1
|
Denney KA, Wu MV, Sun SED, Moon S, Tollkuhn J. Comparative analysis of gonadal hormone receptor expression in the postnatal house mouse, meadow vole, and prairie vole brain. Horm Behav 2024; 158:105463. [PMID: 37995608 PMCID: PMC11145901 DOI: 10.1016/j.yhbeh.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The socially monogamous prairie vole (Microtus ochrogaster) and promiscuous meadow vole (Microtus pennsylvanicus) are closely related, but only prairie voles display long-lasting pair bonds, biparental care, and selective aggression towards unfamiliar individuals after pair bonding. These social behaviors in mammals are largely mediated by steroid hormone signaling in the social behavior network (SBN) of the brain. Hormone receptors are reproducible markers of sex differences that can provide more information than anatomy alone and can even be at odds with anatomical dimorphisms. We reasoned that behaviors associated with social monogamy in prairie voles may emerge in part from unique expression patterns of steroid hormone receptors in this species, and that these expression patterns would be more similar across males and females in prairie than in meadow voles or the laboratory mouse. To obtain insight into steroid hormone signaling in the developing prairie vole brain, we assessed expression of estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), and androgen receptor (Ar) within the SBN, using in situ hybridization at postnatal day 14 in mice, meadow, and prairie voles. We found species-specific patterns of hormone receptor expression in the hippocampus and ventromedial hypothalamus, as well as species differences in the sex bias of these markers in the principal nucleus of the bed nucleus of the stria terminalis. These findings suggest the observed differences in gonadal hormone receptor expression may underlie species differences in the display of social behaviors.
Collapse
Affiliation(s)
- Katherine A Denney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA
| | - Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Soyoun Moon
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Anderson NK, Goodwin SE, Schuppe ER, Dawn A, Preininger D, Mangiamele LA, Fuxjager MJ. Activational vs. organizational effects of sex steroids and their role in the evolution of reproductive behavior: Looking to foot-flagging frogs and beyond. Horm Behav 2022; 146:105248. [PMID: 36054981 DOI: 10.1016/j.yhbeh.2022.105248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022]
Abstract
Sex steroids play an important role in regulation of the vertebrate reproductive phenotype. This is because sex steroids not only activate sexual behaviors that mediate copulation, courtship, and aggression, but they also help guide the development of neural and muscular systems that underlie these traits. Many biologists have therefore described the effects of sex steroid action on reproductive behavior as both "activational" and "organizational," respectively. Here, we focus on these phenomena from an evolutionary standpoint, highlighting that we know relatively little about the way that organizational effects evolve in the natural world to support the adaptation and diversification of reproductive behavior. We first review the evidence that such effects do in fact evolve to mediate the evolution of sexual behavior. We then introduce an emerging animal model - the foot-flagging frog, Staurois parvus - that will be useful to study how sex hormones shape neuromotor development necessary for sexual displays. The foot flag is nothing more than a waving display that males use to compete for access to female mates, and thus the neural circuits that control its production are likely laid down when limb control systems arise during the developmental transition from tadpole to frog. We provide data that highlights how sex steroids might organize foot-flagging behavior through its putative underlying mechanisms. Overall, we anticipate that future studies of foot-flagging frogs will open a powerful window from which to see how sex steroids influence the neuromotor systems to help germinate circuits that drive signaling behavior. In this way, our aim is to bring attention to the important frontier of endocrinological regulation of evolutionary developmental biology (endo-evo-devo) and its relationship to behavior.
Collapse
Affiliation(s)
- Nigel K Anderson
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, United States of America
| | - Sarah E Goodwin
- Department of Biological Sciences, Smith College, Northampton, MA, United States of America
| | - Eric R Schuppe
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States of America
| | - AllexAndrya Dawn
- Department of Biological Sciences, Smith College, Northampton, MA, United States of America
| | - Doris Preininger
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria; Vienna Zoo, Vienna, Austria
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA, United States of America.
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, United States of America.
| |
Collapse
|
3
|
O’Connell LA, Crews D. Evolutionary insights into sexual behavior from whiptail lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:88-98. [PMID: 33929097 PMCID: PMC8556411 DOI: 10.1002/jez.2467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
Is the brain bipotential or is sex-typical behavior determined during development? Thirty years of research in whiptail lizards transformed the field of behavioral neuroscience to show the brain is indeed bipotential, producing behaviors along a spectrum of male-typical and female-typical behavior via a parliamentary system of neural networks and not a predetermined program of constrained behavioral output. The unusual clade of whiptail lizards gave these insights as there are several parthenogenetic all-female species that display both male-typical and female-typical sexual behavior. These descendant species exist alongside their ancestors, allowing a unique perspective into how brain-behavior relationships evolve. In this review, we celebrate the over 40-year career of David Crews, beginning with the story of how he established whiptails as a model system through serendipitous behavioral observations and ending with advice to young scientists formulating their own questions. In between these personal notes, we discuss the discoveries that integrated hormones, neural activity, and gene expression to provide transformative insights into how brains function and reshaped our understanding of sexuality.
Collapse
Affiliation(s)
| | - David Crews
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
4
|
Fischer EK, O'Connell LA. Hormonal and neural correlates of care in active versus observing poison frog parents. Horm Behav 2020; 120:104696. [PMID: 31987899 DOI: 10.1016/j.yhbeh.2020.104696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
The occasional reversal of sex-typical behavior suggests that many of the neural circuits underlying behavior are conserved between males and females and can be activated in response to the appropriate social condition or stimulus. Most poison frog species (Family Dendrobatidae) exhibit male uniparental care, but flexible compensation has been observed in some species, where females will take over parental care duties when males disappear. We investigated hormonal and neural correlates of sex-typical and sex-reversed parental care in a typically male uniparental species, the Dyeing Poison Frog (Dendrobates tinctorius). We first characterized hormone levels and whole brain gene expression across parental care stages during sex-typical care. Surprisingly, hormonal changes and brain gene expression differences associated with active parental behavior in males were mirrored in their non-caregiving female partners. To further explore the disconnect between neuroendocrine patterns and behavior, we characterized hormone levels and neural activity patterns in females performing sex-reversed parental care. In contrast to hormone and gene expression patterns, we found that patterns of neural activity were linked to the active performance of parental behavior, with sex-reversed tadpole transporting females exhibiting neural activity patterns more similar to those of transporting males than non-caregiving females. We suggest that parallels in hormones and brain gene expression in active and observing parents are related to females' ability to flexibly take over parental care in the absence of their male partners.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Lauren A O'Connell
- Department of Biology, Stanford University, Stanford, CA, United States of America.
| |
Collapse
|
5
|
Anderson AP, Jones AG. erefinder: Genome-wide detection of oestrogen response elements. Mol Ecol Resour 2019; 19:1366-1373. [PMID: 31177626 DOI: 10.1111/1755-0998.13046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
Abstract
Oestrogen response elements (EREs) are specific DNA sequences to which ligand-bound oestrogen receptors (ERs) physically bind, allowing them to act as transcription factors for target genes. Locating EREs and ER responsive regions is therefore a potentially important component of the study of oestrogen-regulated pathways. Here, we report the development of a novel software tool, erefinder, which conducts a genome-wide, sliding-window analysis of oestrogen receptor binding affinity. We demonstrate the effects of adjusting window size and highlight the program's general agreement with ChIP studies. We further provide two examples of how erefinder can be used for comparative approaches. erefinder can handle large input files, has settings to allow for broad and narrow searches, and provides the full output to allow for greater data manipulation. These features facilitate a wide range of hypothesis testing for researchers and make erefinder an excellent tool to aid in oestrogen-related research.
Collapse
Affiliation(s)
- Andrew P Anderson
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
6
|
Santillo A, Falvo S, Di Fiore MM, Chieffi Baccari G. Seasonal changes and sexual dimorphism in gene expression of StAR protein, steroidogenic enzymes and sex hormone receptors in the frog brain. Gen Comp Endocrinol 2017; 246:226-232. [PMID: 28027903 DOI: 10.1016/j.ygcen.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
Abstract
The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy.
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| |
Collapse
|
7
|
Garland T, Zhao M, Saltzman W. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior. Integr Comp Biol 2016; 56:207-24. [PMID: 27252193 PMCID: PMC5964798 DOI: 10.1093/icb/icw040] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often "used" as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which-corticosterone, leptin, and adiponectin-differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels.
Collapse
Affiliation(s)
- Theodore Garland
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Meng Zhao
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| | - Wendy Saltzman
- *Department of Biology, University of California, Riverside, Riverside, CA 92506, USA
| |
Collapse
|
8
|
Lattin CR, DuRant SE, Romero LM. Wounding alters blood chemistry parameters and skin mineralocorticoid receptors in house sparrows (Passer domesticus). ACTA ACUST UNITED AC 2015; 323:322-30. [DOI: 10.1002/jez.1921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/17/2015] [Accepted: 01/21/2015] [Indexed: 01/03/2023]
Affiliation(s)
| | - Sarah E. DuRant
- Department of Biology; Tufts University; Medford Massachusetts
- Department of Zoology; Oklahoma State University; Stillwater Oklahoma
| | | |
Collapse
|
9
|
Liu X, Shi H. Regulation of Estrogen Receptor α Expression in the Hypothalamus by Sex Steroids: Implication in the Regulation of Energy Homeostasis. Int J Endocrinol 2015; 2015:949085. [PMID: 26491443 PMCID: PMC4600542 DOI: 10.1155/2015/949085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs). ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS) as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement) or physiological stages (i.e., puberty, pregnancy, and menopause), lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.
Collapse
Affiliation(s)
- Xian Liu
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
10
|
Bergeon Burns CM, Rosvall KA, Hahn TP, Demas GE, Ketterson ED. Examining sources of variation in HPG axis function among individuals and populations of the dark-eyed junco. Horm Behav 2014; 65:179-87. [PMID: 24140626 PMCID: PMC3944345 DOI: 10.1016/j.yhbeh.2013.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/04/2013] [Accepted: 10/09/2013] [Indexed: 11/22/2022]
Abstract
Gonadal steroids are important mediators of traits relevant to fitness, and thus may be targets of selection. However, more knowledge is needed about sources of variation along the endocrine axes that may contribute to functional variation in steroid levels. In a controlled captive environment, we studied males of two closely related subspecies of the dark-eyed junco (Junco hyemalis) that differ in testosterone-related phenotype, asking whether they also differ in testosterone (T), and assessing the contribution of the sequential links of the hypothalamic-pituitary-gonadal axis. When males of both subspecies were challenged with gonadotropin-releasing hormone (GnRH), they were similar in circulating luteinizing hormone (LH) and T responses. When challenged with exogenous LH, they again produced levels of T similar to one another, and to the levels produced in response to GnRH. However, the smaller, less ornamented, and less aggressive subspecies had greater abundance of mRNA for LH receptor in the testes and for androgen receptor in the rostral hypothalamus, suggesting potential differences in regulatory feedback. We suggest that circulating hormone levels may be less prone to evolutionary change than the responsiveness of individual hormone targets. Among individuals, T titers were highly repeatable whether males were challenged with GnRH or with LH, but LH produced in response to GnRH did not covary with T produced in response to LH. Testis mass, but not LH receptor transcript abundance, predicted individual variation in T responses. These data implicate the gonad, but not the pituitary, as an important source of individual variation in T production.
Collapse
Affiliation(s)
- Christine M Bergeon Burns
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kimberly A Rosvall
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Thomas P Hahn
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA.
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Ellen D Ketterson
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
11
|
O’Connell LA, Matthews BJ, Patel SB, O’Connell JD, Crews D. Molecular characterization and brain distribution of the progesterone receptor in whiptail lizards. Gen Comp Endocrinol 2011; 171:64-74. [PMID: 21185292 PMCID: PMC3041865 DOI: 10.1016/j.ygcen.2010.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/06/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Progesterone and its nuclear receptor are critical in modulating reproductive physiology and behavior in female and male vertebrates. Whiptail lizards (genus Cnemidophorus) are an excellent model system in which to study the evolution of sexual behavior, as both the ancestral and descendent species exist. Male-typical sexual behavior is mediated by progesterone in both the ancestral species and the descendant all-female species, although the molecular characterization and distribution of the progesterone receptor protein throughout the reptilian brain is not well understood. To better understand the gene targets and ligand binding properties of the progesterone receptor in whiptails, we cloned the promoter and coding sequence of the progesterone receptor and analyzed the predicted protein structure. We next determined the distribution of the progesterone receptor protein and mRNA throughout the brain of Cnemidophorus inornatus and Cnemidophorus uniparens by immunohistochemistry and in situ hybridization. We found the progesterone receptor to be present in many brain regions known to regulate social behavior and processing of stimulus salience across many vertebrates, including the ventral tegmental area, amygdala, nucleus accumbens and several hypothalamic nuclei. Additionally, we quantified immunoreactive cells in the preoptic area and ventromedial hypothalamus in females of both species and males of the ancestral species. We found differences between both species and across ovarian states. Our results significantly extend our understanding of progesterone modulation in the reptilian brain and support the important role of the nuclear progesterone receptor in modulating sexual behavior in reptiles and across vertebrates.
Collapse
Affiliation(s)
- Lauren A. O’Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Bryan J. Matthews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Sagar B. Patel
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jeremy D. O’Connell
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- All correspondence and requests for reprints should to addressed to: David Crews, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, Phone: 512-471-1113,
| |
Collapse
|
12
|
Chakraborty M, Burmeister SS. Sexually dimorphic androgen and estrogen receptor mRNA expression in the brain of túngara frogs. Horm Behav 2010; 58:619-27. [PMID: 20600046 DOI: 10.1016/j.yhbeh.2010.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 06/03/2010] [Accepted: 06/17/2010] [Indexed: 11/23/2022]
Abstract
Sex steroid hormones are potent regulators of behavior and they exert their effects through influences on sensory, motor, and motivational systems. To elucidate where androgens and estrogens can act to regulate sex-typical behaviors in the túngara frog (Physalaemus pustulosus), we quantified expression of the androgen receptor (AR), estrogen receptor alpha (ERalpha), and estrogen receptor beta (ERbeta) genes in the brains of male and females. To do so, we cloned túngara-specific sequences for AR, ERalpha, and ERbeta, determined their distribution in the brain, and then quantified their expression in areas that are important in sexual communication. We found that AR, ERalpha, and ERbeta were expressed in the pallium, limbic forebrain (preoptic area, hypothalamus, nucleus accumbens, amygdala, septum, striatum), parts of the thalamus, and the auditory midbrain (torus semicircularis). Males and females had a similar distribution of AR and ER expression, but expression levels differed in some brain regions. In the auditory midbrain, females had higher ERalpha and ERbeta expression than males, whereas males had higher AR expression than females. In the forebrain, females had higher AR expression than males in the ventral hypothalamus and medial pallium (homolog to hippocampus), whereas males had higher ERalpha expression in the medial pallium. In the preoptic area, striatum, and septum, males and females had similar levels of AR and ER expression. Our results suggest that sex steroid hormones have sexually dimorphic effects on auditory processing, sexual motivation, and possibly memory and, therefore, have important implications for sexual communication in this system.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
13
|
Verboven N, Verreault J, Letcher RJ, Gabrielsen GW, Evans NP. Maternally derived testosterone and 17beta-estradiol in the eggs of Arctic-breeding glaucous gulls in relation to persistent organic pollutants. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:143-51. [PMID: 18550446 DOI: 10.1016/j.cbpc.2008.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 11/23/2022]
Abstract
It is largely unknown if and how persistent organic pollutants (POPs) affect the transfer of maternal hormones to eggs. This occurs despite an increasing number of studies relating environmental conditions experienced by female birds at the time of egg formation to maternal hormonal effects. Here we report the concentrations of maternal testosterone, 17beta-estradiol and major classes of POPs (organochlorines, brominated flame retardants and metabolically-derived products) in the yolk of unincubated, third-laid eggs of the glaucous gull (Larus hyperboreus), a top-predator in the Arctic marine environment. Controlled for seasonal and local variation, positive correlations were found between the concentrations of certain POPs and testosterone. Contaminant-related changes in the relative concentrations of testosterone and 17beta-estradiol were also observed. In addition, yolk steroid concentrations were associated with contaminant profiles describing the proportions of different POPs present in the yolk. Eggs from nests in which two sibling eggs hatched or failed to hatch differed in POP profiles and in the relative concentrations of testosterone and 17beta-estradiol. Although the results of this correlative study need to be interpreted with caution, they suggest that contaminant-related changes in yolk steroids may occur, possibly affecting offspring performance over and above toxic effects brought about by POPs in eggs.
Collapse
Affiliation(s)
- Nanette Verboven
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| | | | | | | | | |
Collapse
|
14
|
Blaustein JD. Neuroendocrine regulation of feminine sexual behavior: lessons from rodent models and thoughts about humans. Annu Rev Psychol 2008; 59:93-118. [PMID: 17678443 DOI: 10.1146/annurev.psych.59.103006.093556] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much has been learned concerning the neuroendocrine processes and cellular mechanisms by which steroid hormones influence reproductive behaviors in rodents and other animals. In this review, a short discussion of hormones and feminine sexual behavior in some rodent species is followed by an outline of the main principles that have been learned from these studies. Examples are given of the importance of considering the timing of hormone treatments, dosage of hormone, use of a specific hormone, particular class of hormones, or form of hormone, interactions between hormones, route of administration, peripheral factors that influence hormonal response, and the possible mechanisms of action by which hormones and other factors influence sexual behaviors. Although cellular studies in humans are presently impossible to perform, mechanistic studies in rodents may provide clues about the neuroendocrine mechanisms by which hormones act and interact in the brain to influence behavior in all species, including humans.
Collapse
Affiliation(s)
- Jeffrey D Blaustein
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program and Psychology Department, University of Massachusetts, Amherst, Massachusetts 01003-9271, USA.
| |
Collapse
|
15
|
Dias BG, Crews D. Serotonergic modulation of male-like pseudocopulatory behavior in the parthenogenetic whiptail lizard, Cnemidophorus uniparens. Horm Behav 2006; 50:401-9. [PMID: 16793042 PMCID: PMC2394198 DOI: 10.1016/j.yhbeh.2006.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 12/16/2022]
Abstract
Hormone-neurotransmitter interactions form an important link through which hormones influence a variety of behavioral processes. Typically, sexual behavior is dimorphic with males mounting receptive females. In the all-female lizard species Cnemidophorus uniparens, individuals display both male-like pseudocopulation and female-like receptivity. These respective behavioral states are correlated with high circulating concentrations of progesterone following ovulation and of estrogen preceding it. In sexual species, serotonin is involved in male-typical mounting, and, as reported here, in male-like pseudosexual behavior in this unisexual species. In the first study, C. uniparens were ovariectomized and treated systemically with exogenous androgen, a hormonal regimen that results in individuals displaying only male-like pseudosexual behavior. An increase in serotonin levels in the preoptic area coupled with the suppression of male-like pseudocopulation was observed in androgen-treated lizards injected with 5-hydroxytryptophan (the precursor of serotonin) and clorgyline (a monoamine oxidase inhibitor) compared to vehicle-treated controls. Our second experiment involved ovariectomizing lizards and either injecting them with estradiol or implanting them with either an empty (Blank) or a progesterone- or testosterone-containing Silastic capsule. Treatment with para-chlorophenylalanine (an inhibitor of tryptophan hydroxylase) facilitated male-like pseudosexual behavior depending on the circulating hormonal milieu and decreased serotonin levels in the preoptic area. Our data suggest that serotonin is inhibitory to male-like pseudosexual behavior in C. uniparens but more importantly that the hormonal environment modulates the serotonin system at the level of the preoptic area, with the serotonergic system then establishing behavioral thresholds that allow for this behavior to be "gated".
Collapse
Affiliation(s)
- Brian George Dias
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
16
|
Crews D, Moore MC. Historical contributions of research on reptiles to behavioral neuroendocrinology. Horm Behav 2005; 48:384-94. [PMID: 15919086 DOI: 10.1016/j.yhbeh.2005.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/02/2005] [Accepted: 04/08/2005] [Indexed: 11/23/2022]
Abstract
Some of the first experiments in behavioral endocrinology in the 1930s were conducted with lizards, but events led to a hiatus that lasted for 30 years. In the 1960s, research resumed using techniques current at the time, but it was not until the mid-1970s that behavioral neuroendocrinology "discovered" reptiles as animal model systems. This historical review summarizes this period of work, illustrating an enormous increase in research that have led to conclusions such as (1) the phenomenon of dissociated reproductive strategies and hormone-independent behaviors, which have aided our understanding of how the "memory" of sex steroid actions is maintained. (2) Progesterone plays an important role in the organization and activation of sexual behavior in males. Progesterone also synergizes with T to control male courtship much as does estrogen and progesterone to control sexual receptivity in females. Thus, progesterone is as much a "male" hormone as it is a "female" hormone. (3) Use of cytochrome oxidase histochemistry to study the role of experience over the long term in modifying brain activity. (4) Hormone manipulations as a powerful tool to test hypotheses about the evolution of behavior in free-living animals.
Collapse
Affiliation(s)
- David Crews
- Section of Integrative Biology, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
17
|
Crews D. Evolution of neuroendocrine mechanisms that regulate sexual behavior. Trends Endocrinol Metab 2005; 16:354-61. [PMID: 16139506 DOI: 10.1016/j.tem.2005.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 06/27/2005] [Accepted: 08/19/2005] [Indexed: 11/29/2022]
Abstract
Whiptail lizards provide a unique system to study evolution of brain mechanisms because both ancestral (sexual) and descendant (parthenogenetic) species exist. Parthenogenetic whiptails enable us to avoid the two major confounds in sex differences research - males and females that differ both genetically and hormonally. Parthenogens are females that reproduce clonally, yet display alternately female-like and male-like pseudosexual behavior. Thus, the neural circuitry underlying male and female sexual behavior can be examined within the 'same' brain (same genome), enabling us to see how neuroendocrine mechanisms controlling mounting behavior change. In ancestral males, testicular androgens control sexual behavior, whereas male-like pseudocopulatory behavior is controlled by ovarian progesterone in parthenogens, revealing that progesterone is important in regulating sexual behavior in male vertebrates, including mammals.
Collapse
Affiliation(s)
- David Crews
- Ashbel Smith Professor of Zoology and Psychology, Section of Integrative Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Woolley SC, Sakata JT, Crews D. Evolutionary insights into the regulation of courtship behavior in male amphibians and reptiles. Physiol Behav 2004; 83:347-60. [PMID: 15488550 DOI: 10.1016/j.physbeh.2004.08.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Comparative studies of species differences and similarities in the regulation of courtship behavior afford an understanding of evolutionary pressures and constraints shaping reproductive processes and the relative contributions of hormonal, genetic, and ecological factors. Here, we review species differences and similarities in the control of courtship and copulatory behaviors in male amphibians and reptiles, focusing on the role of sex steroid hormones, the neurohormone arginine vasotocin (AVT), and catecholamines. We discuss species differences in the sensory modalities used during courtship and in the neural correlates of these differences, as well as the value of particular model systems for neural evolution studies with regard to reproductive processes. For example, in some genera of amphibians (e.g., Ambystoma) and reptiles (e.g., Cnemidophorus), interspecific hybridizations occur, making it possible to compare the ancestral with the descendant species, and these systems provide a window into the process of behavioral and neural evolution as well as the effect of genome size. Though our understanding of the hormonal and neural correlates of mating behavior in a variety of amphibian and reptilian species has advanced substantially, more studies that manipulate hormone or neurotransmitter systems are required to assess the functions of these systems.
Collapse
Affiliation(s)
- Sarah C Woolley
- Section for Integrative Biology, Division of Biological Sciences, Patterson Laboratories, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
19
|
Meikle A, Tasende C, Sosa C, Garófalo EG. The role of sex steroid receptors in sheep female reproductive physiology. Reprod Fertil Dev 2004. [DOI: 10.1071/rd04036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell responsiveness to steroid hormones is related to the number and affinity of its receptors, thus factors affecting steroid expression will influence tissue sensitivity and functionality. The present review discusses the role of oestrogen and progesterone receptors in sheep female reproductive physiology. The mechanism of steroid hormone action in the target cell is introduced first; the tissue distribution, physiological functions and regulation of oestrogen receptor subtypes and progesterone receptor isoforms in ruminants are reported. The role of steroid receptors in target tissues (with emphasis on the uterus and pituitary gland) during different physiological events is addressed in an attempt to clarify oestrogen and progesterone actions in different developmental and reproductive stages: prepubertal period, oestrous cycle, pregnancy, post-partum period and seasonal anoestrus. The present review shows how the distinct reproductive stages are accompanied by dramatic changes in uterine receptor expression. The role of oestrogen and progesterone receptors in the molecular mechanism responsible for premature luteolysis that results in subnormal luteal function is discussed. Finally, the effect of nutrition on sex steroid receptor expression and the involvement on reproductive performance is reported.
Collapse
|
20
|
Wennstrom KL, Gill CJ, Crews D. Sex differences in estrogen-induced progesterone and estrogen receptor mRNA in the ventromedial hypothalamus of hatchling whiptail lizards. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:151-7. [PMID: 14519501 DOI: 10.1016/s0165-3806(03)00225-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ventromedial hypothalamus (VMH) is an important neural locus for the control of female-typical sexual behavior in vertebrates, and exogenous estrogen stimulates a strong increase in progesterone receptor (PR) in the VMH of adult females. Estrogen also regulates its own receptor (ER), though the direction of the response varies from species to species. In rodents and whiptail lizards, males either lack estrogen regulation of PR and ER mRNA in the VMH or display a greatly attenuated response. We examined hatchlings of two closely related species of whiptail lizards, one of which is parthenogenetic. Though normally all female, the parthenogens can be made to develop as gonadal males by treating with aromatase inhibitor early in development. Thus, we were able to ask whether the brain sex of these 'created male' parthenogens corresponded to their gonadal sex or their genetic sex. We injected 1- and 30-day-old animals of both species and sexes with estradiol benzoate (EB) and assayed for PR and ER mRNA using in situ hybridization. All animals given EB responded with a strong increase in PR mRNA in the VMH. However, females of the sexual species had higher EB-induced PR mRNA levels than did conspecific males; there was no sex difference between the normal parthenogens and the created males of the parthenogenetic species. EB also stimulated an increase in ER mRNA in the VMH, but the pattern of response was more complex. Normal parthenogens did not increase ER mRNA in response to EB in either age group, in contrast to the strong response of 1-day-old males and females of the sexual species and 30-day-old created males. The results indicate that hatchling whiptails show striking species and sexual differences in the regulation of sex steroid receptor mRNAs in an area of the brain important for adult sexual behavior. This variation may play a role in the development of species and sexual differences in the adult neuroendocrine phenotype.
Collapse
Affiliation(s)
- Kira L Wennstrom
- Department of Biology, University of Arkansas at Little Rock, 2801 S. University, Little Rock, AR 72204, USA.
| | | | | |
Collapse
|
21
|
Godwin J, Hartman V, Nag P, Crews D. Androgenic regulation of steroid hormone receptor mRNAs in the brain of whiptail lizards. J Neuroendocrinol 2000; 12:599-606. [PMID: 10849204 DOI: 10.1046/j.1365-2826.2000.00513.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sex and species differences in androgenic regulation of steroid hormone receptor mRNAs were examined in the diencephalon of two species of whiptail lizards: Cnemidophorus inornatus is a sexual species and the direct evolutionary ancestor to Cnemidophorus uniparens, an all-female parthenogenetic species. Lizards were gonadectomized and treated with different doses of either aromatizable testosterone or nonaromatizable dihydrotestosterone. The relative abundances of androgen-, oestrogen-, and progesterone-receptor mRNAs were compared in various nuclei following in situ hybridization with homologous riboprobes. A diversity of patterns in androgenic regulation was observed, with effects differing according to brain region, the steroid-receptor mRNA being considered and, in some cases, between androgens. In the ancestral sexual species, intact males had lower androgen-receptor mRNA abundances than castrated, blank-implanted males in the medial preoptic area. Testosterone significantly decreased androgen-receptor mRNA abundance in the medial preoptic area of castrated males. Males had higher androgen-receptor mRNA levels in the preoptic area than females generally and neither the sexual or parthenogenetic females showed a decrease in androgen-receptor mRNA with androgen treatment. Both testosterone and dihydrotestosterone increased oestrogen-receptor mRNA abundance in the ventromedial hypothalamus of C. inornatus, but no sex differences in this effect were observed. Gonadectomy decreased, whereas androgen treatment increased, progesterone-receptor mRNA abundance in the ventromedial hypothalamus. There was a sex difference in this response to androgen in the sexual species, with males having greater amounts than females in this brain area. The parthenogenetic species exhibited a similar pattern to females of the sexual species, but the levels were higher overall, possibly because Cnemidophorus uniparens is triploid. The periventricular preoptic area showed a different pattern, with testosterone treatment increasing progesterone-receptor mRNA abundance in both sexes of the sexual species and in the parthenogenetic species, while dihydrotestosterone did not. The diversity of patterns in androgen effects indicates that gonadal sex, aromatization of androgen, and perhaps gene dosage all influence the expression of steroid-receptor mRNAs in the lizard brain.
Collapse
Affiliation(s)
- J Godwin
- Department of Zoology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
22
|
Emerson SB. Vertebrate Secondary Sexual Characteristics-Physiological Mechanisms and Evolutionary Patterns. Am Nat 2000; 156:84-91. [PMID: 10824023 DOI: 10.1086/303370] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1999] [Accepted: 02/03/2000] [Indexed: 11/04/2022]
Abstract
As most commonly presented, the organization-activation theory of sexual differentiation emphasizes the importance of the relative age of the organism for understanding steroid hormone effects. However, considering the actual physiological mechanisms of tissue enlargement (hyperplasia/hypertrophy) provides an additional perspective for interpreting patterns of evolutionary change in sexual dimorphism. Using that focus, it is possible to suggest mechanistic explanations for patterns of allometry and the size of some secondary sexual characteristics produced by "runaway" selection. It can also lead to the formulation of testable hypotheses regarding the type of sexually dimorphic characters that might evolve through "good genes" models; the relationship between intrasexual competition, polygyny, and the development and size of male weapons; and the control and type of secondary sexual characteristics that will be present in males with associated and disassociated reproductive patterns.
Collapse
|
23
|
Godwin J, Crews D. Hormonal regulation of progesterone receptor mRNA expression in the hypothalamus of whiptail lizards: Regional and species differences. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199905)39:2<287::aid-neu12>3.0.co;2-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Phelps SM, Lydon JP, O'malley BW, Crews D. Regulation of male sexual behavior by progesterone receptor, sexual experience, and androgen. Horm Behav 1998; 34:294-302. [PMID: 9878278 DOI: 10.1006/hbeh.1998.1485] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated that physiological doses of progesterone may facilitate the androgen-dependent display of male sexual behavior in laboratory rats and three species of lizard. We used mice with a targeted disruption of the progesterone receptor to investigate whether such interactions exist in male mice and whether they may be modified by sexual experience. We found that naive intact male progesterone receptor knockout (PRKO) mice exhibit reduced mount frequencies compared to wild-type (WT) mice. Also unlike WT mice, sexually experienced PRKO males show profound losses in many measures of sexual behavior following castration. In a second experiment, we tested whether male mice heterozygous for a null mutation at the progesterone receptor locus were responsive to testosterone and progesterone treatment. We found that heterozygous males showed a reduced response to testosterone. The data are consistent with experiments indicating that the progesterone receptor is able to facilitate male-typical sex behaviors in other species and suggest novel mechanisms underlying the interaction of androgens and experience.
Collapse
Affiliation(s)
- S M Phelps
- Department of Zoology, University of Texas at Austin, Austin, Texas, 78712, USA
| | | | | | | |
Collapse
|
25
|
Abstract
1. The study of sex differences in the brain and behavior of reptiles presents an excellent opportunity both to discern general principles of sexual differentiation in the nervous system and to explore the evolutionary history of this process in amniote vertebrates. 2. Findings in several reptiles suggest that some sex differences found in mammals and birds are conserved while others are not. Conserved features include areas in the limbic forebrain involved in the regulation of social and sexual behaviors. As in mammals and birds, it is rare to find differences in the distribution of sex steroid concentrating neurons in reptiles but common to find differences in the distribution of the various steroid hormone receptors and in their regulation. 3. This research has revealed that differences in social and sexual behavior are reflected better by the activity, not by the size, of hormone-sensitive limbic areas. 4. Finally, species differences in plasma levels of sex hormones are paralleled by differences in behavioral sensitivity to these hormones as well as by differences in the regulation of genes coding for steroid hormone receptors.
Collapse
Affiliation(s)
- J Godwin
- Department of Zoology, University of Texas at Austin 78712, USA
| | | |
Collapse
|
26
|
Crews D, Coomber P, Gonzalez-Lima F. Effects of age and sociosexual experience on the morphology and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. Brain Res 1997; 758:169-79. [PMID: 9203546 DOI: 10.1016/s0006-8993(97)00222-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In vertebrates having sex chromosomes, sexual behavior is influenced by steroid hormones throughout life as well as by the cumulative experiences of the individual. Because males and females differ genetically as well as hormonally, it would be valuable to distinguish the contribution of sex-specific genes from hormones. In addition, since animals age as they gain sociosexual experience, but do not necessarily gain sociosexual experience as they age, it is important to separate the effects of age from those attributable to experience. The leopard gecko is a lizard lacking sex chromosomes, depending instead upon the temperature during incubation to establish gonadal sex. This effectively removes sex-specific genetic influences from any study of sexual differentiation. Eggs were incubated at either 26 degrees C or 32.5 degrees C, temperatures that produce only female hatchlings or a male-biased sex ratio, respectively. By raising geckoes in isolation and then housing some animals together in breeding groups at different ages after they attained sexual maturity, it was possible to assess the relative effects of age and sociosexual experience on the volume and metabolic capacity of limbic and non-limbic brain areas. In general, males showed more changes compared to females. For example, there was a decrease with age in the volume of the preoptic area and the ventromedial hypothalamus in males, but not in females. Both age and sociosexual experience influenced cytochrome oxidase activity in these and other brain areas. Experienced animals had greater metabolic capacity in nuclei functionally associated with sociosexual behavior in lizards and other vertebrates. For example, cytochrome oxidase activity was higher in the anterior hypothalamus of males, in the ventromedial hypothalamus of both males and females from the male-biased incubation temperature, and in the preoptic area of females from both incubation temperatures. These differences were not paralleled by differences in circulating levels of sex hormones; only plasma androgen levels differed as a function of experience in males. These data suggest that the volume and metabolic capacity of specific brain regions change as animals age and gain sociosexual experience, but the nature and degree of change depend upon prenatal events.
Collapse
Affiliation(s)
- D Crews
- Institute of Reproductive Biology and Department of Zoology, University of Texas at Austin, 78712, USA.
| | | | | |
Collapse
|
27
|
Coomber P, Crews D, Gonzalez-Lima F. Independent effects of incubation temperature and gonadal sex on the volume and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970414)380:3%3c409::aid-cne9%3e3.0.co;2-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Coomber P, Crews D, Gonzalez-Lima F. Independent effects of incubation temperature and gonadal sex on the volume and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. J Comp Neurol 1997; 380:409-21. [PMID: 9087522 DOI: 10.1002/(sici)1096-9861(19970414)380:3<409::aid-cne9>3.0.co;2-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The extent to which variation within and between the sexes can be assigned to genes vs. environment is problematic, because, in most vertebrates, males and females differ genetically. However, factors other than sex chromosomes and the consequent sex-typical gonadal hormone secretions may play important roles in the differentiation of the neural mechanisms underlying individual and sex differences in aggressive and sexual behavior. The leopard gecko, like many oviparous reptiles, lacks sex chromosomes. Instead, gonadal sex is determined by temperature during embryogenesis, with low and high incubation temperatures producing females and intermediate temperatures producing mixed sex ratios. In essence, this allows for the study of individual and sex differences without the confounding variable of genetically determined gender. Experiments have shown that the temperature experienced during incubation plays a critical role in establishing the adult morphological, endocrinological, and behavioral phenotype. In this experiment, the independent effects of incubation temperature and gonadal sex on the morphology and metabolic capacity of specific brain nuclei were determined. Both individual and sex differences in the volume of the preoptic area and ventromedial nucleus of the hypothalamus are determined primarily by incubation temperature, not by gonadal sex. However, incubation temperature and gonadal sex are both important in determining the metabolic capacity in the anterior hypothalamus, external amygdala, dorsal lateral nucleus of the hypothalamus, dorsal lateral nucleus of the thalamus, dorsal ventricular ridge, habenula, lateral hypothalamus, nucleus rotundus, nucleus sphericus, periventricular nucleus of the hypothalamus, preoptic area, periventricular nucleus of the preoptic area, septum, striatum, torus semicircularis, and ventromedial nucleus of the hypothalamus. This is the first demonstration in a vertebrate that factors other than gonadal sex hormones, which arise from the individual's genetic constitution, can affect the sexual differentiation of the brain.
Collapse
Affiliation(s)
- P Coomber
- Department of Zoology, University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|
29
|
Abstract
One of the first things that we are impressed by is the great variety of animals, particularly their behaviors and their physiologies. With so many differences, are there any generalities? With the establishment of evolutionary theory, evidence of "unity in diversity" comes with discoveries of common anatomical features, the cell cycle, conservation of intermediary metabolism, and the genetic code, to name but a few. In vertebrates there appears to be a conservation of the neural circuits underlying sexual behavior, but it is still too early to state the extent to which this concept can be extended to the hormonal mechanisms underlying behavior. Much of our conceptual understanding of behavioral neuroendocrinology stems from extensive studies on relatively few species. When an evolutionary perspective is applied to behavioral neuroscience, the breadth and validity of our assumptions about the mechanisms that control species-typical behaviors are challenged. This is not the same thing as saying that there are few unitary explanations that apply to all mammals, amniotes, or even vertebrates. Considerable information has been gathered about the neuroendocrine bases of behavior in a few species, but to uncover truly broad generalizations, we must look with equal intensity and rigor at other organisms. The pattern of evolution is best illustrated in the diversity of organisms, and the ecological and evolutionary perspective illuminates the utility of various "experiments of nature." By studying (1) closely related species that live in different habitats, we can see if the adaptational responses are similar, and (2) distantly related species that live in the same habitat, we can see if the solutions are analogous. The unique qualities of each species also give us a deeper understanding of the constraints in fundamental processes. When basic conflicts exist, control mechanisms adapt or the species goes extinct. Interestingly, although the neural circuits themselves do not degenerate, they are either no longer used or coopted for other functions.
Collapse
Affiliation(s)
- D Crews
- Department of Zoology, University of Texas at Austin 78712, USA.
| |
Collapse
|