1
|
Hunt ER, Davi SM, Parise CN, Clark K, Van Pelt DW, Confides AL, Buckholts KA, Jacobs CA, Lattermann C, Dupont-Versteegden EE, Butterfield TA, Lepley LK. Temporal disruption of neuromuscular communication and muscle atrophy following noninvasive ACL injury in rats. J Appl Physiol (1985) 2022; 132:46-57. [PMID: 34762530 PMCID: PMC8742731 DOI: 10.1152/japplphysiol.00070.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many patients with anterior cruciate ligament (ACL) injuries have persistent quadriceps muscle atrophy, even after considerable time in rehabilitation. Understanding the factors that regulate muscle mass, and the time course of atrophic events, is important for identifying therapeutic interventions. With a noninvasive animal model of ACL injury, a longitudinal study was performed to elucidate key parameters underlying quadriceps muscle atrophy. Male Long-Evans rats were euthanized at 6, 12, 24, or 48 h or 1, 2, or 4 wk after ACL injury that was induced via tibial compression overload; controls were not injured. Vastus lateralis muscle size was determined by wet weight and fiber cross-sectional area (CSA). Evidence of disrupted neuromuscular communication was assessed via the expression of neural cell adhesion molecule (NCAM) and genes associated with denervation and neuromuscular junction instability. Abundance of muscle RING-finger protein-1 (MuRF-1), muscle atrophy F-box (MAFbx), and 45 s pre-rRNA along with 20S proteasome activity were determined to investigate mechanisms related to muscle atrophy. Finally, muscle damage-related parameters were assessed by measuring IgG permeability, centronucleation, CD68 mRNA, and satellite cell abundance. When compared with controls, we observed a greater percentage of NCAM-positive fibers at 6 h postinjury, followed by higher MAFbx abundance 48 h postinjury, and higher 20S proteasome activity at 1 wk postinjury. A loss of muscle wet weight, smaller fiber CSA, and the elevated expression of run-related transcription factor 1 (Runx1) were also observed at the 1 wk postinjury timepoint relative to controls. There also were no differences observed in any damage markers. These results indicate that alterations in neuromuscular communication precede the upregulation of atrophic factors that regulate quadriceps muscle mass early after noninvasive ACL injury.NEW & NOTEWORTHY A novel preclinical model of ACL injury was used to establish that acute disruptions in neuromuscular communication precede atrophic events. These data help to establish the time course of muscle atrophy after ACL injury, suggesting that clinical care may benefit from the application of acute neurogenic interventions and early gait reloading strategies.
Collapse
Affiliation(s)
- Emily R. Hunt
- 1Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven M. Davi
- 2Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Cassandra N. Parise
- 3Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Kaleigh Clark
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Douglas W. Van Pelt
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Amy L. Confides
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Kimberly A. Buckholts
- 3Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Cale A. Jacobs
- 6Department of Orthopedic Surgery, University of Kentucky, Lexington, Kentucky
| | - Christian Lattermann
- 1Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Esther E. Dupont-Versteegden
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Timothy A. Butterfield
- 3Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
2
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N. Engquist
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK
- Correspondence to: Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK. E-mail:
| |
Collapse
|
3
|
Praud C, Jimenez J, Pampouille E, Couroussé N, Godet E, Le Bihan-Duval E, Berri C. Molecular Phenotyping of White Striping and Wooden Breast Myopathies in Chicken. Front Physiol 2020; 11:633. [PMID: 32670085 PMCID: PMC7328665 DOI: 10.3389/fphys.2020.00633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 01/10/2023] Open
Abstract
The White Striping (WS) and Wooden Breast (WB) defects are two myopathic syndromes whose occurrence has recently increased in modern fast-growing broilers. The impact of these defects on the quality of breast meat is very important, as they greatly affect its visual aspect, nutritional value, and processing yields. The research conducted to date has improved our knowledge of the biological processes involved in their occurrence, but no solution has been identified so far to significantly reduce their incidence without affecting growing performance of broilers. This study aims to follow the evolution of molecular phenotypes in relation to both fast-growing rate and the occurrence of defects in order to identify potential biomarkers for diagnostic purposes, but also to improve our understanding of physiological dysregulation involved in the occurrence of WS and WB. This has been achieved through enzymatic, histological, and transcriptional approaches by considering breast muscles from a slow- and a fast-growing line, affected or not by WS and WB. Fast-growing muscles produced more reactive oxygen species (ROS) than slow-growing ones, independently of WS and WB occurrence. Within fast-growing muscles, despite higher mitochondria density, muscles affected by WS or WB defects did not show higher cytochrome oxidase activity (COX) activity, suggesting altered mitochondrial function. Among the markers related to muscle remodeling and regeneration, immunohistochemical staining of FN1, NCAM, and MYH15 was higher in fast- compared to slow-growing muscles, and their amount also increased linearly with the presence and severity of WS and WB defects, making them potential biomarkers to assess accurately their presence and severity. Thanks to an innovative histological technique based on fluorescence intensity measurement, they can be rapidly quantified to estimate the injuries induced in case of WS and WB. The muscular expression of several other genes correlates also positively to the presence and severity of the defects like TGFB1 and CTGF, both involved in the development of connective tissue, or Twist1, known as an inhibitor of myogenesis. Finally, our results suggested that a balance between TGFB1 and PPARG would be essential for fibrosis or adiposis induction and therefore for determining WS and WB phenotypes.
Collapse
Affiliation(s)
| | | | | | | | - Estelle Godet
- INRAE, Université de Tours, UMR BOA, Nouzilly, France
| | | | - Cecile Berri
- INRAE, Université de Tours, UMR BOA, Nouzilly, France
| |
Collapse
|
4
|
Kastenschmidt JM, Ellefsen KL, Mannaa AH, Giebel JJ, Yahia R, Ayer RE, Pham P, Rios R, Vetrone SA, Mozaffar T, Villalta SA. QuantiMus: A Machine Learning-Based Approach for High Precision Analysis of Skeletal Muscle Morphology. Front Physiol 2019; 10:1416. [PMID: 31849692 PMCID: PMC6895564 DOI: 10.3389/fphys.2019.01416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle injury provokes a regenerative response, characterized by the de novo generation of myofibers that are distinguished by central nucleation and re-expression of developmentally restricted genes. In addition to these characteristics, myofiber cross-sectional area (CSA) is widely used to evaluate muscle hypertrophic and regenerative responses. Here, we introduce QuantiMus, a free software program that uses machine learning algorithms to quantify muscle morphology and molecular features with high precision and quick processing-time. The ability of QuantiMus to define and measure myofibers was compared to manual measurement or other automated software programs. QuantiMus rapidly and accurately defined total myofibers and measured CSA with comparable performance but quantified the CSA of centrally-nucleated fibers (CNFs) with greater precision compared to other software. It additionally quantified the fluorescence intensity of individual myofibers of human and mouse muscle, which was used to assess the distribution of myofiber type, based on the myosin heavy chain isoform that was expressed. Furthermore, analysis of entire quadriceps cross-sections of healthy and mdx mice showed that dystrophic muscle had an increased frequency of Evans blue dye+ injured myofibers. QuantiMus also revealed that the proportion of centrally nucleated, regenerating myofibers that express embryonic myosin heavy chain (eMyHC) or neural cell adhesion molecule (NCAM) were increased in dystrophic mice. Our findings reveal that QuantiMus has several advantages over existing software. The unique self-learning capacity of the machine learning algorithms provides superior accuracy and the ability to rapidly interrogate the complete muscle section. These qualities increase rigor and reproducibility by avoiding methods that rely on the sampling of representative areas of a section. This is of particular importance for the analysis of dystrophic muscle given the "patchy" distribution of muscle pathology. QuantiMus is an open source tool, allowing customization to meet investigator-specific needs and provides novel analytical approaches for quantifying muscle morphology.
Collapse
Affiliation(s)
- Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Kyle L. Ellefsen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ali H. Mannaa
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jesse J. Giebel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rayan Yahia
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rachel E. Ayer
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Phillip Pham
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rodolfo Rios
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Sylvia A. Vetrone
- Department of Biology, Whittier College, Whittier, CA, United States
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
- Department of Orthopaedic Surgery, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Resveratrol Regulates BDNF, trkB, PSA-NCAM, and Arc Expression in the Rat Cerebral Cortex after Bilateral Common Carotid Artery Occlusion and Reperfusion. Nutrients 2019; 11:nu11051000. [PMID: 31052460 PMCID: PMC6567029 DOI: 10.3390/nu11051000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The polyphenol resveratrol (RVT) may drive protective mechanisms of cerebral homeostasis during the hypoperfusion/reperfusion triggered by the transient bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R). This immunochemical study investigates if a single dose of RVT modulates the plasticity-related markers brain-derived neurotrophic factor (BDNF), the tyrosine kinase trkB receptor, Polysialylated-Neural Cell Adhesion Molecule (PSA-NCAM), and Activity-regulated cytoskeleton-associated (Arc) protein in the brain cortex after BCCAO/R. Frontal and temporal-occipital cortical regions were examined in male Wistar rats randomly subdivided in two groups, sham-operated and submitted to BCCAO/R. Six hours prior to surgery, half the rats were gavage fed a dose of RVT (180 mg·kg−1 in 300 µL of sunflower oil as the vehicle), while the second half was given the vehicle alone. In the frontal cortex of BCCAO/R vehicle-treated rats, BDNF and PSA-NCAM decreased, while trkB increased. RVT pre-treatment elicited an increment of all examined markers in both sham- and BCCAO/R rats. No variations occurred in the temporal-occipital cortex. The results highlight a role for RVT in modulating neuronal plasticity through the BDNF-trkB system and upregulation of PSA-NCAM and Arc, which may provide both trophic and structural local support in the dynamic changes occurring during the BCCAO/R, and further suggest that dietary supplements such as RVT are effective in preserving the tissue potential to engage plasticity-related events and control the functional response to the hypoperfusion/reperfusion challenge.
Collapse
|
6
|
Effect of Acute Stress on the Expression of BDNF, trkB, and PSA-NCAM in the Hippocampus of the Roman Rats: A Genetic Model of Vulnerability/Resistance to Stress-Induced Depression. Int J Mol Sci 2018; 19:ijms19123745. [PMID: 30477252 PMCID: PMC6320970 DOI: 10.3390/ijms19123745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
The Roman High-Avoidance (RHA) and the Roman Low-Avoidance (RLA) rats, represent two psychogenetically-selected lines that are, respectively, resistant and prone to displaying depression-like behavior, induced by stressors. In the view of the key role played by the neurotrophic factors and neuronal plasticity, in the pathophysiology of depression, we aimed at assessing the effects of acute stress, i.e., forced swimming (FS), on the expression of brain-derived neurotrophic factor (BDNF), its trkB receptor, and the Polysialilated-Neural Cell Adhesion Molecule (PSA-NCAM), in the dorsal (dHC) and ventral (vHC) hippocampus of the RHA and the RLA rats, by means of western blot and immunohistochemical assays. A 15 min session of FS elicited different changes in the expression of BDNF in the dHC and the vHC. In RLA rats, an increment in the CA2 and CA3 subfields of the dHC, and a decrease in the CA1 and CA3 subfields and the dentate gyrus (DG) of the vHC, was observed. On the other hand, in the RHA rats, no significant changes in the BDNF levels was seen in the dHC and there was a decrease in the CA1, CA3, and DG of the vHC. Line-related changes were also observed in the expression of trkB and PSA-NCAM. The results are consistent with the hypothesis that the differences in the BDNF/trkB signaling and neuroplastic mechanisms are involved in the susceptibility of RLA rats and resistance of RHA rats to stress-induced depression.
Collapse
|
7
|
Perkins KJ, Davies KE. Alternative utrophin mRNAs contribute to phenotypic differences between dystrophin-deficient mice and Duchenne muscular dystrophy. FEBS Lett 2018; 592:1856-1869. [PMID: 29772070 PMCID: PMC6032923 DOI: 10.1002/1873-3468.13099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disorder caused by absence of functional dystrophin protein. Compensation in dystrophin‐deficient (mdx) mice may be achieved by overexpression of its fetal paralogue, utrophin. Strategies to increase utrophin levels by stimulating promoter activity using small compounds are therefore a promising pharmacological approach. Here, we characterise similarities and differences existing within the mouse and human utrophin locus to assist in high‐throughput screening for potential utrophin modulator drugs. We identified five novel 5′‐utrophin isoforms (A′,B′,C,D and F) in adult and embryonic tissue. As the more efficient utrophin‐based response in mdx skeletal muscle appears to involve independent transcriptional activation of conserved, myogenic isoforms (A′ and F), elevating their paralogues in DMD patients is an encouraging therapeutic strategy.
Collapse
Affiliation(s)
- Kelly J Perkins
- Department of Physiology Anatomy and Genetics, University of Oxford, UK.,Sir William Dunn School of Pathology, University of Oxford, UK
| | - Kay E Davies
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
8
|
Hanisch F, Weidemann W, Großmann M, Joshi PR, Holzhausen HJ, Stoltenburg G, Weis J, Zierz S, Horstkorte R. Sialylation and muscle performance: sialic acid is a marker of muscle ageing. PLoS One 2013; 8:e80520. [PMID: 24349002 PMCID: PMC3859654 DOI: 10.1371/journal.pone.0080520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/14/2013] [Indexed: 01/22/2023] Open
Abstract
Sialic acids (Sia) are widely expressed as terminal monosaccharides on eukaryotic glycoconjugates. They are involved in many cellular functions, such as cell-cell interaction and signal recognition. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), which catalyses the first two steps of Sia biosynthesis in the cytosol. In this study we analysed sialylation of muscles in wild type (C57Bl/6 GNE (+/+)) and heterozygous GNE-deficient (C57Bl/6 GNE (+/-)) mice. We measured a significantly lower performance in the initial weeks of a treadmill exercise in C57Bl/6 GNE (+/-) mice compared to wild type C57Bl/6 GNE (+/+) animals. Membrane bound Sia of C57Bl/6 GNE (+/-) mice were reduced by 33-53% at week 24 and by 12-15% at week 80 in comparison to C57Bl/6 GNE (+/+) mice. Interestingly, membrane bound Sia concentration increased with age of the mice by 16-46% in C57Bl/6 GNE (+/+), but by 87-207% in C57Bl/6 GNE (+/-). Furthermore we could identify specific morphological changes in aged muscles. Here we propose that increased Sia concentrations in muscles are a characteristic feature of ageing and could be used as a marker for age-related changes in muscle.
Collapse
Affiliation(s)
- Frank Hanisch
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Wenke Weidemann
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mona Großmann
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pushpa Raj Joshi
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hans-Jürgen Holzhausen
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gisela Stoltenburg
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Cell and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University and JARA Brain Translational Medicine, Aachen, Germany
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
9
|
The olfactory bulb in newborn piglet is a reservoir of neural stem and progenitor cells. PLoS One 2013; 8:e81105. [PMID: 24278384 PMCID: PMC3836747 DOI: 10.1371/journal.pone.0081105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
The olfactory bulb (OB) periventricular zone is an extension of the forebrain subventricular zone (SVZ) and thus is a source of neuroprogenitor cells and neural stem cells. While considerable information is available on the SVZ-OB neural stem cell (NSC)/neuroprogenitor cell (NPC) niche in rodents, less work has been done on this system in large animals. The newborn piglet is used as a preclinical translational model of neonatal hypoxic-ischemic brain damage, but information about the endogenous sources of NSCs/NPCs in piglet is needed to implement endogenous or autologous cell-based therapies in this model. We characterized NSC/NPC niches in piglet forebrain and OB-SVZ using western blotting, histological, and cell culture methods. Immunoblotting revealed nestin, a NSC/NPC marker, in forebrain-SVZ and OB-SVZ in newborn piglet. Several progenitor or newborn neuron markers, including Dlx2, musashi, doublecortin, and polysialated neural cell adhesion molecule were also detected in OB-SVZ by immunoblotting. Immunohistochemistry confirmed the presence of nestin, musashi, and doublecortin in forebrain-SVZ and OB-SVZ. Bromodeoxyuridine (BrdU) labeling showed that the forebrain-SVZ and OB-SVZ accumulate newly replicated cells. BrdU-positive cells were immunolabeled for astroglial, oligodendroglial, and neuronal markers. A lateral migratory pathway for newly born neuron migration to primary olfactory cortex was revealed by BrdU labeling and co-labeling for doublecortin and class III β tubulin. Isolated and cultured forebrain-SVZ and OB-SVZ cells from newborn piglet had the capacity to generate numerous neurospheres. Single cell clonal analysis of neurospheres revealed the capacity for self-renewal and multipotency. Neurosphere-derived cells differentiated into neurons, astrocytes, and oligodendrocytes and were amenable to permanent genetic tagging with lentivirus encoding green fluorescent protein. We conclude that the piglet OB-SVZ is a reservoir of NSCs and NPCs suitable to use in autologous cell therapy in preclinical models of neonatal/pediatric brain injury.
Collapse
|
10
|
Fredrich M, Zeber AC, Hildebrandt H, Illing RB. Differential molecular profiles of astrocytes in degeneration and re-innervation after sensory deafferentation of the adult rat cochlear nucleus. Eur J Neurosci 2013; 38:2041-56. [PMID: 23581580 DOI: 10.1111/ejn.12200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
Ablating the cochlea causes total sensory deafferentation of the cochlear nucleus. Over the first postoperative week, degeneration of the auditory nerve and its synaptic terminals in the cochlear nucleus temporally overlaps with its re-innervation by axon collaterals of medial olivocochlear neurons. At the same time, astrocytes increase in size and density. We investigated the time courses of the expression of ezrin, polysialic acid, matrix metalloprotease-9 and matrix metalloprotease-2 within these astrocytes during the first week following cochlear ablation. All four proteins are known to participate in degeneration, regeneration, or both, following injury of the central nervous system. In a next step, stereotaxic injections of kainic acid were made into the ventral nucleus of the trapezoid body prior to cochlear ablation to destroy the neurons that re-innervate the deafferented cochlear nucleus by axon collaterals developing growth-associated protein 43 immunoreactivity. This experimental design allowed us to distinguish between molecular processes associated with degeneration and those associated with re-innervation. Under these conditions, astrocytic growth and proliferation showed an unchanged deafferentation-induced pattern. Similarly, the distribution and amount of ezrin and matrix metalloprotease-9 in astrocytes after cochlear ablation developed in the same way as under cochlear ablation alone. In sharp contrast, the astrocytic expression of polysialic acid and matrix metalloprotease-2 normally invoked by cochlear ablation collapsed when re-innervation of the cochlear nucleus was inhibited by lesioning medial olivocochlear neurons with kainic acid. In conclusion, re-innervation, including axonal growth and synaptogenesis, seems to prompt astrocytes to recompose their molecular profile, paving the way for tissue reorganisation after nerve degeneration and loss of synaptic contacts.
Collapse
Affiliation(s)
- Michaela Fredrich
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianst 5, Freiburg 79106, Germany.
| | | | | | | |
Collapse
|
11
|
Jørgensen LH, Blain A, Greally E, Laval SH, Blamire AM, Davison BJ, Brinkmeier H, MacGowan GA, Schrøder HD, Bushby K, Straub V, Lochmüller H. Long-term blocking of calcium channels in mdx mice results in differential effects on heart and skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:273-83. [PMID: 21224064 PMCID: PMC3016598 DOI: 10.1016/j.ajpath.2010.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/19/2010] [Accepted: 09/21/2010] [Indexed: 02/01/2023]
Abstract
The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset of dystrophic symptoms in the limb muscle of young mdx mice, but did not prevent degeneration and regeneration events occurring later in the disease course. Long-term treatment had a positive effect on limb muscle pathology, reduced fibrosis, increased sarcolemmal stability, and promoted muscle regeneration in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight the importance of analyzing several time points throughout the life of the treated mice, as well as analyzing many tissues, to get a complete picture of treatment efficacy.
Collapse
Affiliation(s)
- Louise H. Jørgensen
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Alison Blain
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Greally
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steve H. Laval
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew M. Blamire
- Institute of Cellular Medicine and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Benjamin J. Davison
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, Ernst Moritz Arndt University of Greifswald, Karlsburg, Germany
| | - Guy A. MacGowan
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Henrik D. Schrøder
- Department of Clinical Pathology, University of Southern Denmark, Odense C, Denmark
| | - Kate Bushby
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- Institute of Human Genetics, International Centre of Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Address reprint requests to Professor Hanns Lochmüller, MD, Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| |
Collapse
|
12
|
Quartu M, Serra MP, Boi M, Melis T, Ambu R, Del Fiacco M. Brain-derived neurotrophic factor (BDNF) and polysialylated-neural cell adhesion molecule (PSA-NCAM): codistribution in the human brainstem precerebellar nuclei from prenatal to adult age. Brain Res 2010; 1363:49-62. [PMID: 20932956 DOI: 10.1016/j.brainres.2010.09.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 01/17/2023]
Abstract
Occurrence and distribution of the neurotrophin brain-derived neurotrophic factor (BDNF) and polysialylated-neural cell adhesion molecule (PSA-NCAM), a neuroplasticity marker known to modulate BDNF signalling, were examined by immunohistochemistry in the human brainstem precerebellar nuclei at prenatal, perinatal and adult age. Western blot analysis performed in human brainstem showed for both molecules a single protein band compatible with the molecular weight of the dimeric form of mature BDNF and with that of PSA-NCAM. Detectability of both molecules up to 72h post-mortem was also assessed in rat brain. In neuronal perikarya, BDNF-like immunoreactivity (LI) appeared as intracytoplasmic granules, whereas PSA-NCAM-LI appeared mostly as peripheral staining, indicative of membrane labelling; immunoreactivity to both substances also labelled nerve fibres and terminals. BDNF- and PSA-NCAM-LI occurred in the external cuneate nucleus, perihypoglossal nuclei, inferior olive complex, arcuate nucleus, lateral reticular formation, vestibular nuclei, pontine reticulotegmental and paramedian reticular nuclei, and pontine basilar nuclei. With few exceptions, for both substances the distribution pattern detected at prenatal age persisted later on, though the immunoreactivity appeared often higher in pre- and full-term newborns than in adult specimens. The results obtained suggest that BDNF operates in the development, maturation, maintenance and plasticity of human brainstem precerebellar neuronal systems. They also imply a multiple origin for the BDNF-LI of the human cerebellum. The codistribution of BDNF- and PSA-NCAM-LI in analyzed regions suggests that PSA-NCAM may modulate the functional interaction between BDNF and its high and low affinity receptors, an issue worth further analysis, particularly in view of the possible clinical significance of neuronal trophism in cerebellar neurodegenerative disorders.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang S, Xia YY, Lim HC, Tang FR, Feng ZW. NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis. Neurochem Int 2010; 56:919-29. [PMID: 20381564 DOI: 10.1016/j.neuint.2010.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/12/2010] [Accepted: 03/26/2010] [Indexed: 01/02/2023]
Abstract
The expression level of neural cell adhesion molecule (NCAM), which plays a critical role in pathways involving development and plasticity of the nervous system, changes markedly after spinal cord injury (SCI). However, the significance of NCAM-involved mechanisms in SCI remains elusive. The present study demonstrates that NCAM-deficient (ND) mice exhibited significantly poorer locomotor activity than wildtype (WT) littermates with the same injury intensity by the contusion model. To determine detailed contribution of NCAM, quantitative immunohistochemistry examination was performed on the injured spinal cord of 6mm along the rostrocaudal axis in the animals for up to 5 weeks after SCI. Overall level of NCAM decreased initially in the lesion site but increased around the center of the injury thereafter. At acute stage, more apoptotic cells were found in the gray and white matter in ND mice. Between the two animal groups, no obvious difference in expression levels of GFAP (astrocytosis marker) and MBP (remyelination marker) was detected. However, diverse expression trends of NF200 (axon marker), GAP-43 (synaptogenesis indicator) and phosphorylated ERK (active signal molecule) were observed in the area encompassing the lesion site, and remarkable differences were illustrated between WT mice and ND littermates. Detailed analysis indicates that NCAM-mediated pathways may be involved in the activation of ERK at acute stages and bi-phasic upregulation of GAP-43 expression at acute and sub-acute stages after SCI to promote cell survival, outgrowth of regenerated axons, synaptogenesis, and function recovery.
Collapse
Affiliation(s)
- Si Zhang
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
14
|
Tomé M, Lindsay SL, Riddell JS, Barnett SC. Identification of Nonepithelial Multipotent Cells in the Embryonic Olfactory Mucosa. Stem Cells 2009; 27:2196-208. [DOI: 10.1002/stem.130] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Quartu M, Serra MP, Boi M, Ibba V, Melis T, Del Fiacco M. Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages. BMC Neurosci 2008; 9:108. [PMID: 18990213 PMCID: PMC2612005 DOI: 10.1186/1471-2202-9-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/06/2008] [Indexed: 12/15/2022] Open
Abstract
Background The polysialylated neuronal cell adhesion molecule (PSA-NCAM) is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG) and brainstem neuronal populations at prenatal and adult age. Results Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age, the distribution pattern remains fairly steady, whereas the density of immunoreactive structures and the staining intensity may change and are usually higher in newborn than in adult specimens. Conclusion The results obtained show that, in man, the expression of PSA-NCAM in selective populations of central and peripheral neurons occurs not only during prenatal life, but also in adulthood. They support the concept of an involvement of this molecule in the structural and functional neural plasticity throughout life. In particular, the localization of PSA-NCAM in TG primary sensory neurons likely to be involved in the transmission of protopathic stimuli suggests the possible participation of this molecule in the processing of the relevant sensory neurotransmission.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (Cagliari), Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Bosnakovski D, Xu Z, Li W, Thet S, Cleaver O, Perlingeiro RCR, Kyba M. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 2008; 26:3194-204. [PMID: 18802040 DOI: 10.1634/stemcells.2007-1017] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Muscle regeneration occurs through activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to make new myofibers. We used a transgenic Pax7-ZsGreen reporter mouse to prospectively isolate stem cells of skeletal muscle by flow cytometry. We show that Pax7-expressing cells (satellite cells) in the limb, head, and diaphragm muscles are homogeneous in size and granularity and uniformly labeled by certain cell surface markers, including CD34 and CD29. The frequency of the satellite cells varies between muscle types and with age. Clonal analysis demonstrated that all colonies arising from single cells within the Pax7-sorted fraction have myogenic potential. In response to injury, Pax7(+) cells reduce CD34, CD29, and CXCR4 expression, increase in size, and acquire Sca-1. When directly isolated and cultured in vitro, Pax7(+) cells display the hallmarks of activation and proliferate, initially as suspension aggregates and later distributed between suspension and adherence. During in vitro expansion, Pax7 (ZsGreen) and CD34 expression decline, whereas expression of PSA-NCAM is acquired. The nonmyogenic, Pax7(neg) cells expand as Sca1(+) PDGRalpha(+) PSA-NCAM(neg) cells. Satellite cells expanded exclusively in suspension can engraft and produce dystrophin(+) fibers in mdx(-/-) mice. These results establish a novel animal model for the study of muscle stem cell physiology and a culture system for expansion of engraftable muscle progenitors.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Jørgensen LH, Petersson SJ, Sellathurai J, Andersen DC, Thayssen S, Sant DJ, Jensen CH, Schrøder HD. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J Histochem Cytochem 2008; 57:29-39. [PMID: 18796407 DOI: 10.1369/jhc.2008.951954] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15-16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment.
Collapse
|
18
|
Capkovic KL, Stevenson S, Johnson MC, Thelen JJ, Cornelison DDW. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation. Exp Cell Res 2008; 314:1553-65. [PMID: 18308302 DOI: 10.1016/j.yexcr.2008.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 01/04/2008] [Accepted: 01/28/2008] [Indexed: 11/28/2022]
Abstract
Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.
Collapse
Affiliation(s)
- Katie L Capkovic
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
19
|
Larochelle N, Deol JR, Srivastava V, Allen C, Mizuguchi H, Karpati G, Holland PC, Nalbantoglu J. Downregulation of CD46 During Muscle Differentiation: Implications for Gene Transfer to Human Skeletal Muscle Using Group B Adenoviruses. Hum Gene Ther 2008; 19:133-42. [DOI: 10.1089/hum.2007.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nancy Larochelle
- Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | - Jatinderpal R. Deol
- Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3
| | - Vinit Srivastava
- Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2T5
| | - Carol Allen
- Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | - Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, Japan 567-0085
| | - George Karpati
- Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2T5
| | - Paul C. Holland
- Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2T5
| | - Josephine Nalbantoglu
- Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 1A3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2T5
| |
Collapse
|
20
|
Abstract
Electron microscopic studies of long-term denervated rat muscles have identified very small, immature myofibers that are believed to arise from detached satellite cells that have fused to form new fibers within the interstitial space. At present, it is unknown whether and to what extent equivalent fibers exist in denervated human muscle. Serial sections of muscle biopsies from 66 patients diagnosed with polyneuropathy or amyotrophic lateral sclerosis were immunolabeled with anti-NCAM and anti-neonatal myosin heavy chain monoclonal antibodies that are both neurally and developmentally regulated. We evaluated 200 myofibers in each section. Of the biopsy specimens, 75% contained small myofibers that showed a thin perinuclear cytoplasmic rim. Small fibers expressing neonatal myosin heavy chain (MHCn+) were found in all of these biopsies (100%) and NCAM+ fibers in 98%. The percentage of MHCn+ small fibers averaged 82% and NCAM+ small myofibers averaged 40%. The percentage of NCAM+ small fibers was significantly lower than that of MHCn+ fibers. In contrast, the percentage of MHCn+ vs. NCAM+ angular atrophic fibers did not show a significant difference. A substantial subset of neurogenic biopsies showed small fibers that differ from angular atrophic fibers both in size and expression pattern of MHCn and NCAM. Myogenesis appears to be a frequent finding in neurogenic atrophy.
Collapse
Affiliation(s)
- Kathrin Doppler
- Institute of Brain Research, University of Tübingen, Calwerstrasse 3, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
21
|
Wang B, Hu H, Yu B. Molecular characterization of pig ST8Sia IV--a critical gene for the formation of neural cell adhesion molecule and its response to sialic acid supplement in piglets. Nutr Neurosci 2007; 9:147-54. [PMID: 17176637 DOI: 10.1080/10284150600903594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ST8Sia IV (polysialyltransferase IV gene) encodes a key enzyme that is required for polysialic acid synthesis. Polysialic acid is a component of the neural cell adhesion molecule and is necessary for synaptic plasticity of neural cells. We characterized 5.3 kb of pig ST8Sia IV cDNA and determined its expression profile in different organs. In hippocampus, ST8Sia IV mRNA levels were increased approximately 4.5-fold in piglets with sialic acid as a milk supplement, which suggested that exogenous sialic acid is a conditionally essential nutrient for early brain development. Extensive analyses were also performed among its orthologs from human, mouse, rat, chicken, frog and zebrafish. Our results supported that the piglet is a better animal model than other nonprimate species in the studies of ST8Sia IV related metabolism and nutrition in human infants. This pig cDNA provides a basis for uncovering the roles of ST8Sia IV during piglet development and maturation.
Collapse
Affiliation(s)
- Bing Wang
- Human Nutrition Unit, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
22
|
Sinnreich M, Shaw CA, Pari G, Nalbantoglu J, Holland PC, Karpati G. Localization of coxsackie virus and adenovirus receptor (CAR) in normal and regenerating human muscle. Neuromuscul Disord 2005; 15:541-8. [PMID: 16014330 DOI: 10.1016/j.nmd.2005.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 05/17/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
The primary receptor for Adenovirus and Coxsackie virus (CAR) serves as main port of entry of the adenovirus vector mediating gene transfer into skeletal muscle. Information about CAR expression in normal and diseased human skeletal muscle is lacking. C'- or N'-terminally directed polyclonal antibodies against CAR were generated and immunohistochemical analysis of CAR on morphologically normal and regenerating human skeletal muscle of children and adults was performed. In morphologically normal human muscle fibers, CAR immunoreactivity was limited to the neuromuscular junction. In regenerating muscle fibers, CAR was abundantly co-expressed with markers of regeneration. The function of CAR at the neuromuscular junction is currently unknown. Co-expression of CAR with markers of regeneration suggests that CAR is developmentally regulated, and may serve as a marker of skeletal muscle fiber regeneration.
Collapse
Affiliation(s)
- M Sinnreich
- Neuromuscular Research Group, Montreal Neurological Hospital and Institute, McGill University, 3801 University Street, Montreal, Que., Canada H3A 2B4
| | | | | | | | | | | |
Collapse
|
23
|
Vattemi G, Tomelleri G, Filosto M, Savio C, Rizzuto N, Tonin P. Expression of late myogenic differentiation markers in sarcoplasmic masses of patients with myotonic dystrophy. Neuropathol Appl Neurobiol 2005; 31:45-52. [PMID: 15634230 DOI: 10.1111/j.1365-2990.2004.00602.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sarcoplasmic masses contain disorganized myofibrillar material and are a striking feature of myotonic dystrophy. However their significance is still unclear. Using immunocytochemistry we studied the expression of cytoskeletal proteins (desmin and vimentin), dystrophin, markers of myogenic differentiation (foetal myosin, neural cell adhesion molecule, bcl-2, insulin-like growth factor-I, fibroblast growth factor, retinoblastoma protein and myoD1), cell cycle regulators (Cdk2, p16, p27 and p57) and muscle proteases (ubiquitin, micro and m calpain and cathepsin D) in muscle biopsies from four patients with myotonic dystrophy. Sarcoplasmic masses were strongly positive for desmin, neural cell adhesion molecule, bcl-2, insulin-like growth factor I, retinoblastoma protein and p57, weakly positive for dystrophin and p16 and negative for vimentin, fibroblast growth factor, myoD1, Cdk2 and p27. Immunoreactivity for foetal myosin was detected only in a few fibres (< 1%). Our data suggest that the late myogenic differentiation programme is activated in sarcoplasmic masses although these areas do not reach complete maturation.
Collapse
Affiliation(s)
- G Vattemi
- Department of Neurological Sciences and Vision, Section of Clinical Neurology, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Warren GL, Hulderman T, Mishra D, Gao X, Millecchia L, O'Farrell L, Kuziel WA, Simeonova PP. Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J 2004; 19:413-5. [PMID: 15601671 DOI: 10.1096/fj.04-2421fje] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemokines, signaling through the CCR2 receptor, are highly expressed in injured skeletal muscle. Their target specificity depends on the cellular expression of the specific receptors. Here we demonstrate that, in freeze-injured muscle, CCR2 co-localized with Mac-3, a marker of activated macrophages as well as with myogenin, a marker of activated muscle precursor cells. The degeneration/regeneration process in skeletal muscle of CCR2-/- and wild-type mice was not significantly different at day 3. However in contrast to the regenerated muscle of the wild-type mice, the muscle from CCR2-/- mice was characterized by impaired regeneration, inflammation, and fibrotic response at day 14, increased fat infiltration, fibrosis, and calcification at day 21, and impaired strength recovery until at least 28 days post-injury. Consistently, the increased expression of Mac-1 and TNF-alpha was prolonged in the injured muscle of CCR2-/- mice. The expression pattern of the myogenic factors MyoD and myogenin was similar for both types of mice, while NCAM, which is associated with the initiation of fusion of muscle precursor cells, was more increased in the injured muscle of CCR2-/- mice. In conclusion, the study delineates that signaling through CCR2 is involved in muscle precursor cell activities necessary for complete and rapid regeneration of injured skeletal muscle.
Collapse
Affiliation(s)
- Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Isoform-specific expression of the Coxsackie and adenovirus receptor (CAR) in neuromuscular junction and cardiac intercalated discs. BMC Cell Biol 2004; 5:42. [PMID: 15533241 PMCID: PMC533869 DOI: 10.1186/1471-2121-5-42] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/08/2004] [Indexed: 12/22/2022] Open
Abstract
Background The Coxsackie and adenovirus receptor (CAR) has a restricted expression pattern in the adult. In skeletal muscle, although CAR is expressed in immature fibers, its transcript levels are barely detectable in mature muscle. This is in contrast to the robust expression observed in the heart. However, both heart and skeletal muscle are susceptible to infection with the Coxsackie B virus which utilizes primarily CAR for cellular internalization. The specific point of viral entry in skeletal and heart muscle remains unknown. Results Using antibodies directed against the extracellular and the cytoplasmic domains of CAR, we show CAR in normal human and mouse skeletal muscle to be a novel component of the neuromuscular junction. In cardiac muscle, CAR immunoreactivity is observed at the level of intercalated discs. We demonstrate a single isoform of CAR to be expressed exclusively at the human neuromuscular junction whereas both predominant CAR isoforms are expressed at the intercalated discs of non-diseased human heart. Conclusion The localization of CAR to these important junctional complexes suggests that CAR may play both a structural and a regulatory role in skeletal and cardiac muscle, and that these complexes may serve as a point of entry for Coxsackie B virus.
Collapse
|
26
|
Tews DS, Goebel HH. DNA-fragmentation and expression of apoptosis-related proteins in muscular dystrophies. Neuropathol Appl Neurobiol 2003. [DOI: 10.1111/j.1365-2990.1997.tb01304.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Kobinger GP, Louboutin JP, Barton ER, Sweeney HL, Wilson JM. Correction of the Dystrophic Phenotype byIn VivoTargeting of Muscle Progenitor Cells. Hum Gene Ther 2003; 14:1441-9. [PMID: 14577924 DOI: 10.1089/104303403769211655] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Successful gene therapy for most inherited diseases will require stable expression of the therapeutic gene. This can be addressed with integrating or self-replicating viruses by targeting postmitotic cells that have a long lifetime or stem cells that can replenish defective tissue with corrected cells. In this study, we explore the possibility of targeting a muscle stem cell population in situ through in vivo administration of vector. To develop this concept, we selected a mouse model of muscular dystrophy (mdx mice) that undergoes rapid turnover of muscle fibers. In vivo targeting of muscle progenitor cells, notably satellite cells, with a pseudotyped lentiviral vector encoding the minidystrophin restores dystrophin expression and provides functional correction in skeletal muscle of mdx mice. This study shows that progenitor cells can be genetically engineered in vivo and subsequently proliferate into terminally differentiated tissue carrying the genetic graft in a way that stably corrects function.
Collapse
Affiliation(s)
- Gary P Kobinger
- Gene Therapy Program, Division of Medical Genetics, University of Pennsylvania Health System, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
28
|
Close BE, Wilkinson JM, Bohrer TJ, Goodwin CP, Broom LJ, Colley KJ. The polysialyltransferase ST8Sia II/STX: posttranslational processing and role of autopolysialylation in the polysialylation of neural cell adhesion molecule. Glycobiology 2001; 11:997-1008. [PMID: 11744634 DOI: 10.1093/glycob/11.11.997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of alpha2,8-linked polysialic acid on the neural cell adhesion molecule (NCAM) is known to modulate cell interactions during development and oncogenesis. Two enzymes, the alpha2,8-polysialyltransferases ST8Sia IV()/PST and ST8Sia II()/STX are responsible for the polysialylation of NCAM. We previously reported that both ST8Sia IV/PST and ST8Sia II/STX enzymes are themselves modified by alpha2,8-linked polysialic acid chains, a process called autopolysialylation. In the case of ST8Sia IV/PST, autopolysialylation is not required for enzymatic activity. However, whether the autopolysialylation of ST8Sia II/STX is required for its ability to polysialylate NCAM is unknown. To understand how autopolysialylation impacts ST8Sia II/STX enzymatic activity, we employed a mutagenesis approach. We found that ST8Sia II/STX is modified by six Asn-linked oligosaccharides and that polysialic acid is distributed among the oligosaccharides modifying Asn 89, 219, and 234. Coexpression of a nonautopolysialylated ST8Sia II/STX mutant with NCAM demonstrated that autopolysialylation is not required for ST8Sia II/STX polysialyltransferase activity. In addition, catalytically active, nonautopolysialylated ST8Sia II/STX does not polysialylate any endogenous COS-1 cell proteins, highlighting the protein specificity of polysialylation. Furthermore, immunoblot analysis of NCAM polysialylation by autopolysialylated and nonautopolysialylated ST8Sia II/STX suggests that the NCAM is polysialylated to a higher degree by autopolysialylated ST8Sia II/STX. Therefore, we conclude that autopolysialylation of ST8Sia II/STX, like that of ST8Sia IV/PST, is not required for, but does enhance, NCAM polysialylation.
Collapse
Affiliation(s)
- B E Close
- Department of Biochemistry and Molecular Biology, University of Illinois College of Medicine, 1819 West Polk Street M/C 536, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Considerable evidence points to an involvement of neural cell adhesion molecule (NCAM) in myoblast fusion. Changes in the level of NCAM expression, isoform specificity, and localization in muscle cells and tissues correspond to key morphogenetic events during muscle differentiation and repair. Furthermore, anti-NCAM antibodies have been shown by others to reduce the rate of myoblast fusion, whereas overexpression of NCAM cDNAs increases the rate of myoblast fusion compared to controls. In this study we have used a novel fusion assay based on intracistronic complementation of lacZ, in combination with fluorescent X-gal histochemistry and immunocytochemistry to assess levels of NCAM expression in individual muscle cells. Our results indicate that a substantial proportion of newly fused myoblasts have NCAM expression levels unchanged from the levels of the surrounding unfused population suggesting that increased expression of NCAM is not required for wild-type myoblasts to fuse. Moreover, pure populations of primary myoblasts isolated from mice homozygous null for NCAM and therefore lacking the molecule, when placed in differentiation medium, consistently fused to form contractile myotubes with kinetics equivalent to wild-type primary myoblasts. We conclude that the increase in expression of NCAM, although typically observed during myogenesis, is not essential to myoblast fusion to form myotubes.
Collapse
Affiliation(s)
- C A Charlton
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
30
|
Abstract
Using immunohistochemistry in diagnosing neuromuscular diseases is meant to enhance the diagnostic yield in two ways. The first application aims at visualizing molecules which are developmentally, neurally, and/or immunologically regulated and not expressed by normal muscle. They are upregulated in pathological conditions and may help assign a given muscular biopsy to one of the main diagnostic entities (muscular dystrophies, inflammatory myopathy, neurogenic atrophy). In the past, muscle-specific molecules with a defined expression pattern during fetal myogenesis served as antigens, with the rationale that the developmental program was switched on in new fibers. Recently, myofibers in diseased muscle are thought of as targets of stimuli which are released by macrophages in muscular dystrophy, by lymphocytes in inflammatory myopathies, or by a lesioned peripheral nerve in neurogenic atrophies. This has somewhat blurred the borders between the diagnostic groups, for certain molecules, e.g. cytokines, may be upregulated after experimental necrotization, denervation, and also in inflammatory myopathies. In the second part of this review we summarise the experiences of a Centre in the North of England that specialises in the diagnosis and clinical support of patients with muscular dystrophy. Emphasis is placed on the use of protein expression to guide mutation analysis, particularly in the limb-girdle muscular dystrophies (a group of diseases that are very difficult to differentiate on clinical grounds alone). We confirm that genetic analysis is essential to corroborate the results of protein analysis in certain conditions (particularly in calpainopathy). However, we conclude that analysing biopsies for abnormal protein expression is very useful in aiding the decision between alternative diagnoses.
Collapse
Affiliation(s)
- A Bornemann
- Institute of Brain Research, University of Tübingen, Germany.
| | | |
Collapse
|
31
|
Mehler MF. Brain dystrophin, neurogenetics and mental retardation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:277-307. [PMID: 10751678 DOI: 10.1016/s0165-0173(99)00090-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and the allelic disorder Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders that are associated with a spectrum of genetically based developmental cognitive and behavioral disabilities. Seven promoters scattered throughout the huge DMD/BMD gene locus normally code for distinct isoforms of the gene product, dystrophin, that exhibit nervous system developmental, regional and cell-type specificity. Dystrophin is a complex plasmalemmal-cytoskeletal linker protein that possesses multiple functional domains, autosomal and X-linked homologs and associated binding proteins that form multiunit signaling complexes whose composition is unique to each cellular and developmental context. Through additional interactions with a variety of proteins of the extracellular matrix, plasma membrane, cytoskeleton and distinct intracellular compartments, brain dystrophin acquires the capability to participate in the modulatory actions of a large number of cellular signaling pathways. During neural development, dystrophin is expressed within the neural tube and selected areas of the embryonic and postnatal neuraxis, and may regulate distinct aspects of neurogenesis, neuronal migration and cellular differentiation. By contrast, in the mature brain, dystrophin is preferentially expressed by specific regional neuronal subpopulations within proximal somadendritic microdomains associated with synaptic terminal membranes. Increasing experimental evidence suggests that in adult life, dystrophin normally modulates synaptic terminal integrity, distinct forms of synaptic plasticity and regional cellular signal integration. At a systems level, dystrophin may regulate essential components of an integrated sensorimotor attentional network. Dystrophin deficiency in DMD/BMD patients and in the mdx mouse model appears to impair intracellular calcium homeostasis and to disrupt multiple protein-protein interactions that normally promote information transfer and signal integration from the extracellular environment to the nucleus within regulated microdomains. In DMD/BMD, the individual profiles of cognitive and behavioral deficits, mental retardation and other phenotypic variations appear to depend on complex profiles of transcriptional regulation associated with individual dystrophin mutations that result in the corresponding presence or absence of individual brain dystrophin isoforms that normally exhibit developmental, regional and cell-type-specific expression and functional regulation. This composite experimental model will allow fine-level mapping of cognitive-neurogenetic associations that encompass the interrelationships between molecular, cellular and systems levels of signal integration, and will further our understanding of complex gene-environmental interactions and the pathogenetic basis of developmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- M F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, the Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
32
|
Figarella-Branger D, Pellissier JF, Bianco N, Karpati G. Sequence of expression of MyoD1 and various cell surface and cytoskeletal proteins in regenerating mouse muscle fibers following treatment with sodium dihydrogen phosphate. J Neurol Sci 1999; 170:151-60. [PMID: 10561531 DOI: 10.1016/s0022-510x(99)90066-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An immunohistochemical study was performed in order to evaluate the sequence of expression of various cell surface proteins [neural cell adhesion molecule (NCAM) and its polysialylated isoform, PSA NCAM, and utrophin], cytoskeletal proteins (myosin heavy chain isoforms, desmin) and the transcription factor MyoD1 in regenerating mouse muscle fibers following treatment with sodium dihydrogen phosphate. The sequence of the regeneration process with this new myotoxic agent is similar to that which can be observed with other myotoxic substances (local anaesthetics such as bupivacaine or snake venoms). The results show that NCAM, PSA NCAM and desmin were already present on the first day after injury in the presumptive myoblasts. The highest level of all of these proteins was observed on the third day. At this stage, regenerating muscle fibers also strongly and diffusely expressed myosin heavy chain isoforms and utrophin throughout their sarcolemma, whereas MyoD1 expression was observed in the regenerating myonuclei. PSA NCAM and MyoD1 had gradually disappeared from the muscle fibers by the seventh day, by which time, the expression of the other developmentally regulated proteins had also decreased. On the 21st day after injury, a few fibers still expressed NCAM but not the other proteins. This study first shows that sodium dihydrogen phosphate is a new myotoxic agent that is cheap, widely available and easy to handle. It also establishes the schedule of expression of various developmentally regulated proteins in regenerating mouse muscle fibers.
Collapse
Affiliation(s)
- D Figarella-Branger
- Laboratoire de Biopathologie nerveuse et musculaire - (JE 2053), Faculté de Médecine, 27 Bd. Jean Moulin 13385, Marseille, France
| | | | | | | |
Collapse
|
33
|
Mujtaba T, Piper DR, Kalyani A, Groves AK, Lucero MT, Rao MS. Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev Biol 1999; 214:113-27. [PMID: 10491261 DOI: 10.1006/dbio.1999.9418] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously identified multipotent neuroepithelial (NEP) stem cells and lineage-restricted, self-renewing precursor cells termed NRPs (neuron-restricted precursors) and GRPs (glial-restricted precursors) present in the developing rat spinal cord (A. Kalyani, K. Hobson, and M. S. Rao, 1997, Dev. Biol. 186, 202-223; M. S. Rao and M. Mayer-Proschel, 1997, Dev. Biol. 188, 48-63; M. Mayer-Proschel, A. J. Kalyani, T. Mujtaba, and M. S. Rao, 1997, Neuron 19, 773-785). We now show that cells identical to rat NEPs, NRPs, and GRPs are present in mouse neural tubes and that immunoselection against cell surface markers E-NCAM and A2B5 can be used to isolate NRPs and GRPs, respectively. Restricted precursors similar to NRPs and GRPs can also be isolated from mouse embryonic stem cells (ES cells). ES cell-derived NRPs are E-NCAM immunoreactive, undergo self-renewal in defined medium, and differentiate into multiple neuronal phenotypes in mass culture. ES cells also generate A2B5-immunoreactive cells that are similar to E9 NEP-cell-derived GRPs and can differentiate into oligodendrocytes and astrocytes. Thus, lineage restricted precursors can be generated in vitro from cultured ES cells and these restricted precursors resemble those derived from mouse neural tubes. These results demonstrate the utility of using ES cells as a source of late embryonic precursor cells.
Collapse
Affiliation(s)
- T Mujtaba
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
34
|
Figarella-Branger D, Pellissier JF, Bianco N, Karpati G. Sequence of expression of MyoD1 and various cell surface and cytoskeletal proteins in regenerating mouse muscle fibers following treatment with sodium dihydrogen phosphate. J Neurol Sci 1999; 165:106-15. [PMID: 10450794 DOI: 10.1016/s0022-510x(99)00066-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An immunohistochemical study was performed in order to evaluate the sequence of expression of various cell surface proteins [neural cell adhesion molecule (NCAM) and its polysialylated isoform, PSA NCAM, and utrophin], cytoskeletal proteins (myosin heavy chain isoforms, desmin) and the transcription factor MyoD1 in regenerating mouse muscle fibers following treatment with sodium dihydrogen phosphate. The sequence of the regeneration process with this new myotoxic agent is similar to that which can be observed with other myotoxic substances (local anaesthetics such as bupivacaine or snake venoms). The results show that NCAM, PSA NCAM and desmin were already present on the first day after injury in the presumptive myoblasts. The highest level of all of these proteins was observed on the third day. At this stage, regenerating muscle fibers also strongly and diffusely expressed myosin heavy chain isoforms and utrophin throughout their sarcolemma, whereas MyoD1 expression was observed in the regenerating myonuclei. PSA NCAM and MyoD1 had gradually disappeared from the muscle fibers by the seventh day, by which time, the expression of the other developmentally regulated proteins had also decreased. On the 21st day after injury, a few fibers still expressed NCAM but not the other proteins. This study first shows that sodium dihydrogen phosphate is a new myotoxic agent that is cheap, widely available and easy to handle. It also establishes the schedule of expression of various developmentally regulated proteins in regenerating mouse muscle fibers.
Collapse
Affiliation(s)
- D Figarella-Branger
- Laboratoire de Biopathologie nereuse et musculair-(JE 2053), Faculté de Médecine, Marseille, France.
| | | | | | | |
Collapse
|
35
|
Fernandez AM, Gonzalez de la Vega AG, Planas B, Torres-Aleman I. Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 1999; 11:2019-30. [PMID: 10336671 DOI: 10.1046/j.1460-9568.1999.00623.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exogenous administration of insulin-like growth factor I (IGF-I) restores motor function in rats with neurotoxin-induced cerebellar deafferentation. We first determined that endogenous IGFs are directly involved in the recovery process because infusion of an IGF-I receptor antagonist into the lateral ventricle blocks gradual recovery of limb coordination that spontaneously occurs after partial deafferentation of the olivo-cerebellar circuitry. We then analysed mechanisms whereby exogenous IGF-I restores motor function in rats with complete damage of the olivo-cerebellar pathway. Treatment with IGF-I normalized several markers of cell function in the cerebellum, including calbindin, glutamate receptor 1 (GluR1), gamma-aminobutyric acid (GABA) and glutamate, which are all depressed after 3-acetylpyridine (3AP)-induced deafferentation. IGF-I also promoted functional reinnervation of the cerebellar cortex by inferior olive (IO) axons. In the IO, increased expression of bax in neurons and bcl-X in astrocytes after 3AP was significantly reduced by IGF-I treatment. On the contrary, IGF-I prevented the decrease in poly-sialic-acid neural cell adhesion molecule (PSA-NCAM) and GAP-43 expression induced by 3AP in IO cells. IGF-I also significantly increased the number of neurons expressing bcl-2 in brainstem areas surrounding the IO. Altogether, these results indicate that subcutaneous IGF-I therapy promotes functional recovery of the olivo-cerebellar pathway by acting at two sites within this circuitry: (i) by modulating death- and plasticity-related proteins in IO neurons; and (ii) by impinging on homeostatic mechanisms leading to normalization of cell function in the cerebellum. These results provide insight into the neuroprotective actions of IGF-I and may be of practical consequence in the design of new therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
36
|
De la Porte S, Morin S, Koenig J. Characteristics of skeletal muscle in mdx mutant mice. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:99-148. [PMID: 10343393 DOI: 10.1016/s0074-7696(08)60158-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We review the extensive research conducted on the mdx mouse since 1987, when demonstration of the absence of dystrophin in mdx muscle led to X-chromosome-linked muscular dystrophy (mdx) being considered as a homolog of Duchenne muscular dystrophy. Certain results are contradictory. We consider most aspects of mdx skeletal muscle: (i) the distribution and roles of dystrophin, utrophin, and associated proteins; (ii) morphological characteristics of the skeletal muscle and hypotheses put forward to explain the regeneration characteristic of the mdx mouse; (iii) special features of the diaphragm; (iv) changes in basic fibroblast growth factor, ion flux, innervation, cytoskeleton, adhesive proteins, mastocytes, and metabolism; and (v) different lines of therapeutic research.
Collapse
Affiliation(s)
- S De la Porte
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Gif sur Yvette, France
| | | | | |
Collapse
|
37
|
Sevigny MB, Ye J, Kitazume-Kawaguchi S, Troy FA. Developmental expression and characterization of the alpha2,8-polysialyltransferase activity in embryonic chick brain. Glycobiology 1998; 8:857-67. [PMID: 9675218 DOI: 10.1093/glycob/8.9.857] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The alpha2,8-polysialyltransferases (polySTs) from embryonic chick brain catalyze the alpha2,8-specific polysialylation of endogenous neural cell adhesion molecules (N-CAMs). This posttranslation glycosylation decreases N-CAM-dependent cell adhesion and migration. The enzymatic properties of the membrane-bound form of the polyST activity was investigated in vitro. Our results show that the polyST activity was developmentally expressed with maximum specific activity appearing about 12 days after fertilization. This time shortly precedes maximal expression of the cognate polysialylated N-CAMs. Kinetic studies showed the KMand Vmaxfor CMP-Neu5Ac were 133 microM and 0.13 microM/h, respectively, at pH 6.1, 33 degrees C. CMP-Neu5Gc was not a donor substrate. PolyST activity was increased 5- to 6-fold in the presence of 10 mM MnCl2,the preferred divalent cation, and 1 mM dithiothreitol (DTT). Heparin (3 kDa) was a noncompetitive inhibitor of polysialylation with a Kiof 9 microM. Based on the affinity of the enzyme for heparin, the polyST activity was partially purified ( approximately 30-fold) by heparin-Sepharose affinity chromatography, after differential solubilization with the zwitterionic detergent, CHAPS. DTT and chemical modification studies using the thiol-directed alkylating reagents, N-ethylmaleimide (NEM) and iodoacetamide (IAA), were used to show that at least one cysteinyl residue in the polyST was of critical importance for polysialylation, but of lesser importance for monosialylation, catalyzed by the alpha2,3-, alpha2,6-, and alpha2,8-monosialyltransferases (monoSTs). A sulfhydryl residue is implicated in chain initiation. Two important structural differences between the mono- and polySTs were revealed by sequence analyses. First, the polySTs contain heparin-like, positively charged amino acid clusters upstream of both sialylmotif L and S. Second, the polySTs contain a uniquely extended basic amino acid region (pI 11. 6-12.0) of 31 residues immediately upstream of sialylmotif S. This extended, positively charged region may function in the processive mechanism of polymerization by allowing nascent polySia chains to remain bound to the polyST during the repetitive addition of each new Sia residue to the nonreducing termini of the growing chain. The importance of these studies is that they provide new information on the enzymatic basis of polysialylation. They also reveal that sulfhydryl residues and extended basic amino acid domains are two structural features unique to polysialylation, in contrast to monosialylation. Both may be important distinguishing features between the classes of distributive (monoSTs) and processive polysialyltransferases, which have not been previously described.
Collapse
Affiliation(s)
- M B Sevigny
- Department of Biological Chemistry, University of California School of Medicine, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
38
|
Anderson JE. Studies of the dynamics of skeletal muscle regeneration: the mouse came back! Biochem Cell Biol 1998. [DOI: 10.1139/o98-007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regeneration of skeletal muscle tissue includes sequential processes of muscle cell proliferation and commitment, cell fusion, muscle fiber differentiation, and communication between cells of various tissues of origin. Central to the process is the myosatellite cell, a quiescent precursor cell located between the mature muscle fiber and its sheath of external lamina. To form new fibers in a muscle damaged by disease or direct injury, satellite cells must be activated, proliferate, and subsequently fuse into an elongated multinucleated cell. Current investigations in the field concern modulation of the effectiveness of skeletal muscle regeneration, the regeneration-specific role of myogenic regulatory gene expression distinct from expression during development, the impact of growth and scatter factors and their respective receptors in amplifying precursor numbers, and promoting fusion and maturation of new fibers and the ultimate clinical therapeutic applications of such information to alleviate disease. One approach to muscle regeneration integrates observations of muscle gene expression, proliferation, myoblast fusion, and fiber growth in vivo with parallel studies of cell cycling behaviour, endocrine perturbation, and potential biochemical markers of steps in the disease-repair process detected by magnetic resonance spectroscopy techniques. Experiments on muscles from limb, diaphragm, and heart of the mdx dystrophic mouse, made to parallel clinical trials on human Duchenne muscular dystrophy, help to elucidate mechanisms underlying the positive treatment effects of the glucocorticoid drug deflazacort. This review illustrates an effective combination of in vivo and in vitro experiments to integrate the distinctive complexities of post-natal myogenesis in regeneration of skeletal muscle tissue.Key words: satellite cell, cell cycling, HGF/SF, c-met receptor, MyoD, myogenin, magnetic resonance spectroscopy, mdx dystrophic mouse, deflazacort.
Collapse
|
39
|
Bresolin N, Ausenda CD, Casati R, Torrente Y, DeLiso A, D'Angelo MG, Benti R, Moggio M, Baldessari S, Comi GP, Colombo F, Gerundini P, Scarlato G. Intra-aortic injection of myoblasts in mdx mice: genetic and technetium-99m cell labeling and biodistribution. Muscle Nerve 1997; 20:757-9. [PMID: 9149087 DOI: 10.1002/(sici)1097-4598(199706)20:6<757::aid-mus17>3.0.co;2-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- N Bresolin
- Centro Dino Ferrari, Institute of Clinical Neurology, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Anderson JE, McIntosh LM, Poettcker R. Deflazacort but not prednisone improves both muscle repair and fiber growth in diaphragm and limb muscle in vivo in the mdx dystrophic mouse. Muscle Nerve 1996; 19:1576-85. [PMID: 8941272 DOI: 10.1002/(sici)1097-4598(199612)19:12<1576::aid-mus7>3.0.co;2-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of the glucocorticoids deflazacort and prednisone on mdx mouse dystrophy and muscle regeneration were evaluated in a 4.5-week double-blind study to test whether they would decrease dystrophy by anti-inflammatory effects [in intact diaphragm and left tibialis anterior (TA) muscle] and increase new muscle formation (after crush injury). In the left TA, fiber diameter was greater after deflazacort and prednisone compared to placebo. However, only deflazacort increased the centronucleation index of accumulated damage and repair, and myotube growth over the long term. In crush-injured TA, the fusion of proliferative muscle precursors to myotubes (by autoradiography) was increased only after deflazacort. Diaphragm muscle was much less inflamed, and fiber diameter was greater after deflazacort. Results suggest that glucocorticoids decreased the severe phenotype of dystrophy in the mdx diaphragm. Moreover, deflazacort uniquely promoted myogenic repair over short and longer terms, in addition to stimulating fiber growth. These first clues to the targets of deflazacort action on muscle repair have important positive implications for treating Duchenne dystrophy.
Collapse
Affiliation(s)
- J E Anderson
- Department of Anatomy, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
41
|
Lefaucheur JP, Sébille A. The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul Disord 1995; 5:501-9. [PMID: 8580732 DOI: 10.1016/0960-8966(95)00012-c] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cellular events of muscle degeneration and regeneration and their time course were studied in two experimental models of muscle injury mice; (i) the denervation-devascularization (DD) of the extensor digitorum longus (EDL) muscle, which is an ischaemic lesion; (ii) the injection of notexin (NOT), a snake venom, in the tibialis anterior (TA) muscle, resulting in a toxic lesion. Compared to the ischaemic lesion, the toxic lesion was characterized by a more extensive inflammatory infiltrate and a shortened phase of phagocytosis of the damaged myofibres. This allowed the proliferation and differentiation of muscle precursor cells (mpc) to take place earlier and may be further promoted by growth factors released by inflammatory cells. Compared to DD-EDL, NOT-TA showed also a greater conservation of the basement membranes of the necrotic myofibres, that can support the fusion of mpc into myotubes, and a better microvascularization. The onset of muscle regeneration is tightly related to the events which occur during the phase of degeneration.
Collapse
Affiliation(s)
- J P Lefaucheur
- Laboratoire de Physiologie, Atelier de Régéneration Neuromusculaire, Faculté de Médecine Saint-Antoine, Paris, France
| | | |
Collapse
|
42
|
Dubois C, Okandze A, Figarella-Branger D, Rampini C, Rougon G. A monoclonal antibody against Meningococcus group B polysaccharides used to immunocapture and quantify polysialylated NCAM in tissues and biological fluids. J Immunol Methods 1995; 181:125-35. [PMID: 7730661 DOI: 10.1016/0022-1759(94)00336-u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polysialylated isoforms of neural cell adhesion molecule (PSA-NCAM) are transiently expressed in many tissues during development and in discrete areas of the adult central nervous system. In pathological situations, they are expressed by poorly differentiated tumor cells of neuroectodermal origin and by regenerating muscle. An ELISA is introduced here to estimate the relative concentrations of PSA-NCAM expressed by tissues or released into biological fluids. In this double-sandwich assay, an anti-PSA antibody (anti-MenB) was adsorbed onto plastic plates and permitted the immunocapture of PSA-bearing molecules. It is demonstrated that these molecules are major NCAM. The second antibody was directed against an amino acid sequence shared by NCAM isoforms in several species. The standard curves were established using Nonidet P40 extracts of human or mouse embryonic brain known to be rich in PSA-NCAM. The sensitivity of the assay allows for quantitation of PSA-NCAM in muscle during regeneration and in small samples of cerebrospinal fluid from patients with medulloblastoma metastasis.
Collapse
Affiliation(s)
- C Dubois
- Laboratoire de Biologie Cellulaire, Faculté de Médecine Saint Antoine, Paris, France
| | | | | | | | | |
Collapse
|
43
|
McIntosh LM, Anderson JE. Hypothyroidism prolongs and increases mdx muscle precursor proliferation and delays myotube formation in normal and dystrophic limb muscle. Biochem Cell Biol 1995; 73:181-90. [PMID: 7576492 DOI: 10.1139/o95-022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hypothyroidism (induced by 8 weeks of oral 0.05% propylthiouracil) heightened the phenotype of mdx mouse dystrophin-deficient myopathy to more closely resemble human Duchenne muscular dystrophy. Muscle repair after crush injury to the tibialis anterior muscle (TA) in hypothyroid mdx mice showed decreased myotube formation and delayed debris removal. To investigate whether reduced muscle precursor cell proliferation can account for the effects of hypothyroidism on repair from injury, immunocytochemistry for neural cell adhesion molecule (NCAM) on muscle precursor cells and autoradiography to detect DNA synthesis were performed in control and mdx TA. The proportions of labelled polymorphonuclear leukocyte nuclei (PMN), myotube nuclei (MN), and total mononuclear cell nuclei (TLN, the majority being muscle precursors) were counted in defined areas of regenerating TA after 2 and 4 days recovery. MN and the numbers of activated satellite cell nuclei on intact fibers were counted in surviving areas. In the same muscle, earlier phases of regeneration were observed in areas distal than proximal to the injury. At 2 days of regeneration, labelled PMN were increased in treated compared with untreated mdx TA. In distal areas at 4 days, fewer muscle precursors had recently fused to myotubes in treated than in untreated mdx. In proximal areas 4 days (relatively late in repair), TLN data suggested that muscle precursor proliferation was greater in hypothyroid compared with untreated mdx TA. NCAM immunostaining was consistent with proliferation data and confirmed that there were more muscle precursors in mdx than in control regenerating muscle. These results suggest that hypothyroidism prolongs and increases the phase of replication by mdx muscle precursors and delays precursor fusion into myotubes in regeneration.
Collapse
Affiliation(s)
- L M McIntosh
- Department of Anatomy, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|