1
|
Zhang ZA, Xin X, Liu C, Liu YH, Duan HX, Qi LL, Zhang YY, Zhao HM, Chen LQ, Jin MJ, Gao ZG, Huang W. Novel brain-targeted nanomicelles for anti-glioma therapy mediated by the ApoE-enriched protein corona in vivo. J Nanobiotechnology 2021; 19:453. [PMID: 34963449 PMCID: PMC8715648 DOI: 10.1186/s12951-021-01097-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background The interactions between nanoparticles (NPs) and plasma proteins form a protein corona around NPs after entering the biological environment, which provides new biological properties to NPs and mediates their interactions with cells and biological barriers. Given the inevitable interactions, we regard nanoparticle‒protein interactions as a tool for designing protein corona-mediated drug delivery systems. Herein, we demonstrate the successful application of protein corona-mediated brain-targeted nanomicelles in the treatment of glioma, loading them with paclitaxel (PTX), and decorating them with amyloid β-protein (Aβ)-CN peptide (PTX/Aβ-CN-PMs). Aβ-CN peptide, like the Aβ1–42 peptide, specifically binds to the lipid-binding domain of apolipoprotein E (ApoE) in vivo to form the ApoE-enriched protein corona surrounding Aβ-CN-PMs (ApoE/PTX/Aβ-CN-PMs). The receptor-binding domain of the ApoE then combines with low-density lipoprotein receptor (LDLr) and LDLr-related protein 1 receptor (LRP1r) expressed in the blood–brain barrier and glioma, effectively mediating brain-targeted delivery. Methods PTX/Aβ-CN-PMs were prepared using a film hydration method with sonication, which was simple and feasible. The specific formation of the ApoE-enriched protein corona around nanoparticles was characterized by Western blotting analysis and LC–MS/MS. The in vitro physicochemical properties and in vivo anti-glioma effects of PTX/Aβ-CN-PMs were also well studied. Results The average size and zeta potential of PTX/Aβ-CN-PMs and ApoE/PTX/Aβ-CN-PMs were 103.1 nm, 172.3 nm, 7.23 mV, and 0.715 mV, respectively. PTX was efficiently loaded into PTX/Aβ-CN-PMs, and the PTX release from rhApoE/PTX/Aβ-CN-PMs exhibited a sustained-release pattern in vitro. The formation of the ApoE-enriched protein corona significantly improved the cellular uptake of Aβ-CN-PMs on C6 cells and human umbilical vein endothelial cells (HUVECs) and enhanced permeability to the blood–brain tumor barrier in vitro. Meanwhile, PTX/Aβ-CN-PMs with ApoE-enriched protein corona had a greater ability to inhibit cell proliferation and induce cell apoptosis than taxol. Importantly, PTX/Aβ-CN-PMs exhibited better anti-glioma effects and tissue distribution profile with rapid accumulation in glioma tissues in vivo and prolonged median survival of glioma-bearing mice compared to those associated with PMs without the ApoE protein corona. Conclusions The designed PTX/Aβ-CN-PMs exhibited significantly enhanced anti-glioma efficacy. Importantly, this study provided a strategy for the rational design of a protein corona-based brain-targeted drug delivery system. More crucially, we utilized the unfavorable side of the protein corona and converted it into an advantage to achieve brain-targeted drug delivery. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01097-8.
Collapse
Affiliation(s)
- Zhe-Ao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan-Hong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Xia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Ling Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying-Ying Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - He-Ming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ming-Ji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhong-Gao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Mulik RS, Bing C, Ladouceur-Wodzak M, Munaweera I, Chopra R, Corbin IR. Localized delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat brain using focused ultrasound. Biomaterials 2016; 83:257-68. [PMID: 26790145 DOI: 10.1016/j.biomaterials.2016.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/30/2015] [Accepted: 01/01/2016] [Indexed: 12/18/2022]
Abstract
Focused ultrasound exposures in the presence of microbubbles can achieve transient, non-invasive, and localized blood-brain barrier (BBB) opening, offering a method for targeted delivery of therapeutic agents into the brain. Low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) could have significant therapeutic value in the brain, since DHA is known to be neuroprotective. BBB opening was achieved using pulsed ultrasound exposures in a localized brain region in normal rats, after which LDL nanoparticles containing the fluorescent probe DiR (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide) or DHA were administered intravenously. Fluorescent imaging of brain tissue from rats administered LDL-DiR demonstrated strong localization of fluorescence signal in the exposed hemisphere. LDL-DHA administration produced 2 × more DHA in the exposed region of the brain, with a corresponding increase in Resolvin D1 levels, indicating DHA was incorporated into cells and metabolized. Histological evaluation did not indicate any evidence of increased tissue damage in exposed brain regions compared to normal brain. This work demonstrates that localized delivery of DHA to the brain is possible using systemically-administered LDL nanoparticles combined with pulsed focused ultrasound exposures in the brain. This technology could be used in regions of acute brain injury or as a means to target infiltrating tumor cells in the brain.
Collapse
Affiliation(s)
- Rohit S Mulik
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Chenchen Bing
- Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | - Imalka Munaweera
- Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Rajiv Chopra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Abstract
Patients affected by malignant brain tumors present an extremely poor prognosis, notwithstanding improvements in surgery techniques and therapeutic protocols. Brain tumor treatment has been principally hampered by limited drug delivery across the blood–brain barrier (BBB). An efficacious chemotherapeutic treatment requires a pharmacological agent that can penetrate the BBB and target neoplastic cells. Nanotechnology involves the design, synthesis and characterization of materials that have a functional organization in at least one dimension on the nanometer scale. Nanoparticle systems can represent optimal devices for delivery of various drugs into the brain across the BBB. Nanoparticle drug-delivery systems can also be used to provide targeted delivery of drugs, improve bioavailability and sustain release of drugs for systemic delivery. In this patent review, the recent studies of certain nanoparticle systems in treatment of brain tumors are summarized. Common nanoparticles systems include polymeric nanoparticles, lipid nanoparticles and inorganic nanoparticles. Various patents of nanoparticle systems able to across the BBB to target brain tumors are also reported and discussed.
Collapse
|
4
|
Expression and regulation of apolipoprotein E receptors in the cells of the central nervous system in culture: A review. J Am Aging Assoc 2013; 24:1-10. [PMID: 23604870 DOI: 10.1007/s11357-001-0001-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The importance of apolipoprotein E (apoE) in the central nervous system (CNS) became increasingly clear since the descovery that apoE ε4 allele is a major risk factor for Alzheimer's disease. ApoE is one of the major apolipoproteins that acts as a ligand for the cellular uptake of lipoproteins via apoE receptors, members of low-density lipoprotein receptor (LDLR) family, in the CNS. Recently, LDLR family has been shown to have new functions that modulate intracellular signalling and affect neuronal and glial functions, survival and regeneration. However, the pattern of expression of apoE receptors in the CNS has not been fully clarified yet. The LDLR, very low density lipoprotein receptor (VLDLR), LDLR-related protein (LRP), and apolipoprotein E receptor 2 (apoER2) are known to bind to and internalize apoE-containing lipoproteins. Here we summarize the expression of apoE receptors in the CNS and demonstrate additional our original data on cell type specific expression and regulation of those receptors in the CNS, using in situ hybridization and RT-PCR. The cells used in our study were highly enriched cultures of neurons, astrocytes, microglia and oligodendrocytes isolated from rat brain and neuroblastoma cell line, Neuro2a. All of these four types of receptors were shown to be expressed in neurons, astrocytes, microglia and oligodendrocytes, while LDLR and LRP were expressed in Neuro2a cells. We further examined the regulation of the expression of these receptors by altering the cholesterol content of the cells, and found that only the LDLR expression was downregulated following internalization of lipoprotein cholesterol and upregulated by cholesterol deprivation, in neuronal and astroglial cells. These data together with previous studies suggest that LDLR, VLDL, LRP, and apoER2 may be involved in apoE-mediated lipid uptake and/or intracellualr signalling in the cells of the CNS cells, i.e., neurons, astrocytes, microglia, and oligodendrocytes.
Collapse
|
5
|
Rojas-Mayorquín AE, Torres-Ruíz NM, Ortuño-Sahagún D, Gudiño-Cabrera G. Microarray analysis of striatal embryonic stem cells induced to differentiate by ensheathing cell conditioned media. Dev Dyn 2008; 237:979-94. [DOI: 10.1002/dvdy.21489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Maurice T, Grégoire C, Espallergues J. Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 2006; 84:581-97. [PMID: 16945406 DOI: 10.1016/j.pbb.2006.07.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/30/2006] [Accepted: 07/07/2006] [Indexed: 01/05/2023]
Abstract
Steroids from peripheral sources or synthesized in the brain, i.e. neurosteroids, exert rapid modulations of neurotransmitter responses through specific interactions with membrane receptors, mainly the gamma-aminobutyric acid type A (GABA(A)) receptor and N-methyl-d-aspartate (NMDA) type of glutamate receptor. Progesterone and 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) act as inhibitory steroids while pregnenolone sulfate or dehydroepiandrosterone sulfate act as excitatory steroids. Some steroids also interact with an atypical protein, the sigma(1) (sigma(1)) receptor. This receptor has been cloned in several species and is centrally expressed in neurons and oligodendrocytes. Activation of the sigma(1) receptor modulates cellular Ca(2+) mobilization, particularly from endoplasmic reticulum pools, and contributes to the formation of lipid droplets, translocating towards the plasma membrane and contributing to the recomposition of lipid microdomains. The present review details the evidences showing that the sigma(1) receptor is a target for neurosteroids in physiological conditions. Analysis of the sigma(1) protein sequence confirmed homologies with the ERG2/emopamil binding protein family but also with the steroidogenic enzymes isopentenyl diphosphate isomerase and 17beta-estradiol dehydrogenase. Biochemical and physiological arguments for an interaction of neuro(active)steroids with the sigma(1) receptor are analyzed and the impact on physiopathological outcomes in neuroprotection is illustrated.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U. 710, Montpellier, F-34095 France University of Montpellier II, Montpellier, F-34095 France c EPHE, Paris, F-75007 France.
| | | | | |
Collapse
|
7
|
Birzniece V, Bäckström T, Johansson IM, Lindblad C, Lundgren P, Löfgren M, Olsson T, Ragagnin G, Taube M, Turkmen S, Wahlström G, Wang MD, Wihlbäck AC, Zhu D. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. ACTA ACUST UNITED AC 2005; 51:212-39. [PMID: 16368148 DOI: 10.1016/j.brainresrev.2005.11.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 01/20/2023]
Abstract
This article will review neuroactive steroid effects on serotonin and GABA systems, along with the subsequent effects on cognitive functions. Neurosteroids (such as estrogen, progesterone, and allopregnanolone) are synthesized in the central and peripheral nervous system, in addition to other tissues. They are involved in the regulation of mood and memory, in premenstrual syndrome, and mood changes related to hormone replacement therapy, as well as postnatal and major depression, anxiety disorders, and Alzheimer's disease. Estrogen and progesterone have their respective hormone receptors, whereas allopregnanolone acts via the GABA(A) receptor. The action of estrogen and progesterone can be direct genomic, indirect genomic, or non-genomic, also influencing several neurotransmitter systems, such as the serotonin and GABA systems. Estrogen alone, or in combination with antidepressant drugs affecting the serotonin system, has been related to improved mood and well being. In contrast, progesterone can have negative effects on mood and memory. Estrogen alone, or in combination with progesterone, affects the brain serotonin system differently in different parts of the brain, which can at least partly explain the opposite effects on mood of those hormones. Many of the progesterone effects in the brain are mediated by its metabolite allopregnanolone. Allopregnanolone, by changing GABA(A) receptor expression or sensitivity, is involved in premenstrual mood changes; and it also induces cognitive deficits, such as spatial-learning impairment. We have shown that the 3beta-hydroxypregnane steroid UC1011 can inhibit allopregnanolone-induced learning impairment and chloride uptake potentiation in vitro and in vivo. It would be important to find a substance that antagonizes allopregnanolone-induced adverse effects.
Collapse
Affiliation(s)
- Vita Birzniece
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Although an immense knowledge has accumulated concerning regulation of cholesterol homeostasis in the body, this does not include the brain, where details are just emerging. Approximately 25% of the total amount of the cholesterol present in humans is localized to this organ, most of it present in myelin. Almost all brain cholesterol is a product of local synthesis, with the blood-brain barrier efficiently protecting it from exchange with lipoprotein cholesterol in the circulation. Thus, there is a highly efficient apolipoprotein-dependent recycling of cholesterol in the brain, with minimal losses to the circulation. Under steady-state conditions, most of the de novo synthesis of cholesterol in the brain appears to be balanced by excretion of the cytochrome P-450-generated oxysterol 24S-hydroxycholesterol. This oxysterol is capable of escaping the recycling mechanism and traversing the blood-brain barrier. Cholesterol levels and cholesterol turnover are affected in neurodegenerating disorders, and the capacity for cholesterol transport and recycling in the brain seems to be of importance for the development of such diseases. The possibility has been discussed that administration of inhibitors of cholesterol synthesis may reduce the prevalence of Alzheimer disease. No firm conclusions can, however, be drawn from the studies presented thus far. In the present review, the most recent advances in our understanding of cholesterol turnover in the brain is discussed.
Collapse
Affiliation(s)
- Ingemar Björkhem
- Division of Clinical Chemistry, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
9
|
Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 46:1-32. [PMID: 11599297 DOI: 10.1016/s0074-7742(01)46057-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neurosteroids are synthetisized in the central and the peripheral nervous system, in glial cells, and also in neurons, from cholesterol or steroidal precursors imported from peripheral sources. They include 3 beta-hydroxy-delta 5-compounds, such as pregnenolone (PREG) and dehydroepiandrosterone, their sulfate esters, and compounds known as reduced metabolites of steroid hormones, such as the tetrahydroderivative of progesterone 3 alpha-hydroxy-5 alpha-pregnan-20-one. These neurosteroids can act as modulators of neurotransmitter receptors, such as GABAA, NMDA, and sigma 1 receptors. Progesterone itself is also a neurosteroid, and a progesterone receptor has been detected in peripheral and central glial cells. At different sites in the brain, neurosteroid concentrations vary according to environmental and behavioral circumstances, such as stress, sex recognition, or aggressiveness. A physiological function of neurosteroids in the central nervous system is strongly suggested by the role of hippocampal PREGS with respect to memory performance, observed in aging rats. In the peripheral nervous system, a role for PROG synthesized in Schwann cells has been demonstrated in remyelination after cryolesion of the sciatic nerve in vivo and in cultures of dorsal root ganglia. A new mechanism of PREG action discovered in the brain involves specific steroid binding to microtubule associated protein and increased tubulin polymerization for assembling microtubules. It may be important to study the effects of abnormal neurosteroid concentration/metabolism in view of the possible treatment of functional and trophic disturbances of the nervous system.
Collapse
|
10
|
German DC, Quintero EM, Liang C, Xie C, Dietschy JM. Degeneration of neurons and glia in the Niemann-Pick C mouse is unrelated to the low-density lipoprotein receptor. Neuroscience 2002; 105:999-1005. [PMID: 11530237 DOI: 10.1016/s0306-4522(01)00230-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The BALB/c mouse model of Niemann-Pick type C disease exhibits similar neuropathological features to the human condition, including cerebral atrophy, demyelination of the corpus callosum, and degeneration of cerebellar Purkinje cells. The gene defect in Niemann-Pick C disease causes cholesterol to accumulate within the lysosomal compartment of neurons and glial cells. In order to determine whether cholesterol accumulation through the low-density lipoprotein receptor pathway plays an important role in the degenerative process, Niemann-Pick C mice were crossed with low-density lipoprotein receptor knockout mice. The purpose of the present study was to determine whether degeneration of neurons and glial cells is reduced in Niemann-Pick C animals lacking the low-density lipoprotein receptor. Using stereological counting methods, Purkinje cells were counted in the cerebellum and glial cell bodies were counted in the corpus callosum in mice at 3, 7.5 and 11 weeks of age. In the Niemann-Pick C animals, compared to wild-type control mice, there were 48% fewer glial cells at 3 weeks of age, and by 11 weeks of age there were 63% fewer glial cells. Purkinje cells were decreased in number by 13% at 3 weeks of age, and by 11 weeks of age there was a 96% loss. In the Niemann-Pick C animals lacking low-density lipoprotein receptors, there was no difference in the magnitude of glial cell or Purkinje cell loss compared to the Niemann-Pick C animals. These data indicate that both neurons and glia are vulnerable to degeneration in the Niemann-Pick C mouse, but that blocking the accumulation of cholesterol through the low-density lipoprotein receptor pathway does not alter the degenerative phenotype of Niemann-Pick C disease.
Collapse
Affiliation(s)
- D C German
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA.
| | | | | | | | | |
Collapse
|
11
|
Plassart-Schiess E, Baulieu EE. Neurosteroids: recent findings. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:133-40. [PMID: 11744081 DOI: 10.1016/s0165-0173(01)00113-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The term neurosteroid applies to those steroids that are synthesized in the nervous system, from cholesterol or other blood-borne steroidal precursors, and that accumulate in the nervous system to levels that are at least in part independent from steroidogenic gland secretion. Both glial cells and neurons participate in neurosteroid biosynthesis and metabolism. Several neurosteroids are involved in auto/paracrine mechanisms involving regulation of target gene expression and/or effects on membrane receptors (particularly those for neurotransmitters). An additional unexpected mechanism of steroid action is reported here: pregnenolone binds to neural microtubule-associated protein of type 2 (MAP2) and increases both the rate and extent of tubulin polymerization, forming microtubules of normal electron microscopic appearance. This novel mechanism may play a role in regulating microtubule formation and dynamics and thus neuronal plasticity and function.
Collapse
Affiliation(s)
- E Plassart-Schiess
- INSERM U488 and Collège de France, Bat Grégory Pincus, Hôpital du 94276, Kremlin-Bicêtre, France
| | | |
Collapse
|
12
|
Fullerton SM, Shirman GA, Strittmatter WJ, Matthew WD. Impairment of the blood-nerve and blood-brain barriers in apolipoprotein e knockout mice. Exp Neurol 2001; 169:13-22. [PMID: 11312553 DOI: 10.1006/exnr.2001.7631] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein E (apoE) is well characterized as a plasma lipoprotein involved in lipid and cholesterol metabolism. Recent studies implicating apoE in Alzheimer's disease and successful recovery from neurological injury have stimulated much interest in the functions of apoE within the brain. To explore the functions of apoE within the nervous system, we examined apoE knockout (KO) mice. Previously, we showed that apoE KO mice have a delayed response to noxious thermal stimuli associated with a loss and abnormal morphology of unmyelinated fibers in the sciatic nerve. From these data, we hypothesized that apoE KO mice could have an impaired blood-nerve barrier (BNB). In this report, we demonstrate functionally impaired blood-nerve and blood-brain barriers (BBB) in apoE KO mice using immunofluorescent detection of serum protein leakage into nervous tissue as a diagnostic for decreased BNB and BBB integrity. Extensive extravasation of serum immunoglobulin G (IgG) is detected in the sciatic nerve, spinal cord, and cerebellum of apoE KO but not WT mice. In a subpopulation of apoE KO mice, IgG also extravasates into discrete cortical and subcortical locations, including hippocampus. Loss of BBB integrity was additionally confirmed by the ability of exogenously supplied Evans blue dye to penetrate the BBB and to colocalize with IgG immunoreactivity in CNS tissue. These observations support a role for apoE in maintaining the integrity of the BNB/BBB and suggest a novel relationship between apoE and neural injury.
Collapse
Affiliation(s)
- S M Fullerton
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | |
Collapse
|
13
|
Ichikawa T, Yamada M, Homma D, Cherry RJ, Morrison IE, Kawato S. Digital fluorescence imaging of trafficking of endosomes containing low-density lipoprotein in brain astroglial cells. Biochem Biophys Res Commun 2000; 269:25-30. [PMID: 10694471 DOI: 10.1006/bbrc.2000.2261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used digital fluorescence microscopy to examine transport of LDL-containing endosomes in rat brain astroglial cells to show that individual middle endosomes undergo rapid transitions between forward/backward movements and immobile states over short distances. The population of rapidly moving endosomes (>0.04 microm/sec) was 35. 9%, and the remaining endosomes were slowly moving or temporarily immobile (<0.04 microm/sec). The averaged motion was, however, a very slow perinuclear motion with a velocity of 3.25 microm/h. This small velocity is mainly due to frequent changing of directions in movements, requiring 6 h for a significant concentration around the circumference of the cell nuclei. The application of both anti-dynein antibodies and vanadate in permeabilized cells resulted in peripherally concentrated distribution of endosomes, probably due to inhibition of perinuclear motion by dynein-like motor proteins. These results imply that both dynein-like and kinesin-like proteins bind to the same endosome resulting in both perinuclear and peripherally directed movements.
Collapse
Affiliation(s)
- T Ichikawa
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba 3-8-1, Meguro, Tokyo, 153, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Jung-Testas I, Do Thi A, Koenig H, Désarnaud F, Shazand K, Schumacher M, Baulieu EE. Progesterone as a neurosteroid: synthesis and actions in rat glial cells. J Steroid Biochem Mol Biol 1999; 69:97-107. [PMID: 10418983 DOI: 10.1016/s0960-0760(98)00149-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The central nervous system (CNS) and the peripheral nervous system (PNS) are targets for steroid hormones where they regulate important neuronal functions. Some steroid hormones are synthesized within the nervous system, either de novo from cholesterol, or by the metabolism of precursors originating from the circulation, and they were termed 'neurosteroids'. The sex steroid progesterone can also be considered as a neurosteroid since its synthesis was demonstrated in rat glial cell cultures of the CNS (oligodendrocytes and astrocytes) and of the PNS (Schwann cells). Both types of glial cells express steroid hormone receptors, ER, GR and PR. As in target tissue, e.g. the uterus, PR is estrogen-inducible in brain glial cell cultures. In the PNS, similar PR-induction could not be seen in pure Schwann cells derived from sciatic nerves. However, a significant PR-induction by estradiol was demonstrated in Schwann cells cocultured with dorsal root ganglia (DRG), and we will present evidence that neuronal signal(s) are required for this estrogen-mediated PR-induction. Progesterone has multiple effects on glial cells, it influences growth, differentiation and increases the expression of myelin-specific proteins in oligodendrocytes, and potentiates the formation of new myelin sheaths by Schwann cells in vivo. Progesterone and progesterone analogues also promotes myelination of DRG-Neurites in tissue culture, strongly suggesting a role for this neurosteroid in myelinating processes in the CNS and in the PNS.
Collapse
|
15
|
Abstract
Neurosteroids are synthetized in the central and peripheral nervous system, particularly but not exclusively in myelinating glial cells, from cholesterol or steroidal precursors imported from peripheral sources. They include 3-hydroxy-delta 5-compounds, such as pregnenolone (PREG) and dehydroepiandrosterone (DHEA), their sulfates, and reduced metabolites such as the tetrahydroderivative of progesterone 3 alpha-hydroxy-5 alpha-pregnane-20-one (3 alpha, 5 alpha-TH PROG). These compounds can act as allosteric modulators of neurotransmitter receptors, such as GABAA, NMDA and sigma receptors. Progesterone (PROG) is also a neurosteroid, and a progesterone receptor (PROG-R) has been identified in peripheral and central glial cells. At different places in the brain, neurosteroid concentrations vary according to environmental and behavioral circumstances, such as stress, sex recognition and aggressiveness. A physiological function of neurosteroids in the central nervous system is strongly suggested by the role of hippocampal PREGS with respect to memory, observed in aging rats. In the peripheral nervous system, a role for PROG synthesized in Schwann cells has been demonstrated in the repair of myelin after cryolesion of the sciatic nerve in vivo and in cultures of dorsal root ganglia neurites. It may be important to study the effect of abnormal neurosteroid concentrations/metabolism with a view to the possible treatment of functional and trophic disturbances of the nervous system.
Collapse
|
16
|
Huey PU, Marcell T, Owens GC, Etienne J, Eckel RH. Lipoprotein lipase is expressed in cultured Schwann cells and functions in lipid synthesis and utilization. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32468-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Jung-Testas I, Baulieu EE. Steroid hormone receptors and steroid action in rat glial cells of the central and peripheral nervous system. J Steroid Biochem Mol Biol 1998; 65:243-51. [PMID: 9699879 DOI: 10.1016/s0960-0760(97)00191-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nervous system is a target for sex steroid hormones which have profound actions on the growth, maturation, differentiation and functioning of brain cells. We found that some steroids, termed "neurosteroids", are synthesized within the brain by glial cells. The term "neurosteroids" designates their site of synthesis--the nervous system, either de novo from cholesterol or from steroid hormone precursors. The biological effects of steroid hormones are mediated by specific high-affinity intracellular receptors, which, after hormone binding, function as activated transcription factors. The presence of such receptors was shown in primary cultures of oligodendrocytes and astrocytes, derived from forebrains (CNS), and in Schwann cells, derived from sciatic nerves (PNS), of newborn rats. In glial cells of the CNS, progesterone-, glucocorticoid-, estrogen and androgen-receptors (PR, GR, ER, AR) were demonstrated and of these receptors, only PR was estrogen-inducible. In glial cells of the PNS, the presence of PR and ER was shown, but the PR in Schwann cell cultures was not inducible by estrogen treatment. Different effects of steroids on glial cell growth and differentiation during primary culture were observed. In particular, a striking increase of myelin-specific proteins such as myelin basic protein (MBP) and cyclic nucleotide phosphodiesterase (CNPase) was observed when oligodendrocytes, the myelinating glial cells of the CNS, were cultured in the presence of progesterone, as determined by indirect immunofluorescence staining and immunoblotting. Insulin also increases MBP and CNP-ase in oligodendrocytes and the combined treatment (insulin + progesterone) promotes a strong synergistic stimulation (14-fold increase) of myelin protein expression. Estradiol also increases MBP- and CNPase expression in oligodendrocytes, although to a lesser extent than progesterone. In the search for optimal stimulation of myelin-protein expression, several progesterone analogues were tested and the results are discussed.
Collapse
Affiliation(s)
- I Jung-Testas
- INSERM U 33, University Paris XI, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
18
|
Sugawa M, Ikeda S, Kushima Y, Takashima Y, Cynshi O. Oxidized low density lipoprotein caused CNS neuron cell death. Brain Res 1997; 761:165-72. [PMID: 9247081 DOI: 10.1016/s0006-8993(97)00468-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Death induced by oxidized low density lipoproteins (oxLDL) to embryonic CNS neuronal and neuroblastoma cells was investigated. Cell damage and viability were evaluated by LDH leakage and the MTT method, respectively. Dose- and time-dependent degeneration of neurons occurred after oxLDL (1-100 microg/ml) treatment but was absent after native low density lipoproteins (LDL). This degeneration was mediated, in part, by apoptosis because increased TUNEL and Hoechst dye-positive staining was observed. These effects occurred in the absence of microglia. However, DNA degradation was not detected. The cytotoxicity was attenuated by pre-treatment with antioxidants. These results suggest that oxidation by oxLDL may be important in neurocytotoxicity in the brain.
Collapse
Affiliation(s)
- M Sugawa
- Fuji-Gotemba Research Laboratories Chugai Pharmaceutical Co. Ltd., Gotemba-shi, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
19
|
Kimoto T, Asou H, Ohta Y, Mukai H, Chernogolov AA, Kawato S. Digital fluorescence imaging of elementary steps of neurosteroid synthesis in rat brain glial cells. J Pharm Biomed Anal 1997; 15:1231-40. [PMID: 9226548 DOI: 10.1016/s0731-7085(96)01987-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With fluorescence microscopic imaging, we have examined Ca2+ signaling, LDL uptake and distribution of cytochrome P450 scc on individual rat brain glial cells in order to investigate the molecular mechanisms of neurosteroid synthesis. Astrocytes and oligodendrocytes were cultured from newborn rat brain. Ca2+ signaling was observed in Calcium Green-1 loaded astrocytes upon neurotransmitter stimulations using video-enhanced microscopy. Upon stimulation of serotonin and glutamate, we observed typically three types of Ca2+ signaling which were Ca2+ oscillations, a transient increase in Ca2+ concentration and Ca2+ oscillations superimposed on a transient Ca2+ increase. On the other hand, histamine and ATP induced only a transient increase in Ca2+ without oscillatory response. Uptake of octadecyl rhodamine (R18) labeled LDL by astrocytes and oligodendrocytes was observed in the time scale of 30 min with confocal laser scanning microscopy. Some localization of LDL in the cytoplasm was observed for astrocytes. For oligodendrocytes, incorporated LDL was distributed over the entire cytoplasmic region of both cell body and multiple branched cell processes. The presence of a significant amount of cytochrome P450 scc was demonstrated with immunofluorescence staining in both astrocytes and oligodendrocytes. The density of P450 scc in both glial cells was suggested to be around 1% of that in bovine adrenocortical fasciculata cells. The results lead to an improved quantitative picture of neurosteroid synthesis in glial cells.
Collapse
Affiliation(s)
- T Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo at Komaba
| | | | | | | | | | | |
Collapse
|
20
|
Leininger-Muller B, Siest G. The rat, a useful animal model for pharmacological studies on apolipoprotein E. Life Sci 1996; 58:455-67. [PMID: 8569418 DOI: 10.1016/0024-3205(95)02245-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein E is a major protein component of lipoproteins and plays an important role in cholesterol transport. The structure of the gene and the polymorphism of apolipoprotein E have been studied in human and rat, which show similar structures of apolipoprotein E. The wide tissue distribution of this apolipoprotein suggests diverse functions like cholesterol distribution between cells, intracellular cholesterol trafficking and tissue reparation. Nevertheless, the presence of apolipoprotein E in atherosclerotic plaques and amyloid deposits in brains of Alzheimer's disease patients also indicate pathologic functions staying misunderstood. The aim of this paper is to review the present knowledge on the distribution of apolipoprotein E between the different organs with the related functions and to make an overview of the implications of this apolipoprotein is physiological events and pathological states in the rat. The rat is widely used for drug metabolism studies. Its serum levels are 5-10 times higher than in human and thus this animal provides an useful pharmacological model to elucidate the functions of apo E.
Collapse
Affiliation(s)
- B Leininger-Muller
- Centre du Médicament, Université Henri Poincaré, Nancy 1, CNRS URA 597, France
| | | |
Collapse
|