1
|
Serum Cytokine Alterations Associated with Age of Patients with Nephropathia Epidemica. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4685288. [PMID: 35059462 PMCID: PMC8766188 DOI: 10.1155/2022/4685288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
Nephropathia epidemica (NE) is a zoonotic disease caused by hantaviruses transmitted from rodents, endemic in the Republic of Tatarstan, Russia. The disease presents clinically with mild, moderate, and severe forms, and time-dependent febrile, oliguric, and polyuric stages of the disease are also recognized. The patient's cytokine responses have been suggested to play a central role in disease pathogenesis; however, little is known about the different patterns of cytokine expression in NE in cohorts of different ages and sexes. Serum samples and clinical records were collected from 139 patients and 57 controls (healthy donors) and were used to analyze 48 analytes with the Bio-Plex multiplex magnetic bead-based antibody detection kits. Principal component analysis of 137 patient and 55 controls (for which there was full data) identified two components that individually accounted for >15% of the total variance in results and together for 38% of the total variance. PC1 represented a proinflammatory TH17/TH2 cell antiviral cytokine profile and PC2 a more antiviral cytokine profile with patients tending to display one or the other of these. Severity of disease and stage of illness did not show any correlation with PC1 profiles; however, significant differences were seen in patients with high PC1 profiles vs. lower for a number of individual clinical parameters: High PC1 patients showed a reduced number of febrile days, but higher maximum urine output, higher creatinine levels, and lower platelet levels. Overall, the results of this study point towards a stronger proinflammatory profile occurring in younger NE patients, this being associated with markers of acute kidney injury and low levels of high-density cholesterol. This is consistent with previous work indicating that the pathology of NE is immune driven, with an inflammatory immune response being associated with disease and that this immune response is more extreme in younger patients.
Collapse
|
2
|
Oberoi R, Vlacil AK, Schuett J, Schösser F, Schuett H, Tietge UJF, Schieffer B, Grote K. Anti-tumor necrosis factor-α therapy increases plaque burden in a mouse model of experimental atherosclerosis. Atherosclerosis 2018; 277:80-89. [PMID: 30176568 DOI: 10.1016/j.atherosclerosis.2018.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is critically fueled by vascular inflammation through oxidized lipids and inflammatory cytokines such as tumor necrosis factor (TNF)-α. Genetic disruption of Tnf-α reduces atherosclerosis in experimental mouse models. However, less is known about the therapeutic potential of Tnf-α blockage by pharmacological inhibitors such as monoclonal antibodies, which are already approved for several inflammatory disorders in patients. Therefore, we investigated the effect of pharmacological TNF-α inhibition on plaque development in experimental atherosclerosis. RESULTS 10 week old male Ldlr-/- mice were divided into 4 groups (n = 7-10) and fed a high fat, high cholesterol diet for 6 and 12 weeks. Simultaneously, the mouse-specific anti-Tnf-α monoclonal antibody CNTO5048 (CNT) or a control IgG was administered. RESULTS CNT reduced circulating inflammatory markers without affecting body weight and glucose metabolism. Unexpectedly, CNT treatment increased plasma triglyceride levels and pro-atherogenic very-low-density lipoprotein (VLDL) cholesterol as well as plaque burden in the thoracoabdominal aorta and in the aortic root. In addition, we observed decreased smooth muscle cell content in the lesions and a trend towards reduced collagen deposition upon Tnf-α inhibition. Furthermore, inflammatory gene expression in the aortic arch was increased following Tnf-α inhibitor treatment. CONCLUSIONS Although up to 12-week pharmacological inhibition of TNF-α in Ldlr-/- mice diminishes systemic inflammation, experimental plaque burden and vascular inflammatory gene expression are increased, while markers of plaque stability decrease. These observations may be explained by the development of a pro-atherogenic plasma lipid profile.
Collapse
Affiliation(s)
- Raghav Oberoi
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | | | - Jutta Schuett
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Florian Schösser
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Harald Schuett
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Martel CA, Mamedova LK, Minton JE, Jones ML, Carroll JA, Bradford BJ. Continuous low-dose infusion of tumor necrosis factor alpha in adipose tissue elevates adipose tissue interleukin 10 abundance and fails to alter metabolism in lactating dairy cows. J Dairy Sci 2014; 97:4897-906. [DOI: 10.3168/jds.2013-7777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/17/2014] [Indexed: 12/14/2022]
|
4
|
Qin B, Anderson RA, Adeli K. Tumor necrosis factor-alpha directly stimulates the overproduction of hepatic apolipoprotein B100-containing VLDL via impairment of hepatic insulin signaling. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1120-9. [PMID: 18372392 DOI: 10.1152/ajpgi.00407.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin-resistant states are commonly associated with both increased circulating levels of tumor necrosis factor (TNF)-alpha and hepatic overproduction of very low density lipoproteins (VLDL). Here, we provide evidence that increased TNF-alpha can directly stimulate the hepatic assembly and secretion of apolipoprotein B (apoB) 100-containing VLDL(1), using the Syrian golden hamster, an animal model that closely resembles humans in hepatic VLDL-apoB100 metabolism. In vivo TNF-alpha infusion for 4 h in chow-fed hamsters induced whole-body insulin resistance on the basis of euglycemic hyperinsulinemic clamp studies. Immunoprecipitation and immunoblotting analysis of livers from TNF-alpha-treated hamsters indicated decreased tyrosine phosphorylation of insulin receptor (IR)-beta, IR substrate-1 (Tyr), Akt (Ser(473)), p38, ERK1/2, and JNK but increased serine phosphorylation of IRS-1 (Ser(307)) and Shc. TNF-alpha infusion also significantly increased hepatic production of total circulating apoB100 and VLDL-apoB100 in both fasting and postprandial (fat load) states. Ex vivo experiments, using cultured primary hepatocytes from hamsters, also showed TNF-alpha-induced VLDL-apoB100 oversecretion, an effect that was blocked by TNF receptor 2 antibody. Unexpectedly, TNF-alpha decreased the sterol regulatory element-binding protein-1c mass and mRNA levels but significantly increased microsomal triglyceride transfer protein mass and mRNA levels in primary hepatocytes. In summary, these data provide direct evidence that TNF-alpha induces whole-body insulin resistance and impairs hepatic insulin signaling accompanied by overproduction of apoB100-containing VLDL particles, an effect likely mediated via TNF receptor 2.
Collapse
Affiliation(s)
- Bolin Qin
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
5
|
Esteve E, Ricart W, Fernández-Real JM. Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin Nutr 2005; 24:16-31. [PMID: 15681098 DOI: 10.1016/j.clnu.2004.08.004] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 08/16/2004] [Indexed: 12/17/2022]
Abstract
Inflammation leads to changes in lipid metabolism aimed at decreasing the toxicity of a variety of harmful agents and tissue repair by redistributing nutrients to cells involved in host defence. Acute phase response, mediated by cytokines, preserves the host from acute injury. When this inflammation becomes chronic, it might lead to chronic disorders as atherosclerosis and the metabolic syndrome. The activation of the inflammatory cascade will induce a decrease in HDL-cholesterol (HDL-C), with impairment in reverse cholesterol transport, and parallel changes in apolipoproteins, enzymes, anti-oxidant capacity and ATP binding cassette A1-dependent efflux. This decrease in HDL-C and phospholipids could stimulate compensatory changes, as synthesis and accumulation of phospholipid-rich VLDL which binds bacterial products and other toxic substances, resulting in hypertriglyceridemia. The final consequence is an increased accumulation of cholesterol in cells. When the compensatory response (inflammation) is not able to repair injury, it turns into a harmful reaction, and the lipid changes will become chronic, either by repeated or overwhelming stimulus, enhancing the formation of atherosclerotic lesions. Thus, the classical lipid changes associated with the metabolic syndrome (increased triglycerides and decreased HDL-C) may be envisioned as a highly conserved evolutionary response aimed at tissue repair. Under this assumption, the problem is not the response but the persistence of the stimulus.
Collapse
Affiliation(s)
- Eduardo Esteve
- Sección de Diabetes, Endocrinología y Nutrición, Hospital Universitario de Girona "Dr Josep Trueta", Avenida de Francia s/n, 17007 Girona, Spain
| | | | | |
Collapse
|
6
|
Kushibiki S, Hodate K, Shingu H, Hayashi T, Touno E, Shinoda M, Yokomizo Y. Alterations in lipid metabolism induced by recombinant bovine tumor necrosis factor-alpha administration to dairy heifers1,2. J Anim Sci 2002. [DOI: 10.1093/ansci/80.8.2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Devlin CM, Kuriakose G, Hirsch E, Tabas I. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A 2002; 99:6280-5. [PMID: 11983917 PMCID: PMC122940 DOI: 10.1073/pnas.092324399] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammatory cytokines have been linked to atherosclerosis by using cell culture models and acute inflammation in animals. The goal of this study was to examine lipoprotein levels and early atherosclerosis in chronic animal models of altered IL-1 physiology by using mice with deficient or excess IL-1 receptor antagonist (IL-1ra). IL-1ra knockout C57BL/6J mice fed a cholesterol/cholate diet for 3 mo had a 3-fold decrease in non-high-density lipoprotein cholesterol and a trend toward increased foam-cell lesion area compared to wild-type littermate controls. IL-1ra transgenic/low-density lipoprotein receptor (LDLR) knockout mice fed a cholesterol-saturated fat diet for 10 wk showed a 40% increase in non-high-density lipoprotein cholesterol, consistent with the IL-1ra knockout data, although there was no change in lesion size. When these IL1-ra overexpressing transgenic mice on the LDLR knockout background were fed a high-cholesterol/high-fat diet containing cholate, however, a statistically significant 40% decrease in lesion area was observed compared to LDLR knockout mice lacking the transgene. By immunohistochemistry, IL-1ra was present in C57BL/6J and LDLR knockout aortae, absent in IL-1ra knockout aortae, and present at high levels in LDLR knockout/IL-1ra transgene aortae. In summary, IL-1ra tended to increase plasma lipoprotein levels and, when fed a cholate-containing diet, decrease foam-cell lesion size. These data demonstrate that in selected models of murine atherosclerosis, chronic IL-1ra depletion or overexpression has potentially important effects on lipoprotein metabolism and foam-cell lesion development.
Collapse
Affiliation(s)
- Cecilia M Devlin
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
8
|
Makimura H, Mizuno TM, Yang XJ, Silverstein J, Beasley J, Mobbs CV. Cerulenin mimics effects of leptin on metabolic rate, food intake, and body weight independent of the melanocortin system, but unlike leptin, cerulenin fails to block neuroendocrine effects of fasting. Diabetes 2001; 50:733-9. [PMID: 11289036 DOI: 10.2337/diabetes.50.4.733] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cerulenin and a related compound, C75, have recently been reported to reduce food intake and body weight independent of leptin through a mechanism hypothesized, like leptin, to involve hypothalamic nutrition-sensitive neurons. To assess whether these inhibitors act through mechanisms similar to mechanisms engaged by leptin, ob/ob and Ay (agouti) mice, as well as fed and fasted wild-type mice, were treated with cerulenin. Like leptin, cerulenin reduced body weight and food intake and increased metabolic rate in ob/ob mice, and cerulenin produced the same effects in wild-type mice, whereas lithium chloride, at doses that produce conditioned taste aversion, reduced metabolic rate. However, in contrast to leptin, cerulenin did not prevent effects of fasting on plasma corticosterone or hypothalamic levels of neuropeptide Y, agouti-related peptide, pro-opiomelanocortin, or cocaine- and amphetamine-related peptide mRNA. Also, in contrast to leptin, cerulenin was highly effective to reduce body weight in Ay mice, in which obesity is caused by blockade of the melanocortin receptor. These data demonstrate that cerulenin produces metabolic effects similar to effects of leptin, but through mechanisms that are independent of, or down-stream from, both leptin and melanocortin receptors.
Collapse
Affiliation(s)
- H Makimura
- Department of Geriatrics, Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
9
|
Benigni F, Atsumi T, Calandra T, Metz C, Echtenacher B, Peng T, Bucala R. The proinflammatory mediator macrophage migration inhibitory factor induces glucose catabolism in muscle. J Clin Invest 2000; 106:1291-300. [PMID: 11086030 PMCID: PMC381433 DOI: 10.1172/jci9900] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Severe infection or tissue invasion can provoke a catabolic response, leading to severe metabolic derangement, cachexia, and even death. Macrophage migration inhibitory factor (MIF) is an important regulator of the host response to infection. Released by various immune cells and by the anterior pituitary gland, MIF plays a critical role in the systemic inflammatory response by counterregulating the inhibitory effect of glucocorticoids on immune-cell activation and proinflammatory cytokine production. We describe herein an unexpected role for MIF in the regulation of glycolysis. The addition of MIF to differentiated L6 rat myotubes increased synthesis of fructose 2,6-bisphosphate (F2,6BP), a positive allosteric regulator of glycolysis. Increased expression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) enhanced F2,6BP production and, consequently, cellular lactate production. The catabolic effect of TNF-alpha on myotubes was mediated by MIF, which served as an autocrine stimulus for F2, 6BP production. TNF-alpha administered to mice decreased serum glucose levels and increased muscle F2,6BP levels; pretreatment with a neutralizing anti-MIF mAb completely inhibited these effects. Anti-MIF also prevented hypoglycemia and increased muscle F2,6BP levels in TNF-alpha-knockout mice that were administered LPS, supporting the intrinsic contribution of MIF to these inflammation-induced metabolic changes. Taken together with the recent finding that MIF is a positive, autocrine stimulator of insulin release, these data suggest an important role for MIF in the control of host glucose disposal and carbohydrate metabolism.
Collapse
Affiliation(s)
- F Benigni
- The Picower Institute for Medical Research, Manhasset, New York 10030, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Van der Meer MJ, Sweep CG, Pesman GJ, Borm GF, Hermus AR. Synergism between IL-1 beta and TNF-alpha on the activity of the pituitary-adrenal axis and on food intake of rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:E551-7. [PMID: 7733251 DOI: 10.1152/ajpendo.1995.268.4.e551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the effects of separate and combined intraperitoneal administration for 3 days of recombinant human interleukin-1 beta (IL-1) and recombinant human tumor necrosis factor-alpha (TNF) on plasma adrenocorticotropic hormone (ACTH) and corticosterone (B) levels, adrenal weight, food intake, and rectal temperature. Rats were equipped with a jugular cannula for daily blood sampling and with an intraperitoneally implanted Alzet osmotic minipump loaded with either saline, IL-1 (2.0 micrograms/day), TNF (0.2, 2.0, or 10.0 micrograms/day), or IL-1 in combination with TNF. Plasma ACTH and B levels and adrenal weight were significantly increased, in a dose-dependent way, by simultaneous infusion of IL-1 and TNF but not by administration of either cytokine alone. Chronic administration of IL-1 alone induced a significant decrease in food intake and a significant elevation of rectal temperature, whereas infusion of only the highest dose of TNF significantly elevated rectal temperature. Coinfusion of IL-1 and TNF induced both effects in a dose-dependent and synergistic way. Our data show that simultaneous infusion of IL-1 and TNF in rats has a synergistic effect on the activity of the pituitary-adrenal axis as well as on food intake and rectal temperature. The existence of two pathways, which act synergistically, may increase the sensitivity of the host to respond to subtle inflammatory stimuli.
Collapse
Affiliation(s)
- M J Van der Meer
- Department of Endocrinology, University Hospital Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|