1
|
Revising Endosomal Trafficking under Insulin Receptor Activation. Int J Mol Sci 2021; 22:ijms22136978. [PMID: 34209489 PMCID: PMC8268289 DOI: 10.3390/ijms22136978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.
Collapse
|
2
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
3
|
Moyers JS, Volk CB, Cao JXC, Zhang C, Ding L, Kiselyov VV, Michael MD. Internalization and localization of basal insulin peglispro in cells. Mol Cell Endocrinol 2017; 454:23-38. [PMID: 28576743 DOI: 10.1016/j.mce.2017.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. METHODS AND MATERIALS Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. RESULTS Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. CONCLUSIONS Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than the rate of clearance for human insulin. In contrast, the PEG moiety of BIL can recycle out of cells.
Collapse
Affiliation(s)
- Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Catherine B Volk
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julia X C Cao
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Chen Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Liyun Ding
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - M Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
4
|
Quasi-Steady-State Analysis based on Structural Modules and Timed Petri Net Predict System's Dynamics: The Life Cycle of the Insulin Receptor. Metabolites 2015; 5:766-93. [PMID: 26694479 PMCID: PMC4693194 DOI: 10.3390/metabo5040766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 02/01/2023] Open
Abstract
The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.
Collapse
|
5
|
Berguig GY, Convertine AJ, Shi J, Palanca-Wessels MC, Duvall CL, Pun SH, Press OW, Stayton PS. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate. Mol Pharm 2012; 9:3506-14. [PMID: 23075320 DOI: 10.1021/mp300338s] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells, where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-release dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alexa Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH distribution of the HD39/SA-polymer conjugates was quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH value experienced by the conjugates was also characterized as a function of time by flow cytometry. PPAA was shown to alter the intracellular trafficking kinetics strongly relative to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 h, only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast, the average intracellular pH of HD39/SA alone dropped from 6.7 ± 0.2 at 1 h to 5.6 ± 0.5 after 3 h and 4.7 ± 0.6 after 6 h. Conjugation of the control polymer PMAA to HD39/SA showed an average pH drop similar to that of HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 h, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time.
Collapse
Affiliation(s)
- Geoffrey Y Berguig
- Department of Bioengineering, University of Washington , Seattle, Washington 98195-5061, United States
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu Y, Parmar A, Roux E, Balbis A, Dumas V, Chevalier S, Posner BI. Epidermal growth factor-induced vacuolar (H+)-atpase assembly: a role in signaling via mTORC1 activation. J Biol Chem 2012; 287:26409-22. [PMID: 22689575 DOI: 10.1074/jbc.m112.352229] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V(1) subunits of the vacuolar (H(+))-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1.
Collapse
Affiliation(s)
- Yanqing Xu
- Polypeptide Hormone Laboratory, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Hansen MJK, Olsen JG, Bernichtein S, O'Shea C, Sigurskjold BW, Goffin V, Kragelund BB. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding. J Mol Recognit 2010; 24:533-47. [PMID: 20842635 DOI: 10.1002/jmr.1064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 01/03/2023]
Abstract
The cytokine hormone prolactin has a vast number of diverse functions. Unfortunately, it also exhibits tumor growth promoting properties, which makes the development of prolactin receptor antagonists a priority. Prolactin binds to its cognate receptor with much lower affinity at low pH than at physiological pH and since the extracellular environment around solid tumors often is acidic, it is desirable to develop antagonists that have improved binding affinity at low pH. The pK(a) value of a histidine side chain is ∼6.8 making histidine residues obvious candidates for examination. From evaluation of known molecular structures of human prolactin, of the prolactin receptor and of different complexes of the two, three histidine residues in the hormone-receptor binding site 1 were selected for mutational studies. We analyzed 10 variants by circular dichroism spectroscopy, affinity and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology.
Collapse
Affiliation(s)
- Mathilde J Kaas Hansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
8
|
Balbis A, Posner BI. Compartmentalization of EGFR in cellular membranes: role of membrane rafts. J Cell Biochem 2010; 109:1103-8. [PMID: 20143338 DOI: 10.1002/jcb.22505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is now abundant evidence that the intracellular concentration of the EGFR and many other receptors for peptide hormones and growth factors is important for the temporal and spatial regulation of cell signaling. Spatial control is achieved by the selective compartmentalization of signaling components into endosomes. However further control may be effected by sequestration into sub-domains within a given organelle such as membrane rafts which are dynamic, nano scale structures rich in cholesterol and sphingolipids. Current data suggest the presence of EGFRs in non-caveolae membrane rafts. High doses of EGF seem to promote the sorting of EGFR to late endosomes through a raft/cholesterol dependant mechanism, implicating them in EGFR degradation. However our work and that of others has led us to propose a model in which membrane rafts in late endosomes sequester highly active EGFR leading to the recruitment and activation of MAPK in this compartment.
Collapse
Affiliation(s)
- Alejandro Balbis
- Polypeptide Hormone Laboratory, McGill University and the Royal Victoria Hospital, Montreal, Quebec, Canada H3A2B2
| | | |
Collapse
|
9
|
Abstract
Peptide hormones and growth factors initiate signalling by binding to and activating their cell surface receptors. The activated receptors interact with and modulate the activity of cell surface enzymes and adaptor proteins which entrain a series of reactions leading to metabolic and proliferative signals. Rapid internalization of ligand-receptor complexes into the endosomal system both prolongs and augments events initiated at the cell surface. In addition endocytosis brings activated receptors into contact with a wider range of substrates giving rise to unique signalling events critical for modulating proliferation and apoptosis. Within the endosomal system, receptor function is regulated by lowering vacuolar pH, augmenting ligand proteolysis and promoting receptor kinase dephosphorylation. Ubiquitination-deubiquitination plays a key role in regulating receptor traffic through the endosomal system resulting in either recycling to the cell surface or degradation in multivesicular-lysosomal elements. From a clinical perspective there are several studies showing that manipulating endosomal processes may constitute a new therapeutic strategy.
Collapse
|
10
|
Keeler C, Tettamanzi MC, Meshack S, Hodsdon ME. Contribution of individual histidines to the global stability of human prolactin. Protein Sci 2009; 18:909-20. [PMID: 19384991 DOI: 10.1002/pro.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A member of the family of hematopoietic cytokines human prolactin (hPRL) is a 23k kDa polypeptide hormone, which displays pH dependence in its structural and functional properties. The binding affinity of hPRL for the extracellular domain of its receptor decreases 500-fold over the relatively narrow, physiologic pH range from 8 to 6; whereas, the affinity of human growth hormone (hGH), its closest evolutionary cousin, does not. Similarly, the structural stability of hPRL decreases from 7.6 to 5.6 kcal/mol from pH 8 to 6, respectively, whereas the stability of hGH is slightly increased over this same pH range. hPRL contains nine histidines, compared with hGH's three, and they are likely responsible for hPRL's pH-dependent behavior. We have systematically mutated each of hPRL's histidines to alanine and measured the effect on pH-dependent global stability. Surprisingly, a vast majority of these mutations stabilize the native protein, by as much as 2-3 kcal/mol. Changes in the overall pH dependence to hPRL global stability can be rationalized according to the predominant structural interactions of individual histidines in the hPRL tertiary structure. Using double mutant cycles, we detect large interaction free energies within a cluster of nearby histidines, which are both stabilizing and destabilizing to the native state. Finally, by comparing the structural locations of hPRL's nine histidines with their homologous residues in hGH, we speculate on the evolutionary role of replacing structurally stabilizing residues with histidine to introduce pH dependence to cytokine function.
Collapse
Affiliation(s)
- Camille Keeler
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut 06520-8035, USA
| | | | | | | |
Collapse
|
11
|
Lim YT, Cho MY, Lee JM, Chung SJ, Chung BH. Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system. Biomaterials 2009; 30:1197-204. [DOI: 10.1016/j.biomaterials.2008.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023]
|
12
|
Jensen M, De Meyts P. Molecular mechanisms of differential intracellular signaling from the insulin receptor. VITAMINS AND HORMONES 2009; 80:51-75. [PMID: 19251034 DOI: 10.1016/s0083-6729(08)00603-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binding of insulin to the insulin receptor (IR) leads to a cascade of intracellular signaling events, which regulate multiple biological processes such as glucose and lipid metabolism, gene expression, protein synthesis, and cell growth, division, and survival. However, the exact mechanism of how the insulin-IR interaction produces its own specific pattern of regulated cellular functions is not yet fully understood. Insulin analogs, anti-IR antibodies as well as synthetic insulin mimetic peptides that target the two insulin-binding regions of the IR, have been used to study the relationship between different aspects of receptor binding and function as well as providing new insights into the structure and function of the IR. This review focuses on the current knowledge of activation of the IR and how activation of the IR by different ligands initiates different cellular responses. Investigation of differential activation of the IR may provide clues to the molecular mechanisms of how the insulin-receptor interaction controls the specificity of the downstream signaling response. Differences in the kinetics of ligand-interaction with the IR, the magnitude of the signal as well as its subcelllar location all play important roles in determining/eliciting the different biological responses. Additional studies are nevertheless required to dissect the precise molecular mechanisms leading to the differential signaling from the IR.
Collapse
Affiliation(s)
- Maja Jensen
- Hagedorn Research Institute, 2820 Gentofte, Denmark
| | | |
Collapse
|
13
|
Abstract
UNLABELLED The view that lysosomes simply represent end organelles in the serial degradation of polymeric molecules derived from the cell surface and its interior has led to major misconceptions about the nature of lysosomal storage diseases and the pathogenic cascades that characterize them. Accordingly, lysosomal storage bodies are often considered 'inert', inducing cell dysfunction and death primarily through mechanical overcrowding of normal organelles or by other non-specific means leading to generalized cytotoxicity. However, modern studies of lysosomes and their component proteins provide evidence to support a far greater role for these organelles in cell metabolism. In intimate association with endosomal, autophagosomal and related vesicular systems, the greater lysosomal system can be conceptualized as a vital recycling centre that serves as a central metabolic coordinator, influencing literally every aspect of the cell, from signal transduction to regulation of gene expression. CONCLUSION This broader view of the role of lysosomes in cells not only provides insight into how single gene defects impacting on lysosomal function can result in the plethora of complex cellular transformations characteristic of these diseases, but also suggests new and innovative therapies that may hold considerable promise for ameliorating disease progression.
Collapse
Affiliation(s)
- Steven U Walkley
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
14
|
Van Dyke RW. Heterotrimeric G protein subunits are located on rat liver endosomes. BMC PHYSIOLOGY 2004; 4:1. [PMID: 14711382 PMCID: PMC324412 DOI: 10.1186/1472-6793-4-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 01/07/2004] [Indexed: 02/02/2023]
Abstract
Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM) and basolateral (BLM) membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC) > compartment for uncoupling of receptor and ligand (CURL) > multivesicular bodies (MVB) >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC) was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s) of internalized insulin receptors.
Collapse
Affiliation(s)
- Rebecca W Van Dyke
- Dept of Internal Medicine, University of Michigan School of Medicine and Veterans Administration Hospital, Ann Arbor, MI 48105, USA.
| |
Collapse
|
15
|
Dawson CW, George JH, Blake SM, Longnecker R, Young LS. The Epstein-Barr virus encoded latent membrane protein 2A augments signaling from latent membrane protein 1. Virology 2001; 289:192-207. [PMID: 11689042 DOI: 10.1006/viro.2001.1142] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The frequent coexpression of the EBV-encoded latent membrane proteins LMP1 and LMP2A/B in virus-associated tumors suggests that these two proteins may cooperate in the transformation process. While LMP2A is unable to directly activate the NF-kappaB and AP-1 pathways, we found that coexpression of LMP2A with LMP1 resulted in a significant enhancement of LMP1-mediated activation of these pathways. This enhancement was found to be critically dependent on the tyrosine residues present within the ITAM motif (Y74/Y85) and, to a lesser extent, the tyrosine at position 112 (Y112). Subsequent analysis revealed that LMP2A is able to stabilize and modulate the turnover of LMP1 by extending its half-life. This ability does not require a direct physical interaction between the two proteins but rather, results from an indirect effect of LMP2A on the turnover of the LMP1 protein. This study highlights an important role for LMP2A as a modulator of LMP1 activity in epithelial cells.
Collapse
Affiliation(s)
- C W Dawson
- CRC Institute for Cancer Studies, University of Birmingham Medical School, Birmingham, B15 2TJ, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Matsuda M, Paterson HF, Rodriguez R, Fensome AC, Ellis MV, Swann K, Katan M. Real time fluorescence imaging of PLC gamma translocation and its interaction with the epidermal growth factor receptor. J Cell Biol 2001; 153:599-612. [PMID: 11331309 PMCID: PMC2190569 DOI: 10.1083/jcb.153.3.599] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The translocation of fluorescently tagged PLC gamma and requirements for this process in cells stimulated with EGF were analyzed using real time fluorescence microscopy applied for the first time to monitor growth factor receptor--effector interactions. The translocation of PLC gamma to the plasma membrane required the functional Src homology 2 domains and was not affected by mutations in the pleckstrin homology domain or inhibition of phosphatidylinositol (PI) 3-kinase. An array of domains specific for PLC gamma isoforms was sufficient for this translocation. The dynamics of translocation to the plasma membrane and redistribution of PLC gamma, relative to localization of the EGF receptor and PI 4,5-biphosphate (PI 4,5-P(2)), were shown. Colocalization with the receptor was observed in the plasma membrane and in membrane ruffles where PI 4,5-P(2) substrate could also be visualized. At later times, internalization of PLC gamma, which could lead to separation from the substrate, was observed. The data support a direct binding of PLC gamma to the receptor as the main site of the plasma membrane recruitment. The presence of PLC gamma in membrane structures and its access to the substrate appear to be transient and are followed by a rapid incorporation into intracellular vesicles, leading to downregulation of the PLC activity.
Collapse
Affiliation(s)
- Miho Matsuda
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Hugh F. Paterson
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Rosie Rodriguez
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Amanda C. Fensome
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Moira V. Ellis
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Karl Swann
- Department of Anatomy and Developmental Biology, University College, London WC1 6BT, United Kingdom
| | - Matilda Katan
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
17
|
Drake PG, Balbis A, Wu J, Bergeron JJ, Posner BI. Association of phosphatidylinositol 3-kinase with the insulin receptor: compartmentation in rat liver. Am J Physiol Endocrinol Metab 2000; 279:E266-74. [PMID: 10913025 DOI: 10.1152/ajpendo.2000.279.2.e266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in a variety of hormone and growth factor-mediated intracellular signaling cascades and has been implicated in the regulation of a number of metabolic effects of insulin, including glucose transport and glycogen synthase activation. In the present study we have examined 1) the association of PI 3-kinase with the insulin receptor kinase (IRK) in rat liver and 2) the subcellular distribution of PI 3-kinase-IRK interaction. Insulin treatment promoted a rapid and pronounced recruitment of PI 3-kinase to IRKs located at the plasma membrane, whereas no increase in association with endosomal IRKs was observed. In contrast to IRS-1-associated PI 3-kinase activity, association of PI 3-kinase with the plasma membrane IRK did not augment the specific activity of the lipid kinase. With use of the selective PI 3-kinase inhibitor wortmannin, our data suggest that the cell surface IRK beta-subunit is not a substrate for the serine kinase activity of PI 3-kinase. The functional significance for the insulin-stimulated selective recruitment of PI 3-kinase to cell surface IRKs remains to be elucidated.
Collapse
Affiliation(s)
- P G Drake
- Polypeptide Hormone Laboratory, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | | | | | |
Collapse
|
18
|
Abstract
Ligand binding to plasma membrane receptors initiates a series of events culminating in a variety of changes in cellular phenotypes. Although numerous publications have documented the activation/inactivation of signalling molecules following receptor binding, relatively few investigations have focused on the cellular compartment responsible for either initiating or selecting the particular pathway that mediates the response. Specifically, does receptor signalling occur only at the plasma membrane; is signalling dependent upon the location of defined endosome populations; or are components of both plasma membrane and endosomal activity operative depending upon the particular signalling pathway or cell type? This review addresses aspects of these questions by discussing the evidence supporting or contrasting the interplay between the endocytic and signalling systems for a subset of tyrosine kinase, serine/threonine kinase and G-protein-coupled receptors.
Collapse
Affiliation(s)
- E B Leof
- Depts of Medicine and Biochemistry and Molecular Biology, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
19
|
Hunyady L, Catt KJ, Clark AJ, Gáborik Z. Mechanisms and functions of AT(1) angiotensin receptor internalization. REGULATORY PEPTIDES 2000; 91:29-44. [PMID: 10967200 DOI: 10.1016/s0167-0115(00)00137-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The type 1 (AT(1)) angiotensin receptor, which mediates the known physiological and pharmacological actions of angiotensin II, activates numerous intracellular signaling pathways and undergoes rapid internalization upon agonist binding. Morphological and biochemical studies have shown that agonist-induced endocytosis of the AT(1) receptor occurs via clathrin-coated pits, and is dependent on two regions in the cytoplasmic tail of the receptor. However, it is independent of G protein activation and signaling, and does not require the conserved NPXXY motif in the seventh transmembrane helix. The dependence of internalization of the AT(1) receptor on a cytoplasmic serine-threonine-rich region that is phosphorylated during agonist stimulation suggests that endocytosis is regulated by phosphorylation of the AT(1) receptor tail. beta-Arrestins have been implicated in the desensitization and endocytosis of several G protein-coupled receptors, but the exact nature of the adaptor protein required for association of the AT(1) receptor with clathrin-coated pits, and the role of dynamin in the internalization process, are still controversial. There is increasing evidence for a role of internalization in sustained signal generation from the AT(1) receptor. Several aspects of the mechanisms and specific function of AT(1) receptor internalization, including its precise mode and route of endocytosis, and the potential roles of cytoplasmic and nuclear receptors, remain to be elucidated.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Dynamins
- Endocytosis
- GTP Phosphohydrolases/metabolism
- Humans
- Kinetics
- Ligands
- Microscopy, Confocal
- Models, Biological
- Mutation
- Phosphorylation
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- beta-Arrestins
Collapse
Affiliation(s)
- L Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, P.O. Box 259, H-1444 Budapest, Hungary.
| | | | | | | |
Collapse
|
20
|
Bevan AP, Seabright PJ, Tikerpae J, Posner BI, Smith GD, Siddle K. The role of insulin dissociation from its endosomal receptor in insulin degradation. Mol Cell Endocrinol 2000; 164:145-57. [PMID: 11026566 DOI: 10.1016/s0303-7207(00)00224-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mechanisms that terminate signals from activated receptors have potential to influence the magnitude and nature of cellular responses to insulin. The aims of this study were to determine in rat liver endosomes (the subcellular site of insulin signal termination) whether dissociation of insulin from its receptor was a pre-requisite for ligand degradation and whether the state of receptor phosphorylation influenced the dissociation and hence endosomal degradation of insulin and/or receptor recycling. Following in vivo administration of 125I-[A14]-insulin or analogues (native, X10 or H2, relative binding affinities 1:7:67) livers were removed and endosomes prepared. In the endosomal preparations a significantly greater percentage of both analogues were receptor-bound than native insulin with concomitantly less ligand degradation. When rats were injected with protein-tyrosine phosphatase inhibitors (peroxovanadium compounds bpV(phen) or bpV(pic)) before insulin, endosomal insulin receptor phosphotyrosine content, assessed by Western blotting, was increased as was receptor-bound 125I-[A14]-insulin, whilst insulin degradation was decreased. Peroxovanadiums also completely inhibited recycling of insulin receptors from endosomes. However, treatment of freshly isolated endosomes with acid phosphatase which completely dephosphorylated the insulin receptor, did not return the rate of insulin dissociation and degradation to control values, suggesting that peroxovanadium compounds elicit their effect on binding and degradation via a mechanism other than as protein-tyrosine phosphatase inhibitors. We conclude that promotion of sustained receptor binding decreases endosomal insulin degradation and extends the half-life of the activated endosomal receptor, which in turn would be expected to potentiate insulin signalling from this intracellular compartment.
Collapse
Affiliation(s)
- A P Bevan
- Department of Clinical Biochemistry, University of Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
21
|
San José E, Alarcón B. Receptor engagement transiently diverts the T cell receptor heterodimer from a constitutive degradation pathway. J Biol Chem 1999; 274:33740-6. [PMID: 10559266 DOI: 10.1074/jbc.274.47.33740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the absence of ligand, the T cell receptor (TCR)/CD3 complex is continuously internalized and recycled to the cell surface, whereas receptor engagement results in its down-regulation. The present study shows that the TCR and CD3 components follow different fates accompanying their constitutive internalization. Although the CD3 moiety is recycled to the cell surface, the TCR heterodimer is degraded and replaced by newly synthesized chains. Since the TCR heterodimer cannot reach the cell membrane on its own, we propose a model in which recycling CD3 is transported along a retrograde pathway to the endoplasmic reticulum, where it associates with newly made TCR. Interestingly, engagement of the TCR.CD3 complex by superantigen resulted not only in the down-regulation of the TCR and CD3 components but also caused a transient stabilization of the TCR heterodimer. This suggests that TCR engagement diverts the TCR heterodimer from a degradation to a recycling pathway. Contrary to CD3, the intracellular fate of the TCR heterodimer is thus regulated, providing a mechanism for rapidly replacing nonfunctional TCR during intrathymic development of T cells.
Collapse
Affiliation(s)
- E San José
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
22
|
Sarret P, Nouel D, Dal Farra C, Vincent JP, Beaudet A, Mazella J. Receptor-mediated internalization is critical for the inhibition of the expression of growth hormone by somatostatin in the pituitary cell line AtT-20. J Biol Chem 1999; 274:19294-300. [PMID: 10383439 DOI: 10.1074/jbc.274.27.19294] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory effect of the neuropeptide somatostatin on the expression of growth hormone was measured by quantitative polymerase chain reaction in the pituitary cell line AtT-20. We demonstrate that this effect is dependent on the internalization of somatostatin-receptor complexes and that it is totally independent from the peptide-induced inhibition of adenylate cyclase. Indeed, the inhibitory effect of the peptide on growth hormone mRNA levels was totally insensitive to pertussis toxin treatment but was totally abolished under conditions which block somatostatin receptor internalization. Comparative confocal microscopic imaging of fluorescent somatostatin sequestration and fluorescence immunolabeling of sst1, sst2A, and sst5 receptors suggests that sst2A is most probably responsible of the inhibitory effect of somatostatin on growth hormone expression.
Collapse
Affiliation(s)
- P Sarret
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UPR 411, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
23
|
Kim M, Velier J, Chase K, Laforet G, Kalchman MA, Hayden MR, Won L, Heller A, Aronin N, Difiglia M. Forskolin and dopamine D1 receptor activation increase huntingtin's association with endosomes in immortalized neuronal cells of striatal origin. Neuroscience 1999; 89:1159-67. [PMID: 10362304 DOI: 10.1016/s0306-4522(98)00400-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huntingtin is a cytoplasmic protein of unknown function that associates with vesicle membranes and microtubules. Its protein interactions suggest that huntingtin has a role in endocytosis and organelle transport. In this study we sought to identify factors that regulate the transport of huntingtin in striatal neurons, which are the cells most affected in Huntington's disease. In clonal striatal cells derived from fusions of neuroblastoma and embryonic striatal neurons, huntingtin localization is diffuse and slightly punctate in the cytoplasm. When these neurons were differentiated by treatment with forskolin, huntingtin redistributed to perinuclear regions, discrete puncta along plasma membranes, and branch points and terminal growth cones in neurites. Huntingtin staining overlapped with clathrin, a coat protein involved in endocytosis. Immunoblot analysis of subcellular membrane fractions separated by differential centrifugation confirmed that huntingtin immunoreactivity in differentiated neurons markedly increased in membrane fractions enriched with clathrin and with huntingtin-interacting protein 1. Dopamine treatment altered the subcellular localization of huntingtin and increased its expression in clathrin-enriched membrane fractions. The dopamine-induced changes were blocked by the D1 antagonist SCH 23390 and were absent in a clonal cell line lacking D1 receptors. Results suggest that the transport of huntingtin and its co-expression in clathrin and huntingtin-interacting protein 1-enriched membranes is influenced by activation of adenylyl cyclase and stimulation of dopamine D1 receptors.
Collapse
Affiliation(s)
- M Kim
- Department of Neurology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mertani HC, Morel G, Lobie PE. Cytoplasmic and nuclear cytokine receptor complexes. VITAMINS AND HORMONES 1999; 57:79-121. [PMID: 10232047 DOI: 10.1016/s0083-6729(08)60641-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Much of our understanding on how hormones and cytokines transmit their message into the cell is based on the receptor activation at the plasma membrane. Many experimental in vitro models have established the paradigm for cytokine action based upon such activation of their cell surface receptor. The signaling from the plasma membrane activated cytokine receptor is driven to the nucleus by a rapid ricochet of protein phosphorylation, ultimately integrated as a differentiative, proliferative, or transcriptional message. The Janus kinase (JAK)--signal transducers and activators of transcription (STAT) pathway that was first thought to be cytokine receptor specific now appears to be activated by other noncytokine receptors. Also, evidence is accumulating showing that cytokines modulate the signal transduction machinery of the tyrosine kinase receptors and that of the heterotrimeric guanosine triphosphate (GTP)-binding protein-coupled receptors. Thus cytokine receptor signaling has become much more complex than originally hypothesized, challenging the established model of specificity of the action of a given cytokine. This review is focused on another level of complexity emerging within cytokine receptor superfamily signaling. Over the past 10 years, data from different laboratories have shown that cytokines and their receptors localize to intracellular compartments including the nucleus, and, in some cases, biological responses have been correlated with this unexpected location, raising the possibility that cytokines act as their own messenger through inter-actions with nuclear proteins. Thus, the interplay between cytokine receptor engagement and cellular signaling turns out to be more dynamic than originally suspected. The mechanisms and regulations of intracellular translocation of the cytokines, their receptors, and their signaling proteins are discussed in the context that such compartmentalization provides some of the specificity of the responses mediated by each cytokine.
Collapse
Affiliation(s)
- H C Mertani
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
25
|
Affiliation(s)
- J S Biscardi
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
26
|
Haugh JM, Schooler K, Wells A, Wiley HS, Lauffenburger DA. Effect of epidermal growth factor receptor internalization on regulation of the phospholipase C-gamma1 signaling pathway. J Biol Chem 1999; 274:8958-65. [PMID: 10085141 DOI: 10.1074/jbc.274.13.8958] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) ligands, epidermal growth factor (EGF), and transforming growth factor-alpha (TGFalpha) elicit differential postendocytic processing of ligand and receptor molecules, which impacts long-term cell signaling outcomes. These differences arise from the higher affinity of the EGF-EGFR interaction versus that of TGFalpha-EGFR in the acidic conditions of sorting endosomes. To determine whether EGFR occupancy in endosomes might also affect short-term signaling events, we examined activation of the phospholipase C-gamma1 (PLC-gamma1) pathway, an event shown to be essential for growth factor-induced cell motility. We found that EGF continues to stimulate maximal tyrosine phosphorylation of EGFR following internalization, while, as expected, TGFalpha stimulates markedly less. The resulting higher level of receptor activation by EGF, however, did not yield higher levels of phosphatidylinositol (4,5)-bisphosphate (PIP2) hydrolysis over those stimulated by TGFalpha. By altering the ratio of activated receptors between the cell surface and the internalized compartment, we found that only cell surface receptors effectively participate in PLC function. In contrast to PIP2 hydrolysis, PLC-gamma1 tyrosine phosphorylation correlated linearly with the total level of Tyr(P)-EGFR stimulated by either ligand, indicating that the functional deficiency of internal EGFR cannot be attributed to an inability to interact with and phosphorylate signaling proteins. We conclude that EGFR signaling through the PLC pathway is spatially restricted at a point between PLC-gamma1 phosphorylation and PIP2 hydrolysis, perhaps because of limited access of EGFR-bound PLC-gamma1 to its substrate in endocytic trafficking organelles.
Collapse
Affiliation(s)
- J M Haugh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
27
|
Martin EJ, Kim M, Velier J, Sapp E, Lee HS, Laforet G, Won L, Chase K, Bhide PG, Heller A, Aronin N, Difiglia M. Analysis of huntingtin-associated protein 1 in mouse brain and immortalized striatal neurons. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990125)403:4<421::aid-cne1>3.0.co;2-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Beaudet A, Nouel D, Stroh T, Vandenbulcke F, Dal-Farra C, Vincent JP. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy. Braz J Med Biol Res 1998; 31:1479-89. [PMID: 9921286 DOI: 10.1590/s0100-879x1998001100017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.
Collapse
Affiliation(s)
- A Beaudet
- Montreal Neurological Institute, McGill University, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Contreres JO, Faure R, Baquiran G, Bergeron JJ, Posner BI. ATP-dependent desensitization of insulin binding and tyrosine kinase activity of the insulin receptor kinase. The role of endosomal acidification. J Biol Chem 1998; 273:22007-13. [PMID: 9705342 DOI: 10.1074/jbc.273.34.22007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Incubating endosomes with ATP decreased binding of 125I-insulin but not 125I-labeled human growth hormone. Increasing ATP concentrations from 0.1 to 1 mM increased beta-subunit tyrosine phosphorylation and insulin receptor kinase (IRK) activity assayed after partial purification. At higher (5 mM) ATP concentrations beta-subunit tyrosine phosphorylation and IRK activity were markedly decreased. This was not observed with nonhydrolyzable analogs of ATP, nor with plasma membrane IRK, nor with endosomal epidermal growth factor receptor kinase autophosphorylation. The inhibition of endosomal IRK tyrosine phosphorylation and activity was completely reversed by bafilomycin A1, indicating a role for endosomal proton pump(s). The inhibition of IRK was not due to serine/threonine phosphorylation nor was it influenced by the inhibition of phosphotyrosyl phosphatase using bisperoxo(1,10-phenanthroline)oxovanadate anion. Prior phosphorylation of the beta-subunit with 1 mM ATP did not prevent the inhibition of IRK activity on incubating with 5 mM ATP. To evaluate conformational change we incubated endosomes with dithiothreitol (DTT) followed by SDS-polyacrylamide gel electrophoresis under nonreducing conditions. Without DTT the predominant species of IRK observed was alpha2 beta2. With DTT the alpha beta dimer predominated but on co-incubation with 5 mM ATP the alpha2 beta2 form predominated. Thus, ATP-dependent endosomal acidification contributes to the termination of transmembrane signaling by, among other processes, effecting a deactivating conformational change of the IRK.
Collapse
Affiliation(s)
- J O Contreres
- Polypeptide Hormone Laboratory, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|
30
|
Ollivier-Bousquet M. Transferrin and prolactin transcytosis in the lactating mammary epithelial cell. J Mammary Gland Biol Neoplasia 1998; 3:303-13. [PMID: 10819516 DOI: 10.1023/a:1018767528017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mammary epithelial cell ferries constituents originating from blood and from stromal cells, into milk, by transcytosis. Morphological analysis of a membrane marker of transcytosis in the lactating mammary epithelial cell showed that very rapid endocytosis of surface membrane occurs from both the basolateral and the apical side of the cell. In both cases, membrane trafficking between endosomes and the Golgi complex allows communication between the endocytic and the biosynthetic pathways. Transferrin and prolactin are internalized in mammary cells and transported through multivesicular bodies and Golgi stacks. They are released into milk via different types of secretory vesicles, prolactin being carried in secretory vesicles containing casein micelles. Consequences of the intracellular transport of these proteins and physiological benefits for cell function are discussed.
Collapse
Affiliation(s)
- M Ollivier-Bousquet
- Laboratoire de Biologie Cellulaire et Moléculaire, Inra, Jouy-en-Josas, France.
| |
Collapse
|
31
|
Wu TT, Castle JD. Tyrosine phosphorylation of selected secretory carrier membrane proteins, SCAMP1 and SCAMP3, and association with the EGF receptor. Mol Biol Cell 1998; 9:1661-74. [PMID: 9658162 PMCID: PMC25404 DOI: 10.1091/mbc.9.7.1661] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1997] [Accepted: 04/09/1998] [Indexed: 01/03/2023] Open
Abstract
Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in "patches" at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP-EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.
Collapse
Affiliation(s)
- T T Wu
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
32
|
Walkley SU, Siegel DA, Dobrenis K, Zervas M. GM2 ganglioside as a regulator of pyramidal neuron dendritogenesis. Ann N Y Acad Sci 1998; 845:188-99. [PMID: 9668352 DOI: 10.1111/j.1749-6632.1998.tb09671.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most profound events in the life of a neuron in the mammalian CNS is the development of a characteristic dendritic tree, yet little is understood about events controlling this process. Pyramidal neurons of the cerebral cortex are known to undergo a single explosive burst of dendritic sprouting immediately after completing migration to the cortical mantle, and following maturation there is no evidence that new, primary dendrites are initiated. Yet in one group of rare genetic diseases--Tay-Sachs disease and related neuronal storage disorders--cortical pyramidal neurons undergo a second period of dendritogenesis. New dendritic membrane is generated principally at the axon hillock and in time is covered with normal-appearing spines and synapses. In our studies of normal brain development and storage diseases we consistently find one feature in common in cortical pyramidal neurons undergoing active dendritogenesis: They exhibit dramatically increased expression of GM2 ganglioside localized to cytoplasmic vacuoles within neuronal perikarya and proximal dendrites. There is also evidence that the increase in GM2 precedes dendritic spouting, and that after dendritic maturation is complete (in normal brain) the GM2 levels in neurons become substantially reduced. These findings are consistent with GM2 ganglioside playing a pivotal role in the regulation of dendritogenesis in cortical pyramidal neurons.
Collapse
Affiliation(s)
- S U Walkley
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
33
|
Norman JC, Harrison PT, Davis W, Floto RA, Allen JM. Lysosomal routing of Fc gamma RI from early endosomes requires recruitment of tyrosine kinases. Immunology 1998; 94:48-55. [PMID: 9708186 PMCID: PMC1364330 DOI: 10.1046/j.1365-2567.1998.00488.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-affinity receptor for immunoglobulin G (Fc gamma RI) plays a central role in the clearance of immune complexes by mediating their internalization and delivery to lysosomes. In monocytic U937 cells, receptor internalization is independent of tyrosine kinase activity. However, the tyrosine kinase inhibitor, genistein, prevents further progress of the receptor to lysosomes and traps it in a sub-plasma membrane early endosome. Similarly, Fc gamma RI expressed in COS cells is able to internalize immune complexes but is unable to translocate to lysosomes. This suggests that Fc gamma RI, whose cytoplasmic tail is devoid of known signalling motifs, must recruit tyrosine kinases via its gamma-chain to achieve lysosomal delivery. We show that a chimera of the extracellular domain of Fc gamma RI and the cytoplasmic tail of the gamma-chain is both internalized and efficiently trafficked to lysosomes. Our study suggests that a key function of the gamma-chain is recruitment of tyrosine kinases to initiate the intracellular signalling pathways required to target Fc gamma RI following immune complex aggregation to lysosomes and not to initiate endocytosis per se.
Collapse
Affiliation(s)
- J C Norman
- Department of Medicine & Therapeutics, University of Glasgow, UK
| | | | | | | | | |
Collapse
|
34
|
Goldstein BJ, Li PM, Ding W, Ahmad F, Zhang WR. Regulation of insulin action by protein tyrosine phosphatases. VITAMINS AND HORMONES 1998; 54:67-96. [PMID: 9529974 DOI: 10.1016/s0083-6729(08)60922-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B J Goldstein
- Dorrance H. Hamilton Research Laboratories, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
35
|
Chow JC, Condorelli G, Smith RJ. Insulin-like growth factor-I receptor internalization regulates signaling via the Shc/mitogen-activated protein kinase pathway, but not the insulin receptor substrate-1 pathway. J Biol Chem 1998; 273:4672-80. [PMID: 9468528 DOI: 10.1074/jbc.273.8.4672] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) receptors activate divergent signaling pathways by phosphorylating multiple cellular proteins, including insulin receptor substrate-1 (IRS-1) and the Shc proteins. Following hormone binding, IGF-I receptors cluster into clathrin-coated pits and are internalized via an endocytotic mechanism. This study investigates the relationship between IGF-I receptor internalization and signaling via IRS-1 and Shc. A mutation in the C terminus of the IGF-I receptor decreased both the rate of receptor internalization and IGF-I-stimulated Shc phosphorylation by more than 50%, but did not affect IRS-1 phosphorylation. Low temperature (15 degrees C) decreased IGF-I receptor internalization and completely inhibited Shc phosphorylation. Although receptor and IRS-1 phosphorylation were decreased in accordance with delayed binding kinetics at 15 degrees C, the ratio of IRS-1 to receptor phosphorylation was increased more than 2-fold. Dansylcadaverine decreased receptor internalization and Shc phosphorylation, but did not change receptor or IRS-1 phosphorylation. Consistent with these findings, dansylcadaverine inhibited IGF-I-stimulated Shc-Grb2 association, mitogen-activated protein kinase phosphorylation, and p90 ribosomal S6 kinase activation, but did not affect the association of phosphatidylinositide 3-kinase with IRS-1 or activation of p70 S6 kinase. These data support the concept that Shc/mitogen-activated protein kinase pathway activation requires IGF-I receptor internalization, whereas the IRS-1 pathway is activated by both cell surface and endosomal receptors.
Collapse
Affiliation(s)
- J C Chow
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
36
|
Marshansky V, Bourgoin S, Londoño I, Bendayan M, Maranda B, Vinay P. Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 1997; 18:2661-76. [PMID: 9580051 DOI: 10.1002/elps.1150181423] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preparation of kidney proximal tubules in suspension allows the study of receptor-mediated endocytosis, protein reabsorption, and traffic of endosomal vesicles. The study of tubular protein transport in vitro coupled with that of the function of endosomal preparation offers a unique opportunity to investigate a receptor-mediated endocytosis pathway under physiological and pathological conditions. We assume that receptor-mediated endocytosis of albumin in kidney proximal tubules in situ and in vitro can be regulated, on the one hand, by the components of the acidification machinery (V-type H+-ATPase, Cl(-)-channel and Na+/H+-exchanger), giving rise to formation and dissipation of a proton gradient in endosomal vesicles, and, on the other hand, by small GTPases of the ADP-ribosylation factor (Arf)-family. In this paper we thus analyze the recent advances of the studies of cellular and molecular mechanisms underlying the identification, localization, and function of the acidification machinery (V-type H+-ATPase, Cl(-)-channel) as well as Arf-family small GTPases and phospholipase D in the endocytotic pathway of kidney proximal tubules. Also, we explore the possible functional interaction between the acidification machinery and Arf-family small GTPases. Finally, we propose the hypothesis of the regulation of translocation of Arf-family small GTPases by an endosomal acidification process and its role during receptor-mediated endocytosis in kidney proximal tubules. The results of this study will not only enhance our understanding of the receptor-mediated endocytosis pathway in kidney proximal tubules under physiological conditions but will also have important implications with respect to the functional consequences under some pathological circumstances. Furthermore, it may suggest novel targets and approaches in the prevention and treatment of various diseases (cystic fibrosis, Dent's disease, diabetes and autosomal dominant polycystic kidney disease).
Collapse
Affiliation(s)
- V Marshansky
- Centre de Recherche L.-C. Simard, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Ware MF, Tice DA, Parsons SJ, Lauffenburger DA. Overexpression of cellular Src in fibroblasts enhances endocytic internalization of epidermal growth factor receptor. J Biol Chem 1997; 272:30185-90. [PMID: 9374500 DOI: 10.1074/jbc.272.48.30185] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated a requirement for the nonreceptor tyrosine kinase, cellular Src (c-Src), in epidermal growth factor (EGF)-induced mitogenesis and a synergistic interaction between c-Src and EGF receptor (EGFR) in tumorigenesis. Although endocytic internalization of EGFR may be thought to attenuate EGF-stimulated signaling, recent evidence suggests that signaling through Ras can be amplified by repeated encounters of endosome-localized, receptor. Shc.Grb2.Sos complexes with the plasma membrane, where Ras resides almost exclusively. Based on these reports, we examined EGFR trafficking behavior in a set of single and double c-Src/EGFR C3H10T1/2 overexpressors to determine if c-Src affects basal receptor half-life, ligand-induced internalization, and/or recycling. Our results show that overexpression of c-Src causes no change in EGFR half-life but does produce an increase in the internalization rate constant of EGF.EGFR complexes when the endocytic apparatus is not stoichiometrically saturated; this effect of c-Src on EGFR endocytosis is negligible at high receptor occupancy in cells overexpressing the receptor. In neither case are EGFR recycling rate constants affected by c-Src. These data indicate a functional role for c-Src in receptor internalization, which in turn could alter some aspects of EGFR signaling related to mitogenesis and tumorigenesis.
Collapse
Affiliation(s)
- M F Ware
- Department of Chemical Engineering and Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
38
|
Bevan AP, Krook A, Tikerpae J, Seabright PJ, Siddle K, Smith GD. Chloroquine extends the lifetime of the activated insulin receptor complex in endosomes. J Biol Chem 1997; 272:26833-40. [PMID: 9341114 DOI: 10.1074/jbc.272.43.26833] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin signal transduction, initiated by binding of insulin to its receptor at the plasma membrane, activates the intrinsic receptor tyrosine kinase and leads to internalization of the activated ligand-receptor complex into endosomes. This study addresses the role played by the activated insulin receptor within hepatic endosomes and provides evidence for its central role in insulin-stimulated events in vivo. Rats were treated with chloroquine, an acidotrophic agent that has been shown previously to inhibit endosomal insulin degradation, and then with insulin. Livers were removed and fractionated by density gradient centrifugation to obtain endosomal and plasma membrane preparations. Chloroquine treatment increased the amount of receptor-bound insulin in endosomes at 2 min after insulin injection by 93% as determined by exclusion from G-50 columns and by 90% as determined by polyethylene glycol precipitation (p < 0.02). Chloroquine treatment also increased the insulin receptor content of endosomes after insulin injection (integrated over 0-45 min) by 31% when compared with controls (p < 0.05). Similarly, chloroquine increased both insulin receptor phosphotyrosine content and its exogenous tyrosine kinase activity after insulin injection (64%; p < 0.01 and 96% and p < 0. 001, respectively). In vivo chloroquine treatment was without any observable effect on insulin binding to plasma membrane insulin receptors, nor did it augment insulin-stimulated receptor autophosphorylation or kinase activity in the plasma membrane. Concomitant with its effects on endosomal insulin receptors, chloroquine treatment augmented insulin-stimulated incorporation of glucose into glycogen in diaphragm (p < 0.001). These observations are consistent with the hypothesis that chloroquine-dependent inhibition of endosomal insulin receptor dissociation and subsequent degradation prolongs the half-life of the active endosomal receptor and potentiates insulin signaling from this compartment.
Collapse
Affiliation(s)
- A P Bevan
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
D'Amico LA, Cooper MS. Spatially distinct domains of cell behavior in the zebrafish organizer region. Biochem Cell Biol 1997. [DOI: 10.1139/o97-074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To determine the sequence of cell behaviors that is involved in the morphogenesis of the zebrafish organizer region, we have examined the dorsal marginal zone of vitally stained zebrafish embryos using time-lapse confocal microscopy. During the late-blastula stage, the zebrafish dorsal marginal zone segregates into several cellular domains, including a group of noninvoluting, highly endocytic marginal (NEM) cells. The NEM cell cluster, which lies in a superficial location of the dorsal marginal zone, is composed of both enveloping layer cells and one or two layers of underlying deep cells. The longitudinal position of this cellular domain accurately predicts the site of embryonic shield formation and occupies a homologous location to the organizer epithelium in Xenopus laevis. At the onset of gastrulation, deep cells underneath the superficial NEM cell domain undergo involution to form the nascent hypoblast of the embryonic shield. Deep cells within the NEM cell cluster, however, do not involute during early shield formation, but instead move in front of the blastoderm margin to form a loose mass of cells called forerunner cells. Forerunner cells coalesce into a wedge-shaped mass during late gastrulation and eventually become overlapped by the converging lateral lips of the germ ring. During early zebrafish tail elongation, most forerunner cells are incorporated into the epithelial lining of Kupffer's vesicle, a transient teleostean organ rudiment long thought to be an evolutionary vestige of the neurenteric canal. Owing to the location of NEM cells at the dorsal margin of blastula-stage embryos, as well as their early segregation from other deep cells, we hypothesized that NEM cells are specified by an early-acting dorsalizing signal. To test this possibility, we briefly treated early-blastula stage embryos with LiCl, an agent known to produce hyperdorsalized zebrafish embryos with varying degrees of expanded organizer tissue. In Li + -treated embryos, NEM cells appear either within expanded spatial domains or in ectopic locations, primarily within the marginal zone of the blastoderm. These results suggest that NEM cells represent a specific cell type that is specified by an early dorsal patterning pathway.
Collapse
|
40
|
Perrot-Applanat M, Gualillo O, Pezet A, Vincent V, Edery M, Kelly PA. Dominant negative and cooperative effects of mutant forms of prolactin receptor. Mol Endocrinol 1997; 11:1020-32. [PMID: 9212050 DOI: 10.1210/mend.11.8.9954] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In addition to a long form of 591 amino acids (aa), two other forms of PRL receptor (PRLR), differing in the length of their cytoplasmic domains, have been identified in the rat. The Nb2 form, lacking 198 aa in the cytoplasmic domain, is able to transmit a lactogenic signal similar to the long form, whereas the short form of 291 aa is inactive. The ability of PRL to activate the promoter of the beta-casein gene or the lactogenic hormone responsive element fused to the luciferase reporter was assessed in Chinese hamster ovary cells or 293 fibroblasts transiently transfected with PRLR cDNAs. The function of the short form was examined after cotransfection of both the long and short forms. These results clearly show that the short form acts as a dominant negative inhibitor through the formation of inactive heterodimers, resulting in an inhibition of Janus kinase 2 (JAK2) activation. The present study also investigates the possible participation of cytoplasmic receptors in the signal transduction pathway, using cotransfection experiments and a new approach that selectively determines the contribution of cytoplasmic receptors in the process of signal transduction. We cotransfected Chinese hamster ovary cells with two cDNA constructs: a cytoplasmic (soluble) form of the receptor with a deleted signal peptide (delta-19), which is unable to bind PRL, and a functionally inactive receptor mutant (lacking box 1), which is anchored in the plasma membrane and able to bind PRL. This approach has allowed us to show that delta-19, lacking expression at the plasma membrane, can transduce the hormonal message, at least to a limited extent (up to 30% of wild type efficiency), providing that association/activation occurs with a PRL-PRLR complex initiated at the cell surface level; box 1 of the cytoplasmic form is necessary to rescue this partial transcriptional activity of the inactive mutant. This partial recovery is also parallel to the partial activation of JAK2, indicating that the signal transduction pathway implicated JAK2. Our results provide evidence that heterodimerization of receptors can be implicated either in the positive or in negative activation of gene transcription.
Collapse
Affiliation(s)
- M Perrot-Applanat
- INSERM Unité 344, Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Emlet DR, Moscatello DK, Ludlow LB, Wong AJ. Subsets of epidermal growth factor receptors during activation and endocytosis. J Biol Chem 1997; 272:4079-86. [PMID: 9020117 DOI: 10.1074/jbc.272.7.4079] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutation of the autophosphorylation sites of receptor protein-tyrosine kinases alters ligand dependent internalization and down-regulation, indicating a critical role for these sites in receptor processing. Currently, no differences in receptor processing based on an individual autophosphorylation site have been defined. By using a glutathione S-transferase fusion protein containing the src homology 2 domains of phospholipase C-gamma1 to specifically recognize tyrosine 992 on the EGF receptor (Tyr(P)992), we have found differences in this subpopulation of receptors. Following EGF stimulation, the number of Tyr(P)992 receptors increased 2-fold over receptors identified by an antibody that recognizes activated EGF receptors (alpha-Act. EGFR) in A431 cells. Confocal fluorescence microscopy showed that Tyr(P)992 receptors underwent endocytosis at a slower rate and did not rapidly concentrate in juxtanuclear bodies. Tyr(P)992 receptors were associated with more SOS, Ras-GTPase activating protein, phosphatidylinositol 3-kinase, and SHPTP2/syp, but less Grb2, than receptors in the general population, and these receptors were more heavily phosphorylated than the general population of active receptors. These findings suggest that autophosphorylation status is relevant to the endocytosis, degradation, and effector molecule interaction of individual EGF receptors. Further investigations based on phosphorylation status should provide new insights into how receptor protein-tyrosine kinase signaling is regulated.
Collapse
Affiliation(s)
- D R Emlet
- Department of Pharmacology, Kimmel Cancer Institute, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
42
|
Smith RM, Harada S, Jarett L. Insulin internalization and other signaling pathways in the pleiotropic effects of insulin. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 173:243-80. [PMID: 9127955 DOI: 10.1016/s0074-7696(08)62479-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin is the major anabolic hormone in humans and affects multiple cellular processes. Insulin rapidly regulates short-term effects on carbohydrate, lipid, and protein metabolism and is also a potent growth factor controlling cell proliferation and differentiation. The metabolic and growth-related effects require insulin binding to its receptor and receptor phosphorylation. Evidence suggests these events result in subsequent substrate phosphorylation and activation of multiple signaling pathways involving Src homology domain-containing proteins and the internalization of the insulin:receptor complex. The role of insulin internalization in insulin action is largely speculative. For more than two decades, extensive investigation has been carried out by numerous laboratories of the mechanisms by which insulin causes its pleiotropic responses and the cellular processing of insulin receptors. This chapter reviews our current knowledge of the phosphorylation signaling pathways activated by insulin and presents evidence that substrates other than insulin receptor substrate-1 are involved in insulin's regulation of immediate-early gene expression. We also review the mechanisms involved in insulin internalization and present evidence that internalization may play a key role in insulin action through both signal transduction processes and translocation of insulin to the cell cytoplasm and nucleus.
Collapse
Affiliation(s)
- R M Smith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|