1
|
Watanabe M, Ohno S, Wachi H. Effect of β-agonist on the dexamethasone-induced expression of aromatase by the human monocyte cells. Endocr Connect 2017; 6:82-88. [PMID: 28126832 PMCID: PMC5424769 DOI: 10.1530/ec-16-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022]
Abstract
Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus-pituitary-adrenal axis (HPA) and facilitation of the (hypothalamus)-sympathetic-adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health.
Collapse
Affiliation(s)
- Masatada Watanabe
- Laboratory of Tissue RegenerationHoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan
| | - Shuji Ohno
- Division of Research for Pharmacy Students EducationHoshi University, Shinagawa, Tokyo, Japan
| | - Hiroshi Wachi
- Laboratory of Tissue RegenerationHoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan
| |
Collapse
|
2
|
Ebert B, Kisiela M, Maser E. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) – an in silico approach. Drug Metab Rev 2016; 48:183-217. [DOI: 10.3109/03602532.2016.1167902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
3
|
He J, Cheng Q, Xie W. Minireview: Nuclear receptor-controlled steroid hormone synthesis and metabolism. Mol Endocrinol 2009; 24:11-21. [PMID: 19762543 DOI: 10.1210/me.2009-0212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Steroid hormones are essential in normal physiology whereas disruptions in hormonal homeostasis represent an important etiological factor for many human diseases. Steroid hormones exert most of their functions through the binding and activation of nuclear hormone receptors (NRs or NHRs), a superfamily of DNA-binding and often ligand-dependent transcription factors. In recent years, accumulating evidence has suggested that NRs can also regulate the biosynthesis and metabolism of steroid hormones. This review will focus on the recent progress in our understanding of the regulatory role of NRs in hormonal homeostasis and the implications of this regulation in physiology and diseases.
Collapse
Affiliation(s)
- Jinhan He
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
4
|
Wang JH, Tuohimaa P. Regulation of 17beta-hydroxysteroid dehydrogenase type 2, type 4 and type 5 by calcitriol, LXR agonist and 5alpha-dihydrotestosterone in human prostate cancer cells. J Steroid Biochem Mol Biol 2007; 107:100-5. [PMID: 17627817 DOI: 10.1016/j.jsbmb.2007.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Vitamin D seems to be involved in the control of prostate cancer cell growth. 17beta-Hydroxysteroid dehydrogenases type 2, type 4 and type 5 are enzymes which regulate intracellular concentration of active sex steroid hormones, which in turn, regulate the development, growth, and function of the prostate and play a role in the development and progression of prostate cancer. Using quantitative real-time PCR we find that calcitriol up-regulates HSD17B type 2, type 4 and type 5 in human prostate cancer LNCaP and PC3 cells but not in stromal cells. LXR agonist, TO-901317, suppresses the expression of HSD17B2 mRNA and inhibits calcitriol induced HSD17B2 expression. TO-901317 up-regulates the expression of HSD17B5 but not that of HSD17B4. 5alpha-Dihydrotestosterone up-regulates the expression of HSD17B2 and HSD17B4 but it significantly inhibits HSD17B5 expression by 70%. Calcitriol has no effect on DHT mediated expression of the three genes. The regulation of HSD17B2, HSD17B4 and HSD17B5 by ligands of LXR and VDR as well as AR in prostate cancer cells suggests a complex interaction of these signaling systems in the prostate.
Collapse
Affiliation(s)
- Jing-Huan Wang
- Department of Anatomy, Medical School, 33014 University of Tampere, Tampere, Finland.
| | | |
Collapse
|
5
|
Thornton MJ, Nelson LD, Taylor AH, Birch MP, Laing I, Messenger AG. The modulation of aromatase and estrogen receptor alpha in cultured human dermal papilla cells by dexamethasone: a novel mechanism for selective action of estrogen via estrogen receptor beta? J Invest Dermatol 2006; 126:2010-8. [PMID: 16691199 DOI: 10.1038/sj.jid.5700344] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steroid hormones have important modulatory effects on the hair follicle, but the mechanisms by which they regulate human hair growth are still poorly understood. It is now clear that there are two distinct estrogen receptors (estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta)) that bind 17beta-estradiol. Since the follicular dermal papilla is known to control hair growth, and steroid hormones regulate receptor and aromatase expression in other tissues, we tested the hypothesis that steroid hormones would similarly modulate estrogen receptor and/or aromatase expression in cultured dermal papilla cells derived from human hair follicles. Primary cultures of non-balding occipital and frontal scalp and beard dermal papilla cells (n = 10) were established. Immunocytochemical studies showed the expression of ERalpha in both the cytoplasm and nucleus, whereas ERbeta was confined to the nuclei. The cells derived from occipital scalp were also incubated for 24 hours with 10 nM of either 17beta-estradiol, estrone, testosterone, 5alpha-dihydrotestosterone, 5alpha-androstane-3alpha, 17beta-diol, 5alpha-androstane-3beta, 17beta-diol, or 100 nM tamoxifen or dexamethasone in phenol red-free, serum-free medium to measure the steady-state levels of ERalpha, ERbeta, and aromatase mRNA by semiquantitative reverse transcriptase-PCR. Although androgens and estrogens did not alter ERalpha mRNA levels, treatment with dexamethasone significantly reduced ERalpha levels to 38% of the untreated control. By contrast, ERbeta mRNA levels were unaffected by any steroid treatment. Furthermore, dexamethasone significantly stimulated the expression of aromatase mRNA approximately 9-fold. Aromatase activity, assayed by the tritiated water method, was stimulated in both frontal scalp and beard dermal papilla cell cultures by dexamethasone. These observations provide evidence for a glucocorticoid-dependent mechanism whereby the selective action of estradiol via ERbeta may be promoted. Additionally, upregulation of aromatase combined with downregulation of ERalpha provides a basis for selective action of estradiol produced locally by autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- M Julie Thornton
- Department of Biomedical Sciences, University of Bradford, West Yorkshire, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Huyghe S, Mannaerts GP, Baes M, Van Veldhoven PP. Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:973-94. [PMID: 16766224 DOI: 10.1016/j.bbalip.2006.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The mammalian multifunctional protein-2 (MFP-2, also called multifunctional enzyme 2, D-bifunctional enzyme or 17-beta-estradiol dehydrogenase type IV) was identified by several groups about a decade ago. It plays a central role in peroxisomal beta-oxidation as it handles most, if not all, peroxisomal beta-oxidation substrates. Deficiency of this enzyme in man causes a severe developmental syndrome with abnormalities in several organs but in particular in the brain, leading to death within the first year of life. Accumulation of branched-long-chain fatty acids and very-long-chain fatty acids and a disturbed synthesis of bile acids were documented in these patients. A mouse model with MFP-2 deficiency only partly phenocopies the human disease. Although the expected metabolic abnormalities are present, no neurodevelopmental aberrations are observed. However, the survival of these mice into adulthood allowed to document the importance of this enzyme for the normal functioning of the brain, eyes and testis. In the present review, the identification and biochemical characteristics of MFP-2, and the consequences of MFP-2 dysfunction in humans and in mice will be discussed.
Collapse
Affiliation(s)
- Steven Huyghe
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs en Navorsing II, bus 823, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
7
|
Nagayoshi Y, Ohba T, Yamamoto H, Miyahara Y, Tashiro H, Katabuchi H, Okamura H. Characterization of 17beta-hydroxysteroid dehydrogenase type 4 in human ovarian surface epithelial cells. Mol Hum Reprod 2005; 11:615-21. [PMID: 16219629 DOI: 10.1093/molehr/gah215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human ovarian surface epithelium (hOSE) is a single layer of mesothelial-type primitive epithelial cells that are potential estrogen targets. It has been reported that hOSE cells can produce estrogen. However, the mechanisms that regulate estrogen level(s) in hOSE cells are not yet known. To elucidate the enzymes involved in these reactions, we examined gene expression of 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) in primary hOSE (POSE) and OSE2a cells using RT-PCR. We found that POSE cells and cells of the immortalized hOSE line, OSE2a, bidirectionally converted estrone (E1) and 17beta-estradiol (E2). Both cell types expressed mRNA for 17beta-HSD type 1 (17beta-HSD1), suggesting that the enzyme is involved in the E1 to E2 conversion. Interestingly, both cells expressed 17beta-HSD4 mRNA but not 17beta-HSD2 mRNA. We prepared an antibody against the carboxyl terminal of 17beta-HSD4 (anti-17beta-HSD4 antibody), which recognized the 80 and 48 kDa proteins in POSE and OSE2a cells based on immunoblot analysis. Furthermore, immunohistochemical study revealed the presence of 17beta-HSD4 in hOSE cells in the human ovary. These results suggest that 17beta-HSD4 is involved in estrogen inactivation and may protect against an excessive accumulation of E2 in hOSE cells.
Collapse
Affiliation(s)
- Y Nagayoshi
- Department of Reproductive Medicine and Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Hughes PJ, Steinmeyer A, Chandraratna RAS, Brown G. 1?,25-dihydroxyvitamin D3 stimulates steroid sulphatase activity in HL60 and NB4 acute myeloid leukaemia cell lines by different receptor-mediated mechanisms. J Cell Biochem 2005; 94:1175-89. [PMID: 15696548 DOI: 10.1002/jcb.20377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Steroid sulphatase is a key enzyme in the biosynthesis of bioactive estrogens and androgens from highly abundant inactive circulating sulphated steroid precursors. Little is known about how the expression/activity of this enzyme is regulated. In this article, we show that of 1alpha,25(OH)2D3 stimulates an increase steroid sulphatase activity in the HL60 myeloid leukaemic cell line that is inhibited by a specific nuclear VDR (VDRnuc) antagonist and unaffected by plasma membrane-associated vitamin D receptor (VDRmem) agonists and antagonists. 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells was augmented by RXR agonists, blocked by RXR-specific antagonists, and RAR specific agonists and antagonists had no effect. In contrast, the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in the NB4 myeloid leukaemic cell line was unaffected by the specific VDRnuc and RXR antagonists, but was blocked by a VDRmem-specific antagonist and was increased by VDRmem-specific agonists. The findings reveal that VDRnuc-RXR-heterodimers play a key role in the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells. However, in NB4 cells, VDRnuc-derived signals do not play an obligatory role, and non-genomic VDRmem-derived signals are important.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Cutolo M, Carruba G, Villaggio B, Coviello DA, Dayer JM, Campisi I, Miele M, Stefano R, Castagnetta LA. Phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) up-regulates the expression of estrogen receptors in human THP-1 leukemia cells. J Cell Biochem 2001; 83:390-400. [PMID: 11596108 DOI: 10.1002/jcb.1237] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the present work, we have inspected expression of estrogen receptors (ER) and their regulation by the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) in a leukemic cell line, the THP-1 cells, using multiple experimental approaches. Firstly, ligand binding assay (LBA) revealed that control (unstimulated) THP-1 cells express type I (high affinity, limited capacity) ER in the nuclear fraction only, whilst treatment of cells with TPA resulted in the appearance of type I ER in the soluble fraction as well, with the 50 ng/ml dose and the 48 h incubation time being the most effective experimental condition. A concomitant increase of type II ER was also seen in both soluble and nuclear cell fractions. Unstimulated THP-1 cells were found to be ER negative by immunocytochemistry; conversely, cells exposed to 50 ng/ml TPA for 48 h stained positively for ER, with the majority of cells having a strong nuclear staining. Scrutiny of ER mRNA expression using reverse transcriptase-polymerase chain reaction showed the presence of a wild type ER transcript in both control and TPA-treated THP-1 cells, though levels of ER mRNA were found to be comparatively higher in the latter. This combined evidence would imply that the TPA-induced differentiation of THP-1 cells is accompanied by the rise of high affinity (type I) ER, suggesting that estrogens may play a role in the regulation of macrophage activity during the inflammatory and/or the immune response.
Collapse
Affiliation(s)
- M Cutolo
- Division of Rheumatology, Department of Internal Medicine, University of Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hughes PJ, Twist LE, Durham J, Choudhry MA, Drayson M, Chandraratna R, Michell RH, Kirk CJ, Brown G. Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 1alpha,25-dihydroxyvitamin D3. Biochem J 2001; 355:361-71. [PMID: 11284723 PMCID: PMC1221747 DOI: 10.1042/0264-6021:3550361] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HL60 promyeloid cells express both classes of oestrogen receptor (ERalpha and ERbeta). We show that hydrolysis of oestrone sulphate by steroid sulphatase is a major source of oestrone in HL60 cells, and that most of the released oestrone is not metabolized further to 17beta-oestradiol. Treatment of HL60 cells with retinoids or 1alpha,25-dihydroxyvitamin D3 increased steroid sulphatase mRNA and activity in parallel with the induction of CD11b, an early marker of myeloid differentiation that is expressed before the differentiating cells stop proliferating. Use of agonists and antagonists against retinoid receptor-alpha and retinoid receptor-X revealed that both classes of retinoid receptor can drive steroid sulphatase up-regulation. Steroid sulphatase activity fluctuates during the cell cycle, being highest around the transition from G1 to S phase. During the differentiation of HL60 cells induced by all-trans-retinoic acid or 1alpha,25-dihydroxyvitamin D3, there is increased conversion of 17beta-oestradiol into oestrone by an oxidative 17beta-hydroxysteroid dehydrogenase. Treatment of Caco-2 colon adenocarcinoma cells with all-trans-retinoic acid or 1alpha,25-dihydroxyvitamin D3 also increases 17beta-oestradiol oxidation to oestrone. An increase in local oestrone production therefore occurs in multiple cell types following treatment with retinoids and 1alpha,25-dihydroxyvitamin D3. The possible involvement of locally produced oestrogenic steroids in regulating the proliferation and differentiation of myeloid cells is discussed.
Collapse
Affiliation(s)
- P J Hughes
- LRF Differentiation Programme, Division of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rader CP, Sterner T, Jakob F, Schütze N, Eulert J. Cytokine response of human macrophage-like cells after contact with polyethylene and pure titanium particles. J Arthroplasty 1999; 14:840-8. [PMID: 10537260 DOI: 10.1016/s0883-5403(99)90035-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to establish a human macrophage cell culture system to examine the effect of polyethylene (PE) and titanium particles on cytokine release by macrophage-like cells (MLC) and to quantify this response with respect to the nature and concentration of particles. Human monocytic leukemia cells were differentiated under standard conditions with vitamin D3 and granulocyte macrophage-colony-stimulating factor. Cells were characterized by fluorescence-activated cell-sorter Scan of CD 14 expression analysis as well as a phagocytosis test exploiting fluorescence-labeled particles of bacteria] walls. To achieve a relevant contact between the floating PE particles (approximately 1 microm in size) and MLC, a rotation device was used (15 rotations/min) during incubation. The same was done with the titanium particles. Cell culture supernatants were then analyzed for interleukin (IL)-1beta, IL-8, and tumor necrosis factor (TNF)-alpha using the enzyme-linked immunosorbent assay technique in the absence or presence of particles. Rotation of incubated MLC alone did not influence the secretion of TNF-alpha, but it enhanced secretion of IL-1beta and IL-8 about 30-fold compared to background levels. Both PE and titanium particles significantly enhanced MLC cytokine release, the amount of which depended on the concentration of particles. Using 40 X 10(8) PE particles (0.7 x 10(8) titanium particles) and 10(6) MLC, the maximal release of IL-1beta was about 20-fold (7-fold titanium particles) higher than that of the rotating control sample. The stimulation of IL-8 release was 4-fold (3-fold titanium particles) and of TNF-alpha. 300-fold (170-fold titanium particles) compared to controls. MLC were viable (>90% cell survival) at concentrations less than 108 x 10(8) polyethylene particles per 10(6) MLC and 16 x 10(8) titanium particles per 10(6) MLC. Rotation per se as well as exposure to increasing concentrations of PE and titanium particles stimulates cytokine release (TNF-alpha, IL-1beta, IL-8) by macrophages in vitro. This in vitro model resembles the in vivo situation near arthroplasties, where implant particles make contact with inflammatory cells, such as macrophages. Cytokine release by macrophages may impair osteoblast function as well as stimulate bone resorption by osteoclasts and macrophages, thereby causing aseptic loosening of arthroplasties. Our in vitro model provides a reproducible human cell system that might shed light on the pathogenesis of particle disease and might serve as a reproducible in vitro test system for the biocompatibility of foreign materials.
Collapse
Affiliation(s)
- C P Rader
- Department of Orthopaedics, University of Würzburg, König-Ludwig-Haus, Germany
| | | | | | | | | |
Collapse
|
12
|
Baqui AA, Meiller TF, Falkler WA. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:275-80. [PMID: 10551153 DOI: 10.1034/j.1399-302x.1999.140502.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.
Collapse
Affiliation(s)
- A A Baqui
- Department of Oral Medicine, Dental School, University of Maryland, Baltimore 21201, USA
| | | | | |
Collapse
|
13
|
Abplanalp W, Rymaszewski M, Adamski J, Subbiah MT. Evidence for interference in estradiol-17beta inactivation to estrone by oxidized low-density lipoprotein and selected lipid peroxidation products. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:253-9. [PMID: 10482310 DOI: 10.1016/s0022-2143(99)90205-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An elevation in plasma estrogen levels is believed to play a key role in the pathogenesis of breast cancer. The conversion of estradiol-17beta (E2) to estrone (E1) by 17beta-hydroxy steroid dehydrogenase type 4 (17-HSD4) represents a major pathway of its inactivation in cells. In this study the potential relationship between lipoprotein peroxidation products and E2 metabolism was examined. It was noted that oxidized low-density lipoprotein (OX-LDL), not native LDL, caused a time- and concentration-dependent inhibition of the conversion of labeled E2 to E1 in THP-1 macrophage cells. Further studies noted that among the lipoprotein peroxidation products examined, malondialdehyde (MDA) caused a marked decrease in this reaction, whereas hexanal and a variety of oxysterols had no effect. This inhibition of E1 formation from E2 in THP-1 cells was confirmed by the quantitation of estrone formed with high-pressure liquid chromatography and by the expression of 17-HSD4 by reverse transcriptase-polymerase chain reaction. MDA added to Hep G2 cells showed a similar trend in E1 formation. These results suggest that increased oxidative stress and lipid peroxidation might result in decreased inactivation of biologically active estrogen. This might be important in postmenopausal women undergoing estrogen replacement therapy.
Collapse
Affiliation(s)
- W Abplanalp
- Department of Internal Medicine, University of Cincinnati Medical Center, Ohio 45267, USA
| | | | | | | |
Collapse
|
14
|
Mountford JC, Bunce CM, Hughes SV, Drayson MT, Webb D, Brown G, Hewison M. Estrone potentiates myeloid cell differentiation: a role for 17 beta-hydroxysteroid dehydrogenase in modulating hemopoiesis. Exp Hematol 1999; 27:451-60. [PMID: 10089907 DOI: 10.1016/s0301-472x(98)00078-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hormones such as 1 alpha, 25-dihydroxy vitamin D3 (D3), all-trans retinoic acid, and 9-cis retinoic acid stimulate differentiation of myeloid progenitor cells via their interaction with specific hormone receptors. However, the sensitivity of cells to these agents is not merely governed by the expression of their receptors and the availability of ligand to bind them. Recent studies from our group suggested that the actions of D3 and retinoids on myelopoiesis also are influenced by endogenous mechanisms involving other steroid hormones. In this study we examined the influence of local estrogen metabolism on the differentiation of HL60 cells and normal primitive myeloid progenitor cells. Quantitative thin-layer chromatography (TLC) analyses showed that HL60 and normal cells are able to generate estrone (E1) from estradiol (E2). Neither cell population generated significant amounts of E2 from E1. Reverse transcriptase polymerase chain reaction and Northern analyses confirmed that normal and leukemic myeloid progenitor cells expressed mRNA for the type I and IV isoforms of 17 beta-hydroxysteroid dehydrogenase. Conversion of E2 to E1 was upregulated within 24 hours when HL60 cells were treated with either all-trans retinoic acid or D3 at doses that induce their differentiation toward neutrophils or monocytes, respectively. Similarly, D3-induced monocyte differentiation of normal myeloid progenitor cells was associated with increased capacity to generate E1 from E2. When HL60 cells or normal myeloid progenitor cells were exposed to exogenous E1 they became more sensitive to the differentiation-inducing effects of D3. Data presented provide further evidence for the local modulation of myelopoiesis by intracrine mechanisms. In particular, our findings suggest that local metabolism of steroids by normal as well as leukemic myeloid cells influences their responsiveness to D3 and retinoids.
Collapse
Affiliation(s)
- J C Mountford
- Department of Medicine, University of Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Dabrowski M, Robinson E, Hughes SV, Bland R, Hewison M. Differential RNA display identifies novel genes associated with decreased vitamin D receptor expression. Mol Cell Endocrinol 1998; 142:131-9. [PMID: 9783909 DOI: 10.1016/s0303-7207(98)00111-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To characterize further the function of the intracellular vitamin D receptor (VDR), we have developed stable transfectant variants of a vitamin D-responsive cell line (U937) which express either decreased or increased numbers of VDR. In this study we have analyzed changes in gene expression associated with this variable VDR expression. Initial experiments indicated that a 50% decrease in VDR levels was associated with a 2-fold increase in cell proliferation and a similar rise in c-myc mRNA expression. Further studies were carried out using differential RNA display (DD). Sequence analysis of DD products revealed two cDNAs with identity to known gene products: the catalytic sub-unit of DNA-protein kinase (DNA-PK(CS)), and the peroxisomal enzyme 17beta-hydroxysteroid dehydrogenase type IV (17beta-HSD IV). Northern analysis confirmed that expression of both mRNAs was reduced in cells with decreased numbers of VDR. Down-regulation of 17beta-HSD IV mRNA expression was associated with enhanced estradiol inactivation by U937 cells, suggesting a link between estrogenic pathways and cell proliferation. Further Northern analyses indicated that there was no significant change in 17beta-HSD IV or DNA-PK(CS) mRNA levels following treatment with 1,25(OH)2D3, although expression of both genes varied with changes in cell proliferation. These data suggest that, in addition to its established role as a hormone-dependent trans-activator, VDR may influence gene expression by ligand-independent mechanisms.
Collapse
Affiliation(s)
- M Dabrowski
- Department of Medicine, Queen Elizabeth Medical Centre, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
16
|
Hughes SV, Robinson E, Bland R, Lewis HM, Stewart PM, Hewison M. 1,25-dihydroxyvitamin D3 regulates estrogen metabolism in cultured keratinocytes. Endocrinology 1997; 138:3711-8. [PMID: 9275056 DOI: 10.1210/endo.138.9.5406] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Local estrogen metabolism may play an important role in modulating cell development in peripheral tissues such as breast, adipose, and bone. C19 androgens are converted to C18 estrogens by the enzyme aromatase, overexpression of which is associated with breast cancer. Interconversion of active estradiol (E2) to inactive estrone is controlled by various isoforms of the enzyme 17beta-hydroxysteroid dehydrogenase (17betaHSD). We have studied the expression of these two enzymes in human keratinocytes and report rapid changes in 17betaHSD activity in response to treatment with 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. Keratinocytes cultured in serum-free medium showed aromatase activity of 2.5 fmol/h x mg cell protein, which was unaffected by any culture treatment. A much higher level of 17betaHSD activity was observed in the keratinocytes, predominantly conversion of E2 to estrone (approximately 120 pmol/h x mg cell protein). This inactivation of E2 increased in a dose-dependent fashion after treatment of the cells with antiproliferative doses of 1,25-(OH)2D3 (0.1-200 nM). The effect of 1,25-(OH)2D3 on 17betaHSD activity was enhanced by simultaneous treatment with dexamethasone, which also increased the antiproliferative action of 1,25-(OH)2D3. Reverse transcription-PCR and Northern analysis showed that keratinocytes expressed messenger RNA for three 17betaHSD isoenzymes (types I, II, and IV). Treatment with 1,25-(OH)2D3 (10 nM for 20 h) resulted in the up-regulation of messenger RNA levels for type 2 17betaHSD. Further RNA studies combined with E2 binding experiments demonstrated the presence of estrogen receptors in the cultured keratinocytes. These data indicate that keratinocytes are potential targets for systemically or locally produced estrogens, which may, in turn, play a key role in the development of normal skin. In particular, we propose that 17betaHSD isoenzymes are key target genes for 1,25-(OH)2D3 in keratinocytes and may be an important feature of the antipsoriatic effects of vitamin D and its analogs.
Collapse
Affiliation(s)
- S V Hughes
- Department of Medicine, Queen Elizabeth Hospital, University of Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Adamski J, Leenders F, Carstensen JF, Kaufmann M, Markus MM, Husen B, Tesdorpf JG, Seedorf U, de Launoit Y, Jakob F. Steroids, fatty acyl-CoA, and sterols are substrates of 80-kDa multifunctional protein. Steroids 1997; 62:159-63. [PMID: 9029731 DOI: 10.1016/s0039-128x(96)00175-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 2.9-kb mRNA of 17 beta-hydroxysteroid dehydrogenase IV codes for an 80-kDa (737 amino acids) protein featuring domains that are not present in the other human 17 beta-hydroxysteroid dehydrogenases. The N-terminal part reveals conserved motifs of the short-chain alcohol dehydrogenase family. The central- and C-terminal domains are similar to peroxisomal enzymes for beta-oxidation of fatty acids and to sterol carrier protein 2. The 80-kDa protein is N-terminally cleaved to a 32-kDa fragment (amino acids 1-323). Both the 80-kDa and the N-terminal 32-kDa peptides are able to catalyze the dehydrogenation with steroids at the C17 position and with 3-hydroxyacyl-CoA. The central part of the 80-kDa protein (amino acids 324-596) catalyzes the 2-enoyl-acyl-CoA hydratase reaction with high efficiency. The C-terminal part of the 80-kDa protein (amino acids 597-737) facilitates the transfer of 7-dehydrocholesterol and phosphaidylcholine between membranes in vitro. The unique multidomain structure of the 80-kDa protein permits the catalysis of several reactions previously thought to be performed by complexes of different enzymes.
Collapse
Affiliation(s)
- J Adamski
- Max-Planck-Institut für experimentelle Endokrinologie, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|