1
|
Park SH, Gye MC. Dibutyl phthalate disrupts [Ca 2+] i, reactive oxygen species, [pH] i, protein kinases and mitochondrial activity, impairing sperm function. J Environ Sci (China) 2025; 151:68-78. [PMID: 39481973 DOI: 10.1016/j.jes.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024]
Abstract
To explore the mechanism of sperm dysfunction caused by dibutyl phthalate (DBP), the effects of DBP on intracellular [Ca2+] and [pH], reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, phosphorylation of protein kinase A (PKA) substrate proteins and phosphotyrosine (p-Tyr) proteins, sperm motility, spontaneous acrosome reaction, and tail bending were examined in mouse spermatozoa. At 100 µg/mL, DBP significantly increased tail bending and [Ca2+]i. Interestingly, DBP showed biphasic effects on [pH]i. DBP at 10-100 µg/mL significantly decreased sperm motility. Similarly, Ca2+ ionophore A23187 decreased [pH]i sperm motility, suggesting that DBP-induced excessive [Ca2+]i decreased sperm motility. DBP significantly increased ROS and LPO. DBP at 100 µg/mL significantly decreased mPTP closing, MMP, and ATP levels in spermatozoa, as did H2O2, indicative of ROS-mediated mitochondrial dysfunction caused by DBP. DBP as well as H2O2 increased p-Tyr sperm proteins and phosphorylated PKA substrate sperm proteins. DBP at 1-10 µg/mL significantly increased the spontaneous acrosome reaction, suggesting that DBP can activate sperm capacitation. Altogether, DBP showed a biphasic effect on intracellular signaling in spermatozoa. At concentrations relevant to seminal ortho-phthalate levels, DBP activates [pH]i, protein tyrosine kinases and PKA via physiological levels of ROS generation, potentiating sperm capacitation. DBP at high doses excessively raises [Ca2+]i and ROS and disrupts [pH]i, impairing the mitochondrial function, tail structural integrity, and sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Jassim BA, Bai Y, Qu Z, Sander CJ, Lin J, Miao J, Zhang ZY. Structure-activity relationship studies and design of a PTPN22 inhibitor with enhanced isozyme selectivity and cellular efficacy. Eur J Med Chem 2025; 283:117129. [PMID: 39693863 PMCID: PMC11709133 DOI: 10.1016/j.ejmech.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) lies downstream of the T cell receptor (TCR) and attenuates T cell signaling by dephosphorylating key effector proteins such as LCK, Zap70, and the intracellular region of the TCR. Recent evidence implicates PTPN22 as an exciting target for enabling immunotherapeutic efficacy against cancer. We carried out structural optimization of a benzofuran salicylic acid-based orthosteric PTPN22 inhibitor 8b, using a combination of crystal structure analysis, synthesis, matched molecular pairs analysis, and biochemical and cell-based assays. Herein, we report structure-activity relationship studies, lead optimization based on the 8b-PTPN22 co-crystal structure, and cellular evaluation of the top analog. Notably, our efforts yielded compound 8b-19, an essentially equipotent scaffold with superior isozyme selectivity, improved aqueous solubility, and significantly enhanced cellular efficacy compared to the parent 8b. This compound may serve as a lead for further optimization of PTPN22-targeting immunotherapies or as a chemical probe for interrogation for additional links between PTPN22 and immunomodulation in cells.
Collapse
Affiliation(s)
- Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Zihan Qu
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conrad J Sander
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Hillis AL, Tamir T, Perry GE, Asara JM, Johnson JL, Yaron TM, Cantley LC, White FM, Toker A. Parallel phosphoproteomics and metabolomics map the global metabolic tyrosine phosphoproteome. Proc Natl Acad Sci U S A 2024; 121:e2413837121. [PMID: 39536083 PMCID: PMC11588116 DOI: 10.1073/pnas.2413837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Tyrosine phosphorylation of metabolic enzymes is an evolutionarily conserved posttranslational modification that facilitates rapid and reversible modulation of enzyme activity, localization, or function. Despite the high abundance of tyrosine phosphorylation events detected on metabolic enzymes in high-throughput mass spectrometry-based studies, functional characterization of tyrosine phosphorylation sites has been limited to a subset of enzymes. Since tyrosine phosphorylation is dysregulated across human diseases, including cancer, understanding the consequences of metabolic enzyme tyrosine phosphorylation events is critical for informing disease biology and therapeutic interventions. To globally identify metabolic enzyme tyrosine phosphorylation events and simultaneously assign functional significance to these sites, we performed parallel phosphoproteomics and polar metabolomics in nontumorigenic mammary epithelial cells (MCF10A) stimulated with epidermal growth factor (EGF) in the absence or presence of the EGF receptor inhibitor erlotinib. We performed an integrated analysis of the phosphoproteomic and metabolomic datasets to identify tyrosine phosphorylation sites on metabolic enzymes with functional consequences. We identified two previously characterized (pyruvate kinase muscle isozyme, phosphoglycerate mutase 1) and two uncharacterized (glutathione S-transferase Pi 1, glutamate dehydrogenase 1) tyrosine phosphorylation sites on metabolic enzymes with purported functions based on metabolomic analyses. We validated these hits using a doxycycline-inducible CRISPR interference system in MCF10A cells, in which target metabolic enzymes were depleted with simultaneous reexpression of wild-type, phosphomutant, or phosphomimetic isoforms. Together, these data provide a framework for identification, prioritization, and characterization of tyrosine phosphorylation sites on metabolic enzymes with functional significance.
Collapse
Affiliation(s)
- Alissandra L. Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Tigist Tamir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Grace E. Perry
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - John M. Asara
- Mass Spectrometry Core, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jared L. Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Tomer M. Yaron
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Lewis C. Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Forest M. White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
4
|
Xie M, Bai N, Yang X, Liu Y, Zhang KQ, Yang J. Fus3 regulates asexual development and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. iScience 2023; 26:107404. [PMID: 37609635 PMCID: PMC10440713 DOI: 10.1016/j.isci.2023.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) Fus3 is an essential regulator of cell differentiation and virulence in fungal pathogens of plants and animals. However, the function and regulatory mechanism of MAPK signaling in nematode-trapping (NT) fungi remain largely unknown. NT fungi can specialize in the formation of "traps", an important indicator of transition from a saprophytic to a predatory lifestyle. Here, we characterized an orthologous Fus3 in a typical NT fungus Arthrobotrys oligospora using multi-phenotypic analysis and multi-omics approaches. Our results showed that Fus3 plays an important role in asexual growth and development, conidiation, stress response, DNA damage, autophagy, and secondary metabolism. Importantly, Fus3 plays an indispensable role in hyphal fusion, trap morphogenesis, and nematode predation. Moreover, we constructed the regulatory networks of Fus3 by means of transcriptomic and yeast two-hybrid techniques. This study provides insights into the mechanism of MAPK signaling in asexual development and pathogenicity of NT fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
- School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, P.R. China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
5
|
Abril-Parreño L, Carthy TR, Keogh K, Štiavnická M, O'Meara C, Lonergan P, Kenny DA, Fair S. Genome-wide association study reveals candidate markers related to field fertility and semen quality traits in Holstein-Friesian bulls. Animal 2023; 17:100841. [PMID: 37224615 DOI: 10.1016/j.animal.2023.100841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
In vitro assessment of bull semen quality is routinely used in bull semen processing centres in order to ensure that semen destined to be used in the field has passed minimum standards. Despite these stringent quality control checks, individual bulls that pass the quality control checks can still vary in field fertility by up to 25%. A genome-wide association study was undertaken to determine genetic markers associated with prefreeze and post-thaw bull sperm quality traits as well as field fertility. Genome-wide association analysis was performed using a single nucleotide polymorphism (SNP) regression mixed linear model in WOMBAT. Genes within a 250 Kb span of a suggestive (P ≤ 1 × 10-5) SNP were considered as candidate genes. One SNP was associated with adjusted pregnancy rate, and 21 SNPs were associated across the seven semen quality traits (P ≤ 1 × 10-5). Functional candidate genes include SIPA1L2 which was associated with adjusted pregnancy rate. This encodes a Rap GTPase-activating protein involved in Rap1 signalling pathway and was previously found to play a role in the process of sperm differentiation. Gene ontology (GO) analysis also identified significantly enriched biological processes involved protein tyrosine kinase activity including genes such as DYRK1A, TEC and TXK that were associated with sperm motility prior to freezing. Another candidate gene associated with post-thaw sperm motility was FHDC1 which coordinates actin filament and microtubule dynamics. The induced 11 GO terms in the ejaculates rejected after freezing trait were related to ATPase, phosphatase and hydrolase activity. These results reveal novel specific genomic regions and candidate genes associated with economically important phenotypes such as field fertility and semen quality traits.
Collapse
Affiliation(s)
- Laura Abril-Parreño
- Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Tara R Carthy
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Co. Meath C15 PW93, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Co. Meath C15 PW93, Ireland
| | - Miriama Štiavnická
- Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ciara O'Meara
- National Cattle Breeding Centre, Naas, Co. Kildare W91 WF59, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Co. Meath C15 PW93, Ireland
| | - Sean Fair
- Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
6
|
Song W, Hu L, Ma Z, Yang L, Li J. Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23126603. [PMID: 35743047 PMCID: PMC9224382 DOI: 10.3390/ijms23126603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.
Collapse
Affiliation(s)
- Weimeng Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
7
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
8
|
Suresh P, Miller WT, London E. Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. J Biol Chem 2021; 297:101010. [PMID: 34324831 PMCID: PMC8379460 DOI: 10.1016/j.jbc.2021.101010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Insulin receptor (IR) is a membrane tyrosine kinase that mediates the response of cells to insulin. IR activity has been shown to be modulated by changes in plasma membrane lipid composition, but the properties and structural determinants of lipids mediating IR activity are poorly understood. Here, using efficient methyl-alpha-cyclodextrin mediated lipid exchange, we studied the effect of altering plasma membrane outer leaflet phospholipid composition upon the activity of IR in mammalian cells. After substitution of endogenous lipids with lipids having an ability to form liquid ordered (Lo) domains (sphingomyelins) or liquid disordered (Ld) domains (unsaturated phosphatidylcholines (PCs)), we found that the propensity of lipids to form ordered domains is required for high IR activity. Additional substitution experiments using a series of saturated PCs showed that IR activity increased substantially with increasing acyl chain length, which increases both bilayer width and the propensity to form ordered domains. Incorporating purified IR into alkyl maltoside micelles with increasing hydrocarbon lengths also increased IR activity, but more modestly than by increasing lipid acyl chain length in cells. These results suggest that the ability to form Lo domains as well as wide bilayer width contributes to increased IR activity. Inhibition of phosphatases showed that some of the lipid dependence of IR activity upon lipid structure reflected protection from phosphatases by lipids that support Lo domain formation. These results are consistent with a model in which a combination of bilayer width and ordered domain formation modulates IR activity via IR conformation and accessibility to phosphatases.
Collapse
Affiliation(s)
- Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA; Department of Veterans Affairs Medical Center, Northport, New York, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
9
|
Sevillano J, Sánchez-Alonso MG, Pizarro-Delgado J, Ramos-Álvarez MDP. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int J Mol Sci 2021; 22:ijms22115812. [PMID: 34071721 PMCID: PMC8198922 DOI: 10.3390/ijms22115812] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.
Collapse
|
10
|
Chen L, Zhang Y, Shu X, Chen Q, Wei T, Wang H, Wang X, Wu Q, Zhang X, Liu X, Zheng S, Huang L, Xiao J, Jiang C, Yang B, Wang Z, Guo X. Proteasome regulation by reversible tyrosine phosphorylation at the membrane. Oncogene 2021; 40:1942-1956. [PMID: 33603165 PMCID: PMC7990385 DOI: 10.1038/s41388-021-01674-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Reversible phosphorylation has emerged as an important mechanism for regulating 26S proteasome function in health and disease. Over 100 phospho-tyrosine sites of the human proteasome have been detected, and yet their function and regulation remain poorly understood. Here we show that the 19S subunit Rpt2 is phosphorylated at Tyr439, a strictly conserved residue within the C-terminal HbYX motif of Rpt2 that is essential for 26S proteasome assembly. Unexpectedly, we found that Y439 phosphorylation depends on Rpt2 membrane localization mediated by its N-myristoylation. Multiple receptors tyrosine kinases can trigger Rpt2-Y439 phosphorylation by activating Src, a N-myristoylated tyrosine kinase. Src directly phosphorylates Rpt2-Y439 in vitro and negatively regulates 26S proteasome activity at cellular membranes, which can be reversed by the membrane-associated isoform of protein tyrosine phosphatase nonreceptor type 2 (PTPN2). In H1975 lung cancer cells with activated Src, blocking Rpt2-Y439 phosphorylation by the Y439F mutation conferred partial resistance to the Src inhibitor saracatinib both in vitro and in a mouse xenograft tumor model, and caused significant changes of cellular responses to saracatinib at the proteome level. Our study has defined a novel mechanism involved in the spatial regulation of proteasome function and provided new insights into tyrosine kinase inhibitor-based anticancer therapies.
Collapse
Affiliation(s)
- Lu Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yanan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiong Chen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tiantian Wei
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Heman Wang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaorong Wang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Qirou Wu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lan Huang
- Departments of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Junyu Xiao
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiping Wang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Nguyen TMD. Main signaling pathways involved in the control of fowl sperm motility. Poult Sci 2019; 98:1528-1538. [DOI: 10.3382/ps/pey465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
|
12
|
Lountos GT, Raran-Kurussi S, Zhao BM, Dyas BK, Burke TR, Ulrich RG, Waugh DS. High-resolution crystal structures of the D1 and D2 domains of protein tyrosine phosphatase epsilon for structure-based drug design. Acta Crystallogr D Struct Biol 2018; 74:1015-1026. [PMID: 30289412 PMCID: PMC6173050 DOI: 10.1107/s2059798318011919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022] Open
Abstract
Here, new crystal structures are presented of the isolated membrane-proximal D1 and distal D2 domains of protein tyrosine phosphatase epsilon (PTPℇ), a protein tyrosine phosphatase that has been shown to play a positive role in the survival of human breast cancer cells. A triple mutant of the PTPℇ D2 domain (A455N/V457Y/E597D) was also constructed to reconstitute the residues of the PTPℇ D1 catalytic domain that are important for phosphatase activity, resulting in only a slight increase in the phosphatase activity compared with the native D2 protein. The structures reported here are of sufficient resolution for structure-based drug design, and a microarray-based assay for high-throughput screening to identify small-molecule inhibitors of the PTPℇ D1 domain is also described.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sreejith Raran-Kurussi
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bryan M. Zhao
- The Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Beverly K. Dyas
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Caron D, Byrne DP, Thebault P, Soulet D, Landry CR, Eyers PA, Elowe S. Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1). Sci Signal 2016; 9:rs14. [PMID: 27965426 DOI: 10.1126/scisignal.aah3525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Tyrosine phosphorylation is closely associated with cell proliferation. During the cell cycle, serine and threonine phosphorylation plays the leading role, and such phosphorylation events are most dynamic during the mitotic phase of the cell cycle. However, mitotic phosphotyrosine is not well characterized. Although a few functionally-relevant mitotic phosphotyrosine sites have been characterized, evidence suggests that this modification may be more prevalent than previously appreciated. Here, we examined tyrosine phosphorylation in mitotic human cells including those on spindle-associated proteins.? Database mining confirmed ~2000 mitotic phosphotyrosine sites, and network analysis revealed a number of subnetworks that were enriched in tyrosine-phosphorylated proteins, including components of the kinetochore or spindle and SRC family kinases. We identified Polo-like kinase 1 (PLK1), a major signaling hub in the spindle subnetwork, as phosphorylated at the conserved Tyr217 in the kinase domain. Substitution of Tyr217 with a phosphomimetic residue eliminated PLK1 activity in vitro and in cells. Further analysis showed that Tyr217 phosphorylation reduced the phosphorylation of Thr210 in the activation loop, a phosphorylation event necessary for PLK1 activity. Our data indicate that mitotic tyrosine phosphorylation regulated a key serine/threonine kinase hub in mitotic cells and suggested that spatially separating tyrosine phosphorylation events can reveal previously unrecognized regulatory events and complexes associated with specific structures of the cell cycle.
Collapse
Affiliation(s)
- Danielle Caron
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Philippe Thebault
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Denis Soulet
- Department of Psychiatry et Neurosciences, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Department of Biology, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada.
| |
Collapse
|
14
|
McNulty DE, Sikorski TW, Annan RS. Identification and Analysis of Protein Phosphorylation by Mass Spectrometry. ANALYSIS OF PROTEIN POST‐TRANSLATIONAL MODIFICATIONS BY MASS SPECTROMETRY 2016:17-87. [DOI: 10.1002/9781119250906.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
15
|
Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals 2016; 29:265-74. [PMID: 26857738 DOI: 10.1007/s10534-016-9913-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2015] [Accepted: 01/30/2016] [Indexed: 02/05/2023]
Abstract
Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression.
Collapse
|
16
|
Chen PJ, Cai SP, Huang C, Meng XM, Li J. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology 2015; 337:10-20. [PMID: 26299811 DOI: 10.1016/j.tox.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 12/11/2022]
Abstract
Phosphorylation of tyrosine residues within proteins, which is controlled by the reciprocal action of protein tyrosine kinases and protein tyrosine phosphatases, plays a key role in regulating almost all physiological responses. Therefore, it comes as no surprise that once the balance of tyrosine phosphorylation is disturbed, drastic effects can occur. Protein tyrosine phosphatase 1B (PTP1B), a classical non-transmembrane tyrosine phosphatase, is a pivotal regulator and promising drug target in type 2 diabetes and obesity. Recently it has received renewed attention in liver diseases and represents an intriguing opportunity as a drug target by modulating hepatocyte death and survival, hepatic lipogenesis and so on. Here, the multiple roles of PTP1B in liver diseases will be presented, with respect to liver regeneration, drug-induced liver disease, non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pei-Jie Chen
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Shuang-Peng Cai
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Shankar A, Agrawal N, Sharma M, Pandey A, Pandey GK. Role of Protein Tyrosine Phosphatases in Plants. Curr Genomics 2015; 16:224-36. [PMID: 26962298 PMCID: PMC4765517 DOI: 10.2174/1389202916666150424234300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 01/01/2023] Open
Abstract
Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
18
|
The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis. PLoS One 2015; 10:e0131103. [PMID: 26147117 PMCID: PMC4492785 DOI: 10.1371/journal.pone.0131103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2014] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways.
Collapse
|
19
|
Wagner S, Schütz A, Rademann J. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic. Bioorg Med Chem 2015; 23:2839-47. [PMID: 25907367 DOI: 10.1016/j.bmc.2015.03.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT).
Collapse
Affiliation(s)
- Stefan Wagner
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Anja Schütz
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
20
|
Bakke J, Haj FG. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin Cell Dev Biol 2014; 37:58-65. [PMID: 25263014 DOI: 10.1016/j.semcdb.2014.09.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 01/19/2023]
Abstract
Metabolic homeostasis requires integration of complex signaling networks which, when deregulated, contribute to metabolic syndrome and related disorders. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as a key regulator of signaling networks that are implicated in metabolic diseases such as obesity and type 2 diabetes. In this review, we examine mechanisms that regulate PTP1B-substrate interaction, enzymatic activity and experimental approaches to identify PTP1B substrates. We then highlight findings that implicate PTP1B in metabolic regulation. In particular, insulin and leptin signaling are discussed as well as recently identified PTP1B substrates that are involved in endoplasmic reticulum stress response, cell-cell communication, energy balance and vesicle trafficking. In summary, PTP1B exhibits exquisite substrate specificity and is an outstanding pharmaceutical target for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jesse Bakke
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, United States; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
21
|
Li Z, Wang Z, Peng G, Yin Y, Zhao H, Cao Y, Xia Y. Purification and Characterization of a Novel Thermostable Extracellular Protein Tyrosine Phosphatase fromMetarhizium anisopliaeStrain CQMa102. Biosci Biotechnol Biochem 2014; 70:1961-8. [PMID: 16926509 DOI: 10.1271/bbb.60136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
An extracellular phosphatase was purified to homogeneity from the entomopathogenic fungus Metarhizium anisopliae with a 41.0% yield. The molecular mass and isoelectric point of the purified enzyme were about 82.5 kDa and 9.5 respectively. The optimum pH and temperature were about 5.5 and 75 degrees C when using O-phospho-L-tyrosine as substrate. The protein displayed high stability in a pH range 3.0-9.5 at 30 degrees C and was remarkably thermostable at 70 degrees C. The purified enzyme showed high activity on O-phospho-L-tyrosine and protein tyrosine phosphatase substrate monophosphate (a specific substrate of protein tyrosine phosphatase). Although one peptide of the phosphatase shared identity with one alkaline phosphatase of Neurospora crassa, its substrate specificity and inhibitor sensitivity indicate that the enzyme is a protein tyrosine phosphatase.
Collapse
Affiliation(s)
- Zhenlun Li
- Genetic Engineering Research Center, Bioengineering College, Chongqing University, R. P. China
| | | | | | | | | | | | | |
Collapse
|
22
|
Shin DH, Lee HJ, Cho S, Kim HJ, Hwang JY, Lee CK, Jeong J, Yoon D, Kim H. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics 2014; 15:240. [PMID: 24673797 PMCID: PMC4051123 DOI: 10.1186/1471-2164-15-240] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2013] [Accepted: 03/03/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Copy number variation (CNV), a source of genetic diversity in mammals, has been shown to underlie biological functions related to production traits. Notwithstanding, there have been few studies conducted on CNVs using next generation sequencing at the population level. RESULTS Illumina NGS data was obtained for ten Holsteins, a dairy cattle, and 22 Hanwoo, a beef cattle. The sequence data for each of the 32 animals varied from 13.58-fold to almost 20-fold coverage. We detected a total of 6,811 deleted CNVs across the analyzed individuals (average length = 2732.2 bp) corresponding to 0.74% of the cattle genome (18.6 Mbp of variable sequence). By examining the overlap between CNV deletion regions and genes, we selected 30 genes with the highest deletion scores. These genes were found to be related to the nervous system, more specifically with nervous transmission, neuron motion, and neurogenesis. We regarded these genes as having been effected by the domestication process. Further analysis of the CNV genotyping information revealed 94 putative selected CNVs and 954 breed-specific CNVs. CONCLUSIONS This study provides useful information for assessing the impact of CNVs on cattle traits using NGS at the population level.
Collapse
Affiliation(s)
- Dong-Hyun Shin
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Hyun-Jeong Lee
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, #564 Omockchun-dong, Suwon 441-706, Korea
| | - Seoae Cho
- C&K genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919, Republic of Korea
| | - Hyeon Jeong Kim
- C&K genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919, Republic of Korea
| | - Jae Yeon Hwang
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - JinYoung Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, #564 Omockchun-dong, Suwon 441-706, Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Sangju 742-711, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- C&K genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919, Republic of Korea
| |
Collapse
|
23
|
Kim J, Hepat R, Lee D, Kim Y. Protein tyrosine phosphatase encoded in Cotesia plutellae bracovirus suppresses a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:60-9. [PMID: 23651929 DOI: 10.1016/j.cbpa.2013.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 01/31/2023]
Abstract
Parasitization by an endoparasitoid wasp, Cotesia plutellae, inhibits a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. This study tested an inhibitory effect of C. plutellae bracovirus (CpBV) on the metamorphosis of P. xylostella. Parasitized P. xylostella exhibited significantly reduced prothoracic gland (PTG) development at the last instar compared to nonparasitized larvae. Expression of the ecdysone receptor (EcR) was markedly suppressed during the last instar larvae parasitized by C. plutellae. By contrast, expression of the insulin receptor (InR) significantly increased in the parasitized larvae. Microinjection of CpBV significantly inhibited the larva-to-pupa metamorphosis of nonparasitized larvae in a dose-dependent manner. Injection of CpBV also inhibited the expression of the EcR and increased the expression of the InR. Individual CpBV segments were transiently expressed in its encoded genes in nonparasitized larvae and screened to determine antimetamorphic viral gene(s). Out of 21 CpBV segments, two viral segments (CpBV-S22 and CpBV-S27) were proved to inhibit larva-to-pupa metamorphosis by transient expression assay. RNA interference of each gene encoded in the viral segments was applied to determine antimetamorphic gene(s). Protein tyrosine phosphatase, early expressed gene, and four hypothetical genes were selected to be associated with the antimetamorphic activity of CpBV. These results suggest that antimetamorphosis of P. xylostella parasitized by C. plutellae is induced by inhibiting PTG development and subsequent ecdysteroid signaling with viral factors of CpBV.
Collapse
Affiliation(s)
- Jiwan Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Korea
| | | | | | | |
Collapse
|
24
|
Cryopreservation of common carp (Cyprinus carpio L.) sperm induces protein phosphorylation in tyrosine and threonine residues. Theriogenology 2013; 80:84-9. [PMID: 23602083 DOI: 10.1016/j.theriogenology.2013.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 11/22/2022]
Abstract
The effect of cryopreservation on the protein phosphorylation/dephosphorylation pattern of common carp (Cyprinus carpio) sperm is described. Sperm was diluted in dimethyl sulfoxide (DMSO) and ethylene glycol (EG)-based extenders, followed by equilibration, freezing, and thawing. Proteins extracted from fresh and cryopreserved spermatozoa were separated on SDS-PAGE and two-dimensional gel electrophoresis, blotted on polyvinylidene difluoride membrane, and treated with anti-phosphotyrosine, anti-phosphothreonine, or anti-phosphoserine antibodies. For the subsequent protein identification we used matrix-associated laser desorption/ionization time-of-flight mass spectrometry. The results demonstrated that cryopreservation with either DMSO or EG extender significantly altered the phosphorylation state of sperm proteins on tyrosine or threonine residues. A dramatic decrease in tyrosine phosphorylation was detected in the cryopreservation procedures with DMSO extender. Endoplasmin, transketolase, and S-adenosylhomocysteine hydrolase were identified as proteins that play a key role in cellular stress responses and oxidation and/or reduction reactions. Results indicate that the phosphorylation and/or dephosphorylation modifications of sperm proteins that occur during cryopreservation could stimulate a series of biochemical effects interfering with spermatozoa function and leading to a loss of motility and fertilization ability. Our findings indicated that use of EG extender provided superior protein preservation during sperm storage.
Collapse
|
25
|
Sarkis M, Tran DN, Kolb S, Miteva MA, Villoutreix BO, Garbay C, Braud E. Design and synthesis of novel bis-thiazolone derivatives as micromolar CDC25 phosphatase inhibitors: Effect of dimerisation on phosphatase inhibition. Bioorg Med Chem Lett 2012; 22:7345-50. [DOI: 10.1016/j.bmcl.2012.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 01/26/2023]
|
26
|
Nakipova OV, Chumaeva NA, Andreeva LA, Anufriev AI, Kukushkin NI. Possible reasons for the variability of the inotropic insulin effect in papillary muscles of ground squirrel myocardium. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
|
27
|
Evren S, Ma XZ, Sakac D, Branch DR. SHP-1 protein tyrosine phosphatase associates with the adaptor protein CrkL. Exp Hematol 2012; 40:1055-9. [PMID: 22960265 DOI: 10.1016/j.exphem.2012.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2012] [Revised: 07/26/2012] [Accepted: 08/14/2012] [Indexed: 11/26/2022]
Abstract
SHP-1, encoded by the PTPN6 gene, is a protein tyrosine phosphatase with two src-homology-2 (SH2) domains that is implicated as providing suppression of hematopoietic malignancies. A number of reports have shown protein-protein interactions between SHP-1 SH2 domains and tyrosine-phosphorylated proteins. However, despite its having three proline-rich, potential SH3-binding motifs, no reports of protein-protein interactions through src-homology-3 (SH3)-binding domains with SHP-1 have been described. Herein we show that the SH3 domain-containing CT10 regulator of kinase-like (CrkL) adaptor protein associates with SHP-1. We also provide results that suggest this association is due to CrkL binding to PxxP domains located at amino acid residues 158-161 within the SHP-1 C-terminal SH2 domain, and amino acid residues 363-366 within its phosphatase domain. This study is the first to identify and define an interaction between SHP-1 and an SH3 domain-containing protein. Our findings provide an alternative way that SHP-1 can be linked to potential substrates.
Collapse
Affiliation(s)
- Sevan Evren
- Cell and Molecular Biology, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Lee JU, Huang S, Lee MH, Lee SE, Ryu MJ, Kim SJ, Kim YK, Kim SY, Joung KH, Kim JM, Shong M, Jo YS. Dual specificity phosphatase 6 as a predictor of invasiveness in papillary thyroid cancer. Eur J Endocrinol 2012; 167:93-101. [PMID: 22535643 DOI: 10.1530/eje-12-0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The genetic mutations causing the constitutive activation of MEK/ERK have been regarded as an initiating factor in papillary thyroid carcinoma (PTC). The ERK-specific dual specificity phosphatase 6 (DUSP6) is part of the ERK-dependent transcriptional output. Therefore, the coordinated regulation of the activities of ERK kinases and DUSP6 may need to be reestablished to make new balances in PTC. METHODS To investigate the role of DUSP6 in the regulation of ERK1/2 (MAPK3/1)-dependent transcription, 42 benign neoplasms and 167 PTCs were retrospectively analyzed by immunohistochemistry with dideoxy sequencing to detect BRAF(V600E) mutation. RESULTS The expressions of total ERK1/2, DUSP6, c-Fos (FOS), c-Myc (MYC), cyclin D1, and PCNA were markedly increased in PTC compared with those in benign neoplasms. However, phospho-ERK1/2 was detected in only eight (4.8%) cases out of 167 PTC samples. Unexpectedly, the staining intensity and nuclear localization of ERK1/2 were not affected by the presence or absence of the BRAF(V600E) mutation. However, the expressions of c-Fos and PCNA were elevated in BRAF(V600E)-positive PTC compared with those in BRAF(V600E)-negative PTC. Interestingly, the higher staining intensities of DUSP6 were associated with the level of total ERK1/2 expression (P=0.04) and with high-risk biological features such as age (P=0.05), tumor size (P=0.01), and extrathyroidal extension (linear by linear association, P=0.02). In addition, DUSP6 silencing significantly decreased the cell viability and migration rate of FRO cells. CONCLUSIONS The coordinated upregulation of total ERK1/2 and its phosphatase, DUSP6, is related to bare detection of phospho-ERK1/2 in PTC regardless of BRAF(V)(600E) mutation status. A link between DUSP6 expression and high-risk features of PTC suggested that DUSP6 is an important independent factor affecting the signaling pathways in established PTC.
Collapse
Affiliation(s)
- Jung Uee Lee
- Department of Pathology, St Mary's Hospital, Catholic University of Korea, 64 Daeheung-ro, Chungku Daejeon 301-723, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sobhia ME, Paul S, Shinde R, Potluri M, Gundam V, Kaur A, Haokip T. Protein tyrosine phosphatase inhibitors: a patent review (2002 – 2011). Expert Opin Ther Pat 2012; 22:125-53. [DOI: 10.1517/13543776.2012.661414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
|
30
|
Heo JB, Yi YB, Bahk JD. Rice GDP dissociation inhibitor 3 inhibits OsMAPK2 activity through physical interaction. Biochem Biophys Res Commun 2011; 414:814-9. [PMID: 22020099 DOI: 10.1016/j.bbrc.2011.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
Abstract
GDP dissociation inhibitor (GDI) plays an essential role in regulating the state of bound nucleotides and subcellular localizations of Rab proteins. In our previous study, we showed that OsGDI3 facilitates the recycling of OsRab11 with a help of OsGAP1. In this study, we show that OsGDI3 complement the yeast sec19-1 mutant, a temperature-sensitive allele of the yeast GDI gene, suggesting that OsGDI3 is a functional ortholog of yeast GDI. To obtain further knowledge on the function of OsGDI3, candidate OsGDI3-interacting proteins were identified by yeast two-hybrid screens. OsMAPK2 is one of OsGDI3 interacting proteins from yeast two-hybrid screens and subject to further analysis. A kinase assay showed that the autophosphorylation activity of OsMAPK2 is inhibited by OsGDI3 in vitro. In addition, ectopic expressions of OsGDI3-in Arabidopsis cause reductions at the level of phosphorylated AtMPK in phosphorylation activity. Taken together, OsGDI3 functions as a negative regulator of OsMAPK2 through modulating its kinase activity.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, Republic of Korea
| | | | | |
Collapse
|
31
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
|
32
|
Kučerová Z, Muselová H, Přikryl P, Tichá M. Phosphoprotein electrophoresis in the presence of Fe(III) ions. J Sep Sci 2011; 34:1875-9. [DOI: 10.1002/jssc.201100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 11/10/2022]
|
33
|
Nishi M, Akutsu H, Masui S, Kondo A, Nagashima Y, Kimura H, Perrem K, Shigeri Y, Toyoda M, Okayama A, Hirano H, Umezawa A, Yamamoto N, Lee SW, Ryo A. A distinct role for Pin1 in the induction and maintenance of pluripotency. J Biol Chem 2011; 286:11593-603. [PMID: 21296877 DOI: 10.1074/jbc.m110.187989] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
The prominent characteristics of pluripotent stem cells are their unique capacity to self-renew and pluripotency. Although pluripotent stem cell proliferation is maintained by specific intracellular phosphorylation signaling events, it has not been well characterized how the resulting phosphorylated proteins are subsequently regulated. We here report that the peptidylprolyl isomerase Pin1 is indispensable for the self-renewal and maintenance of pluripotent stem cells via the regulation of phosphorylated Oct4 and other substrates. Pin1 expression was found to be up-regulated upon the induction of induced pluripotent stem (iPS) cells, and the forced expression of Pin1 with defined reprogramming factors was observed to further enhance the frequency of iPS cell generation. The inhibition of Pin1 activity significantly suppressed colony formation and induced the aberrant differentiation of human iPS cells as well as murine ES cells. We further found that Pin1 interacts with the phosphorylated Ser(12)-Pro motif of Oct4 and that this in turn facilitates the stability and transcriptional activity functions of Oct4. Our current findings thus uncover an atypical role for Pin1 as a putative regulator of the induction and maintenance of pluripotency via the control of phosphorylation signaling. These data suggest that the manipulation of Pin1 function could be a potential strategy for the stable induction and proliferation of human iPS cells.
Collapse
Affiliation(s)
- Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Matsuo K, Bettaieb A, Nagata N, Matsuo I, Keilhack H, Haj FG. Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B. PLoS One 2011; 6:e16446. [PMID: 21305007 PMCID: PMC3031545 DOI: 10.1371/journal.pone.0016446] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation. METHODOLOGY/PRINCIPAL FINDINGS To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells. CONCLUSIONS These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.
Collapse
Affiliation(s)
- Kosuke Matsuo
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Ahmed Bettaieb
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Naoto Nagata
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Izumi Matsuo
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Heike Keilhack
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fawaz G. Haj
- Nutrition Department, University of California Davis, Davis, California, United States of America
| |
Collapse
|
35
|
Novotna L, Emmerova T, Horak D, Kucerova Z, Ticha M. Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment. J Chromatogr A 2010; 1217:8032-40. [DOI: 10.1016/j.chroma.2010.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2010] [Revised: 08/06/2010] [Accepted: 08/23/2010] [Indexed: 11/25/2022]
|
36
|
Hassan MI, Aijaz A, Ahmad F. Structural and functional analysis of human prostatic acid phosphatase. Expert Rev Anticancer Ther 2010; 10:1055-68. [PMID: 20645695 DOI: 10.1586/era.10.46] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Prostatic acid phosphatase (PAP) is the most abundant phosphatase in human prostate tissue/secretions. It is a clinically important protein for its relevance as a biomarker of prostate carcinoma. Furthermore, it has a potential role in fertilization. We describe here most of the features of PAP including gene regulation, gene/protein structure, functions, its role in tumor progression and evolutionary features. PAP has phosphatase activity and is an extensively studied biomarker of prostate cancer. The major action of PAP is to dephosphorylate macromolecules with the help of catalytic residues (His(12) and Asp(258)) that are located in the cleft between two domains. This article will be of great interest to all those scientists who are working in the area of prostate pathophysiology.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | | |
Collapse
|
37
|
Abstract
Abstract
To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.
Collapse
|
38
|
Affiliation(s)
- P Lenormand
- Centre de Biochimie-CNRS UMR 134, Université de Nice, Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
39
|
Kwon B, Song S, Choi JY, Je YH, Kim Y. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:650-658. [PMID: 20138886 DOI: 10.1016/j.jinsphys.2010.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/04/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 05/28/2023]
Abstract
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.
Collapse
Affiliation(s)
- Bowon Kwon
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Leishmania interferes with host cell signaling to devise a survival strategy. J Biomed Biotechnol 2010; 2010:109189. [PMID: 20396387 PMCID: PMC2852600 DOI: 10.1155/2010/109189] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2009] [Revised: 10/21/2009] [Accepted: 01/28/2010] [Indexed: 01/24/2023] Open
Abstract
The protozoan parasite Leishmania spp. exists as extracellular promastigotes in its vector whereas it resides and replicates as amastigotes within the macrophages of its mammalian host. As a survival strategy, Leishmania modulates macrophage functions directly or indirectly. The direct interference includes prevention of oxidative burst and the effector functions that lead to its elimination. The indirect effects include the antigen presentation and modulation of T cell functions in such a way that the effector T cells help the parasite survive by macrophage deactivation. Most of these direct and indirect effects are regulated by host cell receptor signaling that occurs through cycles of phosphorylation and dephosphorylation in cascades of kinases and phosphatases. This review highlights how Leishmania selectively manipulates the different signaling pathways to ensure its survival.
Collapse
|
41
|
|
42
|
Jin I, Huang H, Smith B, Farley J. Protein tyrosine kinase involvement in learning-produced changes in Hermissenda type B photoreceptors. J Neurophysiol 2009; 102:3573-95. [PMID: 19812284 DOI: 10.1152/jn.90732.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Learning-correlated changes in the excitability and photoresponses of Hermissenda's ocular type B photoreceptors are mediated by reductions in two distinct K(+) currents, I(A) and I(K-Ca). The suppression of these K(+) currents has been linked to conditioning-produced activation of protein kinase C (PKC). The question of whether PKC accounts completely for the changes in excitability and K(+) currents or whether other kinase(s) are involved has received little attention. In the present experiments, we asked whether protein tyrosine kinases (PTKs) might also contribute to conditioning-produced alterations in B cells. We found that the PTK inhibitors genistein and lavendustin A greatly reduced cumulative depolarization of type B cells, a short-term correlate of associative learning. This disruption occurred even when PKC activation had been either occluded by preexposure of type B cells to a phorbol ester or otherwise prevented by the pseudosubstrate inhibitor peptide PKC[19-31]. PTK inhibitors also increased the amplitude of the transient (I(A)) and delayed (I(Delayed)) components of voltage-dependent K(+) current that have previously been shown to be selectively reduced by conditioning and to contribute to cumulative depolarization. Genistein partially prevented the reduction of I(A) and I(Delayed) due to in vitro conditioning and blocked the changes in their voltage dependencies. Ionophoresis of pervanadate ion, a potent inhibitor of protein tyrosine phosphatases, depolarized type B photoreceptors and occluded conditioning-produced cumulative depolarization. Pervanadate also suppressed I(A) and I(Delayed), reduced their voltage dependence, and altered inactivation kinetics for I(A), mimicking conditioning. Western blot analysis using a phosphotyrosine antibody indicated that conditioning increased the phosphotyrosine content of many proteins within the Hermissenda CNS. Collectively, our results suggest that in addition to PKC, one or more PTKs play an important role in conditioning-produced changes in type B cell excitability. PTKs and PKCs converge to effect reductions in B cell K(+) currents during conditioning, apparently through distinct biophysical mechanisms.
Collapse
Affiliation(s)
- Iksung Jin
- Program in Neuroscience, Indiana University, Bloomington, IN 47405-7007, USA
| | | | | | | |
Collapse
|
43
|
Sustrova B, Novotna L, Kucerova Z, Ticha M. Immobilization of α-chymotrypsin to magnetic particles and their use for proteolytic cleavage of porcine pepsin A. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
44
|
Vazquez J, Hall SC, Greco MA. Protein expression is altered during spontaneous sleep in aged Sprague Dawley rats. Brain Res 2009; 1298:37-45. [PMID: 19729003 DOI: 10.1016/j.brainres.2009.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2009] [Revised: 07/28/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
Age-related changes in brain function include those affecting learning, memory, and sleep-wakefulness. Sleep-wakefulness is an essential behavior that results from the interaction of multiple brain regions, peptides, and neurotransmitters. The biological function(s) of sleep, however, remains unknown due to a paucity of information available at the cellular level. Aged rats exhibit alterations in the circadian and homeostatic influences associated with sleep-wake regulation. We recently showed that alterations in cortical profiles occur after timed bouts of spontaneous sleep in young rats. Examination of the cellular response to sleep-wake in old rats may thus provide insight(s) into the biological function(s) of sleep. To test this hypothesis, we monitored cortical profiles in the frontal cortex of young and old Sprague-Dawley rats after timed bouts of spontaneous sleep-wake behavior. Proteins were separated by two-dimensional electrophoresis (2-DE), visualized by fluorescent staining, imaged, and analyzed as a function of behavioral state and age. Old rats showed a 6-fold increase in total protein expression, independent of the behavioral state at sacrifice. When analyzed according to age and behavioral state, there was a decrease (approximately 46%) in the number of phospho-spots present during SWS in aged animals. SWS-associated spots present only in old animals were associated with multiple functions including vesicular transport, cell signaling, oxidation state, cytoskeletal support, and energy metabolism. These data suggest that the intracellular response to the signaling associated with spontaneous sleep is affected by age and is consistent with the idea that the ability of sleep to fulfill its function(s) may become diminished with age.
Collapse
Affiliation(s)
- Jacqueline Vazquez
- Behavioral Biochemistry Laboratory, Biosciences Division, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | |
Collapse
|
45
|
González-Fernández L, Ortega-Ferrusola C, Macias-Garcia B, Salido G, Peña F, Tapia J. Identification of Protein Tyrosine Phosphatases and Dual-Specificity Phosphatases in Mammalian Spermatozoa and Their Role in Sperm Motility and Protein Tyrosine Phosphorylation1. Biol Reprod 2009; 80:1239-52. [DOI: 10.1095/biolreprod.108.073486] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022] Open
|
46
|
Vasicek LA, Wilson JJ, Brodbelt JS. Improved infrared multiphoton dissociation of peptides through N-terminal phosphonite derivatization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:377-384. [PMID: 19027323 DOI: 10.1016/j.jasms.2008.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/14/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 05/27/2023]
Abstract
A strategy for improving the sequencing of peptides by infrared multiphoton dissociation (IRMPD) in a linear ion trap mass spectrometer is described. We have developed an N-terminal derivatization reagent, 4-methylphosphonophenylisothiocyanate (PPITC), which allows the attachment of an IR-chromogenic phosphonite group to the N-terminus of peptides, thus enhancing their IRMPD efficiencies. After the facile derivatization process, the PPITC-modified peptides require shorter irradiation times for efficient IRMPD and yield extensive series of y ions, including those of low m/z that are not detected upon traditional CID. The resulting IRMPD mass spectra afford more complete sequence coverage for both model peptides and tryptic peptides from cytochrome c. We compare the effectiveness of this derivatization/IRMPD approach to that of a common N-terminal sulfonation reaction that utilizes 4-sulfophenylisothiocyanate (SPITC) in conjunction with CID and IRMPD.
Collapse
Affiliation(s)
- Lisa A Vasicek
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
47
|
Vazquez J, Hall SC, Witkowska HE, Greco MA. Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J Cell Biochem 2008; 105:1472-84. [DOI: 10.1002/jcb.21970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
|
48
|
Striatal-enriched protein tyrosine phosphatase regulates dopaminergic neuronal development via extracellular signal-regulated kinase signaling. Exp Neurol 2008; 214:69-77. [DOI: 10.1016/j.expneurol.2008.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2008] [Revised: 07/04/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022]
|
49
|
Li Z, Wang C, Xia Y. Isolation of two Locust protein targets of a protein tyrosine phosphatase from Metarhizium anisopliae strain CQMa102. J Invertebr Pathol 2008; 99:151-5. [DOI: 10.1016/j.jip.2008.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2008] [Revised: 05/07/2008] [Accepted: 07/16/2008] [Indexed: 11/16/2022]
|
50
|
Novotna L, Hruby M, Benes MJ, Kucerova Z. Immobilized Metal Affinity Chromatography of Phosphorylated Proteins Using High Performance Sorbents. Chromatographia 2008. [DOI: 10.1365/s10337-008-0727-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
|