the role of neurosteroids in women with epilepsy through their life-course; exogenous neurosteroid trials; and future research directions. The focus of this review is on progesterone and its derived neurosteroids, given the extensive basic research that supports their role in modulating neuronal excitability.
Collapse
Affiliation(s)
- Lata Vadlamudi
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD, Australia
| | - Daniel Paul Ashley
- The Ochsner Clinical School, Ochsner Health, New Orleans, LA, United States
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - P. Emanuela Voinescu
- Department of Neurology—Division of Epilepsy, Division of Women’s Health, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Tateiwa H, Evers AS. Neurosteroids and their potential as a safer class of general anesthetics. J Anesth 2024; 38:261-274. [PMID: 38252143 PMCID: PMC10954990 DOI: 10.1007/s00540-023-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.
Collapse
Affiliation(s)
- Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
12
|
Sandström A, Bixo M, Bäckström T, Möller A, Turkmen S. Altered GABA A receptor function in women with endometriosis: a possible pain-related mechanism. Acta Obstet Gynecol Scand 2023; 102:1316-1322. [PMID: 36944570 PMCID: PMC10541155 DOI: 10.1111/aogs.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The mechanism underlying endometriosis-related pain remains poorly understood. Previous studies have indicated that γ-aminobutyric acid (GABA) type A (GABAA ) receptors and GABAergic substances (eg endogenous neurosteroids) play important mechanistic roles in various pain conditions. Our primary objective was to compare GABAA receptor function between women with endometriosis and healthy controls by performing a challenge test with diazepam, a GABAA receptor agonist, using the saccadic eye velocity as the main outcome. The secondary objective was to investigate the relation between GABAA receptor function and serum levels of allopregnanolone, an endogenous positive modulator of the GABAA receptor, in the participating women. MATERIAL AND METHODS 15 women with pelvic pain and laparoscopically confirmed endometriosis and 10 healthy, symptom-free, control women, aged 18-40 years, underwent the diazepam challenge test during the follicular phase of the menstrual cycle. Basal serum allopregnanolone levels were measured prior to diazepam injection. RESULTS Compared with healthy controls, women with pelvic pain and confirmed endometriosis had a significantly smaller change in saccadic eye velocity after GABAA receptor stimulation with diazepam, indicating lower sensitivity to diazepam. The saccadic eye velocity response was not correlated with the serum allopregnanolone levels. CONCLUSIONS Women with painful endometriosis show altered GABAA receptor function, depicted as a muted response to an exogenous GABAA receptor agonist.
Collapse
Affiliation(s)
- Anton Sandström
- Department of Clinical Sciences, Obstetrics and GynecologyUmea UniversityUmeaSweden
- Department of Obstetrics and GynecologySundsvall County HospitalSundsvallSweden
| | - Marie Bixo
- Department of Clinical Sciences, Obstetrics and GynecologyUmea UniversityUmeaSweden
| | - Torbjörn Bäckström
- Department of Clinical Sciences, Obstetrics and GynecologyUmea UniversityUmeaSweden
| | - Anna Möller
- Department of Obstetrics and GynecologyStockholm South General HospitalStockholmSweden
- Department of Clinical Science and EducationKarolinska InstitutetStockholmSweden
| | - Sahruh Turkmen
- Department of Clinical Sciences, Obstetrics and GynecologyUmea UniversityUmeaSweden
- Department of Obstetrics and GynecologySundsvall County HospitalSundsvallSweden
| |
Collapse
|
13
|
Stegemann LN, Neufeld PM, Hecking I, Vorgerd M, Matschke V, Stahlke S, Theiss C. Progesterone: A Neuroprotective Steroid of the Intestine. Cells 2023; 12:cells12081206. [PMID: 37190115 DOI: 10.3390/cells12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
The enteric nervous system (ENS) is an intrinsic network of neuronal ganglia in the intestinal tube with about 100 million neurons located in the myenteric plexus and submucosal plexus. These neurons being affected in neurodegenerative diseases, such as Parkinson's disease, before pathological changes in the central nervous system (CNS) become detectable is currently a subject of discussion. Understanding how to protect these neurons is, therefore, particularly important. Since it has already been shown that the neurosteroid progesterone mediates neuroprotective effects in the CNS and PNS, it is now equally important to see whether progesterone has similar effects in the ENS. For this purpose, the RT-qPCR analyses of laser microdissected ENS neurons were performed, showing for the first time the expression of the different progesterone receptors (PR-A/B; mPRa, mPRb, PGRMC1) in rats at different developmental stages. This was also confirmed in ENS ganglia using immunofluorescence techniques and confocal laser scanning microscopy. To analyze the potential neuroprotective effects of progesterone in the ENS, we stressed dissociated ENS cells with rotenone to induce damage typical of Parkinson's disease. The potential neuroprotective effects of progesterone were then analyzed in this system. Treatment of cultured ENS neurons with progesterone reduced cell death by 45%, underscoring the tremendous neuroprotective potential of progesterone in the ENS. The additional administration of the PGRMC1 antagonist AG205 abolished the observed effect, indicating the crucial role of PGRMC1 with regard to the neuroprotective effect of progesterone.
Collapse
Affiliation(s)
| | - Paula Maria Neufeld
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Ines Hecking
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, D-44789 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
14
|
Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front Mol Neurosci 2023; 16:1052288. [PMID: 36818657 PMCID: PMC9928765 DOI: 10.3389/fnmol.2023.1052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The neurobiological mechanism of post-traumatic stress disorder (PTSD) is poorly understood. The inhibition of GABA neurons, especially in the amygdala, is crucial for the precise regulation of the consolidation, expression, and extinction of fear conditioning. The GABAergic system is involved in the pathophysiological process of PTSD, with several studies demonstrating that the function of the GABAergic system decreases in PTSD patients. This paper reviews the preclinical and clinical studies, neuroimaging techniques, and pharmacological studies of the GABAergic system in PTSD and summarizes the role of the GABAergic system in PTSD. Understanding the role of the GABAergic system in PTSD and searching for new drug targets will be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
| | - Fei Xu
- Department of Psychiatry of School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yang
- Department of Applied Psychology of School of Public Health, Southern Medical University, Guangzhou, China
| | - Lina Tuolihong
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zibo Du
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiqi Zhang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xuanlin Yin
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yingjun Li
- Department of Medical Laboratory Science, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Abaffy T, Lu HY, Matsunami H. Sex steroid hormone synthesis, metabolism, and the effects on the mammalian olfactory system. Cell Tissue Res 2023; 391:19-42. [PMID: 36401093 PMCID: PMC9676892 DOI: 10.1007/s00441-022-03707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Sex steroid hormones influence olfactory-mediated social behaviors, and it is generally hypothesized that these effects result from circulating hormones and/or neurosteroids synthesized in the brain. However, it is unclear whether sex steroid hormones are synthesized in the olfactory epithelium or the olfactory bulb, and if they can modulate the activity of the olfactory sensory neurons. Here, we review important discoveries related to the metabolism of sex steroids in the mouse olfactory epithelium and olfactory bulb, along with potential areas of future research. We summarize current knowledge regarding the expression, neuroanatomical distribution, and biological activity of the steroidogenic enzymes, sex steroid receptors, and proteins that are important to the metabolism of these hormones and reflect on their potential to influence early olfactory processing. We also review evidence related to the effects of sex steroid hormones on the development and activity of olfactory sensory neurons. By better understanding how these hormones are metabolized and how they act both at the periphery and olfactory bulb level, we can better appreciate the complexity of the olfactory system and discover potential similarities and differences in early olfactory processing between sexes.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hsiu-Yi Lu
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
16
|
Gao Q, Sun W, Wang YR, Li ZF, Zhao F, Geng XW, Xu KY, Chen D, Liu K, Xing Y, Liu W, Wei S. Role of allopregnanolone-mediated γ-aminobutyric acid A receptor sensitivity in the pathogenesis of premenstrual dysphoric disorder: Toward precise targets for translational medicine and drug development. Front Psychiatry 2023; 14:1140796. [PMID: 36937732 PMCID: PMC10017536 DOI: 10.3389/fpsyt.2023.1140796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Premenstrual dysphoric disorder (PMDD) can be conceptualized as a disorder of suboptimal sensitivity to neuroactive steroid hormones. Its core symptoms (emotional instability, irritability, depression, and anxiety) are related to the increase of stress sensitivity due to the fluctuation of hormone level in luteal phase of the menstrual cycle. In this review, we describe the emotional regulatory effect of allopregnanolone (ALLO), and summarize the relationship between ALLO and γ-aminobutyric acid A (GABAA) receptor subunits based on rodent experiments and clinical observations. A rapid decrease in ALLO reduces the sensitivity of GABAA receptor, and reduces the chloride influx, hindered the inhibitory effect of GABAergic neurons on pyramidal neurons, and then increased the excitability of pyramidal neurons, resulting in PMDD-like behavior. Finally, we discuss in depth the treatment of PMDD with targeted GABAA receptors, hoping to find a precise target for drug development and subsequent clinical application. In conclusion, PMDD pathophysiology is rooted in GABAA receptor sensitivity changes caused by rapid changes in ALLO levels. Targeting GABAA receptors may alleviate the occurrence of PMDD.
Collapse
Affiliation(s)
- Qian Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi-Wen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai-Yong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kun Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Xing
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Wei Liu,
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Sheng Wei,
| |
Collapse
|
17
|
Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Int J Mol Sci 2022; 24:ijms24010507. [PMID: 36613951 PMCID: PMC9820491 DOI: 10.3390/ijms24010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors expressed in the central nervous system mediate various functions, including cognition, memory, or reward. Therefore, muscarinic receptors represent potential pharmacological targets for various diseases and conditions, such as Alzheimer's disease, schizophrenia, addiction, epilepsy, or depression. Muscarinic receptors are allosterically modulated by neurosteroids and steroid hormones at physiologically relevant concentrations. In this review, we focus on the modulation of muscarinic receptors by neurosteroids and steroid hormones in the context of diseases and disorders of the central nervous system. Further, we propose the potential use of neuroactive steroids in the development of pharmacotherapeutics for these diseases and conditions.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Nikolai Chetverikov
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| |
Collapse
|
18
|
Fernandez N, Petit A, Pianos A, Haddad L, Schumacher M, Liere P, Guennoun R. Aging Is Associated With Lower Neuroactive Steroids and Worsened Outcomes Following Cerebral Ischemia in Male Mice. Endocrinology 2022; 164:6779564. [PMID: 36306407 DOI: 10.1210/endocr/bqac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/16/2023]
Abstract
Ischemic stroke is a leading cause of disability and death, and aging is the main nonmodifiable risk factor. Following ischemia, neuroactive steroids have been shown to play a key role in cerebroprotection. Thus, brain steroid concentrations at the time of injury as well as their regulation after stroke are key factors to consider. Here, we investigated the effects of age and cerebral ischemia on steroid levels, behavioral outcomes, and neuronal degeneration in 3- and 18-month-old C57BL/6JRj male mice. Ischemia was induced by middle cerebral artery occlusion for 1 hour followed by reperfusion (MCAO/R) and analyses were performed at 6 hours after MCAO. Extended steroid profiles established by gas chromatography coupled with tandem mass spectrometry revealed that (1) brain and plasma concentrations of the main 5α-reduced metabolites of progesterone, 11-deoxycorticosterone, and corticosterone were lower in old than in young mice; (2) after MCAO/R, brain concentrations of progesterone, 5α-dihydroprogesterone, and corticosterone increased in young mice; and (3) after MCAO/R, brain concentrations of 5α-reduced metabolites of progesterone, 3α5α-tetrahydrodeoxycorticosterone, and 3β5α-tetrahydrodeoxycorticosterone were lower in old than in young mice. After ischemia, old mice showed increased sensori-motor deficits and more degenerating neurons in the striatum than young mice. Altogether, these findings strongly suggest that the decreased capacity of old mice to metabolize steroids toward the 5α-reduction pathway comparatively to young mice may contribute to the worsening of their stroke outcomes.
Collapse
Affiliation(s)
- Neïké Fernandez
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Anthony Petit
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Léna Haddad
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Hernandez GD, Brinton RD. Allopregnanolone: Regenerative therapeutic to restore neurological health. Neurobiol Stress 2022; 21:100502. [PMID: 36532370 PMCID: PMC9755066 DOI: 10.1016/j.ynstr.2022.100502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
Chronic stress has been proposed as a driver of altered brain structure and function, including the pathogenesis of neurodegenerative diseases and a driver of disease progression. A key outcome of stress in the brain is structural remodeling of neural architecture, which may be a sign of successful adaptation, whereas persistence of these changes when stress ends indicate failed resilience. Neuroendocrine homeostasis and stress response are mainly dependent upon the functioning of the hypothalamic-pituitary-adrenal axis. Neurosteroids will fluctuate depending on whether the stress is acute or chronic. Advancements in neurosteroid research have led to the identification of multiple targets for drug development, but the most promising innovative target may be neurogenesis, given its potential impact in neurodegenerative disorders like Alzheimer's disease. Allopregnanolone is an endogenous pregnane neurosteroid and a reduced metabolite of progesterone, which acts as a potent allosteric modulator and direct activator of the GABA-chloride channel complex. Perhaps the most intriguing finding related to the potential therapeutic effects of allopregnanolone is its potential to promote neuroregeneration.
Collapse
Affiliation(s)
- Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Szczurowska E, Szánti-Pintér E, Randáková A, Jakubík J, Kudova E. Allosteric Modulation of Muscarinic Receptors by Cholesterol, Neurosteroids and Neuroactive Steroids. Int J Mol Sci 2022; 23:13075. [PMID: 36361865 PMCID: PMC9656441 DOI: 10.3390/ijms232113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2023] Open
Abstract
Muscarinic acetylcholine receptors are membrane receptors involved in many physiological processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and steroid hormones are molecules of steroid origin that, besides having well-known genomic effects, also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic receptors and drug development, with an aim to ultimately exploit such knowledge.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 6, 166 10 Prague, Czech Republic
| |
Collapse
|
21
|
Winek K, Tzur Y, Soreq H. Biological underpinnings of sex differences in neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:27-67. [PMID: 36038206 DOI: 10.1016/bs.irn.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The importance of sex differences in neurological disorders has been increasingly acknowledged in recent clinical and basic research studies, but the complex biology and genetics underlying sex-linked biological heterogeneity and its brain-to-body impact remained incompletely understood. Men and women differ substantially in their susceptibility to certain neurological diseases, in the severity of symptoms, prognosis as well as the nature and efficacy of their response to treatments. The detailed mechanisms underlying these differences, especially at the molecular level, are being addressed in many studies but leave a lot to be further revealed. Here, we provide an overview of recent advances in our understanding of how sex differences in the brain and brain-body signaling contribute to neurological disorders and further present some future prospects entailed in terms of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonat Tzur
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
22
|
Lin YC, Cheung G, Porter E, Papadopoulos V. The neurosteroid pregnenolone is synthesized by a mitochondrial P450 enzyme other than CYP11A1 in human glial cells. J Biol Chem 2022; 298:102110. [PMID: 35688208 PMCID: PMC9278081 DOI: 10.1016/j.jbc.2022.102110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
Abstract
Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.
Collapse
|
23
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
24
|
Reddy DS. Neurosteroid replacement therapy for catamenial epilepsy, postpartum depression and neuroendocrine disorders in women. J Neuroendocrinol 2022; 34:e13028. [PMID: 34506047 PMCID: PMC9247111 DOI: 10.1111/jne.13028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
Neurosteroids are involved in the pathophysiology of many neuroendocrine disorders in women. This review describes recent advancements in pharmacology of neurosteroids and emphasizes the benefits of neurosteroid replacement therapy for the management of neuroendocrine disorders such as catamenial epilepsy (CE), postpartum depression (PPD) and premenstrual brain conditions. Neurosteroids are endogenous modulators of neuronal excitability. A variety of neurosteroids are present in the brain including allopregnanolone (AP), allotetrahydro-deoxycorticosterone and androstanediol. Neurosteroids interact with synaptic and extrasynaptic GABAA receptors in the brain. AP and related neurosteroids, which are positive allosteric modulators of GABAA receptors, are powerful anticonvulsants, anxiolytic, antistress and neuroprotectant agents. In CE, seizures are most often clustered around a specific menstrual period in women. Neurosteroid withdrawal-linked plasticity in extrasynaptic receptors has been shown to play a key role in catamenial seizures, anxiety and other mood disorders. Based on our extensive research spanning two decades, we have proposed and championed neurosteroid replacement therapy as a rational strategy for treating disorders marked by neurosteroid-deficiency, such as CE and other related ovarian or menstrual disorders. In 2019, AP (renamed as brexanolone) was approved for treating PPD. A variety of synthetic neurosteroids are in clinical trials for epilepsy, depression and other brain disorders. Recent advancements in our understanding of neurosteroids have entered a new era of drug discovery and one that offers a high therapeutic potential for treating complex brain disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| |
Collapse
|
25
|
Blaya MO, Raval AP, Bramlett HM. Traumatic brain injury in women across lifespan. Neurobiol Dis 2022; 164:105613. [PMID: 34995753 DOI: 10.1016/j.nbd.2022.105613] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability and a global public health challenge. Every year more than 50 million people suffer a TBI, and it is estimated that 50% of the global population will experience at least one TBI in their lifetime. TBI affects both men and women of all ages, however there is a male bias in TBI research as women have frequently been left out of the literature despite irrefutable evidence of male and female dimorphism in several posttraumatic measures. Women uniquely experience distinct life stages marked by levels of endogenous circulating sex hormones, as well as by physiological changes that are nonexistent in men. In addition to generalized sex-specific differences, a woman's susceptibility, neurological outcomes, and treatment success may vary considerably depending upon when in her lifespan she incurred a traumatic insult. How women impacted by TBI might differ from other women as a factor of age and physiology is not well understood. Furthermore, there is a gap in the knowledge of what happens when TBI occurs in the presence of certain sex-specific and sex-nonspecific variables, such as during pregnancy, with oral contraceptive use, in athletics, in cases of addiction and nicotine consumption, during perimenopause, postmenopause, in frailty, among others. Parsing out how hormone-dependent and hormone-independent lifespan variables may influence physiological, neurodegenerative, and functional outcomes will greatly contribute to future investigative studies and direct therapeutic strategies. The goal of this review is to aggregate the knowledge of prevalence, prognosis, comorbid risk, and response of women incurring TBI at differing phases of lifespan. We strive to illuminate commonalities and disparities among female populations, and to pose important questions to highlight gaps in the field in order to further the endeavor of targeted treatment interventions in a patient-specific manner.
Collapse
Affiliation(s)
- Meghan O Blaya
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA.
| |
Collapse
|
26
|
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol 2022; 322:G1-G20. [PMID: 34730020 PMCID: PMC8698538 DOI: 10.1152/ajpgi.00294.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023]
Abstract
The intricate connection between central and enteric nervous systems is well established with emerging evidence linking gut microbiota function as a significant new contributor to gut-brain axis signaling. Several microbial signals contribute to altered gut-brain communications, with steroids representing an important biological class that impacts central and enteric nervous system function. Neuroactive steroids contribute pathologically to neurological disorders, including dementia and depression, by modulating the activity of neuroreceptors. However, limited information is available on the influence of neuroactive steroids on the enteric nervous system and gastrointestinal function. In this review, we outline how steroids can modulate enteric nervous system function by focusing on their influence on different receptors that are present in the intestine in health and disease. We also highlight the potential role of the gut microbiota in modulating neuroactive steroid signaling along the gut-brain axis.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
27
|
Kuwahara N, Nicholson K, Isaacs L, MacLusky NJ. Androgen Effects on Neural Plasticity. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:216-230. [PMID: 35024693 PMCID: PMC8744448 DOI: 10.1089/andro.2021.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 12/20/2022]
Abstract
Androgens are synthesized in the brain, gonads, and adrenal glands, in both sexes, exerting physiologically important effects on the structure and function of the central nervous system. These effects may contribute to the incidence and progression of neurological disorders such as autism spectrum disorder, schizophrenia, and Alzheimer's disease, which occur at different rates in males and females. This review briefly summarizes the current state of knowledge with respect to the neuroplastic effects of androgens, with particular emphasis on the hippocampus, which has been the focus of much of the research in this field.
Collapse
Affiliation(s)
- Nariko Kuwahara
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kate Nicholson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lauren Isaacs
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Neil J. MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
28
|
|
29
|
Xu J, Zhou Y, Yan C, Wang X, Lou J, Luo Y, Gao S, Wang J, Wu L, Gao X, Shao A. Neurosteroids: A novel promise for the treatment of stroke and post-stroke complications. J Neurochem 2021; 160:113-127. [PMID: 34482541 DOI: 10.1111/jnc.15503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.
Collapse
Affiliation(s)
- Jiawei Xu
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caochong Yan
- The Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, Zhejiang, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangfu Gao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Kalarani A, Vinodha V, Moses IR. Inter-relations of brain neurosteroids and monoamines towards reproduction in fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
Lin YC, Papadopoulos V. Neurosteroidogenic enzymes: CYP11A1 in the central nervous system. Front Neuroendocrinol 2021; 62:100925. [PMID: 34015388 DOI: 10.1016/j.yfrne.2021.100925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023]
Abstract
Neurosteroids, steroid hormones synthesized locally in the nervous system, have important neuromodulatory and neuroprotective effects in the central nervous system. Progress in neurosteroid research has led to the successful translation of allopregnanolone into an approved therapy for postpartum depression. However, there is insufficient evidence to support the assumption that steroidogenesis is exactly the same between the nervous system and the periphery. This review focuses on CYP11A1, the only enzyme currently known to catalyze the first reaction in steroidogenesis to produce pregnenolone, the precursor to all other steroids. Although CYP11A1 mRNA has been found in brain of many mammals, the presence of CYP11A1 protein has been difficult to detect, particularly in humans. Here, we highlight the discrepancies in the current evidence for CYP11A1 in the central nervous system and propose new directions for understanding neurosteroidogenesis, which will be crucial for developing neurosteroid-based therapies for the future.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
32
|
Cai X, Sha F, Zhao C, Zheng Z, Zhao S, Zhu Z, Zhu H, Chen J, Chen Y. Synthesis and anti-inflammatory activity of novel steroidal chalcones with 3β-pregnenolone ester derivatives in RAW 264.7 cells in vitro. Steroids 2021; 171:108830. [PMID: 33836205 DOI: 10.1016/j.steroids.2021.108830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
To identify new potential anti-inflammatory agents, we herein report the synthesis of novel steroidal chalcones with 3β-pregnenolone esters of cinnamic acid derivatives using pregnenolone as the starting material. The structures of the newly synthesised compounds were confirmed by 1H NMR, 13C NMR, HRMS and infrared imaging. All the derivatives were examined to determine their in vitro anti-inflammatory profiles against LPS-induced inflammation in RAW 264.7 cells; the derivates were evaluated by the quantification of the pro-inflammatory mediator nitric oxide (NO) in the cell culture supernatant based on the Griess reaction, which measures nitrite levels, followed by an in vitro cytotoxicity study. Among these novel derivatives, compound 11e [3β-3-phenyl acrylate-pregn-5-en-17β-yl-3' -(p-fluoro)-phenylprop-2'-en-1'-one] was identified as the most potent anti-inflammatory agent, which showed significant anti-inflammatory activity by inhibiting the LPS-induced pro-inflammatory mediator NO in a dose-dependent manner without any cytotoxicity. Moreover, compound 11e markedly inhibited the expression of pro-inflammatory cytokines, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2), in LPS-induced RAW 264.7 cells. Further studies confirmed that compound 11e significantly suppressed the transcriptional activity of NF-κB in activated RAW 264.7 cells. Molecular docking study revealed the strong binding affinity of compound 11e to the active site of the pro-inflammatory proteins, which confirmed that compound 11e acted as an anti-inflammatory mediator. These results indicated that steroidal chalcones with 3β-pregnenolone esters of cinnamic acid derivatives might be considered for further research in the design of anti-inflammatory drugs, and compound 11e might be a promising therapeutic anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fei Sha
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Chuanyi Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zheng
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shulin Zhao
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiaoling Chen
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
33
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
34
|
McEwan S, Kwon H, Tahiri A, Shanmugarajah N, Cai W, Ke J, Huang T, Belton A, Singh B, Wang L, Pang ZP, Dirice E, Engel EA, El Ouaamari A. Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells. Mol Metab 2021; 53:101260. [PMID: 34023484 PMCID: PMC8258979 DOI: 10.1016/j.molmet.2021.101260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic β cells and its overall impact on insulin release and glucose homeostasis. METHODS We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic β-cell activity. RESULTS Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet β-cell activity. CONCLUSION Taken together, these data suggest that the sex-biased nature of the sensory control of islet β-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement.
Collapse
Affiliation(s)
- Sara McEwan
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hyokjoon Kwon
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Azeddine Tahiri
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Nivetha Shanmugarajah
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Jin Ke
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianwen Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ariana Belton
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bhagat Singh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ercument Dirice
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Abdelfattah El Ouaamari
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Corresponding author. Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
35
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
36
|
Dattilo MA, Benzo Y, Herrera LM, Prada JG, Lopez PF, Caruso CM, Lasaga M, García CI, Paz C, Maloberti PM. Regulation and role of Acyl-CoA synthetase 4 in glial cells. J Steroid Biochem Mol Biol 2021; 208:105792. [PMID: 33246155 DOI: 10.1016/j.jsbmb.2020.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Acyl-CoA synthetase 4 (Acsl4), an enzyme involved in arachidonic acid (AA) metabolism, participates in physiological and pathological processes such as steroidogenesis and cancer. The role of Acsl4 in neurons and in nervous system development has also been documented but little is known regarding its functionality in glial cells. In turn, several processes in glial cells, including neurosteroidogenesis, stellation and AA uptake, are regulated by cyclic adenosine monophosphate (cAMP) signal. In this context, the aim of this work was to analyze the expression and functional role of Acsl4 in primary rat astrocyte cultures and in the C6 glioma cell line by chemical inhibition and stable silencing, respectively. Results show that Acsl4 expression was regulated by cAMP in both models and that cAMP stimulation of steroidogenic acute regulatory protein mRNA levels was reduced by Acsl4 inhibition or silencing. Also, Acsl4 inhibition reduced progesterone synthesis stimulated by cAMP and also affected cAMP-induced astrocyte stellation, decreasing process elongation and increasing branching complexity. Similar effects were observed for Acsl4 silencing on cAMP-induced C6 cell morphological shift. Moreover, Acsl4 inhibition and silencing reduced proliferation and migration of both cell types. Acsl4 silencing in C6 cells reduced the capacity for colony proliferation and neurosphere formation, the latter ability also being abolished by Acsl4 inhibition. In sum, this work presents novel evidence of Acsl4 involvement in neurosteroidogenesis and the morphological changes of glial cells promoted by cAMP. Furthermore, Acsl4 participates in migration and proliferation, also affecting cell self-renewal. Altogether, these findings provide insights into Acsl4 functions in glial cells.
Collapse
Affiliation(s)
- Melina A Dattilo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Yanina Benzo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Lucia M Herrera
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G Prada
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula F Lopez
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Carla M Caruso
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Corina I García
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cristina Paz
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Paula M Maloberti
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Sex neurosteroids: Hormones made by the brain for the brain. Neurosci Lett 2021; 753:135849. [PMID: 33775739 DOI: 10.1016/j.neulet.2021.135849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
In general, hippocampal neurons are capable of synthesizing sex steroids de novo from cholesterol, since the brain is equipped with all the enzymes required for the synthesis of estradiol and testosterone, the end products of sex steroidogenesis. Regarding estradiol, its synthesis in hippocampal neurons is homeostatically controlled by Ca2+ transients and is regulated by GnRH. Locally synthesized estradiol and testosterone maintain synaptic transmission and synaptic connectivity. Remarkably, the neurosteroid estradiol is effective in females, but not in males, and vice versa dihydrotestosterone (DHT) is effective in males, but not in females. Experimentally induced inhibition of estradiol synthesis in females and DHT synthesis in males resp. results in synapse loss, impaired LTP, and downregulation of synaptic proteins. GnRH-induced increase in estradiol synthesis appears to provide a link between the hypothalamus and the hippocampus, which may underlie estrous cyclicity of spine density in the female hippocampus. Hippocampal neurons are sex-dependently differentiated with respect to the responsiveness of hippocampal neurons to sex neurosteroids.
Collapse
|
38
|
Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimers Dement 2020; 17:888-905. [PMID: 33336545 DOI: 10.1002/alz.12244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric brain disorder that has devastating personal impact and rising healthcare costs. Dysregulation of glutamatergic neurotransmission has been implicated in the pathobiology of the disease, attributed largely to the hypofunction of the N-methyl-d-aspartate (NMDA) receptor. Currently, there is a major gap in mechanistic analysis as to how endogenous modulators of the NMDA receptors contribute to the onset and progression of the disease. We present a systematic review of the neurobiology and the role of endogenous NMDA receptor antagonists in animal models of schizophrenia, and in patients. We discuss their neurochemical origin, release from neurons and glia with action mechanisms, and functional effects, which might contribute toward the impairment of neuronal processes underlying this complex pathological state. We consider clinical evidence suggesting dysregulations of endogenous NMDA receptor in schizophrenia, and highlight the pressing need in future studies and emerging directions, to restore the NMDA receptor functions for therapeutic benefits.
Collapse
Affiliation(s)
- Pascal Jorratt
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| |
Collapse
|
39
|
Tat QL, Joksimovic SM, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V. Preemptive Analgesic Effect of Intrathecal Applications of Neuroactive Steroids in a Rodent Model of Post-Surgical Pain: Evidence for the Role of T-Type Calcium Channels. Cells 2020; 9:cells9122674. [PMID: 33322727 PMCID: PMC7763050 DOI: 10.3390/cells9122674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Preemptive management of post-incisional pain remains challenging. Here, we examined the role of preemptive use of neuroactive steroids with activity on low-voltage activated T-type Ca2+ channels (T-channels) and γ-aminobutyric acid A (GABAA) receptors in the development and maintenance of post-incisional pain. We use neuroactive steroids with distinct effects on GABAA receptors and/or T-channels: Alphaxalone (combined GABAergic agent and T-channel inhibitor), ECN (T-channel inhibitor), CDNC24 (GABAergic agent), and compared them with an established analgesic, morphine (an opioid agonist without known effect on either T-channels or GABAA receptors). Adult female rats sustained the skin and muscle incision on the plantar surface of the right paw. We injected the agents of choice intrathecally either before or after the development of post-incisional pain. The pain development was monitored by studying mechanical hypersensitivity. Alphaxalone and ECN, but not morphine, are effective in alleviating mechanical hyperalgesia when administered preemptively whereas morphine provides dose-dependent pain relief only when administered once the pain had developed. CDNC24 on the other hand did not offer any analgesic benefit. Neuroactive steroids that inhibit T-currents—Alphaxalone and ECN—unlike morphine, are effective preemptive analgesics that may offer a promising therapeutic approach to the treatment of post-incisional pain, especially mechanical hypersensitivity.
Collapse
Affiliation(s)
- Quy L. Tat
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
| | - Srdjan M. Joksimovic
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (K.K.); (D.F.C.)
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (K.K.); (D.F.C.)
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
- Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (Q.L.T.); (S.M.J.); (S.M.T.)
- Correspondence: ; Tel.: +1-720-848-6723
| |
Collapse
|
40
|
Tozzi A, Bellingacci L, Pettorossi VE. Rapid Estrogenic and Androgenic Neurosteroids Effects in the Induction of Long-Term Synaptic Changes: Implication for Early Memory Formation. Front Neurosci 2020; 14:572511. [PMID: 33192257 PMCID: PMC7653679 DOI: 10.3389/fnins.2020.572511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Mounting experimental evidence demonstrate that sex neuroactive steroids (neurosteroids) are essential for memory formation. Neurosteroids have a profound impact on the function and structure of neural circuits and their local synthesis is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and for neural spine formation in different areas of the central nervous system (CNS). Several studies demonstrated that in the hippocampus, 17β-estradiol (E2) is necessary for inducing LTP, while 5α-dihydrotestosterone (DHT) is necessary for inducing LTD. This contribution has been proven by administering sex neurosteroids in rodent models and by using blocking agents of their synthesis or of their specific receptors. The general opposite role of sex neurosteroids in synaptic plasticity appears to be dependent on their different local availability in response to low or high frequency of synaptic stimulation, allowing the induction of bidirectional synaptic plasticity. The relevant contribution of these neurosteroids to synaptic plasticity has also been described in other brain regions involved in memory processes such as motor learning, as in the case of the vestibular nuclei, the cerebellum, and the basal ganglia, or as the emotional circuit of the amygdala. The rapid effects of sex neurosteroids on neural synaptic plasticity need the maintenance of a tonic or phasic local steroid synthesis determined by neural activity but might also be influenced by circulating hormones, age, and gender. To disclose the exact mechanisms how sex neurosteroids participate in finely tuning long-term synaptic changes and spine remodeling, further investigation is required.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
41
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
42
|
Schwann Cell Autocrine and Paracrine Regulatory Mechanisms, Mediated by Allopregnanolone and BDNF, Modulate PKCε in Peripheral Sensory Neurons. Cells 2020; 9:cells9081874. [PMID: 32796542 PMCID: PMC7465687 DOI: 10.3390/cells9081874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Protein kinase type C-ε (PKCε) plays important roles in the sensitization of primary afferent nociceptors, such as ion channel phosphorylation, that in turn promotes mechanical hyperalgesia and pain chronification. In these neurons, PKCε is modulated through the local release of mediators by the surrounding Schwann cells (SCs). The progesterone metabolite allopregnanolone (ALLO) is endogenously synthesized by SCs, whereas it has proven to be a crucial mediator of neuron-glia interaction in peripheral nerve fibers. Biomolecular and pharmacological studies on rat primary SCs and dorsal root ganglia (DRG) neuronal cultures were aimed at investigating the hypothesis that ALLO modulates neuronal PKCε, playing a role in peripheral nociception. We found that SCs tonically release ALLO, which, in turn, autocrinally upregulated the synthesis of the growth factor brain-derived neurotrophic factor (BDNF). Subsequently, glial BDNF paracrinally activates PKCε via trkB in DRG sensory neurons. Herein, we report a novel mechanism of SCs-neuron cross-talk in the peripheral nervous system, highlighting a key role of ALLO and BDNF in nociceptor sensitization. These findings emphasize promising targets for inhibiting the development and chronification of neuropathic pain.
Collapse
|
43
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
44
|
Fernández R, Ramírez K, Gómez-Gil E, Cortés-Cortés J, Mora M, Aranda G, Zayas ED, Esteva I, Almaraz MC, Guillamon A, Pásaro E. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020; 17:1795-1806. [PMID: 32636163 DOI: 10.1016/j.jsxm.2020.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/25/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Brain sexual differentiation is a process that results from the effects of sex steroids on the developing brain. Evidence shows that epigenetics plays a main role in the formation of enduring brain sex differences and that the estrogen receptor α (ESR1) is one of the implicated genes. AIM To analyze whether the methylation of region III (RIII) of the ESR1 promoter is involved in the biological basis of gender dysphoria. METHODS We carried out a prospective study of the CpG methylation profile of RIII (-1,188 to -790 bp) of the ESR1 promoter using bisulfite genomic sequencing in a cisgender population (10 men and 10 women) and in a transgender population (10 trans men and 10 trans women), before and after 6 months of gender-affirming hormone treatment. Cisgender and transgender populations were matched by geographical origin, age, and sex. DNAs were treated with bisulfite, amplified, cloned, and sequenced. At least 10 clones per individual from independent polymerase chain reactions were sequenced. The analysis of 671 bisulfite sequences was carried out with the QUMA (QUantification tool for Methylation Analysis) program. OUTCOMES The main outcome of this study was RIII analysis using bisulfite genomic sequencing. RESULTS We found sex differences in RIII methylation profiles in cisgender and transgender populations. Cismen showed a higher methylation degree than ciswomen at CpG sites 297, 306, 509, and at the total fragment (P ≤ .003, P ≤ .026, P ≤ .001, P ≤ .006). Transmen showed a lower methylation level than trans women at sites 306, 372, and at the total fragment (P ≤ .0001, P ≤ .018, P ≤ .0107). Before the hormone treatment, transmen showed the lowest methylation level with respect to cisgender and transgender populations, whereas transwomen reached an intermediate methylation level between both the cisgender groups. After the hormone treatment, transmen showed a statistically significant methylation increase, whereas transwomen showed a non-significant methylation decrease. After the hormone treatment, the RIII methylation differences between transmen and transwomen disappeared, and both transgender groups reached an intermediate methylation level between both the cisgender groups. CLINICAL IMPLICATIONS Clinical implications in the hormonal treatment of trans people. STRENGTHS & LIMITATIONS Increasing the number of regions analyzed in the ESR1 promoter and increasing the number of tissues analyzed would provide a better understanding of the variation in the methylation pattern. CONCLUSIONS Our data showed sex differences in RIII methylation patterns in cisgender and transgender populations before the hormone treatment. Furthermore, before the hormone treatment, transwomen and transmen showed a characteristic methylation profile, different from both the cisgender groups. But the hormonal treatment modified RIII methylation in trans populations, which are now more similar to their gender. Therefore, our results suggest that the methylation of RIII could be involved in gender dysphoria. Fernández R, Ramírez K, Gómez-Gil E, et al. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020;17:1795-1806.
Collapse
Affiliation(s)
- Rosa Fernández
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain.
| | - Karla Ramírez
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Esther Gómez-Gil
- Unidad de Identidad de Género, Instituto de Neurociencias, Hospital Clínic, I.D.I.B.A.P.S., Barcelona, Spain
| | - Joselyn Cortés-Cortés
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Mireia Mora
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Gloria Aranda
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Enrique Delgado Zayas
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Isabel Esteva
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mari Cruz Almaraz
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| |
Collapse
|
45
|
Brandt N, Fester L, Rune GM. Neural sex steroids and hippocampal synaptic plasticity. VITAMINS AND HORMONES 2020; 114:125-143. [PMID: 32723541 DOI: 10.1016/bs.vh.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It was a widely held belief that sex steroids, namely testosterone and 17β-estradiol (E2) of gonadal origin, control synaptic plasticity in the hippocampus. A new paradigm emerged when it was shown that these sex steroids are synthesized in the hippocampus. The inhibition of sex steroids in the hippocampus impairs synaptic plasticity sex-dependently in this region of the brain. In gonadectomized animals and in hippocampal cultures, inhibition of estradiol synthesis in female animals and in cultures from female animals, and inhibition of dihydrotestosterone synthesis in male animals and in cultures of male animals, cause synapse loss and impair LTP in the hippocampus, but not vice versa. Since the hippocampal cultures originated from perinatal animals, and due to the similarity of in vivo and in vitro findings, it appears that hippocampal neurons are differentiated in a sex-specific manner during the perinatal period when sexual imprinting takes place.
Collapse
Affiliation(s)
- N Brandt
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Fester
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G M Rune
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
46
|
Abstract
The investigation of hormones, brain function and behavior over the past 50 years has played a major role in elucidating how the brain and body communicate reciprocally via hormones and other mediators and how this impacts brain and body health both positively and negatively. This is illustrated here for the hippocampus, a uniquely sensitive and vulnerable brain region, study of which as a hormone target has provided a gateway into the rest of the brain. Hormone actions on the brain and hormones generated within the brain are now recognized to include not only steroid hormones but also metabolic hormones and chemical signals from bone and muscle. Moreover, steroid hormones, and some metabolic hormones, and their receptors, are generated by the brain for specific functions that synergize with effects of those circulating hormones. Hormone actions in hippocampus have revealed its capacity, and that of other brain regions, for adaptive plasticity, loss of which needs external intervention in, for example, mood disorders. Early life experiences as well as in utero and transgenerational effects are now appreciated for their lasting effects at the level of gene expression affecting the capacity for adaptive plasticity. Moreover sex differences are recognized as affecting the whole brain via both genetic and epigenetic mechanisms. The demonstrated plasticity of a healthy brain gives hope that interventions throughout the life course can ameliorate negative effects by reactivating that plasticity and the underlying epigenetic activity to produce compensatory changes in the brain with more positive consequences for the body.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| |
Collapse
|
47
|
Shehata NAA, Moety GAFA, El Wahed HAA, Fahim AS, Katta MA, Hussein GK. Does Adding Fluoxetine to Combined Oral Contraceptives Containing Drospirenone Improve the Management of Severe Premenstrual Syndrome? A 6-Month Randomized Double-Blind Placebo-Controlled Three-Arm Trial. Reprod Sci 2020; 27:743-750. [DOI: 10.1007/s43032-019-00080-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022]
|
48
|
Joksimovic SL, Joksimovic SM, Manzella FM, Asnake B, Orestes P, Raol YH, Krishnan K, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Novel neuroactive steroid with hypnotic and T-type calcium channel blocking properties exerts effective analgesia in a rodent model of post-surgical pain. Br J Pharmacol 2020; 177:1735-1753. [PMID: 31732978 DOI: 10.1111/bph.14930] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) is a novel hypnotic and voltage-dependent blocker of T-type calcium channels. Here, we examine its potential analgesic effects and adjuvant anaesthetic properties using a post-surgical pain model in rodents. EXPERIMENTAL APPROACH Analgesic properties of 3β-OH were investigated in thermal and mechanical nociceptive tests in sham or surgically incised rats and mice, with drug injected either systemically (intraperitoneal) or locally via intrathecal or intraplantar routes. Hypnotic properties of 3β-OH and its use as an adjuvant anaesthetic in combination with isoflurane were investigated using behavioural experiments and in vivo EEG recordings in adolescent rats. KEY RESULTS A combination of 1% isoflurane with 3β-OH (60 mg·kg-1 , i.p.) induced suppression of cortical EEG and stronger thermal and mechanical anti-hyperalgesia during 3 days post-surgery, when compared to isoflurane alone and isoflurane with morphine. 3β-OH exerted prominent enantioselective thermal and mechanical antinociception in healthy rats and reduced T-channel-dependent excitability of primary sensory neurons. Intrathecal injection of 3β-OH alleviated mechanical hyperalgesia, while repeated intraplantar application alleviated both thermal and mechanical hyperalgesia in the rats after incision. Using mouse genetics, we found that CaV 3.2 T-calcium channels are important for anti-hyperalgesic effect of 3β-OH and are contributing to its hypnotic effect. CONCLUSION AND IMPLICATIONS Our study identifies 3β-OH as a novel analgesic for surgical procedures. 3β-OH can be used to reduce T-channel-dependent excitability of peripheral sensory neurons as an adjuvant for induction and maintenance of general anaesthesia while improving analgesia and lowering the amount of volatile anaesthetic needed for surgery.
Collapse
Affiliation(s)
- Sonja Lj Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Co, USA.,Pharmacology Graduate Program, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Co, USA
| | - Francesca M Manzella
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Co, USA.,Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Betelehem Asnake
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA, USA
| | - Peihan Orestes
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Co, USA
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, Translational Epilepsy Research Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Co, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Co, USA.,Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
49
|
Littlejohn EL, Espinoza L, Lopez MM, Smith BN, Boychuk CR. GABA A receptor currents in the dorsal motor nucleus of the vagus in females: influence of ovarian cycle and 5α-reductase inhibition. J Neurophysiol 2019; 122:2130-2141. [PMID: 31596653 PMCID: PMC6879959 DOI: 10.1152/jn.00039.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022] Open
Abstract
The dorsal motor nucleus of the vagus (DMV) contains the preganglionic motor neurons important in the regulation of glucose homeostasis and gastrointestinal function. Despite the role of sex in the regulation of these processes, few studies examine the role of sex and/or ovarian cycle in the regulation of synaptic neurotransmission to the DMV. Since GABAergic neurotransmission is critical to normal DMV function, the present study used in vitro whole cell patch-clamping to investigate whether sex differences exist in GABAergic neurotransmission to DMV neurons. It additionally investigated whether the ovarian cycle plays a role in those sex differences. The frequency of phasic GABAA receptor-mediated inhibitory postsynaptic currents in DMV neurons from females was lower compared with males, and this effect was TTX sensitive and abolished by ovariectomy (OVX). Amplitudes of GABAergic currents (both phasic and tonic) were not different. However, females demonstrated significantly more variability in the amplitude of both phasic and tonic GABAA receptor currents. This difference was eliminated by OVX in females, suggesting that these differences were related to reproductive hormone levels. This was confirmed for GABAergic tonic currents by comparing females in two ovarian stages, estrus versus diestrus. Female mice in diestrus had larger tonic current amplitudes compared with those in estrus, and this increase was abolished after administration of a 5α-reductase inhibitor but not modulation of estrogen. Taken together, these findings demonstrate that DMV neurons undergo GABAA receptor activity plasticity as a function of sex and/or sex steroids.NEW & NOTEWORTHY Results show that GABAergic signaling in dorsal vagal motor neurons (DMV) demonstrates sex differences and fluctuates across the ovarian cycle in females. These findings are the first to demonstrate that female GABAA receptor activity in this brain region is modulated by 5α-reductase-dependent hormones. Since DMV activity is critical to both glucose and gastrointestinal homeostasis, these results suggest that sex hormones, including those synthesized by 5α-reductase, contribute to visceral, autonomic function related to these physiological processes.
Collapse
Affiliation(s)
- Erica L Littlejohn
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Monica M Lopez
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
50
|
Joksimovic SL, Donald RR, Park JY, Todorovic SM. Inhibition of multiple voltage-gated calcium channels may contribute to spinally mediated analgesia by epipregnanolone in a rat model of surgical paw incision. Channels (Austin) 2019; 13:48-61. [PMID: 30672394 PMCID: PMC6380214 DOI: 10.1080/19336950.2018.1564420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Voltage-activated calcium channels play an important role in excitability of sensory nociceptive neurons in acute and chronic pain models. We have previously shown that low-voltage-activated calcium channels, or T-type channels (T-channels), increase excitability of sensory neurons after surgical incision in rats. We have also found that endogenous 5β-reduced neuroactive steroid epipregnanolone [(3β,5β)-3-hydroxypregnan-20-one] blocked isolated T-currents in dorsal root ganglion (DRG) cells in vitro, and reduced nociceptive behavior in vivo, after local intraplantar application into the foot pads of heathy rats and mice. Here, we investigated if epipregnanolone exerts an antinociceptive effect after intrathecal (i.t.) application in healthy rats, as well as an antihyperalgesic effect in a postsurgical pain model. We also studied if this endogenous neurosteroid blocks currents originating from high voltage-activated (HVA) calcium channels in rat sensory neurons. In in vivo studies, we found that epipregnanolone alleviated thermal and mechanical nociception in healthy rats after i.t. administration without affecting their sensory-motor abilities. Furthermore, epipregnanolone effectively reduced mechanical hyperalgesia after i.t application in rats after surgery. In subsequent in vitro studies, we found that epipregnanolone blocked isolated HVA currents in nociceptive sensory neurons with an IC50 of 3.3 μM in a G-protein-dependent fashion. We conclude that neurosteroids that have combined inhibitory effects on T-type and HVA calcium currents may be suitable for development of novel pain therapies during the perioperative period.
Collapse
Affiliation(s)
- Sonja Lj Joksimovic
- a Department of Anesthesiology , University of Colorado Denver , Aurora , CO , USA
| | - Rebecca R Donald
- b Department of Anesthesiology , Duke University Medical School , Durham , NC , USA
| | - Ji-Yong Park
- c Department of Anesthesiology and Pain Medicine, College of Medicine , Korea University , Seoul , Republic of Korea
| | - Slobodan M Todorovic
- a Department of Anesthesiology , University of Colorado Denver , Aurora , CO , USA.,d Neuroscience Graduate Program , University of Colorado Denver , Aurora , CO , USA
| |
Collapse
|