1
|
Yanykin D, Sundyreva M, Khorobrykh A, Semenova G, Savchenko T. Functional characterization of the corticular photosynthetic apparatus in grapevine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148260. [PMID: 32679044 DOI: 10.1016/j.bbabio.2020.148260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022]
Abstract
A comparative analysis of functional characteristics of the grapevine leaf photosynthetic apparatus (LPA) and corticular photosynthetic apparatus (CPA) in chlorenchyma tissues of first-year lignified vine was performed. Obtained results demonstrate significant differences between the functional properties of the CPA and the LPA. CPA contains an increased proportion (about 2/3) of QB-non-reducing centers of photosystem II (PSII) that is confirmed by elevated O-J phase in fluorescence kinetics, high PSIIβ content, and slower QA-• reoxidation. CPA and LPA use different strategies to utilize absorbed light energy and to protect itself against excessive light. CPA dissipates a significant proportion of absorbed light energy as heat (regulated and non-regulated dissipation), and only a smaller part of the excitation energy is used in the dark stages of photosynthesis. The rate constant of photoinhibition and fluorescence quenching due to photoinhibition in CPA is almost three times higher than in LPA, while high-energy state fluorescence quenching value is twice lower. The saturation of vine chlorenchyma tissue with water increases the CPA tolerance to photoinhibition and promotes the ability to restore the photosynthetic activity after photoinhibition. The electron microscopy analysis confirmed the presence of intact plastids in vine chlorenchyma tissue, the interior space of plastids is filled with large starch grains while bands of stacked thylakoid membranes are mainly localized on the periphery. Analyzes showed that corticular plastids are specialized organelles combining features of chloroplasts, amyloplasts and gerontoplasts. Distinct structural organization of photosynthetic membranes and microenvironment predetermine distinctive functional properties of CPA.
Collapse
Affiliation(s)
- D Yanykin
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region 142290, Russia
| | - M Sundyreva
- Federal State Budgetary Scientific Institution North Caucasian Regional Research Institute of Horticulture and Viticulture, Krasnodar 350072, Russia
| | - A Khorobrykh
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region 142290, Russia
| | - G Semenova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, 142290, Russia
| | - T Savchenko
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
2
|
Gerland L, Friedrich D, Hopf L, Donovan EJ, Wallmann A, Erdmann N, Diehl A, Bommer M, Buzar K, Ibrahim M, Schmieder P, Dobbek H, Zouni A, Bondar A, Dau H, Oschkinat H. pH-Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes. Chembiochem 2020; 21:1597-1604. [PMID: 31930693 PMCID: PMC7318136 DOI: 10.1002/cbic.201900739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/11/2022]
Abstract
Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen-evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn4 CaO5 cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pKa values of water-accessible aspartate and glutamate side-chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pKa values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH-dependent changes in backbone chemical shifts in the area of the lumen-exposed loops are observed, indicating conformational changes. In conclusion, we present a site-specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis.
Collapse
Affiliation(s)
- Lisa Gerland
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Linus Hopf
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Eavan J. Donovan
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Arndt Wallmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Natalja Erdmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Martin Bommer
- Max-Delbrück-Centrum für Molekulare MedizinRobert-Rössle-Strasse 1013125BerlinGermany
| | - Krzysztof Buzar
- Freie Universität BerlinDepartment of Physics, Theoretical Molecular BiophysicsArnimallee 1414195BerlinGermany
| | - Mohamed Ibrahim
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Holger Dobbek
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Athina Zouni
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Ana‐Nicoleta Bondar
- Freie Universität BerlinDepartment of Physics, Theoretical Molecular BiophysicsArnimallee 1414195BerlinGermany
| | - Holger Dau
- Freie Universität BerlinDepartment of Physics, Biophysics and PhotosynthesisArnimallee 1414195BerlinGermany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| |
Collapse
|
3
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
4
|
Ciniciato GPMK, Ng FL, Phang SM, Jaafar MM, Fisher AC, Yunus K, Periasamy V. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells. Sci Rep 2016; 6:31193. [PMID: 27502051 PMCID: PMC4977534 DOI: 10.1038/srep31193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 11/09/2022] Open
Abstract
Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.
Collapse
Affiliation(s)
- Gustavo P M K Ciniciato
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia.,Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Fong-Lee Ng
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia.,Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia.,Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhammad Musoddiq Jaafar
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Kamran Yunus
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Vengadesh Periasamy
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Stirbet A, Riznichenko GY, Rubin AB, Govindjee. Modeling chlorophyll a fluorescence transient: relation to photosynthesis. BIOCHEMISTRY (MOSCOW) 2015; 79:291-323. [PMID: 24910205 DOI: 10.1134/s0006297914040014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To honor Academician Alexander Abramovitch Krasnovsky, we present here an educational review on the relation of chlorophyll a fluorescence transient to various processes in photosynthesis. The initial event in oxygenic photosynthesis is light absorption by chlorophylls (Chls), carotenoids, and, in some cases, phycobilins; these pigments form the antenna. Most of the energy is transferred to reaction centers where it is used for charge separation. The small part of energy that is not used in photochemistry is dissipated as heat or re-emitted as fluorescence. When a photosynthetic sample is transferred from dark to light, Chl a fluorescence (ChlF) intensity shows characteristic changes in time called fluorescence transient, the OJIPSMT transient, where O (the origin) is for the first measured minimum fluorescence level; J and I for intermediate inflections; P for peak; S for semi-steady state level; M for maximum; and T for terminal steady state level. This transient is a real signature of photosynthesis, since diverse events can be related to it, such as: changes in redox states of components of the linear electron transport flow, involvement of alternative electron routes, the build-up of a transmembrane pH gradient and membrane potential, activation of different nonphotochemical quenching processes, activation of the Calvin-Benson cycle, and other processes. In this review, we present our views on how different segments of the OJIPSMT transient are influenced by various photosynthetic processes, and discuss a number of studies involving mathematical modeling and simulation of the ChlF transient. A special emphasis is given to the slower PSMT phase, for which many studies have been recently published, but they are less known than on the faster OJIP phase.
Collapse
Affiliation(s)
- A Stirbet
- 204 Anne Burras Lane, Newport News, VA 23606, USA.
| | | | | | - Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Physiological and Photomorphogenic Effects of Light on Marine Macrophytes. ECOLOGICAL STUDIES 2012. [DOI: 10.1007/978-3-642-28451-9_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Heinze I, Dau H. The pH-dependence of the photosystem II fluorescence: Cooperative transition to a quenching state. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Dau H, Zaharieva I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 2009; 42:1861-70. [PMID: 19908828 DOI: 10.1021/ar900225y] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation, photoinhibitory, protective, and repair processes. The overpotential for catalysis of water oxidation at the Mn(4)Ca complex of PSII may be as low as 0.3 V. To address the specific energetics of water oxidation at the Mn complex of PSII, we propose a new conceptual framework that will facilitate quantitative considerations on the basis of oxidation potentials and pK values. In conclusion, photosynthetic water oxidation works at high efficiency and thus can serve as both an inspiring model and a benchmark in the development of future technologies for production of solar fuels.
Collapse
Affiliation(s)
- Holger Dau
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Ivelina Zaharieva
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
9
|
Malenovský Z, Mishra KB, Zemek F, Rascher U, Nedbal L. Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2987-3004. [PMID: 19465688 DOI: 10.1093/jxb/erp156] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
State-of-the-art optical remote sensing of vegetation canopies is reviewed here to stimulate support from laboratory and field plant research. This overview of recent satellite spectral sensors and the methods used to retrieve remotely quantitative biophysical and biochemical characteristics of vegetation canopies shows that there have been substantial advances in optical remote sensing over the past few decades. Nevertheless, adaptation and transfer of currently available fluorometric methods aboard air- and space-borne platforms can help to eliminate errors and uncertainties in recent remote sensing data interpretation. With this perspective, red and blue-green fluorescence emission as measured in the laboratory and field is reviewed. Remotely sensed plant fluorescence signals have the potential to facilitate a better understanding of vegetation photosynthetic dynamics and primary production on a large scale. The review summarizes several scientific challenges that still need to be resolved to achieve operational fluorescence based remote sensing approaches.
Collapse
Affiliation(s)
- Zbynek Malenovský
- Remote Sensing Laboratories, Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Belyaeva NE, Schmitt FJ, Steffen R, Paschenko VZ, Riznichenko GY, Chemeris YK, Renger G, Rubin AB. PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns-10 s on dark-adapted Chlorella pyrenoidosa cells. PHOTOSYNTHESIS RESEARCH 2008; 98:105-19. [PMID: 18937044 DOI: 10.1007/s11120-008-9374-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 09/24/2008] [Indexed: 05/24/2023]
Abstract
The set up described in Steffen et al. (Biochemistry 40:173-180, 2001) was used to monitor in the time domain from 100 ns to 10 s single turnover flash-induced transients of the normalized fluorescence yield (SFITFY) on dark-adapted cells of the thermophilic algae Chlorella pyrenoidosa Chick. Perfect data fit was achieved within the framework of a previously proposed model for the PS II reaction pattern (Lebedeva et al., Biophysics 47:968-980, 2002; Belyaeva et al., Biophysics 51:860-872, 2006) after its modification by taking into account nonradiative decay processes including nonphotochemical quenching due to time-dependent populations of P680(+*) and (3)Car. On the basis of data reported in the literature, a consistent set of rate constants was obtained for electron transfer at the donor and acceptor sides of PS II, pH in lumen and stroma, the initial redox state of plastoquinone pool and the rate of plastoquinone oxidation. The evaluation of the rate constant values of dissipative processes due to quenching by carotenoid triplets in antennae and P680(+*)Q(A)(-*) recombination as well as the initial state populations after excitation with a single laser flash are close to that outlined in (Steffen et al., Biochemistry 44:3123-3133, 2005a). The simulations based on the model of the PS II reaction pattern provide information on the time courses of population probabilities of different PS II states. We analyzed the maximum (F(m)(STF)) and minimum (F(0)) of the normalized FL yield dependence on the rate of the recombination processes (radiative and dissipative nonradiative) and of P680(+*) reduction. The developed PS II model provides a basis for theoretical comparative analyses of time-dependent fluorescence signals, observed at different photosynthetic samples under various conditions (e.g. presence of herbicides, other stress conditions, excitation with actinic pulses of different intensity, and duration).
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dai F, Zhou M, Zhang G. The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:915-21. [PMID: 17977737 DOI: 10.1016/j.plaphy.2007.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Indexed: 05/03/2023]
Abstract
The change of chlorophyll fluorescence parameters in froze leaves of 3 leaf-age seedlings were examined using two winter barley cultivars (Chumai 1 and Mo 103) differing in cold tolerance to investigate physiological response to low temperature as affected by cold acclimation (under 3/1 degrees C, day/night for 5 days before freezing treatment) and irradiation size (high irradiance: 380+/-25 micromol m(-2)s(-1) and low irradiance: 60+/-25 micromol m(-2)s(-1)) during recovery. The results showed that non-lethal freezing shock (exposed to -8 degrees C for 18 h) did not obviously affect maximum quantum efficiency in photosystem II (PSII), but dramatically increased non-photochemical quenching and reduced effective quantum yield in PSII. Cold acclimation significantly improved stability of photosynthetic function of leaves after freezing stress through buffering excessive energy and alleviating photoinhibition during recovery, indicating it increased recovery ability of barley plants from freezing injury. High irradiance was quite harmful to the stability of PSII in barley plants during recovery from freezing injury. The electron transport rate of PSII varied with cold-acclimation, irradiance and genotype. Cold acclimation caused significant increase in electron transport rate of PSII for relatively tolerant cultivar Mo 103, but not for relatively sensitive cultivar Chumai 1. It can be concluded that some chlorophyll fluorescence parameters during recovery from freezing shock may be used as the indicators in identification and evaluation of cold tolerance in barley.
Collapse
Affiliation(s)
- Fei Dai
- Agronomy Department, Huajia Chi Campus, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
12
|
Grabolle M, Dau H. Efficiency and role of loss processes in light-driven water oxidation by PSII. PHYSIOLOGIA PLANTARUM 2007; 131:50-63. [PMID: 18251924 DOI: 10.1111/j.1399-3054.2007.00941.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Its superior quantum efficiency renders PSII a model for biomimetic systems. However, also in biological water oxidation by PSII, the efficiency is restricted by recombination losses. By laser-flash illumination, the secondary radical pair, P680(+)Q(-) (A) (where P680 is the primary Chl donor in PSII and Q(A), primary quinone acceptor of PSII), was formed in close to 100% of the PSII. Investigation of the quantum efficiency (or yield) of the subsequent steps by time-resolved delayed (10 micros to 60 ms) and prompt (70 micros to 700 ms) Chl fluorescence measurements on PSII membrane particles suggests that (1) the effective rate for P680(+) Q(-) (A) recombination is approximately 5 ms(-1) with an activation energy of approximately 0.34 eV, circumstantially confirming dominating losses by reformation of the primary radical pair followed by ground-state recombination. (2) Because of compensatory influences on recombination and forward reactions, the efficiency is only weakly temperature dependent. (3) Recombination losses are several-fold enhanced at lower pH. (4) Calculation based on delayed-fluorescence data suggests that the losses depend on the state of the water-oxidizing manganese complex, being low in the S(0)-->S(1) and S(1)-->S(2) transition, clearly higher in S(2)-->S(3) and S(3)-->S(4)-->S(0). (5) For the used artificial electron acceptor, the efficiency is limited by acceptor-side processes/S-state decay at high/low photon-absorption rates resulting in optimal efficiency at surprisingly low rates of approximately 0.15-15 photons s(-1) (per PSII). The pH and S-state dependence can be rationalized by the basic model of alternate electron-proton removal proposed elsewhere. A physiological function of the recombination losses could be limitation of the lifetime of the reactive donor-side tyrosine radical (Y(.) (Z)) in the case of low-pH blockage of water oxidation.
Collapse
Affiliation(s)
- Markus Grabolle
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | | |
Collapse
|
13
|
Krivanek R, Kern J, Zouni A, Dau H, Haumann M. Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:520-7. [PMID: 17397795 DOI: 10.1016/j.bbabio.2007.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/13/2007] [Accepted: 02/19/2007] [Indexed: 11/25/2022]
Abstract
The recent crystallographic structure at 3.0 A resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone Q(B). The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O(2) evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of Q(A) and Q(B) were found in the crystallized PSII. We propose that the extra quinones are located in the Q(B) cavity and serve as a PSII intrinsic pool of electron acceptors.
Collapse
Affiliation(s)
- Roland Krivanek
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
14
|
Dewez D, Eullaffroy P, Popovic R, Juneau P. Rapid Chlorophyll a Fluorescence Transients of Lemna minor Leaves as Indication of Light and Exogenous Electron Carriers Effect on Photosystem II Activity. Photochem Photobiol 2007; 83:714-21. [PMID: 17076544 DOI: 10.1562/2006-08-08-ra-999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By using saturating flash, we investigated the change in the rapid fluorescence rise when Lemna minor leaf was exposed to different light conditions and treated with exogenous electron acceptors (methyl viologen and duroquinone) and electron donor (hydroxylamine). Investigation was carried out by using combined pulse amplitude modulated fluorometer and plant efficiency analyzer system, which were employed simultaneously to provide different light conditions and to induce rapid fluorescence rise respectively. We have shown that when leaf of L. minor was exposed to different conditions of illumination, rapid fluorescence rise was greatly influenced by the electron transport functions beyond quinone A-plastoquinone reduction. This was indicated by the change in both fluorescence yield and appearance time of the different transients. When exogenous electron donor (hydroxylamine) and acceptors (methyl viologen and duroquinone) were applied in in vivo condition, we showed that rapid fluorescence rise represented a reliable indicator of PSII-PSI electron transport state and energy dissipation process.
Collapse
Affiliation(s)
- D Dewez
- Department of Chemistry-TOXEN, University of Quebec in Montreal, Succ. Centre-Ville, Montreal, QC, Canada
| | | | | | | |
Collapse
|
15
|
Navakoudis E, Vrentzou K, Kotzabasis K. A polyamine- and LHCII protease activity-based mechanism regulates the plasticity and adaptation status of the photosynthetic apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:261-71. [PMID: 17395150 DOI: 10.1016/j.bbabio.2007.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 01/22/2007] [Accepted: 02/08/2007] [Indexed: 11/22/2022]
Abstract
In the present study we aim to dissect the basis of the polyamine mode of action in the structure and function of the photosynthetic apparatus. Although the modulating effects of polyamines in photosynthesis have been reported since long [K. Kotzabasis, A role for chloroplast-associated polyamines? Bot. Acta 109 (1996) 5-7], the underlying mechanisms remained until today largely unknown. The diamine putrescine was employed in this study, by being externally added to Scenedesmus obliquus cultures acclimated to either low or high light conditions. The results revealed the high efficiency by which putrescine can alter the levels of the major photosynthetic complexes in a concerted manner inducing an overall structure and function of the photosynthetic apparatus similar to that under higher light conditions. The revealed mechanism for this phenomenon involves alterations in the level of the polyamines putrescine and spermine which are bound to the photosynthetic complexes, mainly to the LHCII oligomeric and monomeric forms. In vitro studies point out to a direct impact of the polyamines on the autoproteolytic degradation of LHCII. Concomitantly to the reduction of the LHCII size, exogenously supplied putrescine, induces the reaction centers' density and thus the photosynthetic apparatus is adjusted as if it was adapted to higher light conditions. Thus polyamines, through LHCII, play a crucial role in the regulation of the photosynthetic apparatus' photoadaptation. The protective role of polyamines on the photosynthetic apparatus under various environmental stresses is also discussed in correlation to this phenomenon.
Collapse
Affiliation(s)
- Eleni Navakoudis
- Department of Biology, University of Crete, PO Box 2208, 71409 Heraklion, Crete, Greece
| | | | | |
Collapse
|
16
|
Krupenina NA, Bulychev AA. Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:781-8. [PMID: 17300741 DOI: 10.1016/j.bbabio.2007.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/26/2006] [Accepted: 01/05/2007] [Indexed: 11/30/2022]
Abstract
This study deals with effects of membrane excitation on photosynthesis and cell protection against excessive light, manifested in non-photochemical quenching (NPQ). In Chara corallina cells, NPQ and pericellular pH displayed coordinated spatial patterns along the length of the cell. The NPQ values were lower in H(+)-extruding cell regions (external pH approximately 6.5) than in high pH regions (pH approximately 9.5). Generation of an action potential by applying a pulse of electric current caused NPQ to increase within 30-60 s. This effect, manifested as a long-lived drop of maximum chlorophyll fluorescence (F(m)'), occurred at lower photosynthetic flux densities (PFD) in the alkaline as compared to acidic cell regions. The light response curve of NPQ shifted, after generation of an action potential, towards lower PFD. The release of NPQ by nigericin and the rapid reversal of action potential-triggered NPQ in darkness indicate its relation to thylakoid DeltapH. Generation of an action potential shortly after darkening converted the chloroplasts into a latent state with the F(m) identical to that of unexcited cells. This state transformed to the quenched state after turning on weak light that was insufficient for NPQ prior to membrane excitation of the cells. The ionophore, A23187, shifted NPQ plots similarly to the action potential effect, consistent with a likely role of a rise in the cytosolic Ca(2+) level in the action potential-induced quenching. The results suggest that a rapid electric signal, across the plasma membrane, might exert long-lived effects on photosynthesis and chlorophyll fluorescence through ion flux-mediated pathways.
Collapse
Affiliation(s)
- Natalia A Krupenina
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
17
|
Papadakis IA, Kotzabasis K, Lika K. A cell-based model for the photoacclimation and CO(2)-acclimation of the photosynthetic apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:250-61. [PMID: 15953481 DOI: 10.1016/j.bbabio.2005.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 02/28/2005] [Accepted: 03/03/2005] [Indexed: 11/29/2022]
Abstract
We have developed a mathematical model based on the underlying mechanisms concerning the responses of the photosynthetic apparatus of a microalga cell which grows under constant incident light intensity and ambient CO(2) concentration. Photosynthesis involves light and carbon-fixation reactions which are mutually dependent and affect each other, but existing models for photosynthesis don't account for both reactions at once. Our modeling approach allows us to derive distinct equations for the rates of oxygen production, NADPH production, carbon dioxide fixation, carbohydrate production, and rejected energy, which are generally different. The production rates of the photosynthesis products are hyperbolic functions of light and CO(2) concentration. The model predicts that in the absence of photoinhibition, CO(2)-inhibition, photorespiration, and chlororespiration, a cell acclimated to high light and/or CO(2) concentration has higher photosynthetic capacity and lower photosynthetic efficiency than does a cell acclimated to low conditions. This results in crossing between the two curves which represent the oxygen production rates and carbon fixation rates in low and high conditions. Finally, in the absence of photoinhibition and CO(2)-inhibition, the model predicts the carbohydrate production rate in terms of both light intensity and CO(2) concentration.
Collapse
Affiliation(s)
- I A Papadakis
- Department of Biology, University of Crete, GR-71409, Heraklion, Crete, Greece.
| | | | | |
Collapse
|
18
|
Bulychev AA, Kamzolkina NA, Luengviriya J, Rubin AB, Müller SC. Effect of a Single Excitation Stimulus on Photosynthetic Activity and Light-dependent pH Banding in Chara Cells. J Membr Biol 2004; 202:11-9. [PMID: 15702376 DOI: 10.1007/s00232-004-0716-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 09/17/2004] [Indexed: 10/25/2022]
Abstract
Using pH microelectrodes and a Microscopy PAM (pulse-amplitude modulated) chlorophyll fluorometer, it is shown that a propagation of an action potential in Chara corallina leads to transient suppression of spatially periodic pH profiles along the illuminated cell. The suppression was manifested as a large pH decrease in the alkaline zones and a slight pH increase in the acid zones. The propagating action potential diminished the maximum yield of chlorophyll fluorescence (F(m)') in the alkaline cell regions, as well as the quantum yield of photosystem II photochemistry, without affecting F(m)' in the acid cell regions. The results indicate an interference of membrane excitation in the mechanisms responsible for pH banding patterns in Characean algae. Apparently, the electrical excitation of the plasma membrane in the alkaline cell regions initiates a pathway that can modulate membrane events at the thylakoid membrane.
Collapse
Affiliation(s)
- A A Bulychev
- Biophysics Department, Faculty of Biology, Moscow State University, Moscow, 119899, Russia
| | | | | | | | | |
Collapse
|
19
|
Moise N, Moya I. Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1657:33-46. [PMID: 15238210 DOI: 10.1016/j.bbabio.2004.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 03/17/2004] [Accepted: 04/01/2004] [Indexed: 11/20/2022]
Abstract
The relationship between the fluorescence lifetime (tau) and yield (Phi) obtained in phase and modulation fluorometry at 54 MHz during the chlorophyll fluorescence induction in dark-adapted leaves under low actinic light has been investigated. Three typical phases have been identified: (i) linear during the OI photochemical rise, (ii) convex curvature during the subsequent IP thermal rise, and (iii) linear during the PS slow decay. A similar relationship has been obtained in the fluorescence induction for the fluorescence yield measured at 685 nm plotted versus the fluorescence yield measured at 735 nm. A spectrally resolved analysis shows that the curvature of the tau-Phi relationship is not due to chlorophyll fluorescence reabsorption effects. Several other hypotheses are discussed and we conclude that the curvature of the tau-Phi relationship is due to a variable and transitory nonphotochemical quenching. We tentatively propose that this quenching results from a conformational change of a pigment-protein complex of Photosystem II core antenna during the IP phase and could explain both spectral and temporal transitory changes of the fluorescence. A variable blue shift of the 685 nm peak of the fluorescence spectrum during the IP phase has been observed, supporting this hypothesis.
Collapse
Affiliation(s)
- Nicolae Moise
- Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Centre Universitaire Paris-Sud, Bat. 209D, 91898 Orsay, France.
| | | |
Collapse
|
20
|
Beutler M, Wiltshire KH, Arp M, Kruse J, Reineke C, Moldaenke C, Hansen UP. A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:33-46. [PMID: 12686419 DOI: 10.1016/s0005-2728(03)00022-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluorometric determination of the chlorophyll (Chl) content of cyanobacteria is impeded by the unique structure of their photosynthetic apparatus, i.e., the phycobilisomes (PBSs) in the light-harvesting antennae. The problems are caused by the variations in the ratio of the pigment PC to Chl a resulting from adaptation to varying environmental conditions. In order to include cyanobacteria in fluorometric analysis of algae, a simplified energy distribution model describing energy pathways in the cyanobacterial photosynthetic apparatus was conceptualized. Two sets of mathematical equations were derived from this model and tested. Fluorescence of cyanobacteria was measured with a new fluorometer at seven excitation wavelength ranges and at three detection channels (650, 685 and 720 nm) in vivo. By employing a new fit procedure, we were able to correct for variations in the cyanobacterial fluorescence excitation spectra and to account for other phytoplankton signals. The effect of energy-state transitions on the PC fluorescence emission of PBSs was documented. The additional use of the PC fluorescence signal in combination with our recently developed mathematical approach for phytoplankton analysis based on Chl fluorescence spectroscopy allows a more detailed study of cyanobacteria and other phytoplankton in vivo and in situ.
Collapse
Affiliation(s)
- M Beutler
- Max-Planck-Institut (MPI) für Limnologie, Plön, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Pospísil P, Dau H. Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:94-100. [PMID: 12034474 DOI: 10.1016/s0005-2728(02)00216-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon sudden exposure of plants to an actinic light of saturating intensity, the yield of chlorophyll fluorescence increases typically by 200-400% of the initial O-level. At least three distinct phases of these O-J-I-P transients can be resolved: O-J (0.05-5 ms), J-I (5-50 ms), and I-P (50-1000 ms). In thylakoid membranes, the J-I increase accounts for approximately 30% of the total fluorescence increase; in Photosystem II membranes, the J-I phase is always lacking. In the presence of the ionophore valinomycin, which is known to inhibit specifically the formation of membrane voltages, the magnitude of the J-I phase is clearly diminished; in the presence of valinomycin supplemented by potassium, the J-I phase is fully suppressed. We conclude that the light-driven formation of the thylakoid-membrane voltage results in an increase of the chlorophyll excited-state lifetime, a phenomenon explainable by the electric-field-induced shift of the free-energy level of the primary radical pair [Dau and Sauer, Biochim. Biophys. Acta 1102 (1992) 91]. The assignment of the J-I increase in the fluorescence yield enhances the potential of using O-J-I-P fluorescence transients for investigations on photosynthesis in intact organisms. A putative role of thylakoid voltages in protection of PSII against photoinhibitory damage is discussed.
Collapse
Affiliation(s)
- Pavel Pospísil
- FB Physik, Freie Universität Berlin, Arminallee 14, D-14195 -Dahlem, Berlin, Germany
| | | |
Collapse
|
22
|
|
23
|
Janssen M, de Winter M, Tramper J, Mur LR, Snel J, Wijffels RH. Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol 2000; 78:123-37. [PMID: 10725536 DOI: 10.1016/s0168-1656(99)00233-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The light regime inside a photobioreactor is characterized by a light gradient with full (sun)light at the light-exposed surface and darkness in the interior of the bioreactor. Consequently, depending on the mixing characteristics, algae will be exposed to certain light/dark cycles. In this study the green alga Chlamydomonas reinhardtii was cultivated under five different light regimes: (1) continuous illumination; (2) a square-wave light/dark cycle with a light fraction (epsilon) of 0.5 and a duration (t(c)) of 6.1 s; (3) epsilon=0.5, t(c)=14.5 s; (4) epsilon=0.5, t(c)=24.3 s and (5) epsilon=0.8, t(c)=15.2 s. The biomass yield on light energy, protein per photons, decreased under light/dark cycles (epsilon=0. 5) in comparison to continuous light (CL), from 0.207 (CL) to 0.117-0.153 g mol(-1) (epsilon=0.5). Concomitantly, the maximal specific photosynthetic activity, oxygen production per protein, decreased from 0.94 (CL) to 0.64-0.66 g g(-1) h(-1) (epsilon=0.5). Also the quantum yield of photochemistry, yield of the conversion of light energy into chemical energy, decreased from 0.47 (CL) to 0. 23 (epsilon=0.5, t(c)=24.3 s). Apparently, C. reinhardtii is not able to maintain a high photosynthetic capacity under medium-duration light/dark cycles and since specific light absorption did not change, light utilization efficiency decreased in comparison to continuous illumination.
Collapse
Affiliation(s)
- M Janssen
- Food and Bioprocess Engineering Group, Department of Food Technology, Wageningen University, 6700 EV, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 2000; 403:391-5. [PMID: 10667783 DOI: 10.1038/35000131] [Citation(s) in RCA: 973] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosynthetic light harvesting in plants is regulated in response to changes in incident light intensity. Absorption of light that exceeds a plant's capacity for fixation of CO2 results in thermal dissipation of excitation energy in the pigment antenna of photosystem II by a poorly understood mechanism. This regulatory process, termed nonphotochemical quenching, maintains the balance between dissipation and utilization of light energy to minimize generation of oxidizing molecules, thereby protecting the plant against photo-oxidative damage. To identify specific proteins that are involved in nonphotochemical quenching, we have isolated mutants of Arabidopsis thaliana that cannot dissipate excess absorbed light energy. Here we show that the gene encoding PsbS, an intrinsic chlorophyll-binding protein of photosystem II, is necessary for nonphotochemical quenching but not for efficient light harvesting and photosynthesis. These results indicate that PsbS may be the site for nonphotochemical quenching, a finding that has implications for the functional evolution of pigment-binding proteins.
Collapse
Affiliation(s)
- X P Li
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Biswal U, Biswal B. Photosynthesis Under Stress. BOOKS IN SOILS, PLANTS, AND THE ENVIRONMENT 1999. [DOI: 10.1201/9780824746728.ch13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Schiller H, Senger H, Miyashita H, Miyachi S, Dau H. Light-harvesting in Acaryochloris marina--spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 1997; 410:433-6. [PMID: 9237677 DOI: 10.1016/s0014-5793(97)00620-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxygenic photosynthesis of the prokaryote Acaryochloris marina involves chlorophyll d (Chl d) as the major pigment [Miyashita et al. (1996) Nature 383, 402]. Four spectral forms of Chl d (peak wavelengths: 694, 714, 726 and 740 nm) are resolvable by low-temperature absorption spectroscopy on intact cells. Based on fluorescence spectra (at 290 K and 77 K) and on analysis of fluorescence induction curves we conclude: (1) excitation energy is efficiently transferred between the various spectral forms of Chl d and the PS II reaction center; (2) Chl d serves as a light-harvesting pigment for both, Photosystem II (PS II) and PS I; (3) excitation energy transfer between PS II units occurs.
Collapse
Affiliation(s)
- H Schiller
- FB Biologie/Botanik, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Wagner B, Goss R, Richter M, Wild A, Holzwarth A. Picosecond time-resolved study on the nature of high-energy-state quenching in isolated pea thylakoids different localization of zeaxanthin dependent and independent quenching mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1996. [DOI: 10.1016/s1011-1344(96)07391-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Riznichenko G, Lebedeva G, Pogosyan S, Sivchenko M, Rubin A. Fluorescence induction curves registered from individual microalgae cenobiums in the process of population growth. PHOTOSYNTHESIS RESEARCH 1996; 49:151-157. [PMID: 24271612 DOI: 10.1007/bf00117665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/1995] [Accepted: 07/11/1996] [Indexed: 06/02/2023]
Abstract
Registration of chlorophyll fluorescence induction curves (IC) from individual microalgae cenobiums was performed during Scenedesmus quadricauda culture growth. Emphasis was placed on the analysis of patterns of the slow phase of IC, since these slow fluorescence transitions reflect complex interactions between primary and secondary photosynthetic processes. A classification was performed of the ICs obtained according to the patterns of their slow phase. Four different types of such patterns were distinguished. The microalgae population structure with respect to IC patterns was investigated at different stages of culture growth. The distribution of microalgae cenobiums over the patterns of IC was found to change in accordance with the stage of population development. At the stage of the population growth enhancement, nonmonotonous IC dominated with a high steady-state level of fluorescence. The stage of linear growth was characterized by IC with monotonous decay kinetics and low steady-state level of fluorescence. At the third stage including the phases of growth inhibition, stationary state and the beginning of cell death the population structure was the most heterogeneous, with all IC patterns observed.
Collapse
Affiliation(s)
- G Riznichenko
- Department of Biophysics, Biological Faculty, Moscow Lomonosov State University, 119899, Moscow, Russia
| | | | | | | | | |
Collapse
|
30
|
Dau H. On the relation between absorption and fluorescence emission spectra of photosystems: Derivation of a Stepanov relation for pigment culsters. PHOTOSYNTHESIS RESEARCH 1996; 48:139-145. [PMID: 24271294 DOI: 10.1007/bf00041004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/1995] [Accepted: 03/01/1996] [Indexed: 06/02/2023]
Abstract
Stepanov (1957a, Soviet Physics-Doklady 2: 81-84) obtained an equation which relates the absorption spectrum and the fluorescence emission spectrum of a single dye molecule. Here, a similar equation is derived for a cluster of interacting pigments, e.g. the antenna pigments of a photosystem. This relation can be used to assess the possibility of occurrence of rapid exciton equilibration (Dau and Sauer, 1996, Biochim. Biophys. Acta, 1273: 175-190). The excited state potential of a pigment cluster is discussed and compared to the excited state potential of a single pigment.
Collapse
Affiliation(s)
- H Dau
- FB Biologie/Botanik, Philipps-Universität, D-35032, Marburg, Germany
| |
Collapse
|
31
|
Affiliation(s)
- H A Frank
- Department of Chemistry, University of Connecticut, Storrs 06269-3060, USA.
| | | |
Collapse
|
32
|
The relation between the photochemical yield and variable fluorescence of photosystem II in the green alga Scenedesmus obliquus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1996. [DOI: 10.1016/1011-1344(95)07200-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Roudyk SN, Moxhet A, Matagne RF, Aghion J. Evidence of singlet oxygen evolution by whole living cells of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 1996; 47:99-102. [PMID: 24301711 DOI: 10.1007/bf00017757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/1995] [Accepted: 11/20/1995] [Indexed: 06/02/2023]
Abstract
The oxygen evolved by Chlamydomonas reinhardtii in the light is measured simultaneously with a Clark electrode and with the nitrosodimethylaniline-imidazole colorimetric method which is specific for singlet oxygen. Experiments with wild-type and FuD7 mutant cells (unable to synthesize the D1 protein of Photosystem II), with dichlorophenyldimethylurea (which blocks electron transfer from Photosystem II to Photosystem I) and with dibromothymoquinone (which diverts electrons from their normal path between the two photosystems), as well as with hydroxylamine (an inactivator of the water-splitting part of Photosystem II and a competitor of water for electron donation to it), all point to the dependence of detected singlet oxygen on photolysis of water by Photosystem II.
Collapse
Affiliation(s)
- S N Roudyk
- Laboratory of Biochemistry, Département de Botanique (B22), University of Liège, B-4000, Liège, Belgium
| | | | | | | |
Collapse
|
34
|
|