1
|
Nossol C, Landgraf P, Oster M, Kahlert S, Barta-Böszörmenyi A, Kluess J, Wimmers K, Isermann B, Stork O, Dieterich DC, Dänicke S, Rothkötter HJ. Deoxynivalenol triggers the expression of IL-8-related signaling cascades and decreases protein biosynthesis in primary monocyte-derived cells. Mycotoxin Res 2024; 40:279-293. [PMID: 38498144 PMCID: PMC11043135 DOI: 10.1007/s12550-024-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Humans and their immune system are confronted with mold-contaminated food and/or mold-contaminated air in daily life and indoor activities. This results in metabolic stress and unspecific disease symptoms. Other studies provided evidence that exposure to mold is associated with the etiology of allergies. Deoxynivalenol (DON) is of great concern due to its frequent occurrence in toxically relevant concentrations. The exposure to this toxin is a permanent health risk for both humans and farm animals because DON cannot be significantly removed during standard milling and processing procedures. However, the direct effect on immunity or hematology is poorly defined because most investigations could not separate the effect of DON-contaminated feed intake. Due to the widespread distribution of DON after rapid absorption, it is not surprising that DON is known to affect the immune system. The immune system of the organism has one important function, to defend against the invasion of unknown substances/organisms. This study shows for the first time a synergistic effect of both-low physiological DON-doses in combination with low LPS-doses with the focus on the IL-8 expression on protein and RNA level. Both doses were found in vivo. IL-8 together with other anorectic cytokines like IL-1β can affect the food intake and anorexia. We could also show that a calcium-response is not involved in the increased IL-8 production after acute DON stimulation with high or low concentrations.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - P Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - M Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - S Kahlert
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - A Barta-Böszörmenyi
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - J Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116, Braunschweig, Germany
| | - K Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - B Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, Paul-List-Str. 13-15, 04103, Leipzig, Germany
| | - O Stork
- Institute of Biology, Faculty of Natural Science, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - D C Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116, Braunschweig, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| |
Collapse
|
2
|
Callaway CS, Mouchantat LM, Bitler BG, Bonetto A. Mechanisms of Ovarian Cancer-Associated Cachexia. Endocrinology 2023; 165:bqad176. [PMID: 37980602 PMCID: PMC10699881 DOI: 10.1210/endocr/bqad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Cancer-associated cachexia occurs in 50% to 80% of cancer patients and is responsible for 20% to 30% of cancer-related deaths. Cachexia limits survival and treatment outcomes, and is a major contributor to morbidity and mortality during cancer. Ovarian cancer is one of the leading causes of cancer-related deaths in women, and recent studies have begun to highlight the prevalence and clinical impact of cachexia in this population. Here, we review the existing understanding of cachexia pathophysiology and summarize relevant studies assessing ovarian cancer-associated cachexia in clinical and preclinical studies. In clinical studies, there is increased evidence that reduced skeletal muscle mass and quality associate with worse outcomes in subjects with ovarian cancer. Mouse models of ovarian cancer display cachexia, often characterized by muscle and fat wasting alongside inflammation, although they remain underexplored relative to other cachexia-associated cancer types. Certain soluble factors have been identified and successfully targeted in these models, providing novel therapeutic targets for mitigating cachexia during ovarian cancer. However, given the relatively low number of studies, the translational relevance of these findings is yet to be determined and requires more research. Overall, our current understanding of ovarian cancer-associated cachexia is insufficient and this review highlights the need for future research specifically aimed at exploring mechanisms of ovarian cancer-associated cachexia by using unbiased approaches and animal models representative of the clinical landscape of ovarian cancer.
Collapse
Affiliation(s)
- Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lila M Mouchantat
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Tilg H, Adolph TE, Tacke F. Therapeutic modulation of the liver immune microenvironment. Hepatology 2023; 78:1581-1601. [PMID: 37057876 DOI: 10.1097/hep.0000000000000386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Inflammation is a hallmark of progressive liver diseases such as chronic viral or immune-mediated hepatitis, alcohol-associated liver disease, and NAFLD. Preclinical and clinical studies have provided robust evidence that cytokines and related cellular stress sensors in innate and adaptive immunity orchestrate hepatic disease processes. Unresolved inflammation and liver injury result in hepatic scarring, fibrosis, and cirrhosis, which may culminate in HCC. Liver diseases are accompanied by gut dysbiosis and a bloom of pathobionts, fueling hepatic inflammation. Anti-inflammatory strategies are extensively used to treat human immune-mediated conditions beyond the liver, while evidence for immunomodulatory therapies and cell therapy-based strategies in liver diseases is only emerging. The development and establishment of novel immunomodulatory therapies for chronic liver diseases has been dampened by several clinical challenges, such as invasive monitoring of therapeutic efficacy with liver biopsy in clinical trials and risk of DILI in several studies. Such aspects prevented advancements of novel medical therapies for chronic inflammatory liver diseases. New concepts modulating the liver immune environment are studied and eagerly awaited to improve the management of chronic liver diseases in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
4
|
Li X, Jiang B, Zhang Z, Huang M, Feng J, Huang Y, Amoah K, Huang Y, Jian J. Interleukin-8 involved in Nile Tilapia (Oreochromis niloticus) against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109004. [PMID: 37598734 DOI: 10.1016/j.fsi.2023.109004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Interleukin 8 (IL8) is vital in promoting inflammation and is a crucial mediator in various physiopathological processes while influencing immunological function. The effect of IL8 on the immunological response to acute bacterial infections in Nile tilapia (Oreochromis niloticus) remains unknown. This work found an IL8 gene from Nile tilapia (On-IL8). It includes a 285 bp open reading frame and codes for 94 amino acids. The transcript levels of On-IL8 were highest in the head-kidney tissue and sharply induced by Streptococcus agalactiae and Aeromonas hydrophila. Besides, in vitro experiments revealed that On-IL8 regulated a variety of immunological processes and promoted inflammatory responses. Moreover, On-IL8 suppressed the NF-κB signaling pathway, consistent with in vitro results. These significant findings serve as the basis for further investigation into how IL8 confers protection to bony fish in opposition to bacterial infections.
Collapse
Affiliation(s)
- Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jiamin Feng
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Kwaku Amoah
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
5
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
6
|
Nishimoto-Kakiuchi A, Sato I, Nakano K, Ohmori H, Kayukawa Y, Tanimura H, Yamamoto S, Sakamoto Y, Nakamura G, Maeda A, Asanuma K, Kato A, Sankai T, Konno R, Yamada-Okabe H. A long-acting anti-IL-8 antibody improves inflammation and fibrosis in endometriosis. Sci Transl Med 2023; 15:eabq5858. [PMID: 36812343 DOI: 10.1126/scitranslmed.abq5858] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Current pharmacological treatments for endometriosis are limited to hormonal agents that can relieve pain but cannot cure the disease. Therefore, the development of a disease-modifying drug for endometriosis is an unmet medical need. By studying human endometriotic samples, we found that the progression of endometriosis was associated with the development of inflammation and fibrosis. In addition, IL-8 expression was highly up-regulated in endometriotic tissues and closely correlated with disease progression. We created a long-acting recycling antibody against IL-8 (AMY109) and evaluated its clinical potency. Because rodents do not produce IL-8 and do not experience menstruation, we analyzed the lesions in cynomolgus monkeys that spontaneously developed endometriosis and in a surgically induced endometriosis monkey model. Both spontaneously developed and surgically induced endometriotic lesions demonstrated pathophysiology that was highly similar to that of human endometriosis. Once-a-month subcutaneous injection of AMY109 to monkeys with surgically induced endometriosis reduced the volume of nodular lesions, lowered the Revised American Society for Reproductive Medicine score as modified for monkeys, and ameliorated fibrosis and adhesions. In addition, experiments using cells derived from human endometriosis revealed that AMY109 inhibited the recruitment of neutrophils to endometriotic lesions and the production of monocyte chemoattractant protein-1 from neutrophils. Thus, AMY109 may represent a disease-modifying therapy for patients with endometriosis.
Collapse
Affiliation(s)
- Ayako Nishimoto-Kakiuchi
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Izumi Sato
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Kiyotaka Nakano
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Hiroshi Ohmori
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Yoko Kayukawa
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Hiromi Tanimura
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Sachiya Yamamoto
- Chugai Research Institute for Medical Science Inc., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan
| | - Yuichiro Sakamoto
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Genki Nakamura
- Project and Lifecycle Management Unit, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan
| | - Atsuhiko Maeda
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Kentaro Asanuma
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Atsuhiko Kato
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba-shi, Ibaraki 305-0843, Japan
| | - Ryo Konno
- Department of Obstetrics and Gynecology, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya-ku, Saitama-shi, Saitama 330-8503, Japan
| | - Hisafumi Yamada-Okabe
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo 103-8324, Japan.,Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura-shi, Kanagawa 247-8530, Japan.,Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| |
Collapse
|
7
|
Aedo JE, Zuloaga R, Aravena-Canales D, Molina A, Valdés JA. Role of glucocorticoid and mineralocorticoid receptors in rainbow trout ( Oncorhynchus mykiss) skeletal muscle: A transcriptomic perspective of cortisol action. Front Physiol 2023; 13:1048008. [PMID: 36685183 PMCID: PMC9852899 DOI: 10.3389/fphys.2022.1048008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Cortisol is an essential regulator of neuroendocrine stress responses in teleost. Cortisol performs its effects through the modulation of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), activating gene expression. Until now the contribution of both receptors in the global transcriptional response in teleost skeletal muscle has not been explored. To understand in a comprehensive and global manner how GR and MR modulates the skeletal muscle transcriptomic response, we performed RNA-seq analysis. Juvenile rainbow trout (Oncorhynchus mykiss) pretreated with a suppressor of endogenous cortisol production were intraperitoneally injected with cortisol (10 mg/kg). We also included a treatment with mifepristone (GR antagonist) and eplerenone (MR antagonist) in the presence or absence of cortisol. cDNA libraries were constructed from the skeletal muscle of rainbow trout groups: vehicle, cortisol, mifepristone, eplerenone, mifepristone/cortisol and eplerenone/cortisol. RNA-seq analysis revealed that 135 transcripts were differentially expressed in cortisol vs. mifepristone/cortisol group, mainly associated to inflammatory response, ion transmembrane transport, and proteolysis. In the other hand, 68 transcripts were differentially expressed in cortisol vs. eplerenone/cortisol group, mainly associated to muscle contraction, and regulation of cell cycle. To validate these observations, we performed in vitro experiments using rainbow trout myotubes. In myotubes treated with cortisol, we found increased expression of cxcr2, c3, and clca3p mediated by GR, associated with inflammatory response, proteolysis, and ion transmembrane transport, respectively. Contrastingly, MR modulated the expression of myh2 and gadd45g mainly associated with muscle contraction and regulation of cell cycle, respectively. These results suggest that GR and MR have a differential participation in the physiological response to stress in teleost skeletal muscle.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Daniela Aravena-Canales
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Alfredo Molina
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Juan Antonio Valdés
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile,*Correspondence: Juan Antonio Valdés,
| |
Collapse
|
8
|
Molecular Fingerprint of Human Pathological Synoviocytes in Response to Extractive Sulfated and Biofermentative Unsulfated Chondroitins. Int J Mol Sci 2022; 23:ijms232415865. [PMID: 36555507 PMCID: PMC9784855 DOI: 10.3390/ijms232415865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Pharma-grade extractive chondroitin sulfate (CS) is widely used for osteoarthritis (OA) treatment. Recently, unsulfated biofermentative chondroitin (BC) proved positive effects in OA in vitro model. This study, based on primary pathological human synoviocytes, aimed to analyze, by a multiplex assay, a panel of OA-related biomarkers in response to short-term treatments with bovine (CSb), pig (CSp) and fish (CSf) chondroitins, in comparison to BC. As expected, all samples had anti-inflammatory properties, however CSb, CSf and especially BC affected more cytokines and chemokines. Based on these results and molecular weight similarity, CSf and BC were selected to further explore the synoviocytes' response. In fact, Western blot analyses showed CSf and BC were comparable, downregulating OA-related biomarkers such as the proteins mTOR, NF-kB, PTX-3 and COMP-2. Proteomic analyses, performed by applying a nano-LC-MS/MS TMT isobaric labelling-based approach, displayed the modulation of both common and distinct molecules to chondroitin treatments. Thus, CSf and BC modulated the biological mediators involved in the inflammation cascade, matrix degradation/remodeling, glycosaminoglycans' synthesis and cellular homeostasis. This study helps in shedding light on different molecular mechanisms related to OA disease that may be potentially affected not only by animal-source chondroitin sulfate but also by unsulfated biofermentative chondroitin.
Collapse
|
9
|
Are There Differences in Inflammatory and Fibrotic Pathways between IPAF, CTD-ILDs, and IIPs? A Single-Center Pilot Study. Int J Mol Sci 2022; 23:ijms232315205. [PMID: 36499525 PMCID: PMC9738037 DOI: 10.3390/ijms232315205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this pilot study, we aim to determine differences in pathogenetic pathways between interstitial pneumonia with autoimmune features (IPAF), connective-tissue-disease-associated interstitial lung diseases (CTD-ILDs), and idiopathic interstitial pneumonias (IIPs). Forty participants were recruited: 9 with IPAF, 15 with CTD-ILDs, and 16 with IIPs. Concentration of transforming growth factor beta (TGF-β1), surfactant proteins A and D (SP-A, SP-D), interleukin 8 (IL-8), and chemokine 1 (CXCL1) were assessed with ELISA assay in bronchoalveolar lavage (BAL) fluid. We revealed that IL-8 and TGF-β1 concentrations were significantly lower in the IPAF group than in the CTD-ILD group (p = 0.008 and p = 0.019, respectively), but similar to the concentrations in the IIP group. There were significant correlations of IL-8 (rs = 0.46; p = 0.003) and CXCL1 (rs = 0.52; p = 0.001) and BAL total cell count (TCC). A multivariate regression model revealed that IL-8 (β = 0.32; p = 0.037) and CXCL1 (β = 0.45; p = 0.004) are significant predictors of BAL TCC. We revealed that IL-8 and TGF-β1 BAL concentrations vary in patients with different ILDs and found that IL-8 is a predictor of BAL TCC in IPAF. However, this needs to be confirmed in a multicenter cooperative study (ClinicalTrials.gov Identifier: NCT03870828).
Collapse
|
10
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Zingariello M, Verachi P, Gobbo F, Martelli F, Falchi M, Mazzarini M, Valeri M, Sarli G, Marinaccio C, Melo-Cardenas J, Crispino JD, Migliaccio AR. Resident Self-Tissue of Proinflammatory Cytokines Rather than Their Systemic Levels Correlates with Development of Myelofibrosis in Gata1low Mice. Biomolecules 2022; 12:biom12020234. [PMID: 35204735 PMCID: PMC8961549 DOI: 10.3390/biom12020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Serum levels of inflammatory cytokines are currently investigated as prognosis markers in myelofibrosis, the most severe Philadelphia-negative myeloproliferative neoplasm. We tested this hypothesis in the Gata1low model of myelofibrosis. Gata1low mice, and age-matched wild-type littermates, were analyzed before and after disease onset. We assessed cytokine serum levels by Luminex-bead-assay and ELISA, frequency and cytokine content of stromal cells by flow cytometry, and immunohistochemistry and bone marrow (BM) localization of GFP-tagged hematopoietic stem cells (HSC) by confocal microscopy. Differences in serum levels of 32 inflammatory-cytokines between prefibrotic and fibrotic Gata1low mice and their wild-type littermates were modest. However, BM from fibrotic Gata1low mice contained higher levels of lipocalin-2, CXCL1, and TGF-β1 than wild-type BM. Although frequencies of endothelial cells, mesenchymal cells, osteoblasts, and megakaryocytes were higher than normal in Gata1low BM, the cells which expressed these cytokines the most were malignant megakaryocytes. This increased bioavailability of proinflammatory cytokines was associated with altered HSC localization: Gata1low HSC were localized in the femur diaphysis in areas surrounded by microvessels, neo-bones, and megakaryocytes, while wild-type HSC were localized in the femur epiphysis around adipocytes. In conclusion, bioavailability of inflammatory cytokines in BM, rather than blood levels, possibly by reshaping the HSC niche, correlates with myelofibrosis in Gata1low mice.
Collapse
Affiliation(s)
| | - Paola Verachi
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
| | - Francesca Gobbo
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Mario Falchi
- National Center HIV/AIDS Research, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy;
| | | | - Johanna Melo-Cardenas
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.-C.); (J.D.C.)
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.-C.); (J.D.C.)
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
- Center for Integrated Biomedical Research, Campus Bio-Medico, 00128 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Choudhury M, Virivinti J, Kandi S, Sritharan V, Sritharan M. Th2 immune response by the iron-regulated protein HupB of Mycobacterium tuberculosis. Indian J Tuberc 2022; 69:90-99. [PMID: 35074158 DOI: 10.1016/j.ijtb.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND HupB is an iron-regulated protein essential for the growth of Mycobacterium tuberculosis inside macrophages. To investigate if HupB induced a dominant Th2 type immune response, we studied the effect of rHupB on PBMCs from TB patients and by infecting mouse macrophages with wild type and hupB KO mutants. METHODS PBMCs from pulmonary TB (n = 60), extra pulmonary TB (n = 23) and healthy controls (n = 30) were stimulated with purified HupB and the cytokines secreted were assayed. The sera were screened for anti-HupB antibodies by ELISA. Mouse macrophages cell line (RAW 264.7) was infected with wild type, hupB KO and hupB-complemented strains of M. tuberculosis grown in high and low iron medium and the expression of cytokines was assayed by qRT-PCR. RESULTS Murine macrophages infected with the hupB KO strain produced low levels of the pro-inflammatory cytokines IFN-γ, TNF-α, IL-1, and IL-18 and high levels of IL-10. HupB induced IL-6 and IL-10 production in PBMCs of TB patients and down-regulated IFN-γ and TNF-α production. The influence of HupB was remarkable in the EPTB group. CONCLUSION HupB shifted the immune response to the Th2 type. Low IFN-γ and elevated IL-10 in EPTB patients is noteworthy.
Collapse
Affiliation(s)
- Mitali Choudhury
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India
| | - Jahnavi Virivinti
- Molecular Diagnostics and Biomarkers Lab, Global Hospitals, Hyderabad, 500004, India
| | - Subhakar Kandi
- Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, 500038, India
| | | | - Manjula Sritharan
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
13
|
Ashrafizadeh M, Zarrabi A, Mostafavi E, Aref AR, Sethi G, Wang L, Tergaonkar V. Non-coding RNA-based regulation of inflammation. Semin Immunol 2022; 59:101606. [PMID: 35691882 DOI: 10.1016/j.smim.2022.101606] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Tamimou R, Lumbroso S, Mouzat K, Lopez-Castroman J. Genetic variations related to inflammation in suicidal ideation and behavior: A systematic review. Front Psychiatry 2022; 13:1003034. [PMID: 36325529 PMCID: PMC9621324 DOI: 10.3389/fpsyt.2022.1003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES Immune-inflammatory changes have been found in all types of suicidal ideation and behavior (SIB), independently of associated mental disorders. Since several Single Nucleotide Polymorphisms (SNPs) affect the function of inflammation-related genes, we searched the literature for genetic variations potentially altering inflammatory processes in SIB. METHODS We included studies that looked for associations between SIB and SNPs in genes related to inflammatory processes. Case reports, literature reviews, and animal studies were excluded. Articles were retrieved from PubMed and PsycINFO databases, Google Scholar and GreySource Index until September 17th, 2022. Quality was assessed using Q-Genie. RESULTS We analyzed 32 studies. SIB has been associated with eighteen SNPs located in genes encoding for interleukin-8 (rs4073), C-reactive protein (rs1130864), tumor necrosis factor α (rs1800629, rs361525, and rs1099724), tumor necrosis factor receptor 2 (rs1061622), transforming growth factor β-1 (rs1982073), acid phosphatase 1 (rs7419262, rs300774), interleukin-10 (rs1800896), interferon γ (rs2430561), amino-carboxy muconate semialdehyde decarboxylase (rs2121337), interleukin 7 (rs10448044, rs10448042), macrophage migration inhibitory factor (rs755622), interleukin 1-α (rs1800587), and interleukin 1-β (rs1143634 and rs16944. A genome-wide association study reported one association at the threshold of significance with the rs300774 SNP, located in the 2p25 region containing ACP1 gene. DISCUSSION The studies included were methodologically and clinically diverse and of moderate quality. Their findings suggest that some inflammation-related SNPs could increase the likelihood of SIB but the evidence to date is insufficient. Further research using gene-gene (GxG) and gene-environment (GxE) approaches is warranted. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk], identifier [CRD42022296310].
Collapse
Affiliation(s)
- Rabah Tamimou
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France
| | - Serge Lumbroso
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Kevin Mouzat
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Jorge Lopez-Castroman
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
15
|
Vassallo V, Stellavato A, Cimini D, Pirozzi AVA, Alfano A, Cammarota M, Balato G, D'Addona A, Ruosi C, Schiraldi C. Unsulfated biotechnological chondroitin by itself as well as in combination with high molecular weight hyaluronan improves the inflammation profile in osteoarthritis in vitro model. J Cell Biochem 2021; 122:1021-1036. [PMID: 34056757 PMCID: PMC8453819 DOI: 10.1002/jcb.29907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Several studies suggest that inflammation has a pivotal role during the progression of osteoarthritis (OA) and cytokines have been identified as the main process mediators. This study aimed to explore the ability to modulate the main OA pro-inflammatory biomarkers of novel gels (H-HA/BC) based on high molecular weight hyaluronan (H-HA) and unsulfated biotechnological chondroitin (BC). For the first time, BC was tested also in combination with H-HA on human primary cells isolated from pathological knee joints. Specifically, the experiments were performed using an OA in vitro model based on human chondrocytes and synoviocytes. To evaluate the anti-inflammatory effects of H-HA/BC in comparison with H-HA and BC single gels, NF-kB, COMP-2, MyD88, MMP-13 and a wide range of cytokines, known to be specific biomarkers in OA (e.g., IL-6, IL-8, and TNF-α), were evaluated. In addition, cell morphology and proliferation occurring in the presence of either H-HA/BC or single components were assessed using time-lapse video microscopy. It was shown that synovial fluids and cells isolated from OA suffering patients, presented a cytokine pattern respondent to an ongoing inflammation status. H-HA and BC significantly reduced the levels of 23 biomarkers associated with cartilage damage. However, H-HA/BC decreased significantly 24 biological mediators and downregulated 19 of them more efficiently than the single components. In synoviocytes cultures, cytokine analyses proved that H-HA/BC gels re-established an extracellular environment more similar to a healthy condition reducing considerably the concentration of 11 analytes. Instead, H-HA and BC significantly modulated 7 (5 only with a longer treatment) and 8 biological cytokines, respectively. Our results suggest that H-HA/BC beyond the viscosupplementation effect typical for HA-based gels, can improve the inflammation status in joints and thus could be introduced as a valid protective and anti-inflammatory intraarticular device in the field of Class III medical devices for OA treatments.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Anna V. A. Pirozzi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Giovanni Balato
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Alessio D'Addona
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Carlo Ruosi
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| |
Collapse
|
16
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021. [PMID: 33477816 DOI: 10.3390/biom11010122.pmid:33477816;pmcid:pmc7832894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, "Giovanni Paolo II" Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
17
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021; 11:biom11010122. [PMID: 33477816 PMCID: PMC7832894 DOI: 10.3390/biom11010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital–A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
- Correspondence: (G.L.V.); (G.A.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (G.L.V.); (G.A.P.)
| |
Collapse
|
18
|
Hou C, Dolivo D, Rodrigues A, Li Y, Leung K, Galiano R, Hong SJ, Mustoe T. Knockout of sodium channel Na x delays re-epithelializathion of splinted murine excisional wounds. Wound Repair Regen 2020; 29:306-315. [PMID: 33378794 DOI: 10.1111/wrr.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Mammalian wound healing is a carefully orchestrated process in which many cellular and molecular effectors respond in concert to perturbed tissue homeostasis in order to close the wound and re-establish the skin barrier. The roles of many of these molecular effectors, however, are not entirely understood. Our lab previously demonstrated that the atypical sodium channel Nax (encoded by Scn7a) responds to wound-induced epidermal dehydration, resulting in molecular cascades that drive pro-inflammatory signaling. Acute inhibition of Nax was sufficient to attenuate dermatopathological symptoms in models of hypertrophic scar and dermatitis. To date, however, the role of Nax in excisional wound healing has not been demonstrated. Here we report development of a knockout mouse that lacks expression of functional Nax , and we demonstrate that lack of functional Nax results in deficient wound healing in a murine splinted excisional wound healing model. This deficiency in wound healing was reflected in impaired re-epithelialization and decreased keratinocyte proliferation, a finding which was further supported by decreased proliferation upon Nax knockdown in HaCaT cells in vitro. Defective wound healing was observed alongside increased expression of inflammatory genes in the wound epidermis of Nax -/- mice, suggesting that mice lacking functional Nax retain the ability to undergo skin inflammation. Our observations here motivate further investigation into the roles of Nax in wound healing and other skin processes.
Collapse
Affiliation(s)
- Chun Hou
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Plastic and Cosmetic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adrian Rodrigues
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yingxing Li
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kai Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JB Fort Sam Houston, San Antonio, Texas, USA
| | - Robert Galiano
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seok Jong Hong
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas Mustoe
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
19
|
Çelik S, Guve H, Çalışkan C, Çelik S. The Role of Melatonin, IL-8 and IL-10 in Intrahepatic Cholestasis of Pregnancy. Z Geburtshilfe Neonatol 2020; 225:238-243. [PMID: 32942322 DOI: 10.1055/a-1233-9084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy is a pregnancy-specific liver disease that usually emerges during the third trimester of pregnancy. It is characterized by itching and elevated serum total bile acid levels, and it may lead to severe fetal complications. This study aimed to investigate the role of interleukin-8, a pro-inflammatory cytokine; interleukin-10, an anti-inflammatory cytokine; and melatonin in intrahepatic cholestasis of pregnancy. MATERIALS AND METHODS This prospective, case-controlled study was conducted with 51 women with intrahepatic cholestasis of pregnancy (40 mild and 11 severe cases) and 43 healthy pregnant women. Serum interleukin-8, interleukin-10, and melatonin levels were evaluated. RESULTS Melatonin and interleukin -10 were significantly lower in subjects with intrahepatic cholestasis of pregnancy (p=0.001; p=0.001, respectively p<0.05). Interleukin-8 levels were found to be significantly higher in the cholestasis group than control group (p=0.001, p<0.05). CONCLUSIONS Because interleukin-8, interleukin-10, and melatonin were found to be significantly correlated with intrahepatic cholestasis of pregnancy, we believe this finding could shed light on the etiology of the disease.
Collapse
Affiliation(s)
- Samettin Çelik
- Obstetrics and Gynecology, Samsun Education and Research Hospital, Samsun, Turkey
| | - Huri Guve
- Department of Obstetrics and Gynecology, Düzce Üniversitesi Tip Fakültesi, Duzce, Turkey
| | - Canan Çalışkan
- Obstetrics and Gynecology, Samsun Education and Research Hospital, Samsun, Turkey
| | - Sebahattin Çelik
- Obstetrics and Gynecology, Balıkesir Devlet Hastanesi, Balıkesir, Turkey
| |
Collapse
|
20
|
Shibata M, Tsuda T, Itagaki H, Kato S, Kobayashi T, Ichikawa H, Morikawa Y. Interleukin-1α and Interleukin-8 Release by Human Keratinocyte Cell Culture Treated with Surfactants. Altern Lab Anim 2020. [DOI: 10.1177/026119299702500209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of four cosmetic surfactants on interleukin (IL)-1α and IL-8 release from human keratinocytes were studied to investigate the feasibility of using these effects for the prediction of the irritation potential of chemicals. After exposure of cells to surfactants, the amounts of IL-1α and IL-8 released into culture medium were measured by ELISA. Cytotoxicity was evaluated by using the neutral red uptake (NRU) cytotoxicity assay. Cytokine release was increased 7–15 times by sodium lauryl sulphate (SLS), laurtrimonium chloride, cocamidopropyl betaine (CPB) and Oleth-5 at cytotoxic concentrations. IL-8 release was increased 3–4 times by SLS, CPB and Oleth-5 at subcytotoxic concentrations. After exposure to SLS, IL-1α was released within 1 hour, suggesting that IL-1α release is associated with membrane damage, whereas IL-8 release continued for 24 hours, suggesting that IL-8 was produced within the cells. Cytotoxicity tests and IL-8 release assays were also performed on seven other surfactants. The results show that moderate irritants CPB and PEG-4 dioleate, which have weak cytotoxic effects, significantly increased IL-8 release from human keratinocytes. It is suggested that measurement of IL-8 release is useful for predicting the irritation potential of chemicals which cannot be detected by using the NRU cytotoxicity assay.
Collapse
Affiliation(s)
- Michio Shibata
- Shiseido Safety and Analytical Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama 223, Japan
| | - Takanari Tsuda
- Shiseido Safety and Analytical Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama 223, Japan
| | - Hiroshi Itagaki
- Shiseido Safety and Analytical Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama 223, Japan
| | - Shinobu Kato
- Shiseido Safety and Analytical Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama 223, Japan
| | - Toshiaki Kobayashi
- Shiseido Safety and Analytical Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama 223, Japan
| | - Hideyuki Ichikawa
- Shiseido Safety and Analytical Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama 223, Japan
| | - Yoshihiro Morikawa
- Shiseido Safety and Analytical Research Center, 1050 Nippa-cho, Kohoku-ku, Yokohama 223, Japan
| |
Collapse
|
21
|
Najdaghi S, Razi S, Rezaei N. An overview of the role of interleukin-8 in colorectal cancer. Cytokine 2020; 135:155205. [PMID: 32721849 DOI: 10.1016/j.cyto.2020.155205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Colorectal Cancer (CRC), a common malignancy, is developing globally among people. Mutagenic insults activate peripheral nucleated cells to secrete chemokines in order to cause an inflammatory state. Despite the presence of multi-retrieving factors, elevated production of minor cytokines may speed-up the sever stages of the baseline inflammation targeting normal compensatory mechanism. IL-8 is a pro-inflammatory cytokine that is believed to be up-regulated in CRC to proceed primary condition into tumor behavior via induction of proliferation, angiogenesis and metastasis. Here, we assess the role of IL-8 in every step of CRC from signaling pathway and formation to invasion and discuss around new perspective therapy that targets IL-8 to manage CRC worldwide incidence and survival rate, more precisely.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
22
|
Dutta P, Bishayi B. Neutralization of TNF-α and IL-1β Regulates CXCL8 Production through CXCL8/CXCR1 Axis in Macrophages during Staphylococcus aureus Infection. Immunol Invest 2020; 50:700-725. [PMID: 32602757 DOI: 10.1080/08820139.2020.1787436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anti-cytokine therapy is widely acknowledged as an anti-inflammatory technique to treat varied infectious diseases. TNF-α and IL-1β are major cytokines that regulate every aspect of the inflammatory process. However, the effects of single or dual cytokine neutralization on S. aureus mediated CXCL8 secretion and CXCR1 expression in murine peritoneal macrophages remained noninvestigated. Thus we aimed to explore the effects of kinetic-dose dependent neutralization of TNF-α and IL-1β using specific anti-cytokine antibodies and its influential impact on the CXCL8/CXCR1 axis at different stages of S. aureus (30, 60, and 90 min) infection. The murine peritoneal macrophages were isolated and infected with viable S. aureus followed by subsequent addition of anti-TNF-α and anti-IL-1β into the medium. The treated cells were centrifuged and lysate and supernatant collected for various experiments. The ROS generation was measured and cytokine production was estimated by ELISA. The expression of TNFR1, IL-1R, CXCR1, signaling molecules (NF-κB and JNK) were evaluated by Western blot. The role of single or dual cytokine neutralization on intracellular bacterial phagocytosis had also been analyzed by confocal microscopy. Dual cytokine neutralization significantly suppressed ROS, cytokines, CXCL8 secretion, and intracellular bacterial count compared to single cytokine neutralization and it was more apparent at 90 min post S. aureus infection. There was a drastic reduction in TNFR1, IL-1R, and CXCR1 expression on macrophage surface due to reduced expression of downstream signaling molecules, NF-κB and JNK. Hence dual cytokine neutralization was more effectual compared to single cytokine neutralization in the downregulation of S. aureus induced CXCR1 expression.
Collapse
Affiliation(s)
- Puja Dutta
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| |
Collapse
|
23
|
Differential Secretome Profiling of Human Osteoarthritic Synoviocytes Treated with Biotechnological Unsulfated and Marine Sulfated Chondroitins. Int J Mol Sci 2020; 21:ijms21113746. [PMID: 32466468 PMCID: PMC7312545 DOI: 10.3390/ijms21113746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic slow-acting drugs (SYSADOA) are increasingly used as effective therapies for osteoarthritis, representing an attractive alternative to analgesics or non-steroidal anti-inflammatory drugs to relieve disease symptoms. Pharmaceutical preparations of chondroitin sulfate, derived from animal sources, alone or in combination with glucosamine sulfate, are widely recognized for their beneficial effect on osteoarthritis treatment. A growing interest has also been devoted to understanding the molecular mechanisms modulated by SYSADOA using -omic strategies, most of which rely on chondrocytes as a model system. In this work, by using an integrated strategy based on unbiased proteomics and targeted cytokine profiling by a multiplexed protein array, we identified differences in the secretomes of human osteoarthritic synoviocytes in response to biotechnological unsulfated, and marine sulfated chondroitins treatments. The combined strategy allowed the identification of candidate proteins showing both common and distinct regulation responses to the two treatments of chondroitins. These molecules, mainly belonging to ECM proteins, enzymes, enzymatic inhibitors and cytokines, are potentially correlated to treatment outcomes. Overall, the present results provide an integrated overview of protein changes in human osteoarthritic synoviocytes secretome associated to different chondroitin treatments, thus improving current knowledge of the biochemical effects driven by these drugs potentially involved in pathways associated to osteoarthritis pathogenesis.
Collapse
|
24
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
25
|
Jörres A, Topley N, Witowski J, Liberek T, Gahl GM. Impact of Peritoneal Dialysis Solutions on Peritoneal Immune Defense. Perit Dial Int 2020. [DOI: 10.1177/089686089301302s73] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Achim Jörres
- Abteilung für Innere Medizin mit Schwerpunkt Nephrologie, Cardiff; Wales, U. K
| | - Nicholas Topley
- Universitätsklinikum Rudolf Virchow, Berlin-Charlottenburg, Germany, Institute of Nephrology, University of Wales College of Medicine, Royal Infirmary; Cardiff; Wales, U. K
| | - Janusz Witowski
- Universitätsklinikum Rudolf Virchow, Berlin-Charlottenburg, Germany, Institute of Nephrology, University of Wales College of Medicine, Royal Infirmary; Cardiff; Wales, U. K
| | - Tomasz Liberek
- Universitätsklinikum Rudolf Virchow, Berlin-Charlottenburg, Germany, Institute of Nephrology, University of Wales College of Medicine, Royal Infirmary; Cardiff; Wales, U. K
| | - Gerhard M. Gahl
- Abteilung für Innere Medizin mit Schwerpunkt Nephrologie, Cardiff; Wales, U. K
| |
Collapse
|
26
|
Affiliation(s)
- Achim Jörres
- Nephrologie, Universitätsklinikum Rudolf Virchow, Berlin-Charlottenburg, Germany
| | - Gerhard M. Gahl
- Nephrologie, Universitätsklinikum Rudolf Virchow, Berlin-Charlottenburg, Germany
| |
Collapse
|
27
|
George A, Udani JK, Yusof A. Effects of Phyllanthus amarus PHYLLPRO TM leaves on hangover symptoms: a randomized, double-blind, placebo-controlled crossover study. PHARMACEUTICAL BIOLOGY 2019; 57:145-153. [PMID: 30922154 PMCID: PMC6442116 DOI: 10.1080/13880209.2019.1585460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Phyllanthus amarus Schumach. and Thonn. (Euphorbiaceae) is traditionally known to improve general liver health. However, its effect on hangover is unknown. OBJECTIVE This study evaluated PHYLLPRO™, a standardized ethanol extract of P. amarus leaves for protection against oxidative stress and recovery from hangover symptoms. MATERIAL AND METHODS Ten days daily oral supplementation of 750 mg/day followed by intoxication was evaluated in a randomized placebo-controlled (containing only excipient), crossover study in 15 subjects (21-50 years old), for oxidative stress, liver damage, alleviating hangover symptoms (Hangover Severity Score: HSS) and mood improvement (Profile-of-Mood-Scores: POMS). RESULTS PHYLLPRO™ was able to remove blood alcohol in the active group while the placebo group still had 0.05% at 12 h post-intoxication (p < 0.0001). For HSS, the active group showed reduced hangover symptoms while there were higher levels of nausea, headache, anorexia, tremulousness, diarrhoea and dizziness in the placebo group (p < 0.05) at hour 10 post-intoxication. Increased fatigue at hour 2 and tension (p > 0.05) from baseline to hour 22 was reported in the placebo group using POMS. Significant anti-inflammatory group effect favouring the active group, by the upregulation of cytokines IL-8 (p = 0.0014) and IL-10 (p = 0.0492) and immunomodulatory effects via IL-12p70 (p = 0.0304) were observed. The incidence of adverse events was similar between groups indicating the safety of PHYLLPRO™. DISCUSSION AND CONCLUSION Preliminary findings of PHYLLPRO™ in managing hangover, inflammation and liver functions following intoxication, is demonstrated. Future studies on PHYLLPRO™ in protecting against oxidative stress and hangover in larger populations is warranted.
Collapse
Affiliation(s)
- Annie George
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Biotropics Malaysia Berhad, Selangor, Malaysia
| | | | - Ashril Yusof
- Centre for Sports and Exercise Sciences, Exercise Science, University of Malaya, Kuala Lumpur, Malaysia
- CONTACT Ashril Yusof Exercise Science, Centre for Sports and Exercise Sciences, University of Malaya, 50603Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
IL-8 Released from Human Pancreatic Cancer and Tumor-Associated Stromal Cells Signals through a CXCR2-ERK1/2 Axis to Induce Muscle Atrophy. Cancers (Basel) 2019; 11:cancers11121863. [PMID: 31769424 PMCID: PMC6966692 DOI: 10.3390/cancers11121863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023] Open
Abstract
Tumor-derived cytokines are known to drive the catabolism of host tissues, including skeletal muscle. However, our understanding of the specific cytokines that initiate this process remains incomplete. In the current study, we conducted multiplex analyte profiling of cytokines in conditioned medium (CM) collected from human pancreatic cancer (PC) cells, human tumor-associated stromal (TAS) cells, and their co-culture. Of the factors identified, interleukin-8 (IL-8) is released at high levels from PC cells and PC/TAS co-culture and has previously been associated with low muscle mass in cancer patients. We, therefore, treated C2C12 myotubes with IL-8 which led to the activation of ERK1/2, STAT, and Smad signaling, and induced myotube atrophy. Moreover, the treatment of mice with IL-8 also induced significant muscle wasting, confirming the in vivo relevance of IL-8 on muscle. Mechanistically, IL-8-induced myotube atrophy is inhibited by treatment with the CXCR2 antagonist, SB225002, or by treatment with the ERK1/2 inhibitor, U0126. We further demonstrate that this axis mediates muscle atrophy induced by pancreatic cancer cell CM, as neutralization of IL-8 or treatment with SB225002 or U0126 significantly inhibit CM-induced myotube atrophy. Thus, these data support a key role of IL-8 released from human PC cells in initiating atrophy of muscle cells via CXCR2-ERK1/2.
Collapse
|
29
|
Omran OM. EGFR and CXCR1 expression in thyroid carcinoma in Qassim Region-Saudi Arabia: Correlation with clinicopathological parameters. ACTA ACUST UNITED AC 2019; 26:145-151. [PMID: 31031057 DOI: 10.1016/j.pathophys.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
AIMS Recent evidence indicates an increased incidence of thyroid carcinoma, especially papillary thyroid carcinoma (PTC), in Saudi Arabia. EGFR and CXCR1 were reported to have increased expression in several human neoplasms. The goals of the present research was to investigate EGFR and CXCR1 expression in thyroid carcinoma and correlate the results to the established prognostic factors. METHODS Immunohistochemical study for both EGFR and CXCR1 was performed on formalin-fixed paraffin-embedded thyroid carcinomas tissues sections applying Labeled Streptavidin-biotin method (LSAB). RESULTS Remarkable high expression of EGFR and CXCR1 were observed in PTC cases (56% and 63% respectively). There was association between EGFR expression in PTC and each of histologic subtype, lymph node metastasis (LNM), distant metastasis (DM), TNM staging and tumor relapse. There was statistical significant correlation between CXCR1 expression in PTC and each of histologic subtype, LNM, and tumor relapse. A significant correlation was detected between concomitant EGFR and CXCR expression and LNM, DM, increasing stage and tumor relapse. CONCLUSIONS The results of the present study demonstrated, a statistically positive correlation of EGFR and CXCR1 expression in PTC compared to normal thyroid tissues and nodular hyperplasia in Qassim Region- Saudi Arabia. Concomitant high expression of both receptors were strongly correlated with LNM, DM, TNM stage and tumor relapse than did each alone. These findings suggest that EGFR and CXCR1 play crucial roles in PTC and serve as predictors of poor prognosis, biomarkers of tumor diagnosis, and potential targets of cancer therapeutics.
Collapse
Affiliation(s)
- Ola M Omran
- Department of Pathology, College of Medicine, Qassim University, Saudi Arabia; Department of Pathology, Faculty of Medicine, Assiut University, Egypt.
| |
Collapse
|
30
|
Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem 2019; 65:128-138. [DOI: 10.1016/j.jnutbio.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/30/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
|
31
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
32
|
Aydın EB, Sezgintürk MK. An impedimetric immunosensor for highly sensitive detection of IL-8 in human serum and saliva samples: A new surface modification method by 6-phosphonohexanoic acid for biosensing applications. Anal Biochem 2018; 554:44-52. [PMID: 29902421 DOI: 10.1016/j.ab.2018.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022]
Abstract
In this study, we fabricated a sensitive and label-free impedimetric immunosensor based on 6-phosphonohexanoic acid (PHA) modified ITO electrode for detection of interleukin-8 (IL-8) in human serum and saliva. PHA was first employed to cancer biomarker sensing platform. Anti-IL-8 antibody was used as a biorecognition element and the detection principle of this immunosensor was based on monitoring specific interaction between anti-IL-8 antibody and IL-8 antigen. The morphological characterization of each electrode modification step was analyzed by scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) while electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. Moreover, the antibody immobilization on the electrode surface was proved Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy. This proposed impedimetric immunosensor exhibited good performances with a wide linear in the range from 0.02 pg/mL to 3 pg/mL as well as a relative low detection limit of 6 fg/mL. The impedimetric immunosensor had a good specificity, stability and reproducibility. This study proved that PHA was a suitable interface material to fabricate an electrochemical biosensor.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
33
|
Non-thermal atmospheric pressure plasma-induced IL-8 expression is regulated via intracellular K + loss and subsequent ERK activation in human keratinocyte HaCaT cells. Arch Biochem Biophys 2018. [PMID: 29518371 DOI: 10.1016/j.abb.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-thermal atmospheric pressure plasma (NTAPP) has recently emerged as a novel medical therapy for skin wounds. Interleukin-8 (IL-8) is thought to play a critical role in wound healing. NTAPP irradiation has been reported to promote production of IL-8; however, the mechanism is not fully understood. The aim of this study was to elucidate the underlying mechanism of NTAPP-induced IL-8 expression in human keratinocyte HaCaT cells. NTAPP irradiation of HaCaT cells increased IL-8 mRNA expression in an irradiation time-dependent manner. Although hydrogen peroxide (H2O2) was generated in culture medium irradiated with NTAPP, treatment of HaCaT cells with H2O2 itself failed to induce the expression. In addition, we found that NTAPP irradiation of HaCaT cells decreased intracellular K+ levels. High intracellular K+ concentrations suppressed NTAPP-induced IL-8 mRNA expression, and the K+ ionophore valinomycin (Val) enhanced the induction of IL-8 mRNA. Moreover, NTAPP stimulated activation of ERK MAP kinase and the ERK inhibitor prevented NTAPP-induced IL-8 mRNA expression. NTAPP-induced ERK activation was inhibited in the presence of high concentrations of extracellular K+ and enhanced in the presence of Val. Taken together, these findings suggest that NTAPP irradiation stimulates intracellular K+ loss and subsequent ERK activation, leading to the induction of IL-8 expression.
Collapse
|
34
|
Uppendahl LD, Dahl CM, Miller JS, Felices M, Geller MA. Natural Killer Cell-Based Immunotherapy in Gynecologic Malignancy: A Review. Front Immunol 2018; 8:1825. [PMID: 29354116 PMCID: PMC5760535 DOI: 10.3389/fimmu.2017.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Harnessing the immune system has proven an effective therapy in treating malignancies. Since the discovery of natural killer (NK) cells, strategies aimed to manipulate and augment their effector function against cancer have been the subject of intense research. Recent progress in the immunobiology of NK cells has led to the development of promising therapeutic approaches. In this review, we will focus on the recent advances in NK cell immunobiology and the clinical application of NK cell immunotherapy in ovarian, cervical, and uterine cancer.
Collapse
Affiliation(s)
- Locke D Uppendahl
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Carly M Dahl
- University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
35
|
Bishayi B, Adhikary R, Sultana S, Dey R, Nandi A. Altered expression of CXCR1 (IL-8R) in macrophages utilizing cell surface TNFR1 and IL-1 receptor during Staphylococcus aureus infection. Microb Pathog 2017; 113:460-471. [DOI: 10.1016/j.micpath.2017.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/04/2017] [Accepted: 11/18/2017] [Indexed: 01/28/2023]
|
36
|
Xavier CV, da S Setúbal S, Lacouth-Silva F, Pontes AS, Nery NM, de Castro OB, Fernandes CFC, Soares AM, Fortes-Dias CL, Zuliani JP. Phospholipase A 2 Inhibitor from Crotalus durissus terrificus rattlesnake: Effects on human peripheral blood mononuclear cells and human neutrophils cells. Int J Biol Macromol 2017; 105:1117-1125. [PMID: 28743568 DOI: 10.1016/j.ijbiomac.2017.07.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
Crotalus Neutralizing Factor (CNF) is an inhibitor of phospholipase A2 (PLA2), present in the blood plasma of Crotalus durissus terrificus snake. This inhibitor neutralizes the lethal and enzymatic activity of crotoxin, the main neurotoxin from this venom. In this study, we investigated the effects of CNF on the functionality of human peripheral blood mononuclear cells (PBMCs) and human neutrophils. The following parameters were evaluated: viability and proliferation, chemotaxis, cytokines and LTB4 production, cytosolic PLA2s activity, myeloperoxidase (MPO) and superoxide anion (O2-) production. CNF showed no toxicity on PBMCs or neutrophils, and acts by stimulating the release of TNF-α and LTB4, but neither stimulates IL-10 and IL-2 nor affects PBMCs proliferation and O2- release. In neutrophils, CNF induces chemotaxis but does not induce the release of both MPO and O2-. However, it induces LTB4 and IL-8 production. These data show the influence of CNF on PBMCs' function by inducing TNF-α and LTB4 production, and on neutrophils, by stimulating chemotaxis and LTB4 production, via cytosolic PLA2 activity, and IL-8 release. The inflammatory profile produced by CNF is shown for the first time. Our present results suggest that CNF has a role in activation of leukocytes and exert proinflammatory effects on these cell.
Collapse
Affiliation(s)
- Caroline V Xavier
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Fabianne Lacouth-Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Adriana S Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Neriane M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Onassis Boeri de Castro
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Carla F C Fernandes
- Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Consuelo L Fortes-Dias
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, PGBIOEXP, Núcleo de Saúde, NUSAU, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
37
|
Cytokine Kinetics in Febrile Neutropenic Children: Insights on the Usefulness as Sepsis Biomarkers, Influence of Filgrastim, and Behavior of the IL-23/IL-17 Pathway. Mediators Inflamm 2017; 2017:8291316. [PMID: 28769538 PMCID: PMC5523193 DOI: 10.1155/2017/8291316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/04/2017] [Accepted: 06/05/2017] [Indexed: 01/21/2023] Open
Abstract
Background The study aimed to describe the kinetics of various cytokines from day 1 to day 14 of the onset of fever in neutropenic children and to evaluate their performances as discriminators of sepsis in the first 24 hours of fever, the possible influence of filgrastim, and the functioning of the IL-23/IL-17 axis. Methods IL-1β, TNF-α, IL-10, IL-12/23p40, IL-21, IL-6, IL-8, IL-17, G-CSF, and GM-CSF were measured in plasma on days 1, 2, 3, 5, and 14 from the onset of fever in 35 patients. Results Thirteen patients (37.1%) developed sepsis. In mixed models, IL-6, IL-8, IL-10, and G-CSF showed higher estimated means in septic patients (P < 0.005), and IL-12/23p40 and IL-17 in nonseptic patients (P < 0.05). On day 1, IL-6, IL-8, and IL-10 appeared upregulated in patients who received filgrastim. Only IL-6, IL-8, IL-10, and procalcitonin were useful as discriminators of sepsis. Associating the markers with each other or to a risk assessment model improved performance. Conclusions Cytokines kinetics showed proinflammatory and anti-inflammatory responses similar to what is described in nonneutropenic patients. IL-8, IL-6, IL-10, and procalcitonin are useful as early biomarkers of sepsis. Filgrastim upregulates expression of these markers, and we observed deficiency in the IL-23-IL-17 axis accompanying sepsis.
Collapse
|
38
|
Dong L, Bai J, Jiang X, Yang MM, Zheng Y, Zhang H, Lin D. The gene polymorphisms of IL-8(-251T/A) and IP-10(-1596C/T) are associated with susceptibility and progression of type 2 diabetic retinopathy in northern Chinese population. Eye (Lond) 2016; 31:601-607. [PMID: 27935598 DOI: 10.1038/eye.2016.287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
PurposeThe aim of the present study is to investigate the association of the polymorphism of two genes in CXC chemokine family, interleukin-8 (IL-8) and interferon-inducible protein 10 (IP-10), with both susceptibility and progression of DR in T2D population of northern China.Patients and methodsA total of 1043 eligible type 2 diabetic patients from Heilongjiang of northern China were recruited for this study. They were grouped into: with diabetic retinopathy (DR, 528 cases) and without diabetic retinopathy (DNR, 515 cases). Single nucleotide polymorphism (SNP) genotyping of IL-8(-251T/A) and IP-10(-1596C/T) was performed by polymerase chain reaction. Multivariate analysis and stepwise multiple logistic progression analysis were conducted to evaluate the association between gene SNP and DR susceptibility and progression. Pooled odds ratio (OR) with 95% confidence interval (CI) was applied to assess the strength of the association among study groups.ResultsThe occurring of IL-8(-251) AA genotype was correlated with susceptibility (OR: 2.286, 95% CI: 1.382-3.782, P=0.001) and progression of high-risk proliferative diabetic retinopathy (PDR) (OR: 0.354, 95% CI: 0.162-0.770, P=0.009). Reversely, T allele of IP-10 (-1596) C/T was correlated with a reduced risk of DR (OR: 0.341, 95% CI: 0.249-0.466, P<0.001). However, gene polymorphisms of IL-8-251T/A and IP-10-1596C/T were not associated with diabetic macular edema (DME)(P>0.05).ConclusionsAA genotype of IL-8-251T/A was closely correlated to DR and high-risk proliferative diabetic retinopathy (PDR). -1596T allele of the IP-10 is a beneficial genotype for DR.
Collapse
Affiliation(s)
- L Dong
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - J Bai
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Jiang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M-M Yang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y Zheng
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - H Zhang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - D Lin
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
39
|
Cui A, Quon G, Rosenberg AM, Yeung RSM, Morris Q. Gene Expression Deconvolution for Uncovering Molecular Signatures in Response to Therapy in Juvenile Idiopathic Arthritis. PLoS One 2016; 11:e0156055. [PMID: 27244050 PMCID: PMC4887077 DOI: 10.1371/journal.pone.0156055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/09/2016] [Indexed: 01/10/2023] Open
Abstract
Gene expression-based signatures help identify pathways relevant to diseases and treatments, but are challenging to construct when there is a diversity of disease mechanisms and treatments in patients with complex diseases. To overcome this challenge, we present a new application of an in silico gene expression deconvolution method, ISOpure-S1, and apply it to identify a common gene expression signature corresponding to response to treatment in 33 juvenile idiopathic arthritis (JIA) patients. Using pre- and post-treatment gene expression profiles only, we found a gene expression signature that significantly correlated with a reduction in the number of joints with active arthritis, a measure of clinical outcome (Spearman rho = 0.44, p = 0.040, Bonferroni correction). This signature may be associated with a decrease in T-cells, monocytes, neutrophils and platelets. The products of most differentially expressed genes include known biomarkers for JIA such as major histocompatibility complexes and interleukins, as well as novel biomarkers including α-defensins. This method is readily applicable to expression datasets of other complex diseases to uncover shared mechanistic patterns in heterogeneous samples.
Collapse
Affiliation(s)
- Ang Cui
- Division of Engineering Science, University of Toronto, Toronto, ON, Canada
| | - Gerald Quon
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Alan M. Rosenberg
- Department of Pediatrics, Division of Rheumatology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rae S. M. Yeung
- Divisions of Rheumatology and Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Paediatrics, Immunology and Medical Sciences, University of Toronto, Toronto, ON, Canada
- * E-mail: (RY); (QM)
| | - Quaid Morris
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- * E-mail: (RY); (QM)
| | | |
Collapse
|
40
|
Lu Y, Li S, Ma L, Li Y, Zhang X, Peng Q, Mo C, Huang L, Qin X, Liu Y. Type conversion of secretomes in a 3D TAM2 and HCC cell co-culture system and functional importance of CXCL2 in HCC. Sci Rep 2016; 6:24558. [PMID: 27117207 PMCID: PMC4846822 DOI: 10.1038/srep24558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis.
Collapse
Affiliation(s)
- Yu Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Liping Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaolian Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qiliu Peng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Cuiju Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Greabu M, Totan A, Miricescu D, Radulescu R, Virlan J, Calenic B. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review. Antioxidants (Basel) 2016; 5:antiox5010003. [PMID: 26805896 PMCID: PMC4808752 DOI: 10.3390/antiox5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases.
Collapse
Affiliation(s)
- Maria Greabu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Alexandra Totan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Daniela Miricescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Radu Radulescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Justina Virlan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Bogdan Calenic
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| |
Collapse
|
42
|
Nowak M, Siemińska L, Karpe J, Marek B, Kos-Kudła B, Kajdaniuk D. Serum concentrations of HGF and IL-8 in patients with active Graves' orbitopathy before and after methylprednisolone therapy. J Endocrinol Invest 2016; 39:63-72. [PMID: 26062519 PMCID: PMC4703607 DOI: 10.1007/s40618-015-0322-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Graves' disease is the most common cause of hyperthyroidism, and orbitopathy is the most frequent extrathyroidal manifestation of Graves' disease. The aims of this study were as follows: (1) to evaluate the serum concentration of HGF and IL-8 in the blood of newly diagnosed Graves' disease patients with the first episode of active GO and healthy controls; (2) to estimate the influence of the thyroid function (euthyreosis vs. hyperthyreosis) on HGF and IL-8 blood levels in patients with active GO; (3) to evaluate the influence of intravenous (i.v.) methylprednisolone (MP) pulse therapy and additional oral MP treatment on HGF and IL-8 blood levels in patients with active GO. PATIENTS AND METHODS Thirty-nine Graves' disease patients with the first episode of clinically active GO (Group A) were enrolled in the study. To estimate the influence of the thyroid function on serum concentrations of the studied proangiogenic factors, Group A was divided into Group A I (n = 18) in euthyroid and Group A II (n = 21) in hyperthyroid stage of Graves' disease in moderate-to-severe stage of GO. The control group consisted of 20 healthy volunteers age- and sex-matched to the GO group. Concentrations of the studied proangiogenic factors in serum samples were measured by an enzyme-linked immunosorbent assay before (Group A) and after (Group A1) intensive pulse i.v.MP treatment and 1 month after the end of additional oral MP treatment (Group A2). RESULTS We found a significant increase in serum concentrations of studied factors in the GO group before immunosuppressive therapy when compared with the control group and decrease after i.v.MP treatment. One month after the end of additional oral MP treatment (Group A2), serum concentrations of HGF and IL-8 still decreased and no significant difference was observed in HGF and IL-8 concentrations when compared with the control group. We did not find the difference in serum concentration of the studied proangiogenic factors between patients in euthyroid and hyperthyroid stage of Graves' disease before MP therapy. CONCLUSIONS Serum HGF and IL-8 concentrations are elevated in Graves' disease patients with active Graves' orbitopathy as compared to the healthy control group. Successful management of active Graves' orbitopathy with glucocorticoids is associated with a decrease in HGF and IL-8 serum concentrations.
Collapse
Affiliation(s)
- M Nowak
- Pathophysiology Division, Department of Pathophysiology and Endocrinology, School of Medicine with the Division of Dentistry, Medical University of Silesia, pl. Traugutta 2, 41-800, Zabrze, Poland.
| | - L Siemińska
- Pathophysiology Division, Department of Pathophysiology and Endocrinology, School of Medicine with the Division of Dentistry, Medical University of Silesia, pl. Traugutta 2, 41-800, Zabrze, Poland
| | - J Karpe
- Department of Anaesthesiology and Intensive Therapy, School of Medicine with the Division of Dentistry, Medical University of Silesia, Zabrze, Poland
| | - B Marek
- Pathophysiology Division, Department of Pathophysiology and Endocrinology, School of Medicine with the Division of Dentistry, Medical University of Silesia, pl. Traugutta 2, 41-800, Zabrze, Poland
| | - B Kos-Kudła
- Endocrinology Division, Department of Pathophysiology and Endocrinology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Zabrze, Poland
| | - D Kajdaniuk
- Pathophysiology Division, Department of Pathophysiology and Endocrinology, School of Medicine with the Division of Dentistry, Medical University of Silesia, pl. Traugutta 2, 41-800, Zabrze, Poland
| |
Collapse
|
43
|
Tsunekawa N, Higashi N, Kogane Y, Waki M, Shida H, Nishimura Y, Adachi H, Nakajima M, Irimura T. Heparanase augments inflammatory chemokine production from colorectal carcinoma cell lines. Biochem Biophys Res Commun 2015; 469:878-83. [PMID: 26713365 DOI: 10.1016/j.bbrc.2015.12.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
To explore possible roles of heparanase in cancer-host crosstalk, we examined whether heparanase influences expression of inflammatory chemokines in colorectal cancer cells. Murine colorectal carcinoma cells incubated with heparanase upregulated MCP-1, KC, and RANTES genes and released MCP-1 and KC proteins. Heparanase-dependent production of IL-8 was detected in two human colorectal carcinoma cell lines. Addition of a heparanase inhibitor Heparastatin (SF4) did not influence MCP-1 production, while both latent and mature forms of heparanase augmented MCP-1 release, suggesting that heparanase catalytic activity was dispensable for MCP-1 production. In contrast, addition of heparin to the medium suppressed MCP-1 release in a dose-dependent manner. Similarly, targeted suppression of Ext1 by RNAi significantly suppressed cell surface expression of heparan sulfate and MCP-1 production in colon 26 cells. Taken together, it is concluded that colon 26 cells transduce the heparanase-mediated signal through heparan sulfate binding. We propose a novel function for heparanase independent of its endoglycosidase activity, namely as a stimulant for chemokine production.
Collapse
Affiliation(s)
- Naoki Tsunekawa
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuaki Higashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; One-stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Kogane
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michihiko Waki
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Shida
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshio Nishimura
- Institute of Microbial Chemistry, Tokyo, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry, Tokyo, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku, Tokyo 106-6019, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Biochemistry and Department of Breast and Endocrine Surgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 104-8560, Japan.
| |
Collapse
|
44
|
Jian K, Wang Q, Jiang L, Guo Z, Jiang N, Wang L, Liu J. WITHDRAWN: Association between interleukin 8 -251 A/T and +781 C/T polymorphisms and coronary artery disease risk. Hum Immunol 2015:S0198-8859(15)00489-9. [PMID: 26429308 DOI: 10.1016/j.humimm.2015.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/17/2014] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
Affiliation(s)
- KaiTao Jian
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin 300222, China
| | - Qiang Wang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin 300222, China
| | - Li Jiang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin 300222, China
| | - ZhiGang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin 300222, China
| | - Nan Jiang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin 300222, China
| | - Lianqun Wang
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin 300222, China
| | - JianShi Liu
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
45
|
Lipoxin A4 inhibits lipopolysaccharide-induced production of inflammatory cytokines in keratinocytes by up-regulating SOCS2 and down-regulating TRAF6. ACTA ACUST UNITED AC 2015; 35:426-431. [PMID: 26072084 DOI: 10.1007/s11596-015-1448-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/24/2015] [Indexed: 12/13/2022]
Abstract
Liopxin A4 (LXA4) is considered to be a crucial modulator in the inflammatory responses. In the present study, we aimed to study the effect of LXA4 on the inflammatory cytokines production induced by lipopolysaccharide (LPS) and the possible mechanism in normal human epidermal keratinocytes (NHEKs). NHEKs were isolated and cultured. The expression of toll-like receptor 4 (TLR4), LXA4 receptor (ALXR) and aryl hydrocarbon receptor (AhR) in NHEKs was detected by reverse transcription polymerase chain reaction (RT-PCR). The mRNA and protein levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were determined in NHEKs stimulated by LPS (10 μg/mL) with or without preincubation with LXA4 (100 nmol/L) for 30 min by real-time quantitative PCR (real-time qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The expression levels of tumor necrosis factor receptor-associated factor 6 (TRAF6) and suppressors of cytokine signaling 2 (SOCS2) mRNAs and proteins, and nuclear translocation of NF-kB-p65 were measured by real-time qPCR and Western blotting, respectively. The results showed that NHEKs expressed TLR4, ALXR and AhR. LXA4 significantly inhibited the mRNA and protein expression levels of TNF-α, IL-1β and TRAF6 induced by LPS in NHEKs, and LXA4 obviously increased the expression of SOCS2 at mRNA and protein levels. The nuclear NF-kB-p65 protein expression induced by LPS was inhibited after preincubation with LXA4 in NHEKs. It was concluded that LXA4 inhibits the LPS-induced production of TNF-α and IL-1β in NHEKs by up-regulating SOCS2 and down-regulating TRAF6.
Collapse
|
46
|
Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:872428. [PMID: 26064425 PMCID: PMC4443785 DOI: 10.1155/2015/872428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 04/20/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.
Collapse
|
47
|
Lee CW, Park SM, Kim YS, Jegal KH, Lee JR, Cho IJ, Ku SK, Lee JY, Ahn YT, Son Y, Ju SA, Kim SC, An WG. Biomolecular evidence of anti-inflammatory effects by Clematis mandshurica Ruprecht root extract in rodent cells. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1141-1155. [PMID: 24975194 DOI: 10.1016/j.jep.2014.06.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clematis mandshurica Ruprecht root is widely used in Asia as an analgesic and anti-inflammatory agent. This research investigated the anti-inflammatory effects of Clematis mandshurica Ruprecht root extract (CRE) using RAW 264.7 macrophage cells and carrageenan- (CA-) induced rat paw edema. MATERIALS AND METHODS Production of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, nitric oxide (NO) and prostaglandin E2 (PGE2) in the culture supernatant, mRNA expression of TNF-α, IL-1β, IL-6, iNOS and COX-2, protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in the extract were assayed. In addition, the effect of CRE on acute inflammation in vivo was observed using CA-induced rat hind paw edema assay. The changes on the histopathology and histomorphometry of hind paw skins-dorsum and ventrum pedis were observed using CA-treated rats. RESULTS Treatment with CRE (0.25, 0.5, and 1 mg/mL) resulted in inhibited levels of protein expression of lipopolysaccharide- (LPS-) induced iNOS, COX-2, NF-κB, and MAPKs (ERK, JNK, and p38) as well as production of TNF-α, IL-1β, IL-6, NO, and PGE2 induced by LPS. Consistent with these results, CRE reduced the LPS-induced expressions of these cytokines, iNOS and COX-2 at the mRNA levels in a dose-dependent manner. In particular, results of the CA-induced rat hind paw edema assay showed an anti-edema effect of CRE. In addition, treatment with CRE resulted in dose-dependent inhibition of CA-induced increases of skin thickness, mast cell degranulation, and infiltrated inflammatory, TNF-α, IL-1β, iNOS, and COX-2-positive cells in both dorsum and ventrum pedis skin, respectively. CONCLUSIONS These results demonstrate that CRE exhibits anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the pathways of NF-κB and MAPKs in LPS-induced macrophage cells. In addition, results of the CA-induced rat hind paw edema assay show an anti-edema effect of CRE. Our findings also support the traditional use of CRE in the inflammatory symptoms of rheumatic arthritis and acute icteric hepatitis. Thus, CRE may have therapeutic potential for a variety of inflammation-mediated diseases and may be developed into potent anti-inflammatory drugs.
Collapse
Affiliation(s)
- Chul Won Lee
- Institute of Marine BioTechnology, Pusan National University, Busan 609-735, Republic of Korea
| | - Sang Mi Park
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Youn Sook Kim
- School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Kyung Hwan Jegal
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Jong Rok Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Il Je Cho
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Sae Kwang Ku
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Ji Yeon Lee
- Institute of Marine BioTechnology, Pusan National University, Busan 609-735, Republic of Korea
| | - Yong-Tae Ahn
- Institute of Marine BioTechnology, Pusan National University, Busan 609-735, Republic of Korea
| | - Yonghae Son
- Institute of Marine BioTechnology, Pusan National University, Busan 609-735, Republic of Korea
| | - Seong A Ju
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea.
| | - Won G An
- Institute of Marine BioTechnology, Pusan National University, Busan 609-735, Republic of Korea; Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea.
| |
Collapse
|
48
|
LeVine DN, Birkenheuer AJ, Brooks MB, Nordone SK, Bellinger DA, Jones SL, Fischer TH, Oglesbee SE, Frey K, Brinson NS, Peters AP, Marr HS, Motsinger-Reif A, Gudbrandsdottir S, Bussel JB, Key NS. A novel canine model of immune thrombocytopenia: has immune thrombocytopenia (ITP) gone to the dogs? Br J Haematol 2014; 167:110-20. [PMID: 25039744 DOI: 10.1111/bjh.13005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/11/2014] [Indexed: 01/25/2023]
Abstract
Canine immune thrombocytopenia (ITP) is analogous to human ITP, with similar platelet counts and heterogeneity in bleeding phenotype among affected individuals. With a goal of ultimately investigating this bleeding heterogeneity, a canine model of antibody-mediated ITP was developed. Infusion of healthy dogs with 2F9, a murine IgG2a monoclonal antibody to the canine platelet glycoprotein GPIIb (a common target of autoantibodies in ITP) resulted in profound, dose-dependent thrombocytopenia. Model dogs developed variable bleeding phenotypes, e.g. petechiae and haematuria, despite similar degrees of thrombocytopenia. 2F9 infusion was not associated with systemic inflammation, consumptive coagulopathy, or impairment of platelet function. Unexpectedly however, evaluation of cytokine profiles led to the identification of platelets as a potential source of serum interleukin-8 (IL8) in dogs. This finding was confirmed in humans with ITP, suggesting that platelet IL8 may be a previously unrecognized modulator of platelet-neutrophil crosstalk. The utility of this model will allow future study of bleeding phenotypic heterogeneity including the role of neutrophils and endothelial cells in ITP.
Collapse
Affiliation(s)
- Dana N LeVine
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Pathology and Laboratory Animal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci 2014; 15:4747-79. [PMID: 24646914 PMCID: PMC3975423 DOI: 10.3390/ijms15034747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host's immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.
Collapse
|
50
|
Abstract
Psoriasis is a chronic immunological disorder that affects the joints and skin. The disease is strongly correlated with genetic predisposition and environmental factors that can act as triggers of the innate and adaptive immune response. Once this immune response has begun many different signaling factors lead to inflammation and plaques which are visible throughout the body. As psoriasis progresses, it strongly affects the mental and physical health of the individual. This article reviews the different types of psoriasis, genetic and environmental triggers of psoriasis, the molecular progression of psoriasis, and current and future therapies.
Collapse
Affiliation(s)
- Sudesh S Raju
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| |
Collapse
|