1
|
Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration. Bioact Mater 2023; 26:1-13. [PMID: 36851912 PMCID: PMC9958404 DOI: 10.1016/j.bioactmat.2023.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Osteogenesis, osteoclastogenesis, and angiogenesis play crucial roles in bone regeneration. Parathyroid hormone (PTH), an FDA-approved drug with pro-osteogenic, pro-osteoclastogenic and proangiogenic capabilities, has been employed for clinical osteoporosis treatment through systemic intermittent administration. However, the successful application of PTH for local bone defect repair generally requires the incorporation and delivery by appropriate carriers. Though several scaffolds have been developed to deliver PTH, they suffer from the weaknesses such as uncontrollable PTH release, insufficient porous structure and low mechanical strength. Herein, a novel kind of NIR-activable scaffold (CBP/MBGS/PTHrP-2) with dual-mode PTHrP-2 (a PTH derivative) release capability is developed to synergistically promote osteogenesis and angiogenesis for high-efficacy bone regeneration, which is fabricated by integrating the PTHrP-2-loaded hierarchically mesoporous bioactive glass (MBG) into the N-hydroxymethylacrylamide-modified, photothermal agent-doped, poly(N-isopropylacrylamide)-based thermosensitive hydrogels through assembly process. Upon on/off NIR irradiation, the thermoresponsive hydrogel gating undergoes a reversible phase transition to allow the precise control of on-demand pulsatile and long-term slow release of PTHrP-2 from MBG mesopores. Such NIR-activated dual-mode delivery of PTHrP-2 by this scaffold enables a well-maintained PTHrP-2 concentration at the bone defect sites to continually stimulate vascularization and promote osteoblasts to facilitate and accelerate bone remodeling. In vivo experiments confirm the significant improvement of bone reparative effect on critical-size femoral defects of rats. This work paves an avenue for the development of novel dual-mode delivery systems for effective bone regeneration.
Collapse
|
2
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Kim CR, Cho YC, Lee SH, Han JH, Kim MJ, Ji HB, Kim S, Min CH, Shin BH, Lee C, Cho YM, Choy YB. Implantable device actuated by manual button clicks for noninvasive self-drug administration. Bioeng Transl Med 2023; 8:e10320. [PMID: 36684080 PMCID: PMC9842066 DOI: 10.1002/btm2.10320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Self-injectable therapy has several advantages in the treatment of metabolic disorders. However, frequent injections with needles impair patient compliance and medication adherence. Therefore, we develop a fully implantable device capable of on-demand administration of self-injection drugs via noninvasive manual button clicks on the outer skin. The device is designed to infuse the drug only at the moment of click actuation, which allows for an accurate and reproducible drug infusion, and also prevents unwanted drug leakage. Using a mechanical means of drug infusion, this implantable device does not contain any electronic compartments or batteries, making it compact, and semi-permanent. When tested in animals, the device can achieve subcutaneous injection-like pharmacokinetic and pharmacodynamic effects for self-injection drugs such as exenatide, insulin, and glucagon.
Collapse
Affiliation(s)
- Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Yong Chan Cho
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Seung Ho Lee
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
| | - Se‐Na Kim
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Chang Hee Min
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Byung Ho Shin
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoulSouth Korea
| | - Cheol Lee
- Department of PathologySeoul National University College of MedicineSeoulSouth Korea
| | - Young Min Cho
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
- Department of Translational Medicine, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of EngineeringSeoul National UniversitySeoulSouth Korea
- Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
4
|
Associations Between Sexual Desire and Within-Individual Testosterone and Cortisol in Men and Women. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2022. [DOI: 10.1007/s40750-022-00184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression. Cell Syst 2022; 13:353-364.e6. [PMID: 35298924 DOI: 10.1016/j.cels.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
Abstract
Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
Collapse
|
6
|
Yao B, Donoughe S, Michaux J, Munro E. Modulating RhoA effectors induces transitions to oscillatory and more wavelike RhoA dynamics in C. elegans zygotes. Mol Biol Cell 2022; 33:ar58. [PMID: 35138935 PMCID: PMC9265151 DOI: 10.1091/mbc.e21-11-0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pulsatile RhoA dynamics underlie a wide range of cell and tissue behaviors. The circuits that produce these dynamics in different cells share common architectures based on fast positive and delayed negative feedback through F-actin, but they can produce very different spatiotemporal patterns of RhoA activity. However, the underlying causes of this variation remain poorly understood. Here we asked how this variation could arise through modulation of actin network dynamics downstream of active RhoA in early C. elegans embryos. We find that perturbing two RhoA effectors - formin and anillin - induce transitions from non-recurrent focal pulses to either large noisy oscillatory pulses (formin depletion) or noisy oscillatory waves (anillin depletion). In both cases these transitions could be explained by changes in local F-actin levels and depletion dynamics, leading to changes in spatial and temporal patterns of RhoA inhibition. However, the underlying mechanisms for F-actin depletion are distinct, with different dependencies on myosin II activity. Thus, modulating actomyosin network dynamics could shape the spatiotemporal dynamics of RhoA activity for different physiological or morphogenetic functions. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Baixue Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
7
|
Johnson AN, Li G, Jashnsaz H, Thiemicke A, Kesler BK, Rogers DC, Neuert G. A rate threshold mechanism regulates MAPK stress signaling and survival. Proc Natl Acad Sci U S A 2021; 118:e2004998118. [PMID: 33443180 PMCID: PMC7812835 DOI: 10.1073/pnas.2004998118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells are exposed to changes in extracellular stimulus concentration that vary as a function of rate. However, how cells integrate information conveyed from stimulation rate along with concentration remains poorly understood. Here, we examined how varying the rate of stress application alters budding yeast mitogen-activated protein kinase (MAPK) signaling and cell behavior at the single-cell level. We show that signaling depends on a rate threshold that operates in conjunction with stimulus concentration to determine the timing of MAPK signaling during rate-varying stimulus treatments. We also discovered that the stimulation rate threshold and stimulation rate-dependent cell survival are sensitive to changes in the expression levels of the Ptp2 phosphatase, but not of another phosphatase that similarly regulates osmostress signaling during switch-like treatments. Our results demonstrate that stimulation rate is a regulated determinant of cell behavior and provide a paradigm to guide the dissection of major stimulation rate dependent mechanisms in other systems.
Collapse
Affiliation(s)
- Amanda N Johnson
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Guoliang Li
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Hossein Jashnsaz
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Alexander Thiemicke
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Benjamin K Kesler
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Dustin C Rogers
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232;
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
8
|
Sarode A, Annapragada A, Guo J, Mitragotri S. Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials 2020; 242:119929. [PMID: 32163750 DOI: 10.1016/j.biomaterials.2020.119929] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Self-assembly is a prominent phenomenon observed in nature. Inspired by this thermodynamically favorable approach, several natural and synthetic materials have been investigated to develop functional systems for various biomedical applications, including drug delivery. Furthermore, layered self-assembled systems provide added advantages of tunability and multifunctionality which are crucial for controlled and targeted drug release. Layer-by-layer (LbL) deposition has emerged as one of the most popular, well-established techniques for tailoring such layered self-assemblies. This review aims to provide a brief overview of drug delivery applications using LbL deposition, along with a discussion of associated scalability challenges, technological innovations to overcome them, and prospects for commercial translation of this versatile technique. Additionally, alternative self-assembly techniques such as metal-phenolic networks (MPNs) and Liesegang rings are also reviewed in the context of their recent utilization for controlled drug delivery. Blending the sophistication of these self-assembly phenomena with material science and technological advances can provide a powerful tool to develop smart drug carriers in a scalable manner.
Collapse
Affiliation(s)
- Apoorva Sarode
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Akshaya Annapragada
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Dincau B, Dressaire E, Sauret A. Pulsatile Flow in Microfluidic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904032. [PMID: 31657131 DOI: 10.1002/smll.201904032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
This review describes the current knowledge and applications of pulsatile flow in microfluidic systems. Elements of fluid dynamics at low Reynolds number are first described in the context of pulsatile flow. Then the practical applications in microfluidic processes are presented: the methods to generate a pulsatile flow, the generation of emulsion droplets through harmonic flow rate perturbation, the applications in mixing and particle separation, and the benefits of pulsatile flow for clog mitigation. The second part of the review is devoted to pulsatile flow in biological applications. Pulsatile flows can be used for mimicking physiological systems, to alter or enhance cell cultures, and for bioassay automation. Pulsatile flows offer unique advantages over a steady flow, especially in microfluidic systems, but also require some new physical insights and more rigorous investigation to fully benefit future applications.
Collapse
Affiliation(s)
- Brian Dincau
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Emilie Dressaire
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
10
|
Abstract
Controlling the excess and shortage of energy is a fundamental task for living organisms. Diabetes is a representative metabolic disease caused by the malfunction of energy homeostasis. The islets of Langerhans in the pancreas release long-range messengers, hormones, into the blood to regulate the homeostasis of the primary energy fuel, glucose. The hormone and glucose levels in the blood show rhythmic oscillations with a characteristic period of 5-10 min, and the functional roles of the oscillations are not clear. Each islet has [Formula: see text] and [Formula: see text] cells that secrete glucagon and insulin, respectively. These two counter-regulatory hormones appear sufficient to increase and decrease glucose levels. However, pancreatic islets have a third cell type, [Formula: see text] cells, which secrete somatostatin. The three cell populations have a unique spatial organization in islets, and they interact to perturb their hormone secretions. The mini-organs of islets are scattered throughout the exocrine pancreas. Considering that the human pancreas contains approximately a million islets, the coordination of hormone secretion from the multiple sources of islets and cells within the islets should have a significant effect on human physiology. In this review, we introduce the hierarchical organization of tripartite cell networks, and recent biophysical modeling to systematically understand the oscillations and interactions of [Formula: see text], [Formula: see text], and [Formula: see text] cells. Furthermore, we discuss the functional roles and clinical implications of hormonal oscillations and their phase coordination for the diagnosis of type II diabetes.
Collapse
Affiliation(s)
- Taegeun Song
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | |
Collapse
|
11
|
Jones SJ, Taylor AF, Beales PA. Towards feedback-controlled nanomedicines for smart, adaptive delivery. Exp Biol Med (Maywood) 2019; 244:283-293. [PMID: 30205721 PMCID: PMC6435888 DOI: 10.1177/1535370218800456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IMPACT STATEMENT The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel "chrononanomedicines."
Collapse
Affiliation(s)
- Stephen J. Jones
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Annette F. Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Kawata K, Hatano A, Yugi K, Kubota H, Sano T, Fujii M, Tomizawa Y, Kokaji T, Tanaka KY, Uda S, Suzuki Y, Matsumoto M, Nakayama KI, Saitoh K, Kato K, Ueno A, Ohishi M, Hirayama A, Soga T, Kuroda S. Trans-omic Analysis Reveals Selective Responses to Induced and Basal Insulin across Signaling, Transcriptional, and Metabolic Networks. iScience 2018; 7:212-229. [PMID: 30267682 PMCID: PMC6161632 DOI: 10.1016/j.isci.2018.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
The concentrations of insulin selectively regulate multiple cellular functions. To understand how insulin concentrations are interpreted by cells, we constructed a trans-omic network of insulin action in FAO hepatoma cells using transcriptomic data, western blotting analysis of signaling proteins, and metabolomic data. By integrating sensitivity into the trans-omic network, we identified the selective trans-omic networks stimulated by high and low doses of insulin, denoted as induced and basal insulin signals, respectively. The induced insulin signal was selectively transmitted through the pathway involving Erk to an increase in the expression of immediate-early and upregulated genes, whereas the basal insulin signal was selectively transmitted through a pathway involving Akt and an increase of Foxo phosphorylation and a reduction of downregulated gene expression. We validated the selective trans-omic network in vivo by analysis of the insulin-clamped rat liver. This integrated analysis enabled molecular insight into how liver cells interpret physiological insulin signals to regulate cellular functions.
Collapse
Affiliation(s)
- Kentaro Kawata
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; YCI Laboratory for Trans-Omics, Young Chief Investigator Program, RIKEN Center for Integrative Medical Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan; PRESTO, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takanori Sano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masashi Fujii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Tomizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiya Kokaji
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kaori Y Tanaka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ayano Ueno
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Maki Ohishi
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Kubota H, Uda S, Matsuzaki F, Yamauchi Y, Kuroda S. In Vivo Decoding Mechanisms of the Temporal Patterns of Blood Insulin by the Insulin-AKT Pathway in the Liver. Cell Syst 2018; 7:118-128.e3. [PMID: 29960883 DOI: 10.1016/j.cels.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/06/2018] [Accepted: 05/18/2018] [Indexed: 10/28/2022]
Abstract
Cells respond to various extracellular stimuli through a limited number of signaling pathways. One strategy to process such stimuli is to code the information into the temporal patterns of molecules. Although we showed that insulin selectively regulated molecules depending on its temporal patterns using Fao cells, the in vivo mechanism remains unknown. Here, we show how the insulin-AKT pathway processes the information encoded into the temporal patterns of blood insulin. We performed hyperinsulinemic-euglycemic clamp experiments and found that, in the liver, all temporal patterns of insulin are encoded into the insulin receptor, and downstream molecules selectively decode them through AKT. S6K selectively decodes the additional secretion information. G6Pase interprets the basal secretion information through FoxO1, while GSK3β decodes all secretion pattern information. Mathematical modeling revealed the mechanism via differences in network structures and from sensitivity and time constants. Given that almost all hormones exhibit distinct temporal patterns, temporal coding may be a general principle of system homeostasis by hormones.
Collapse
Affiliation(s)
- Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| | - Shinsuke Uda
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Fumiko Matsuzaki
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yukiyo Yamauchi
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
14
|
Lee B, Song T, Lee K, Kim J, Han S, Berggren PO, Ryu SH, Jo J. Phase modulation of insulin pulses enhances glucose regulation and enables inter-islet synchronization. PLoS One 2017; 12:e0172901. [PMID: 28235104 PMCID: PMC5325581 DOI: 10.1371/journal.pone.0172901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 11/23/2022] Open
Abstract
Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization.
Collapse
Affiliation(s)
- Boah Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Taegeun Song
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
| | - Kayoung Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jaeyoon Kim
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Seungmin Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Per-Olof Berggren
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Evers SS, van Vliet A, van Vugt B, Scheurink AJW, van Dijk G. A low TSH profile predicts olanzapine-induced weight gain and relief by adjunctive topiramate in healthy male volunteers. Psychoneuroendocrinology 2016; 66:101-10. [PMID: 26802597 DOI: 10.1016/j.psyneuen.2015.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Second generation antipsychotics, like olanzapine (OLZ), have become the first line drug treatment for patients with schizophrenia. However, OLZ treatment is often associated with body weight (BW) gain and metabolic derangements. Therefore, the search for prospective markers for OLZ's negative side effects as well as adjunctive treatments to inhibit these has been of major interest. The aim of this study was to investigate in healthy male volunteers (age: 36 ± 11 years; BW: 84 ± 12 kg; BMI=25.5 ± 2.5) whether adjunctive topiramate (TPM) administration opposes OLZ-induced weight gain over the course of 14 days treatment. In addition, we investigated behavioral, endocrine and metabolic characteristics as underlying and potentially predictive factors for weight regulation and/or metabolic derangements associated with OLZ and TPM treatment. While adjunctive TPM indeed reduced OLZ-induced weight gain (P<0.05, Mann-Whitney U), behavioral/metabolic/endocrine characteristics of OLZ treatment were not affected by TPM. Using multiple regression analysis, BW gain was the key factor explaining metabolic disturbances (e.g., plasma insulin- LDL interaction: P<0.01, R(2)=.320), and cumulative food intake during treatment was the best denominator of BW gain (P<0.01, R(2)=.534). Neither TPM treatment, nor its circulating levels, contributed to variation observed in ΔBW. In a second multiple regression analysis, we observed that a low baseline thyrotropin profile (TSHAUC) before the start of drug treatment was associated with an increase in ΔBW over the course of drug treatment (P<0.05, R(2)=.195). Adding TSHAUC as covariate revealed that adjunctive TPM treatment did attenuate OLZ induced BW gain (P<0.05, ANCOVA). Further exploration of the circulating thyroid hormones revealed that individuals with a low plasma TSH profile were also those that were most sensitive to adjunctive TPM treatment blocking OLZ-induced ΔBW gain. Others have shown that OLZ-induced BW gain is associated with improvement in brief psychiatric rating scores (BPRS); adjunctive TPM treatment may be a solution specifically for those subjects susceptible to OLZ-induced rapid weight gain who-on a therapeutic level-benefit most of OLZ treatment.
Collapse
Affiliation(s)
- Simon S Evers
- University of Groningen, Groningen Institute for Evolutionary Life Sciences-Neurobiology, Dept. Behavioral Neurosciences, Groningen, The Netherlands.
| | | | | | - Anton J W Scheurink
- University of Groningen, Groningen Institute for Evolutionary Life Sciences-Neurobiology, Dept. Behavioral Neurosciences, Groningen, The Netherlands
| | - Gertjan van Dijk
- University of Groningen, Groningen Institute for Evolutionary Life Sciences-Neurobiology, Dept. Behavioral Neurosciences, Groningen, The Netherlands; University of Groningen, ESRIG Center for Isotope Analysis, Groningen, The Netherlands.
| |
Collapse
|
17
|
Nishii Y, Gandhi S, Nuxoll E. Glucose-powered pulsatile release. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Gandhi S, Nuxoll E. Non-delaminating pulsatile release composites. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2015.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
|
20
|
Bhalla AS, Siegel RA. Mechanistic studies of an autonomously pulsing hydrogel/enzyme system for rhythmic hormone delivery. J Control Release 2014; 196:261-71. [PMID: 25450402 PMCID: PMC4268432 DOI: 10.1016/j.jconrel.2014.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/08/2014] [Accepted: 10/19/2014] [Indexed: 11/20/2022]
Abstract
Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design.
Collapse
Affiliation(s)
- Amardeep S Bhalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Soontornworajit B, Srakaew P, Naramitpanich P. Aptamer-gelatin composite for a trigger release system mediated by oligonucleotide hybridization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:2042-52. [PMID: 25297832 DOI: 10.1080/09205063.2014.968019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nucleic acid aptamers not only specifically bind to their target proteins with high affinity but also form intermolecular hybridization with their complementary oligonucleotides (CO). The hybridization can interrupt aptamer/protein interaction due to the changes of aptamer secondary structure which rely on hybridization length and base-pairing positions. Herein we aim to use this unique property of the aptamers, when combined with gelatin to develop a novel composite with desirable protein release profiles. Platelet-derived growth factor-BB (PDGF-BB) and its aptamer were used as target molecules. Prior to performing the release study, the effects of CO on aptamer-protein interaction were observed by surface plasmon resonance (SPR). The SPR sensorgram indicated that the aptamer dissociated from the bounded proteins when it hybridized with the CO. The aptamer was then immobilized onto streptavidin coated polystyrene particles via biotin/streptavidin interaction. Then, PDGF-BB and aptamer functionalized particles were mixed with gelatin solution and cast as small pieces of composite. The success of the composite preparation was confirmed by flow cytometry and microscopy. PDGF-BB release at several time points was quantified by ELISA. The results showed that the aptamer-gelatin composite could slow the release rate of the proteins from the composite due to strong binding of proteins and aptamers. Once the CO was added to the system, the release rate was significantly enhanced because the aptamer hybridized with the CO and lost its active secondary structure. Therefore, the proteins were triggered to release out from the composite. This work suggests a promising strategy for controlling the release of bioactive molecules in medical treatments.
Collapse
Affiliation(s)
- Boonchoy Soontornworajit
- a Faculty of Science and Technology, Department of Chemistry , Thammasat University , 99 Paholyothin Rd., Khlong 1, Khlong Luang, Pathum Thani , 12120 , Thailand
| | | | | |
Collapse
|
22
|
Siegel RA. Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review. J Control Release 2014; 190:337-51. [PMID: 24984012 PMCID: PMC4142101 DOI: 10.1016/j.jconrel.2014.06.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
Since the early days of the Journal of Controlled Release, there has been considerable interest in materials that can release drug on an "on-demand" basis. So called "stimuli-responsive" and "intelligent" systems have been designed to deliver drug at various times or at various sites in the body, according to a stimulus that is either endogenous or externally applied. In the past three decades, research along these lines has taken numerous directions, and each new generation of investigators has discovered new physicochemical principles and chemical schemes by which the release properties of materials can be altered. No single review could possibly do justice to all of these approaches. In this article, some general observations are made, and a partial history of the field is presented. Both open loop and closed loop systems are discussed. Special emphasis is placed on stimuli-responsive hydrogels, and on systems that can respond repeatedly. It is argued that the most success at present and in the foreseeable future is with systems in which biosensing and actuation (i.e. drug delivery) are separated, with a human and/or cybernetic operator linking the two.
Collapse
Affiliation(s)
- Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455 USA; Department Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA.
| |
Collapse
|
23
|
Yugi K, Kubota H, Toyoshima Y, Noguchi R, Kawata K, Komori Y, Uda S, Kunida K, Tomizawa Y, Funato Y, Miki H, Matsumoto M, Nakayama KI, Kashikura K, Endo K, Ikeda K, Soga T, Kuroda S. Reconstruction of insulin signal flow from phosphoproteome and metabolome data. Cell Rep 2014; 8:1171-83. [PMID: 25131207 DOI: 10.1016/j.celrep.2014.07.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/13/2014] [Accepted: 07/15/2014] [Indexed: 12/20/2022] Open
Abstract
Cellular homeostasis is regulated by signals through multiple molecular networks that include protein phosphorylation and metabolites. However, where and when the signal flows through a network and regulates homeostasis has not been explored. We have developed a reconstruction method for the signal flow based on time-course phosphoproteome and metabolome data, using multiple databases, and have applied it to acute action of insulin, an important hormone for metabolic homeostasis. An insulin signal flows through a network, through signaling pathways that involve 13 protein kinases, 26 phosphorylated metabolic enzymes, and 35 allosteric effectors, resulting in quantitative changes in 44 metabolites. Analysis of the network reveals that insulin induces phosphorylation and activation of liver-type phosphofructokinase 1, thereby controlling a key reaction in glycolysis. We thus provide a versatile method of reconstruction of signal flow through the network using phosphoproteome and metabolome data.
Collapse
Affiliation(s)
- Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kubota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Division of integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Corporation, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yu Toyoshima
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rei Noguchi
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kentaro Kawata
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasunori Komori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinsuke Uda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Division of integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Katsuyuki Kunida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Tomizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Kasumi Kashikura
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Kazutaka Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
Strong LE, Dahotre SN, West JL. Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. J Control Release 2014; 178:63-8. [PMID: 24462898 DOI: 10.1016/j.jconrel.2014.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/10/2014] [Accepted: 01/16/2014] [Indexed: 01/04/2023]
Abstract
A poly(N-isopropylacrylamide-co-acrylamide) (NIPAAm-co-AAm) hydrogel with near-infrared (NIR) absorbing silica-gold nanoshells was designed as a platform for pulsatile delivery of cancer therapeutics. This hydrogel was designed to have a lower critical solution temperature (LCST) above physiologic temperature, such that the material will transition from a hydrated state to a collapsed state above ~40°C. Additionally, the silica-gold nanoshells used were designed to have a peak extinction coefficient in the NIR, where penetration of light through tissue is maximal. This heat-triggered material phase transition of the composite was found to follow exposure of NIR light, indicating the ability of the NIR absorption by the nanoshells to sufficiently drive this transition. The composite material was loaded with either doxorubicin or a DNA duplex (a model nucleic acid therapeutic), two cancer therapeutics with differing physical and chemical properties. Release of both therapeutics was dramatically enhanced by NIR light exposure, causing 2-5x increase in drug release. Drug delivery profiles were influenced by both the molecular size of the drug as well as its chemical properties. The DNA therapeutic showed slower rates of nonspecific delivery by passive diffusion due to its larger size. Additionally, only 70% of the more hydrophobic doxorubicin was released from the material, whereas the more hydrophilic DNA showed over 90% release. Further, hydrogel composites were used to deliver the doxorubicin to CT.26-WT colon carcinoma cells, eliciting a therapeutic response. This work validates the potential application for this material in site-specific cancer therapeutic delivery.
Collapse
Affiliation(s)
- Laura E Strong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shreyas N Dahotre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
25
|
Gray SM, Bartell PA, Staniar WB. High glycemic and insulinemic responses to meals affect plasma growth hormone secretory characteristics in Quarter Horse weanlings. Domest Anim Endocrinol 2013; 44:165-75. [PMID: 23433709 DOI: 10.1016/j.domaniend.2013.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
Abstract
Growth hormone is a key component of the somatotropic axis and is critical for the interplay between nutrition, regulation of metabolic functions, and subsequent processes of growth. The objective of this study was to investigate potential relations between meal feeding concentrates differing in the glycemic responses they elicit and GH secretory patterns in young growing horses. Twelve Quarter Horse weanlings (5.4 ± 0.4 mo of age) were used in a crossover design, consisting of two 21-d periods and two treatments, a high-glycemic (HG) or low-glycemic (LG) concentrate meal, fed twice daily. Horses were individually housed and fed hay ad libitum. On the final day of each period, quarter-hourly blood samples were drawn for 24 h to measure plasma glucose, insulin, non-esterified fatty acids, and GH. Growth hormone secretory characteristics were estimated with deconvolution analysis. After a meal, HG-fed horses exhibited a longer inhibition until the first pulse of GH secretion (P = 0.012). During late night hours (1:00 AM to 6:45 AM), HG horses secreted a greater amount of pulsatile GH than LG horses (P = 0.002). These differences highlight the potential relations between glycemic and insulinemic responses to meals and GH secretion. Dietary energy source and metabolic perturbations associated with feeding HG meals to young, growing horses have the potential to alter GH secretory patterns compared with LG meals. This may potentially affect the developmental pattern of various tissues in the young growing horse.
Collapse
Affiliation(s)
- S M Gray
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
26
|
Jauch-Chara K, Schmid SM, Hallschmid M, Oltmanns KM, Schultes B. Pituitary-gonadal and pituitary-thyroid axis hormone concentrations before and during a hypoglycemic clamp after sleep deprivation in healthy men. PLoS One 2013; 8:e54209. [PMID: 23326598 PMCID: PMC3542327 DOI: 10.1371/journal.pone.0054209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 12/10/2012] [Indexed: 12/04/2022] Open
Abstract
Total sleep deprivation (TSD) exerts strong modulatory effects on the secretory activity of endocrine systems that might be related to TSD-induced challenges of cerebral glucose metabolism. Here, we investigate whether TSD affects the course of male pituitary-gonadal and pituitary-thyroid axis related hormones during a subsequent 240-min hypoglycemic clamp. Ten healthy men were tested on 2 different conditions, TSD and 7-hour regular sleep. Circulating concentrations of total testosterone, prolactin (PRL), thyroid stimulating hormone (TSH), free triiodothyronine (fT3), and free thyroxin (fT4) were measured during baseline and a subsequent hypoglycemic clamp taking place in the morning. Basal, i.e. at 07∶00 am measured, concentrations of total testosterone (P = 0.05) and PRL (P<0.01) were lower while the values of TSH (P = 0.02), fT3 (P = 0.08), and fT4 (P = 0.04) were higher after TSD as compared to regular sleep. During the subsequent hypoglycemic clamp (all measurements from baseline to the end of the clamp analyzed) total testosterone concentrations in the regular sleep (P<0.01) but not in the TSD condition (P = 0.61) decreased, while PRL levels increased (P = 0.05) irrespectively of the experimental condition (P = 0.31). TSH concentrations decreased during hypoglycemia (P<0.01), with this decrease being more pronounced after TSD (P = 0.04). However, at the end of the hypoglycemic clamp concentrations all of the above mentioned hormones did not differ between the two sleep conditions. Our data indicate a profound influence of TSD on male pituitary-gonadal and pituitary-thyroid axis hormones characterized by reduced basal testosterone and PRL levels and increased TSH levels. However, since concentrations of these hormones measured at the end of the 240-min hypoglycemic clamp were not affected by TSD it can be speculated that the influence of TSD on the two endocrine axes is rather short lived or does not interact in an additive manner with their responses to hypoglycemia.
Collapse
Affiliation(s)
- Kamila Jauch-Chara
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany.
| | | | | | | | | |
Collapse
|
27
|
Abstract
In this issue of Molecular Cell, Kubota et al. (2012) show how different temporal patterns of insulin are decoded by the AKT signaling network, providing both new mechanistic insights and physiological relevance.
Collapse
Affiliation(s)
- Jeremy E Purvis
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Kubota H, Noguchi R, Toyoshima Y, Ozaki YI, Uda S, Watanabe K, Ogawa W, Kuroda S. Temporal coding of insulin action through multiplexing of the AKT pathway. Mol Cell 2012; 46:820-32. [PMID: 22633957 DOI: 10.1016/j.molcel.2012.04.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/23/2012] [Accepted: 04/12/2012] [Indexed: 11/24/2022]
Abstract
One of the unique characteristics of cellular signaling pathways is that a common signaling pathway can selectively regulate multiple cellular functions of a hormone; however, this selective downstream control through a common signaling pathway is poorly understood. Here we show that the insulin-dependent AKT pathway uses temporal patterns multiplexing for selective regulation of downstream molecules. Pulse and sustained insulin stimulations were simultaneously encoded into transient and sustained AKT phosphorylation, respectively. The downstream molecules, including ribosomal protein S6 kinase (S6K), glucose-6-phosphatase (G6Pase), and glycogen synthase kinase-3β (GSK3β) selectively decoded transient, sustained, and both transient and sustained AKT phosphorylation, respectively. Selective downstream decoding is mediated by the molecules' network structures and kinetics. Our results demonstrate that the AKT pathway can multiplex distinct patterns of blood insulin, such as pulse-like additional and sustained-like basal secretions, and the downstream molecules selectively decode secretion patterns of insulin.
Collapse
Affiliation(s)
- Hiroyuki Kubota
- Department of Biophysics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lin SY, Kawashima Y. Current status and approaches to developing press-coated chronodelivery drug systems. J Control Release 2012; 157:331-53. [DOI: 10.1016/j.jconrel.2011.09.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
|
30
|
Kim SJ, Yokokawa R, Lesher-Perez SC, Takayama S. Constant flow-driven microfluidic oscillator for different duty cycles. Anal Chem 2012; 84:1152-6. [PMID: 22206453 PMCID: PMC3264749 DOI: 10.1021/ac202866b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This paper presents microfluidic devices that autonomously convert two constant flow inputs into an alternating oscillatory flow output. We accomplish this hardware embedded self-control programming using normally closed membrane valves that have an inlet, an outlet, and a membrane-pressurization chamber connected to a third terminal. Adjustment of threshold opening pressures in these 3-terminal flow switching valves enabled adjustment of oscillation periods to between 57 and 360 s with duty cycles of 0.2-0.5. These values are in relatively good agreement with theoretical values, providing the way for rational design of an even wider range of different waveform oscillations. We also demonstrate the ability to use these oscillators to perform temporally patterned delivery of chemicals to living cells. The device only needs a syringe pump, thus removing the use of complex, expensive external actuators. These tunable waveform microfluidic oscillators are envisioned to facilitate cell-based studies that require temporal stimulation.
Collapse
Affiliation(s)
- Sung-Jin Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryuji Yokokawa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Microengineering, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto, 606-8501 JAPAN
| | | | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Nano-Bio and Chemical Engineering WCU Project, UNIST, Ulsan, Republic of Korea
| |
Collapse
|
31
|
Abstract
We analyzed the pupil size vs time from six subjects using pupilography and nonlinear techniques. The correlation dimensions ranged from 4.08 to 5.7. The Hurst exponents ranged from 0.132 to 0.546. All data sets contained at least one positive Lyapunov exponent. The use of surrogate yielded statistically significant differences for the correlation dimension. Phase space analysis yields a definite flow, and in subject two, period-doubling is evident. The accumulated evidence supports the notion that dynamics of pupil size are governed by deterministic chaos rather than a stochastic or linear process. This implies that one might discern between well and disease states using pupillography and that the dynamics can be mechanistically modeled.
Collapse
Affiliation(s)
| | - MARTIN H. KROLL
- The Johns Hopkins School of Medicine, 600 North Wolfe Street, Meyer B-125, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
Jovic A, Wade SM, Miyawaki A, Neubig RR, Linderman JJ, Takayama S. Hi-Fi transmission of periodic signals amid cell-to-cell variability. MOLECULAR BIOSYSTEMS 2011; 7:2238-44. [PMID: 21559542 PMCID: PMC4449260 DOI: 10.1039/c1mb05031a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since information in intracellular calcium signaling is often frequency encoded, it is physiologically critical and experimentally useful to have reliable, convenient, and non-invasive methods to entrain it. Because of cell-to-cell variability, synchronization of intracellular signaling across a population of genetically identical cells can still be difficult to achieve. For intrinsically oscillatory signaling pathways, such as calcium, upon continuous stimulation, cell-to-cell variability is manifested as differences in intracellular response frequencies. Even with entrainment using periodic stimulation, cell-to-cell variability is manifested as differences in the fidelity with which extracellular inputs are converted into intracellular signals. Here we present a combined theoretical and experimental analysis that shows how to appropriately balance stimulation strength, duration, and rest intervals to achieve entrainment with high fidelity stimulation-to-response ratios for G-protein-coupled receptor-triggered intracellular calcium oscillations. We further demonstrate that stimulation parameters that give high fidelity entrainment are significantly altered upon changes in intracellular enzyme levels and cell surface receptor levels. Theoretical analysis suggests that, at key threshold values, even small changes in these protein concentrations or activities can result in precipitous changes in entrainment fidelity, with implications for pathophysiology.
Collapse
Affiliation(s)
- Andreja Jovic
- Biomedical Engineering Department, University of Michigan, Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109
| | - Susan M. Wade
- Pharmacology Department, University of Michigan, MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Richard R. Neubig
- Pharmacology Department, University of Michigan, MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, H.H. Dow Building, 2300 Hayward St., Ann Arbor, MI 48109 USA
| | - Shuichi Takayama
- Biomedical Engineering Department, University of Michigan, Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
33
|
Stimulus perturbation induced signal: A case study in mesoscopic intracellular calcium system. Biophys Chem 2009; 141:231-5. [DOI: 10.1016/j.bpc.2009.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
|
34
|
Autonomous Rhythmic Drug Delivery Systems Based on Chemical and Biochemomechanical Oscillators. CHEMOMECHANICAL INSTABILITIES IN RESPONSIVE MATERIALS 2009. [DOI: 10.1007/978-90-481-2993-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Siegel RA, Nuxoll EE, Hillmyer MA, Ziaie B. Top-down and bottom-up fabrication techniques for hydrogel based sensing and hormone delivery microdevices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:232-235. [PMID: 19963454 DOI: 10.1109/iembs.2009.5332511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We review a set of studies dealing with molecular (glucose) sensing and hormone delivery, in which the swelling and shrinking of a hydrogel as a function of glucose concentration play a central role. Confining hydrogels in microfabricated structures permits transduction of their chemomechanical behaviors. Prototype microdevices for wireless glucose sensing and closed loop insulin delivery control have been designed using hydrogels containing phenylboronic acid sidechains. While these devices exhibit desired responses, improved response time is needed, warranting further miniaturization. In a separate application, geometric confinement of glucose oxidase by a pH-sensitive hydrogel membrane sets up a nonlinear feedback loop which enables rhythmic swell/shrink cycles when the system is exposed to a constant glucose concentration. The latter system may be applied to delivery of gonadotropin release hormone, for which rhythmicity of secretion is essential for therapeutic function.
Collapse
Affiliation(s)
- Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
36
|
Ichikawa H, Fukumori Y. Design of Nanohydrogel-Incorporated Microcapsules for Appropriate Controlled-Release of Peptide Drugs. YAKUGAKU ZASSHI 2007; 127:813-23. [PMID: 17473523 DOI: 10.1248/yakushi.127.813] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biologically active peptides for therapeutic use have relatively short half-lives in general, requiring appropriate controlled-release systems for better therapy. Controlled release of peptides is, however, not as easy as that of conventional drugs because their large molecular size is much more dramatic in hindering the diffusion and release from polymeric devices. From this perspective, we have been developing two types of microcapsular devices containing new acrylate-based nanogels with a specific solute-permeability for delayed- or thermosensitive-release of peptide drugs. The microcapsule preparation was accomplished by an air suspension coating process. A nanogel-particle of acrylic terpolymer, ethyl acrylate-methyl methacrylate-2-hydroxyethyl methacrylate, was newly synthesized by emulsion polymerization to construct delayed-release microcapsules. By spray-coating the insulin-loaded lactose particles with the acrylic terpolymers, microcapsules showing a pH-independent delayed-release profile can be obtained. Oral administration of the microcapsules with the lag time of 6 hours to beagle dogs resulted in significantly reduced blood glucose concentration, leading to colon-specific insulin delivery with pharmacological availability of 5%. Meanwhile, poly(N-isopropylcarylamide) (p(NIPAAm)) nanogel-particles with a reversible temperature-dependent swelling property were prepared by dispersion polymerization to fabricate microcapsular membranes with thermosensitively changeable permeability. The microcapsules constructed by coating of drug-loaded CaCO(3) particles with a blend mixture of the p(NIPAAm) nanogels and ethylcellulose pseudo-latex exhibited an 'on-off' positively thermosensitive drug-release; the release rate was remarkably enhanced at higher temperatures possibly due to the formation of voids through the shrinkage of p(NIPAAm) nanogels in the membrane. A possible application of this type of microcapsules can be found in externally temperature-activated pulsatile peptide delivery.
Collapse
Affiliation(s)
- Hideki Ichikawa
- Division of Physical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan.
| | | |
Collapse
|
37
|
Olofsson J, Bridle H, Sinclair J, Granfeldt D, Sahlin E, Orwar O. A chemical waveform synthesizer. Proc Natl Acad Sci U S A 2005; 102:8097-102. [PMID: 15928088 PMCID: PMC1149414 DOI: 10.1073/pnas.0500230102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Algorithms and methods were developed to synthesize complex chemical waveforms in open volumes by using a scanning-probe microfluidic platform. Time-dependent variations and oscillations of one or several chemical species around the scanning probe, such as formation of sine waves, damped oscillations, and generation of more complex patterns, are demonstrated. Furthermore, we show that intricate bursting and chaotic calcium oscillations found in biological microdomains can be reproduced and that a biological cell can be used as a probe to study receptor functionalities as a function of exposure to time-dependent variations of receptor activators and inhibitors. Thus, the method allows for studies of biologically important oscillatory reactions. More generally, the system allows for detailed studies of complex time-varying chemical and physical phenomena in solution or at solution/surface interfaces.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Chemistry and Bioscience and Microtechnology Centre, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Internal noise enhanced detection of hormonal signal through intracellular calcium oscillations. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.12.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Mandoki JJ, Mendoza-Patiño N, Molina-Guarneros JA, Jiménez-Orozco FA, Velasco-Velázquez MA, García-Mondragón MJ. Hormone multifunctionalities: a theory of endocrine signaling, command and control. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:353-77. [PMID: 15302204 DOI: 10.1016/j.pbiomolbio.2003.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A theory is presented outlining how organisms can function and benefit from multifunctionality of hormones in order to enhance greatly the information-carrying potential of endocrine signaling. Hormones are produced continuously as micropulses, and intermittently as larger pulses. It is generally believed that micropulses generate fluctuating basal hormone concentrations, which may consistently elicit particular responses among diverse variables. Evidence is discussed suggesting that in contrast to the hormone micropulses, the larger endogenous hormone pulses may elicit responses which may differ from one pulse to another and may therefore serve different physiological functions. In this paper we postulate that an endogenous hormone pulse is a specific form of a multisignal message that serves a certain physiological function. Different pulses of a hormone may be signals of diverse multisignal messages that serve different functions. A multisignal message may elicit congruous responses by selectively enhancing some actions and suppressing other actions of the component signals. Various roles of signals of multisignal messages are discussed, as well as processes that may be involved in the diversity and selectivity of actions of different pulses of a hormone. Hormones also are converted into other hormones; we analyze how precursor and derived hormones may function independently of each other, and how precursor hormones may give rise to permissive effects. Mechanisms involved in therapeutic and adverse effects of hormone administrations are analyzed, and a strategy is suggested for developing more selective hormonal therapies.
Collapse
Affiliation(s)
- Juan José Mandoki
- Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México, DF, CP 04510, Apdo. Postal 70-297, Mexico.
| | | | | | | | | | | |
Collapse
|
40
|
Rattanakul C, Lenbury Y, Krishnamara N, Wollkind DJ. Modeling of bone formation and resorption mediated by parathyroid hormone: response to estrogen/PTH therapy. Biosystems 2003; 70:55-72. [PMID: 12753937 DOI: 10.1016/s0303-2647(03)00040-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bone, a major reservoir of body calcium, is under the hormonal control of the parathyroid hormone (PTH). Several aspects of its growth, turnover, and mechanism, occur in the absence of gonadal hormones. Sex steroids such as estrogen, nonetheless, play an important role in bone physiology, and are extremely essential to maintain bone balance in adults. In order to provide a basis for understanding the underlying mechanisms of bone remodeling as it is mediated by PTH, we propose here a mathematical model of the process. The nonlinear system model is then utilized to study the temporal effect of PTH as well as the action of estrogen replacement therapy on bone turnover. Analysis of the model is done on the assumption, supported by reported clinical evidence, that the process is characterized by highly diversified dynamics, which warrants the use of singular perturbation arguments. The model is shown to exhibit limit cycle behavior, which can develop into chaotic dynamics for certain ranges of the system's parametric values. Effects of estrogen and PTH administrations are then investigated by extending on the core model. Analysis of the model seems to indicate that the paradoxical observation that intermittent PTH administration causes net bone deposition while continuous administration causes net bone loss, and certain other reported phenomena may be attributed to the highly diversified dynamics which characterizes this nonlinear remodeling process.
Collapse
Affiliation(s)
- Chontita Rattanakul
- Department of Mathematics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
41
|
Conrad R, Schilling G, Haidl G, Geiser F, Imbierowicz K, Liedtke R. Relationships between personality traits, seminal parameters and hormones in male infertility. Andrologia 2002. [DOI: 10.1046/j.1439-0272.2002.00513.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
42
|
Conrad R, Schilling G, Haidl G, Geiser F, Imbierowicz K, Liedtke R. Relationships between personality traits, seminal parameters and hormones in male infertility. Andrologia 2002. [DOI: 10.1111/j.1439-0272.2002.tb02947.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Abstract
It has been proposed that chemical pH oscillators may form a basis for periodic, pulsed drug delivery of weak acids and bases across lipophilic membranes. However, drugs have been shown to interfere with the ability of the chemical systems to oscillate, and rhythmic delivery of drugs by this means has been demonstrated only under constrained circumstances. Herein, we provide evidence that low concentrations of acidic drugs can attenuate and ultimately quench chemical pH oscillators, by a simple buffering mechanism. A model system consisting of the bromate-sulfite-marble pH oscillator in a continuous stirred tank reactor is used, along with acidic drugs of varying concentration and acid dissociation constant, pK(D). A published kinetic model for this oscillator is modified to account for the presence of acidic drug, and the results of this model are in qualitative agreement with the experimental results.
Collapse
Affiliation(s)
- Gauri P Misra
- Department of Pharmaceutics, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
44
|
Misra GP, Siegel RA. New mode of drug delivery: long term autonomous rhythmic hormone release across a hydrogel membrane. J Control Release 2002; 81:1-6. [PMID: 11992673 DOI: 10.1016/s0168-3659(02)00043-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This note demonstrates a novel mode of rhythmic drug delivery, which is independent of external modulation or physiological stimulation. Rhythmic behavior is attributed to negative, nonlinear feedback between the swelling state of a hydrogel membrane and the enzymatic conversion of glucose to hydrogen ion. The system pulsates in the presence of a constant level of glucose, thus distinguishing it from insulin delivery devices that respond to changes in glucose concentration. As an example, gonadotropin-releasing hormone (GnRH) was released in short, repetitive pulses over 1 week.
Collapse
Affiliation(s)
- Gauri P Misra
- Department of Pharmaceutics, 9-177 Weaver-Densford Hall, University of Minnesota, 308 Harvard St. S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
45
|
Abstract
Current research in the field of drug delivery devices, by which pulsed and/or pulsatile release is achieved, has been intensified. In this article several types of drug delivery systems using hydrogels are discussed that showed pulsed and/or pulsatile drug delivery characteristics. As is frequently found in the living body, many vital functions are regulated by pulsed or transient release of bioactive substances at a specific site and time. Thus it is important to develop new drug delivery devices to achieve pulsed delivery of a certain amount of drugs in order to mimic the function of the living systems, while minimizing undesired side effects. Special attention has been given to the thermally responsive poly(N-isopropylacrylamide) and its derivative hydrogels. Thermal stimuli-regulated pulsed drug release is established through the design of drug delivery devices, hydrogels, and micelles. Development of modified alginate gel beads with pulsed drug delivery characteristic is also described in this article.
Collapse
Affiliation(s)
- Akihiko Kikuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | | |
Collapse
|
46
|
Läer L, Kloppstech M, Schöfl C, Sejnowski TJ, Brabant G, Prank K. Noise enhanced hormonal signal transduction through intracellular calcium oscillations. Biophys Chem 2001; 91:157-66. [PMID: 11429205 DOI: 10.1016/s0301-4622(01)00167-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In a wide range of non-linear dynamical systems, noise may enhance the detection of weak deterministic input signals. Here, we demonstrate this phenomenon for transmembrane signaling in a hormonal model system of intracellular Ca(2+) oscillations. Adding Gaussian noise to a subthreshold extracellular pulsatile stimulus increased the sensitivity in the dose-response relation of the Ca(2+) oscillations compared to the same noise signal added as a constant mean level. These findings may have important physiological consequences for the operation of hormonal and other physiological signal transduction systems close to the threshold level.
Collapse
Affiliation(s)
- L Läer
- Computational Endocrinology Group, Department of Clinical Endocrinology, Medical School Hannover, D-30623 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Li B, Siegel RA. Global analysis of a model pulsing drug delivery oscillator based on chemomechanical feedback with hysteresis. CHAOS (WOODBURY, N.Y.) 2000; 10:682-690. [PMID: 12779418 DOI: 10.1063/1.1286998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A simple model for an autonomous pulsing drug delivery system was previously introduced. This model involves negative feedback action, with hysteresis, of an enzyme on the permeability of a membrane through which substrate, at constant external concentration, must diffuse to reach the enzyme. The qualitative dynamics of this model permit, depending on system parameters and external driving substrate concentration, two separate single steady state, double steady state, and permanently alternating (oscillatory) behaviors. The present contribution is concerned with rigorous proofs regarding the global stability of steady states when permanent alternation is precluded, and the existence and globally asymptotic stability of a limit cycle in the permanently alternating case. Also, we prove that more restrictive but often realistic conditions on the system parameters imply limitations on the number of alternations the system can undergo before reaching steady state. (c) 2000 American Institute of Physics.
Collapse
Affiliation(s)
- Bingtuan Li
- Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
48
|
Szkudlinski MW, Grossmann M, Leitolf H, Weintraub BD. Human thyroid-stimulating hormone: structure-function analysis. Methods 2000; 21:67-81. [PMID: 10764608 DOI: 10.1006/meth.2000.0976] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article provides the reader with an overview of methodological strategies to investigate structure-function relationships of human thyroid-stimulating hormone (hTSH). Various aspects of hTSH production, purification, and characterization described here in more detail are not only relevant to studies on other members of the glycoprotein hormone family, but also applicable to studies of other glycosylated proteins. Knowledge of structure-function relationships of specific hTSH domains is important for a better understanding of the molecular mechanisms of its action. New insights from such studies permit the design of glycoprotein hormone analogs with specific pharmacological properties and potential clinical applications.
Collapse
Affiliation(s)
- M W Szkudlinski
- Laboratory of Molecular Endocrinology, Department of Medicine, University of Maryland School of Medicine and the Institute of Human Virology, Medical Biotechnology Center, 725 West Lombard Street, Baltimore, Maryland 21201-1009, USA.
| | | | | | | |
Collapse
|
49
|
Galac S, Kooistra HS, Butinar J, Bevers MM, Dieleman SJ, Voorhout G, Okkens AC. Termination of mid-gestation pregnancy in bitches with aglepristone, a progesterone receptor antagonist. Theriogenology 2000; 53:941-50. [PMID: 10730981 DOI: 10.1016/s0093-691x(00)00241-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six pregnancies were terminated in mid-gestation with aglépristone, a progesterone receptor antagonist, in 5 beagle bitches in order to determine the effects of aglépristone on plasma concentrations of prolactin and progesterone, the duration of the luteal phase, and the interestrous interval. In addition, the effects of aglépristone on the condition of the uterus and fetuses were examined by ultrasonography. After confirmation of pregnancy by ultrasonography, the dogs received 10 mg, s.c. aglépristone per kg body weight on 2 consecutive days at about 30 d post ovulation. Before, during and after treatment with aglépristone, plasma samples were collected for determination of the concentrations of prolactin and progesterone. The condition of the uterus and fetuses was assessed by ultrasonography the day before and at least 3 times a week for at least 2 wk after aglépristone administration. Termination of pregnancy occurred within 4 to 7 d after the start of aglépristone treatment, which was well tolerated, with no side-effects except slight vaginal discharge. The results of ultrasonographic examination indicated that aglépristone leads to abortion but not to fetal resorption. Elevated plasma concentrations of prolactin were observed during aglépristone treatment, while plasma progesterone levels remained unchanged. Pregnancy termination with aglépristone resulted in premature cessation of luteal function. In addition, the interestrous interval was shortened. The latter effects may be the consequence of actions of the progesterone receptor antagonist at the hypothalamus-pituitary level. In conclusion, aglépristone proved to be a safe and effective abortifacient in mid-gestation in the bitch. The results of the present study also indicated that aglépristone directly or indirectly influences pituitary function.
Collapse
Affiliation(s)
- S Galac
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
A variety of cell types responds to hormonal stimuli by repetitive spikes in the intracellular concentration of calcium ([Ca(2+)](i)) which have been demonstrated to encode information in their frequency, amplitude, and duration. These [Ca(2+)](i)-spike trains are able to specifically regulate distinct cellular functions. Using a mathematical model for receptor-controlled [Ca(2+)](i) oscillations in hepatocytes we investigate the encoding of fluctuating hormonal signals in [Ca(2+)](i)-spike trains. The transmembrane information transfer is quantified by using an information-theoretic reverse-engineering approach which allows to reconstruct the dynamic hormonal stimulus from the [Ca(2+)](i)-spike trains. This approach allows to estimate the accuracy of coding as well as the rate of transmembrane information transfer. We found that up to 87% of the dynamic stimulus information can be encoded in the [Ca(2+)](i)-spike train at a maximum information transfer rate of 1.1 bit per [Ca(2+)](i)-spike. These numerical results for humoral information transfer are in the same order as in a number of sensory neuronal systems despite several orders of magnitude different time scales of operation suggesting a universal principle of information processing in both biological systems.
Collapse
Affiliation(s)
- K Prank
- Computational Endocrinology Group, Department of Clinical Endocrinology, Medical School Hanover, Carl-Neuberg Str. 1, 30625, Hanover, Germany
| | | | | |
Collapse
|