1
|
Bauer J, Vlcek J, Pauly V, Hesse N, Xia R, Mo L, Chivukula AS, Villgrater H, Dressler M, Hildebrand B, Wolf E, Rizas KD, Bauer A, Kääb S, Tomsits P, Schüttler D, Clauss S. Biomarker Periodic Repolarization Dynamics Indicates Enhanced Risk for Arrhythmias and Sudden Cardiac Death in Myocardial Infarction in Pigs. J Am Heart Assoc 2024; 13:e032405. [PMID: 38639363 PMCID: PMC11179938 DOI: 10.1161/jaha.123.032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that captures repolarization instability in the low frequency spectrum and is believed to estimate the sympathetic effect on the ventricular myocardium. High PRD indicates an increased risk for postischemic sudden cardiac death (SCD). However, a direct link between PRD and proarrhythmogenic autonomic remodeling has not yet been shown. METHODS AND RESULTS We investigated autonomic remodeling in pigs with myocardial infarction (MI)-related ischemic heart failure induced by balloon occlusion of the left anterior descending artery (n=17) compared with pigs without MI (n=11). Thirty days after MI, pigs demonstrated enhanced sympathetic innervation in the infarct area, border zone, and remote left ventricle paralleled by altered expression of autonomic marker genes/proteins. PRD was enhanced 30 days after MI compared with baseline (pre-MI versus post-MI: 1.75±0.30 deg2 versus 3.29±0.79 deg2, P<0.05) reflecting pronounced autonomic alterations on the level of the ventricular myocardium. Pigs with MI-related ventricular fibrillation and SCD had significantly higher pre-MI PRD than pigs without tachyarrhythmias, suggesting a potential role for PRD as a predictive biomarker for ischemia-related arrhythmias (no ventricular fibrillation versus ventricular fibrillation: 1.50±0.39 deg2 versus 3.18±0.53 deg2 [P<0.05]; no SCD versus SCD: 1.67±0.32 deg2 versus 3.91±0.63 deg2 [P<0.01]). CONCLUSIONS We demonstrate that ischemic heart failure leads to significant proarrhythmogenic autonomic remodeling. The concomitant elevation of PRD levels in pigs with ischemic heart failure and pigs with MI-related ventricular fibrillation/SCD suggests PRD as a biomarker for autonomic remodeling and as a potential predictive biomarker for ventricular arrhythmias/survival in the context of MI.
Collapse
Affiliation(s)
- Julia Bauer
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Julia Vlcek
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Valerie Pauly
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Nora Hesse
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Ruibing Xia
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Li Mo
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Aparna Sharma Chivukula
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Hannes Villgrater
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Marie Dressler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Bianca Hildebrand
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Konstantinos D. Rizas
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
| | - Axel Bauer
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- University Hospital for Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kääb
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Philipp Tomsits
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Dominik Schüttler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Sebastian Clauss
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| |
Collapse
|
2
|
do Amaral L, Dos Santos NAG, Sisti FM, Del Bel E, Dos Santos AC. Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1787-1796. [PMID: 36843128 DOI: 10.1007/s00210-023-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, β-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.
Collapse
Affiliation(s)
- Lilian do Amaral
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirão Preto, USP, Av Do Café S/N, 14040-904, Ribeirão Preto, SP, Brazil
| | - Antônio Cardozo Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
3
|
Rogala B, Khan ZA, Jackson-Boeters L, Darling MR. Investigation of the Molecular Profile of Granular Cell Tumours and Schwannomas of the Oral Cavity. Dent J (Basel) 2022; 10:dj10030038. [PMID: 35323240 PMCID: PMC8946879 DOI: 10.3390/dj10030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Granular cell tumours (GCTs) are rare submucosal lesions, thought to develop from Schwann cells, characterised by large polygonal cells with abundant lysosomes. The objectives of this study are to investigate whether GCTs have an antigen-presenting cell (APC) phenotype or a neural crest phenotype using immunohistochemistry and to compare expression profiles with Schwannomas. Immunoreactivity to CD68, HLA-DR, CD163, CD40 and CD11c (APC phenotype) and markers of neural crest cell (NCC) origin S100, SOX10, NSE and GAP43 in 23 cases of GCTs and 10 cases of Schwannomas were evaluated. RT-qPCR was used to identify a possible NCC developmental phenotype in 6 cases of GCTs. GAP43 was identified as a new NCC marker for GCTs, and some evidence was found for an APC phenotype from CD68 and HLA-DR immunoreactivity. RT-qPCR failed to identify an NCC developmental phenotype of GCTs, likely due to technical issues.
Collapse
|
4
|
Reverdatto S, Prasad A, Belrose JL, Zhang X, Sammons MA, Gibbs KM, Szaro BG. Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System. BMC Genomics 2022; 23:2. [PMID: 34979916 PMCID: PMC8725369 DOI: 10.1186/s12864-021-08247-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Because some of its CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs, the South African claw-toed frog, Xenopus laevis, offers unique opportunities for exploring differences between regenerative and non-regenerative responses to CNS injury within the same organism. An earlier, three-way RNA-seq study (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) identified genes that regulate chromatin accessibility among those that were differentially expressed in regenerative vs non-regenerative CNS [11]. The current study used whole genome bisulfite sequencing (WGBS) of DNA collected from these same animals at the peak period of axon regeneration to study the extent to which DNA methylation could potentially underlie differences in chromatin accessibility between regenerative and non-regenerative CNS. RESULTS Consistent with the hypothesis that DNA of regenerative CNS is more accessible than that of non-regenerative CNS, DNA from both the regenerative tadpole hindbrain and frog eye was less methylated than that of the non-regenerative frog hindbrain. Also, consistent with observations of CNS injury in mammals, DNA methylation in non-regenerative frog hindbrain decreased after SCI. However, contrary to expectations that the level of DNA methylation would decrease even further with axotomy in regenerative CNS, DNA methylation in these regions instead increased with injury. Injury-induced differences in CpG methylation in regenerative CNS became especially enriched in gene promoter regions, whereas non-CpG methylation differences were more evenly distributed across promoter regions, intergenic, and intragenic regions. In non-regenerative CNS, tissue-related (i.e., regenerative vs. non-regenerative CNS) and injury-induced decreases in promoter region CpG methylation were significantly correlated with increased RNA expression, but the injury-induced, increased CpG methylation seen in regenerative CNS across promoter regions was not, suggesting it was associated with increased rather than decreased chromatin accessibility. This hypothesis received support from observations that in regenerative CNS, many genes exhibiting increased, injury-induced, promoter-associated CpG-methylation also exhibited increased RNA expression and association with histone markers for active promoters and enhancers. DNA immunoprecipitation for 5hmC in optic nerve regeneration found that the promoter-associated increases seen in CpG methylation were distinct from those exhibiting changes in 5hmC. CONCLUSIONS Although seemingly paradoxical, the increased injury-associated DNA methylation seen in regenerative CNS has many parallels in stem cells and cancer. Thus, these axotomy-induced changes in DNA methylation in regenerative CNS provide evidence for a novel epigenetic state favoring successful over unsuccessful CNS axon regeneration. The datasets described in this study should help lay the foundations for future studies of the molecular and cellular mechanisms involved. The insights gained should, in turn, help point the way to novel therapeutic approaches for treating CNS injury in mammals.
Collapse
Affiliation(s)
- Sergei Reverdatto
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Jamie L Belrose
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Morgan A Sammons
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Kurt M Gibbs
- Department of Biology & Chemistry, Morehead State University, Morehead, KY, 40351, USA
| | - Ben G Szaro
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA.
- Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, 12222, USA.
- RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA.
| |
Collapse
|
5
|
Chung D, Shum A, Caraveo G. GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:567537. [PMID: 33015061 PMCID: PMC7494789 DOI: 10.3389/fcell.2020.567537] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Growth-associated protein-43 (GAP-43) and brain acid-soluble protein 1 (BASP1) regulate actin dynamics and presynaptic vesicle cycling at axon terminals, thereby facilitating axonal growth, regeneration, and plasticity. These functions highly depend on changes in GAP-43 and BASP1 expression levels and post-translational modifications such as phosphorylation. Interestingly, examinations of GAP-43 and BASP1 in neurodegenerative diseases reveal alterations in their expression and phosphorylation profiles. This review provides an overview of the structural properties, regulations, and functions of GAP-43 and BASP1, highlighting their involvement in neural injury response and regeneration. By discussing GAP-43 and BASP1 in the context of neurodegenerative diseases, we also explore the therapeutic potential of modulating their activities to compensate for neuron loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daayun Chung
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew Shum
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Hernández RG, Djebari S, Vélez-Ortiz JM, de la Cruz RR, Pastor AM, Benítez-Temiño B. Short-term plasticity after partial deafferentation in the oculomotor system. Brain Struct Funct 2019; 224:2717-2731. [PMID: 31375981 DOI: 10.1007/s00429-019-01929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Medial rectus motoneurons are innervated by two main pontine inputs. The specific function of each of these two inputs remains to be fully understood. Indeed, selective partial deafferentation of medial rectus motoneurons, performed by the lesion of either the vestibular or the abducens input, initially induces similar changes in motoneuronal discharge. However, at longer time periods, the responses to both lesions are dissimilar. Alterations on eye movements and motoneuronal discharge induced by vestibular input transection recover completely 2 months post-lesion, whereas changes induced by abducens internuclear lesion are more drastic and permanent. Functional recovery could be due to some kind of plastic process, such as reactive synaptogenesis, developed by the remaining intact input, which would occupy the vacant synaptic spaces left after lesion. Herein, by means of confocal microscopy, immunocytochemistry and retrograde labeling, we attempt to elucidate the possible plastic processes that take place after partial deafferentation of medial rectus motoneuron. 48 h post-injury, both vestibular and abducens internuclear lesions produced a reduced synaptic coverage on these motoneurons. However, 96 h after vestibular lesion, there was a partial recovery in the number of synaptic contacts. This suggests that there was reactive synaptogenesis. This recovery was preceded by an increase in somatic neurotrophin content, suggesting a role of these molecules in presynaptic axonal sprouting. The rise in synaptic coverage might be due to terminal sprouting performed by the remaining main input, i.e., abducens internuclear neurons. The present results may improve the understanding of this apparently redundant input system.
Collapse
Affiliation(s)
- Rosendo G Hernández
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - Souhail Djebari
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - José Miguel Vélez-Ortiz
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain.
| | - Beatriz Benítez-Temiño
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| |
Collapse
|
7
|
Fetal extracellular matrix nerve wraps locally improve peripheral nerve remodeling after complete transection and direct repair in rat. Sci Rep 2018. [PMID: 29540763 PMCID: PMC5852088 DOI: 10.1038/s41598-018-22628-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In peripheral nerve (PN) injuries requiring surgical repair, as in PN transection, cellular and ECM remodeling at PN epineurial repair sites is hypothesized to reduce PN functional outcomes by slowing, misdirecting, or preventing axons from regrowing appropriately across the repair site. Herein this study reports on deriving and analyzing fetal porcine urinary bladder extracellular matrix (fUB-ECM) by vacuum assisted decellularization, fabricating fUBM-ECM nerve wraps, and testing fUB-ECM nerve wrap biocompatibility and bioactivity in a trigeminal, infraorbital nerve (ION) branch transection and direct end-to-end repair model in rat. FUB-ECM nerve wraps significantly improved epi- and endoneurial organization and increased both neovascularization and growth associated protein-43 (GAP-43) expression at PN repair sites, 28-days post surgery. However, the number of neurofilament positive axons, remyelination, and whisker-evoked response properties of ION axons were unaltered, indicating improved tissue remodeling per se does not predict axon regrowth, remyelination, and the return of mechanoreceptor cortical signaling. This study shows fUB-ECM nerve wraps are biocompatible, bioactive, and good experimental and potentially clinical devices for treating epineurial repairs. Moreover, this study highlights the value provided by precise, analytic models, like the ION repair model, in understanding how PN tissue remodeling relates to axonal regrowth, remyelination, and axonal response properties.
Collapse
|
8
|
Effects of Selective Deafferentation on the Discharge Characteristics of Medial Rectus Motoneurons. J Neurosci 2017; 37:9172-9188. [PMID: 28842421 DOI: 10.1523/jneurosci.1391-17.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/11/2017] [Accepted: 08/06/2017] [Indexed: 11/21/2022] Open
Abstract
Medial rectus motoneurons receive two main pontine inputs: abducens internuclear neurons, whose axons course through the medial longitudinal fasciculus (MLF), and neurons in the lateral vestibular nucleus, whose axons project through the ascending tract of Deiters (ATD). Abducens internuclear neurons are responsible for conjugate gaze in the horizontal plane, whereas ATD neurons provide medial rectus motoneurons with a vestibular input comprising mainly head velocity. To reveal the relative contribution of each input to the oculomotor physiology, single-unit recordings from medial rectus motoneurons were obtained in the control situation and after selective deafferentation from cats with unilateral transection of either the MLF or the ATD. Both MLF and ATD transection produced similar short-term alterations in medial rectus motoneuron firing pattern, which were more drastic in MLF of animals. However, long-term recordings revealed important differences between the two types of lesion. Thus, while the effects of the MLF section were permanent, 2 months after ATD lesioning all motoneuronal firing parameters were similar to the control. These findings indicated a more relevant role of the MLF pathway in driving motoneuronal firing and evidenced compensatory mechanisms following the ATD lesion. Confocal immunocytochemistry revealed that MLF transection produced also a higher loss of synaptic boutons, mainly at the dendritic level. Moreover, 2 months after ATD transection, we observed an increase in synaptic coverage around motoneuron cell bodies compared with short-term data, which is indicative of a synaptogenic compensatory mechanism of the abducens internuclear pathway that could lead to the observed firing and morphological recovery.SIGNIFICANCE STATEMENT Eye movements rely on multiple neuronal circuits for appropriate performance. The abducens internuclear pathway through the medial longitudinal fascicle (MLF) and the vestibular neurons through the ascending tract of Deiters (ATD) are a dual system that supports the firing of medial rectus motoneurons. We report the effect of sectioning the MLF or the ATD pathway on the firing of medial rectus motoneurons, as well as the plastic mechanisms by which one input compensates for the lack of the other. This work shows that while the effects of MLF transection are permanent, the ATD section produces transitory effects. A mechanism based on axonal sprouting and occupancy of the vacant synaptic space due to deafferentation is the base for the mechanism of compensation on the medial rectus motoneuron.
Collapse
|
9
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
10
|
Jap Tjoen San ERA, Schmidt-Michels M, Oestreicher AB, Schotman P, Gispen WH. Dexamethasone-Induced Effects on B-50/GAP-43 Expression and Neurite Outgrowth in PC 12 Cells. J Mol Neurosci 2017; 3:189-195. [PMID: 28386740 DOI: 10.1007/bf03380138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Undifferentiated PC 12 cells contain detectable levels of the nervous-specific protein B-50/GAP-43. Upon treatment with NGF or change of culture medium, B-50/ GAP-43 levels remained unchanged during the first 12 hours while neuritogenesis starts. Both, B-50/GAP-43 levels and neurite outgrowth peak at 24 hours. These results suggest that in PC 12 cells the amount of B-50 already present is sufficient to support the start of NGF-induced neuritogenesis, presumably by translocation from cytosolic compartments to the membrane. Addition of DEX reversed the rise in B-50/GAP-43 levels induced by either the change of medium or by NGF. In contrast, neurite outgrowth was inhibited to a lesser extent, although after 36 hours of pretreatment with DEX neurite length was lower than control. NGF was capable of enhancing B-50/GAP-43 levels both in the presence and absence of DEX. This corroborates data from others, who concluded that DEX and NGF exert their effects through different mechanisms, e.g., transcription versus mRNA stabilization, respectively. The inhibitory effect of DEX under various conditions on both B-50 expression and neurite outgrowth in the normal PC 12 cell line demonstrates the tight coupling of these parameters that might be indicative of a threshold effect of B-50 levels on neurite outgrowth.
Collapse
Affiliation(s)
- E R A Jap Tjoen San
- Division of Molecular Neurobiology, Institute of Molecular Biology and Medical Biotechnology, Rudolf Magnus Institute. University of Utrecht, Padualaan 8, 3584, CH Utrecht, Netherlands
| | - M Schmidt-Michels
- Division of Molecular Neurobiology, Institute of Molecular Biology and Medical Biotechnology, Rudolf Magnus Institute. University of Utrecht, Padualaan 8, 3584, CH Utrecht, Netherlands
| | - A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute. University of Utrecht, Padualaan 8, 3584, CH Utrecht, Netherlands
| | - P Schotman
- Department of Physiological Chemistry, Rudolf Magnus Institute. University of Utrecht, Padualaan 8, 3584, CH Utrecht, Netherlands
| | - W H Gispen
- Department of Medical Pharmacology, Rudolf Magnus Institute. University of Utrecht, Padualaan 8, 3584, CH Utrecht, Netherlands
| |
Collapse
|
11
|
De Moliner K, Wolfson ML, Perrone-Bizzozero N, Adamo AM. GAP-43 slows down cell cycle progression via sequences in its 3'UTR. Arch Biochem Biophys 2015; 571:66-75. [PMID: 25721498 DOI: 10.1016/j.abb.2015.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 12/26/2022]
Abstract
Growth-associated protein 43 (GAP-43) is a neuronal phosphoprotein associated with initial axonal outgrowth and synaptic remodeling and recent work also suggests its involvement in cell cycle control. The complex expression of GAP-43 features transcriptional and posttranscriptional components. However, in some conditions, GAP-43 gene expression is controlled primarily by the interaction of stabilizing or destabilizing RNA-binding proteins (RBPs) with adenine and uridine (AU)-rich instability elements (AREs) in its 3'UTR. Like GAP-43, many proteins involved in cell proliferation are encoded by ARE-containing mRNAs, some of which codify cell-cycle-regulating proteins including cyclin D1. Considering that GAP-43 and cyclin D1 mRNA stabilization may depend on similar RBPs, this study evaluated the participation of GAP-43 in cell cycle control and its underlying mechanisms, particularly the possible role of its 3'UTR, using GAP-43-transfected NIH-3T3 fibroblasts. Our results show an arrest in cell cycle progression in the G0/G1 phase. This arrest may be mediated by the competition of GAP-43 3'UTR with cyclin D1 3'UTR for the binding of Hu proteins such as HuR, which may lead to a decrease in cyclin D1 expression. These results might lead to therapeutic applications involving the use of sequences in the B region of GAP-43 3'UTR to slow down cell cycle progression.
Collapse
Affiliation(s)
- Karina De Moliner
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Nora Perrone-Bizzozero
- Department of Neurosciences and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ana M Adamo
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
12
|
Heterogeneous nuclear ribonucleoprotein K, an RNA-binding protein, is required for optic axon regeneration in Xenopus laevis. J Neurosci 2012; 32:3563-74. [PMID: 22399778 DOI: 10.1523/jneurosci.5197-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axotomized optic axons of Xenopus laevis, in contrast to those of mammals, retain their ability to regenerate throughout life. To better understand the molecular basis for this successful regeneration, we focused on the role of an RNA-binding protein, heterogeneous nuclear ribonucleoprotein (hnRNP) K, because it is required for axonogenesis during development and because several of its RNA targets are under strong post-transcriptional control during regeneration. At 11 d after optic nerve crush, hnRNP K underwent significant translocation into the nucleus of retinal ganglion cells (RGCs), indicating that the protein became activated during regeneration. To suppress its expression, we intravitreously injected an antisense Vivo-Morpholino oligonucleotide targeting hnRNP K. In uninjured eyes, it efficiently knocked down hnRNP K expression in only the RGCs, without inducing either an axotomy response or axon degeneration. After optic nerve crush, staining for multiple markers of regenerating axons showed no regrowth of axons beyond the lesion site with hnRNP K knockdown. RGCs nonetheless responded to the injury by increasing expression of multiple growth-associated RNAs and experienced no additional neurodegeneration above that normally seen with optic nerve injury. At the molecular level, hnRNP K knockdown during regeneration inhibited protein, but not mRNA, expression of several known hnRNP K RNA targets (NF-M, GAP-43) by compromising their efficient nuclear transport and disrupting their loading onto polysomes for translation. Our study therefore provides evidence of a novel post-transcriptional regulatory pathway orchestrated by hnRNP K that is essential for successful CNS axon regeneration.
Collapse
|
13
|
Govoni S, Pascale A, Amadio M, Calvillo L, D’Elia E, Cereda C, Fantucci P, Ceroni M, Vanoli E. NGF and heart: Is there a role in heart disease? Pharmacol Res 2011; 63:266-77. [DOI: 10.1016/j.phrs.2010.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 01/24/2023]
|
14
|
Szaro BG, Strong MJ. Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Denny JB. Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 2010; 4:293-304. [PMID: 18654638 DOI: 10.2174/157015906778520782] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/16/2006] [Indexed: 01/19/2023] Open
Abstract
GAP-43 is an intracellular growth-associated protein that appears to assist neuronal pathfinding and branching during development and regeneration, and may contribute to presynaptic membrane changes in the adult, leading to the phenomena of neurotransmitter release, endocytosis and synaptic vesicle recycling, long-term potentiation, spatial memory formation, and learning. GAP-43 becomes bound via palmitoylation and the presence of three basic residues to membranes of the early secretory pathway. It is then sorted onto vesicles at the late secretory pathway for fast axonal transport to the growth cone or presynaptic plasma membrane. The palmitate chains do not serve as permanent membrane anchors for GAP-43, because at steady-state most of the GAP-43 in a cell is membrane-bound but is not palmitoylated. Filopodial extension and branching take place when GAP-43 is phosphorylated at Ser-41 by protein kinase C, and this occurs following neurotrophin binding and the activation of numerous small GTPases. GAP-43 has been proposed to cluster the acidic phospholipid phosphatidylinositol 4,5-bisphosphate in plasma membrane rafts. Following GAP-43 phosphorylation, this phospholipid is released to promote local actin filament-membrane attachment. The phosphorylation also releases GAP-43 from calmodulin. The released GAP-43 may then act as a lateral stabilizer of actin filaments. N-terminal fragments of GAP-43, containing 10-20 amino acids, will activate heterotrimeric G proteins, direct GAP-43 to the membrane and lipid rafts, and cause the formation of filopodia, possibly by causing a change in membrane tension. This review will focus on new information regarding GAP-43, including its binding to membranes and its incorporation into lipid rafts, its mechanism of action, and how it affects and is affected by extracellular agents.
Collapse
Affiliation(s)
- John B Denny
- Department of Ophthalmology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| |
Collapse
|
16
|
Ananthakrishnan L, Szaro BG. Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Res 2008; 1250:27-40. [PMID: 19027722 DOI: 10.1016/j.brainres.2008.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 10/24/2008] [Accepted: 11/01/2008] [Indexed: 12/01/2022]
Abstract
Neurofilaments (NFs), which comprise one of three cytoskeletal polymers of vertebrate axons, are heteropolymers of multiple NF subunit proteins. During Xenopus laevis optic nerve regeneration, NF subunit composition undergoes progressive changes that correlate with regenerative success. Understanding the relative contributions of transcriptional and post-transcriptional gene regulatory mechanisms to these changes should therefore provide insights into the control of the axonal growth program. Previously, we examined this issue with respect to the medium neurofilament protein (NF-M). Because the integrity of NF heteropolymers depends upon maintaining properly balanced expression among multiple subunits, we have now extended this analysis to include the four light NF subunits - peripherin, the light NF triplet protein (NF-L), and two additional alpha-internexin-like proteins. Within 3 days after an optic nerve crush injury to one eye, primary transcript levels of NF subunits increased in both eyes. Levels of mRNA, however, increased in only the operated eye and did so later than did increases in primary transcript, indicating that mRNA levels are under significant post-transcriptional regulation. As measured by polysome profiling, the translational efficiencies of individual NF subunit mRNAs also shifted throughout regeneration, with operated eye mRNAs being generally more translationally active than those of unoperated eyes. Also, in operated eyes, the precise mix of efficiently and poorly translated messages throughout regeneration varied independently for each subunit, indicating that their translations are fine-tuned separately. These results suggest a model whereby traumatic disruption of visual circuitry leads to increased expression of NF primary transcripts in both eyes. These increases are subsequently modulated post-transcriptionally to accommodate shifting demands at each phase of regeneration for NF heteropolymers of differing composition in regrowing axons.
Collapse
|
17
|
Ananthakrishnan L, Gervasi C, Szaro B. Dynamic regulation of middle neurofilament RNA pools during optic nerve regeneration. Neuroscience 2008; 153:144-53. [DOI: 10.1016/j.neuroscience.2008.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/10/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
|
18
|
Bolognani F, Perrone-Bizzozero NI. RNA–protein interactions and control of mRNA stability in neurons. J Neurosci Res 2008; 86:481-9. [PMID: 17853436 DOI: 10.1002/jnr.21473] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In addition to transcription, posttranscriptional mechanisms play a vital role in the control of gene expression. There are multiple levels of posttranscriptional regulation, including mRNA processing, splicing, editing, transport, stability, and translation. Among these, mRNA stability is estimated to control about 5-10% of all human genes. The rate of mRNA decay is regulated by the interaction of cis-acting elements in the transcripts and sequence-specific RNA-binding proteins. One of the most studied cis-acting elements is the AU-rich element (ARE) present in the 3' untranslated region (3'UTR) of several unstable mRNAs. These sequences are targets of many ARE-binding proteins; some of which induce degradation whereas others promote stabilization of the mRNA. Recently, these mechanisms were uncovered in neurons, where they have been associated with different physiological phenomena, from early development and nerve regeneration to learning and memory processes. In this Mini-Review, we briefly discuss the general mechanisms of control of mRNA turnover and present evidence supporting the importance of these mechanisms in the expression of an increasing number of neuronal genes.
Collapse
Affiliation(s)
- Federico Bolognani
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | |
Collapse
|
19
|
Bolognani F, Tanner DC, Nixon S, Okano HJ, Okano H, Perrone-Bizzozero NI. Coordinated expression of HuD and GAP-43 in hippocampal dentate granule cells during developmental and adult plasticity. Neurochem Res 2007; 32:2142-51. [PMID: 17577668 DOI: 10.1007/s11064-007-9388-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/15/2007] [Indexed: 01/04/2023]
Abstract
Previous work from our laboratory demonstrated that the RNA-binding protein HuD binds to and stabilizes the GAP-43 mRNA. In this study, we characterized the expression of HuD and GAP-43 mRNA in the hippocampus during two forms of neuronal plasticity. During post-natal development, maximal expression of both molecules was found at P5 and their levels steadily decreased thereafter. At P5, HuD was also present in the subventricular zone, where it co-localized with doublecortin. In the adult hippocampus, the basal levels of HuD and GAP-43 were lower than during development but were significantly increased in the dentate gyrus after seizures. The function of HuD in GAP-43 gene expression was confirmed using HuD-KO mice, in which the GAP-43 mRNA was significantly less stable than in wild type mice. Altogether, these results demonstrate that HuD plays a role in the post-transcriptional control of GAP-43 mRNA in dentate granule cells during developmental and adult plasticity.
Collapse
Affiliation(s)
- Federico Bolognani
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Deschênes-Furry J, Mousavi K, Bolognani F, Neve RL, Parks RJ, Perrone-Bizzozero NI, Jasmin BJ. The RNA-binding protein HuD binds acetylcholinesterase mRNA in neurons and regulates its expression after axotomy. J Neurosci 2007; 27:665-75. [PMID: 17234598 PMCID: PMC6672799 DOI: 10.1523/jneurosci.4626-06.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After axotomy, expression of acetylcholinesterase (AChE) is greatly reduced in the superior cervical ganglion (SCG); however, the molecular events involved in this response remain unknown. Here, we first examined AChE mRNA levels in the brain of transgenic mice that overexpress human HuD. Both in situ hybridization and reverse transcription-PCR demonstrated that AChE transcript levels were increased by more than twofold in the hippocampus of HuD transgenic mice. Additionally, direct interaction between the HuD transgene product and AChE mRNA was observed. Next, we examined the role of HuD in regulating AChE expression in intact and axotomized rat SCG neurons. After axotomy of the adult rat SCG neurons, AChE transcript levels decreased by 50 and 85% by the first and fourth day, respectively. In vitro mRNA decay assays indicated that the decrease in AChE mRNA levels resulted from changes in the stability of presynthesized transcripts. A combination of approaches performed using the region that directly encompasses an adenylate and uridylate (AU)-rich element within the AChE 3'-untranslated region demonstrated a decrease in RNA-protein complexes in response to axotomy of the SCG and, specifically, a decrease in HuD binding. After axotomy, HuD transcript and protein levels also decreased. Using a herpes simplex virus construct containing the human HuD sequence to infect SCG neurons in vivo, we found that AChE and GAP-43 mRNA levels were maintained in the SCG after axotomy. Together, the results of this study demonstrate that AChE expression in neurons of the rat SCG is regulated via post-transcriptional mechanisms that involve the AU-rich element and HuD.
Collapse
Affiliation(s)
- Julie Deschênes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Kambiz Mousavi
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | - Rachael L. Neve
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts 02478, and
| | - Robin J. Parks
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada K1H 8L6
| | | | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada K1H 8L6
| |
Collapse
|
21
|
Burry RW, Smith CL. HuD distribution changes in response to heat shock but not neurotrophic stimulation. J Histochem Cytochem 2006; 54:1129-38. [PMID: 16801526 PMCID: PMC3957809 DOI: 10.1369/jhc.6a6979.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular stress leads to a change in distribution of RNA-binding proteins. HuR, a member of the ELAV/Hu family of RNA-binding proteins, is nuclear in distribution and following heat shock is found in large cytoplasmic stress granules where translation is inhibited. HuD, another ELAV/Hu RNA-binding protein, stabilizes the GAP-43 mRNA in response to nerve growth factor (NGF) stimulation in PC12 cells. We were interested in determining the nuclear distribution of HuD and if neurotrophic stimulation induced changes in the distribution of HuD. In PC12 cells, we found, as expected, that HuR translocates from the nucleus to the cytoplasm in response to heat shock. In response to heat shock, HuD forms large cytoplasmic stress granules, consistent with a role for HuD in the cessation of translation. In unstimulated cells, HuD is distributed in small granules in the cytoplasm and is consistently present at low levels in the nucleus. Stimulation of PC12 cells with NGF induces neuronal differentiation including outgrowth of neurites and increased levels of GAP-43 protein, whereas HuD remains localized in small cytoplasm granules and is still present in the nucleus. These results suggest that, following neurotrophic stimulation, the lack of changes in HuD distribution are due to continued steady state of HuD nuclear shuttling in PC12 cells, or that HuD is not normally shuttled from the nucleus in response to NGF.
Collapse
Affiliation(s)
- Richard W Burry
- Department of Neuroscience, 4068 Graves Hall, College of Medicine, The Ohio State University, 333 West Tenth Avenue, Columbus, OH, USA.
| | | |
Collapse
|
22
|
Bolognani F, Tanner DC, Merhege M, Deschênes-Furry J, Jasmin B, Perrone-Bizzozero NI. In vivo post-transcriptional regulation of GAP-43 mRNA by overexpression of the RNA-binding protein HuD. J Neurochem 2006; 96:790-801. [PMID: 16405504 DOI: 10.1111/j.1471-4159.2005.03607.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HuD is a neuronal-specific RNA-binding protein that binds to and stabilizes the mRNAs of growth-associated protein-43 (GAP-43) and other neuronal proteins. HuD expression increases during brain development, nerve regeneration, and learning and memory, suggesting that this protein is important for controlling gene expression during developmental and adult plasticity. To examine the function of HuD in vivo, we generated transgenic mice overexpressing human HuD under the control of the calcium-calmodulin-dependent protein kinase IIalpha promoter. The transgene was expressed at high levels throughout the forebrain, including the hippocampal formation, amygdala and cerebral cortex. Using quantitative in situ hybridization, we found that HuD overexpression led to selective increases in GAP-43 mRNA in hippocampal dentate granule cells and neurons in the lateral amygdala and layer V of the neorcortex. In contrast, GAP-43 pre-mRNA levels were unchanged or decreased in the same neuronal populations. Comparison of the levels of mature GAP-43 mRNA and pre-mRNA in the same neurons of transgenic mice suggested that HuD increased the stability of the transcript. Confirming this, mRNA decay assays revealed that the GAP-43 mRNA was more stable in brain extracts from HuD transgenic mice than non-transgenic littermates. In conclusion, our results demonstrate that HuD overexpression is sufficient to increase GAP-43 mRNA stability in vivo.
Collapse
Affiliation(s)
- Federico Bolognani
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chirwa S, Aduonum A, Pizarro J, Reasor J, Kawai Y, Gonzalez M, McAdory BS, Onaivi E, Barea-Rodriguez EJ. Dopaminergic DA1 signaling couples growth-associated protein-43 and long-term potentiation in guinea pig hippocampus. Brain Res Bull 2005; 64:433-40. [PMID: 15607831 DOI: 10.1016/j.brainresbull.2004.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/02/2004] [Accepted: 09/27/2004] [Indexed: 11/28/2022]
Abstract
The basic goal of the project was to determine whether dopaminergic DA1 receptor (DA1R) signaling couples growth-associated protein 43 (GAP-43; a putative "plasticity" protein) and long-term potentiation (LTP; an enduring form of synaptic plasticity). Thus, guinea pigs were prepped to stimulate the CA3 and evoke population spikes in the CA1 neurons in the hippocampus in vivo. Animals were injected with either saline or SCH23390 (a selective DA1R antagonist), 1-2 h prior to recordings. It was found that tetanic stimulation (100 Hz, 1 s, three trains at 15 s intervals) readily produced early-LTP and late-LTP in the saline group. In contrast, none of the guinea pigs pre-treated with SCH23390 developed late-LTP, though early-LTP had been present. Furthermore, both GAP-43 mRNA and protein were up-regulated after LTP induction in the saline group. However, GAP-43 protein up-regulation was blocked in animals treated with SCH23390. Anti-GAP-43 immunoreactivity was intense in CA3/CA1 synaptic regions, whereas GAP-43 mRNA hybridization was localized to somatic layers in the hippocampus. Altogether, our results suggest that dopaminergic DA1 signaling partly couples GAP-43 and LTP.
Collapse
Affiliation(s)
- Sanika Chirwa
- Department of Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Moliner KL, Wolfson ML, Perrone Bizzozero N, Adamo AM. Growth-associated protein-43 is degraded via the ubiquitin-proteasome system. J Neurosci Res 2005; 79:652-60. [PMID: 15668958 DOI: 10.1002/jnr.20388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth-associated protein-43 (GAP-43) is a phosphoprotein whose expression in neurons is related to the initial establishment and remodeling of neural connections. GAP-43 gene expression is known to be regulated at both the transcriptional and the postranscriptional levels. However, very little is known about the cellular mechanism involved in the degradation of this protein. Ubiquitin (Ub) is well known for its role in targeting cytoplasmic proteins for degradation by the 26S proteasome. The ubiquitin-proteasome system (UPS) consists of a conserved cascade of three enzymatic components that attach Ub covalently to various substrates and control the degradation of protein involved in several important cellular processes. In this study, we investigated the degradation of GAP-43 in transfected NIH 3T3 cells and neuronal cultures. We found that the proteasome inhibitors, lactacystin and MG132 increased the cellular GAP-43 level, leading to the accumulation of polyubiquitinated forms of this protein in transfected cells and that the Ub-proteasome pathway is also involved in the turnover of this protein in neurons. We conclude based on our findings that GAP-43 is a substrate of the UPS.
Collapse
Affiliation(s)
- K L De Moliner
- Departamento de Química Biológica, IQUIFIB, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
25
|
Anderson KD, Merhege MA, Morin M, Bolognani F, Perrone-Bizzozero NI. Increased expression and localization of the RNA-binding protein HuD and GAP-43 mRNA to cytoplasmic granules in DRG neurons during nerve regeneration. Exp Neurol 2003; 183:100-8. [PMID: 12957493 DOI: 10.1016/s0014-4886(03)00103-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neuronal-specific RNA-binding protein, HuD, binds to a U-rich regulatory element of the 3' untranslated region (3' UTR) of the GAP-43 mRNA and delays the onset of its degradation. We have recently shown that overexpression of HuD in embryonic rat cortical cells accelerated the time course of normal neurite outgrowth and resulted in a twofold increase in GAP-43 mRNA levels. Given this evidence, we sought to investigate the involvement of HuD during nerve regeneration. It is known that HuD protein and GAP-43 mRNA are expressed in the dorsal root ganglia (DRG) of adult rat and that GAP-43 is upregulated in DRG neurons during regeneration. In this study, we examined the expression patterns and levels of HuD and GAP-43 mRNA in DRG neurons following sciatic nerve injury using a combination of in situ hybridization, immunocytochemistry, and quantitative RT-PCR. GAP-43 and HuD expression increased in the ipsilateral DRG during the first 3 weeks of regeneration, with peak values seen at 7 days postcrush. At this time point, the levels of HuD and GAP-43 mRNAs in the ipsilateral DRG increased by twofold and sixfold, respectively, relative to the contralateral DRG. Not only were the temporal patterns of expression of HuD protein and GAP-43 mRNA similar, but also they were found to colocalize in the cytoplasm of DRG neurons. Moreover, both molecules were distributed in cytoplasmic granules containing ribosomal RNA. In conclusion, our results suggest that HuD is involved in the upregulation of GAP-43 expression observed at early stages of peripheral nerve regeneration.
Collapse
Affiliation(s)
- K D Anderson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131-5223, USA
| | | | | | | | | |
Collapse
|
26
|
Deschenes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ. Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J Biol Chem 2003; 278:5710-7. [PMID: 12468554 DOI: 10.1074/jbc.m209383200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of acetylcholinesterase (AChE) is greatly enhanced during neuronal differentiation, but the nature of the molecular mechanisms remains to be fully defined. In this study, we observed that nerve growth factor treatment of PC12 cells leads to a progressive increase in the expression of AChE transcripts, reaching approximately 3.5-fold by 72 h. Given that the AChE 3'-untranslated region (UTR) contains an AU-rich element, we focused on the potential role of the RNA-binding protein HuD in mediating the increase in AChE mRNA seen in differentiating neurons. Using PC12 cells engineered to stably express HuD or an antisense to HuD, our studies indicate that HuD can regulate the abundance of AChE transcripts in neuronal cells. Furthermore, transfection of a reporter construct containing the AChE 3'-UTR showed that this 3'-UTR can increase expression of the reporter gene product in cells expressing HuD but not in cells expressing the antisense. RNA gel shifts and Northwestern blots revealed an increase in the binding of several protein complexes in differentiated neurons. Immunoprecipitation experiments demonstrated that HuD can bind directly AChE transcripts. These results show the importance of post-transcriptional mechanisms in regulating AChE expression in differentiating neurons and implicate HuD as a key trans-acting factor in these events.
Collapse
Affiliation(s)
- Julie Deschenes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
27
|
Uittenbogaard M, Martinka DL, Chiaramello A. The basic helix-loop-helix differentiation factor Nex1/MATH-2 functions as a key activator of the GAP-43 gene. J Neurochem 2003; 84:678-88. [PMID: 12562512 PMCID: PMC1413589 DOI: 10.1046/j.1471-4159.2003.01572.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nex1/MATH-2 is a neurogenic basic Helix-Loop-Helix (bHLH) transcription factor that belongs to the NeuroD subfamily. Its expression parallels that of the GAP-43 gene and peaks during brain development, when neurite outgrowth and synaptogenesis are highly active. We previously observed a direct correlation between the levels of expression of Nex1 and GAP-43 proteins, which resulted in extensive neurite outgrowth and neuronal differentiation of PC12 cells in the absence of nerve growth factor. Since the GAP-43 gene is a target for bHLH regulation, we investigated whether Nex1 could regulate the activity of the GAP-43 promoter. We found that among the members of the NeuroD subfamily, Nex1 promoted maximal activity of the GAP-43 promoter. The Nex1-mediated activity is restricted to the conserved E1-E2 cluster located near the major transcription start sites. By electrophoretic mobility shift assay and site-directed mutagenesis, we showed that Nex1 binds as homodimers and that the E1 E-box is a high affinity binding site. We further found that Nex1 released the ME1 E-protein-mediated repression in a concentration dependent manner. Thus, the E1-E2 cluster has a dual function: it can mediate activation or repression depending on the interacting bHLH proteins. Finally, a series of N-terminal and C-terminal deletions revealed that Nex1 transcriptional activity is linked to two distinct transactivation domains, TAD1 and TAD2, with TAD1 being unique to Nex1. Together, our results suggest that Nex1 may engage in selective interactions with components of the core transcriptional machinery whose assembly is dictated by the architecture of the GAP-43 promoter and cellular environment.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington DC, USA
| | - Debra L. Martinka
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington DC, USA
- Program of Neuroscience, George Washington University Medical Center, Washington DC, USA
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington DC, USA
- Program of Neuroscience, George Washington University Medical Center, Washington DC, USA
| |
Collapse
|
28
|
Irwin N, Chao S, Goritchenko L, Horiuchi A, Greengard P, Nairn AC, Benowitz LI. Nerve growth factor controls GAP-43 mRNA stability via the phosphoprotein ARPP-19. Proc Natl Acad Sci U S A 2002; 99:12427-31. [PMID: 12221279 PMCID: PMC129461 DOI: 10.1073/pnas.152457399] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membrane phosphoprotein GAP-43 is involved in axon growth and synaptic plasticity. In PC12 pheochromocytoma cells, induction of a neuronal phenotype by nerve growth factor (NGF) is accompanied by a marked increase in GAP-43 levels. NGF regulates GAP-43 expression by altering the half-life of its mRNA. We report here that the phosphoprotein ARPP-19 mediates this regulation. In an NGF-dependent manner, ARPP-19 bound to a region in the 3' end of GAP-43 mRNA previously found to be important for regulating the half-life of the mRNA. Overexpression of wild-type ARPP-19 in PC12 cells increased the NGF-dependent expression of a reporter construct linked to the critical 3' region of GAP-43 mRNA. Mutation of serine 104, the site of phosphorylation by protein kinase A in ARPP-19, to either alanine or aspartate abolished this regulation in PC12 cells. These findings demonstrate that ARPP-19 is an important link between NGF signaling and post-transcriptional control of neuronal gene expression.
Collapse
Affiliation(s)
- Nina Irwin
- Department of Neurosurgery, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Beckel-Mitchener AC, Miera A, Keller R, Perrone-Bizzozero NI. Poly(A) tail length-dependent stabilization of GAP-43 mRNA by the RNA-binding protein HuD. J Biol Chem 2002; 277:27996-8002. [PMID: 12034726 DOI: 10.1074/jbc.m201982200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal ELAV-like RNA-binding protein HuD binds to a regulatory element in the 3'-untranslated region of the growth-associated protein-43 (GAP-43) mRNA. Here we report that overexpression of HuD protein in PC12 cells stabilizes the GAP-43 mRNA by delaying the onset of mRNA degradation and that this process depends on the size of the poly(A) tail. Using a polysome-based in vitro mRNA decay assay, we found that addition of recombinant HuD protein to the system increased the half-life of full-length, capped, and polyadenylated GAP-43 mRNA and that this effect was caused in part by a decrease in the rate of deadenylation of the mRNA. This stabilization was specific for GAP-43 mRNA containing the HuD binding element in the 3'-untranslated region and a poly(A) tail of at least 150 A nucleotides. In correlation with the effect of HuD on GAP-43 mRNA stability, we found that HuD binds GAP-43 mRNAs with long tails (A150) with 10-fold higher affinity than to those with short tails (A30). We conclude that HuD stabilizes the GAP-43 mRNA through a mechanism that is dependent on the length of the poly(A) tail and involves changes in its affinity for the mRNA.
Collapse
Affiliation(s)
- Andrea C Beckel-Mitchener
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-5223, USA
| | | | | | | |
Collapse
|
30
|
Chong MS, Fitzgerald M, Winter J, Hu-Tsai M, Emson PC, Wiese U, Woolf CJ. GAP-43 mRNA in Rat Spinal Cord and Dorsal Root Ganglia Neurons: Developmental Changes and Re-expression Following Peripheral Nerve Injury. Eur J Neurosci 2002; 4:883-95. [PMID: 12106424 DOI: 10.1111/j.1460-9568.1992.tb00115.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The expression of growth-associated protein GAP-43 mRNA in spinal cord and dorsal root ganglion (DRG) neurons has been studied using an enzyme linked in situ hybridization technique in neonatal and adult rats. High levels of GAP-43 mRNA are present at birth in the majority of spinal cord neurons and in all dorsal root ganglion cells. This persists until postnatal day 7 and then declines progressively to near adult levels (with low levels of mRNA in spinal cord motor neurons and 2000 - 3000 DRG cells expressing high levels) at postnatal day 21. A re-expression of GAP-43 mRNA in adult rats is apparent, both in sciatic motor neurons and the majority of L4 and L5 dorsal root ganglion cells, 1 day after sciatic nerve section. High levels of the GAP-43 mRNA in the axotomized spinal motor neurons persist for at least 2 weeks but decline 5 weeks after sciatic nerve section, with the mRNA virtually undetectable after 10 weeks. The initial changes after sciatic nerve crush are similar, but by 5 weeks GAP-43 mRNA in the sciatic motor neurons has declined to control levels. In DRG cells, after both sciatic nerve section or crush, GAP-43 mRNA re-expression persists much longer than in motor neurons. There was no re-expression of GAP-43 mRNA in the dorsal horn of the spinal cord after peripheral nerve lesions. Our study demonstrates a similar developmental regulation in spinal cord and DRG neurons of GAP-43 mRNA. We show moreover that failure of re-innervation does not result in a maintenance of GAP-43 mRNA in axotomized motor neurons.
Collapse
Affiliation(s)
- M S Chong
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Uittenbogaard M, Chiaramello A. Constitutive overexpression of the basic helix-loop-helix Nex1/MATH-2 transcription factor promotes neuronal differentiation of PC12 cells and neurite regeneration. J Neurosci Res 2002; 67:235-45. [PMID: 11782967 PMCID: PMC2758487 DOI: 10.1002/jnr.10119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Elucidation of the intricate transcriptional pathways leading to neural differentiation and the establishment of neuronal identity is critical to the understanding and design of therapeutic approaches. Among the important players, the basic helix-loop-helix (bHLH) transcription factors have been found to be pivotal regulators of neurogenesis. In this study, we investigate the role of the bHLH differentiation factor Nex1/MATH-2 in conjunction with the nerve growth factor (NGF) signaling pathway using the rat phenochromocytoma PC12 cell line. We report that the expression of Nex1 protein is induced after 5 hr of NGF treatment and reaches maximal levels at 24 hr, when very few PC12 cells have begun extending neurites and ceased cell division. Furthermore, our study demonstrates that Nex1 has the ability to trigger neuronal differentiation of PC12 cells in the absence of neurotrophic factor. We show that Nex1 plays an important role in neurite outgrowth and has the capacity to regenerate neurite outgrowth in the absence of NGF. These results are corroborated by the fact that Nex1 targets a repertoire of distinct types of genes associated with neuronal differentiation, such as GAP-43, betaIII-tubulin, and NeuroD. In addition, our findings show that Nex1 up-regulates the expression of the mitotic inhibitor p21(WAF1), thus linking neuronal differentiation to cell cycle withdrawal. Finally, our studies show that overexpression of a Nex1 mutant has the ability to block the execution of NGF-induced differentiation program, suggesting that Nex1 may be an important effector of the NGF signaling pathway.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC
- Program of Neuroscience, George Washington University Medical Center, Washington, DC
- Correspondence to: Department of Anatomy and Cell Biology, George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037.
| |
Collapse
|
32
|
Iwata SI, Nomoto M, Fukuda T. Regulation of GAP-43 protein and mRNA in nigrostriatal dopaminergic neurons after the partial destruction of dopaminergic terminals with intrastriatal 6-hydroxydopamine. Synapse 2001; 39:16-22. [PMID: 11071705 DOI: 10.1002/1098-2396(20010101)39:1<16::aid-syn3>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in the level of GAP-43 and its mRNA in nigrostriatal dopaminergic neurons in an animal model of the presymptomatic period of Parkinson's disease were measured to find the characteristic features of GAP-43 in nigrostriatal dopaminergic neurons. Since the dopaminergic neurons possess a relatively large amount of GAP-43 protein and mRNA, the dopaminergic neurons must be endowed with specific functions related to those of GAP-43. In this study, dopaminergic axon terminals were partially destroyed by intrastriatal 6-hydroxydopamine (6-OHDA). Rats were decapitated 3, 14, and 56 days following treatment. Levels of GAP-43 and tyrosine hydroxylase (TH) in the striatum were detected by immunoblotting and quantified. The number of GAP-43 mRNA-positive neurons and that of TH mRNA-positive neurons in the substantia nigra pars compacta (SNc) were detected by in situ hybridization using alkaline phosphatase (ALP)-labeled probes. Levels of GAP-43 in the striatum showed no significant alteration during the period of the experiment, although levels of TH were gradually restored. The number of GAP-43 mRNA-positive neurons as well as that of TH mRNA-positive neurons in the SNc decreased. These results suggests that dopaminergic neurons restore their axon terminals with little change in GAP-43, and that transcription and/or stability of GAP-43 mRNA in the dopaminergic neurons are susceptible to the toxin, although the dopaminergic neurons can maintain the translational product in the terminals. This feature may be related with a degeneration of dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- S I Iwata
- Department of Pharmacology, Faculty of Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | |
Collapse
|
33
|
Haas CA, Hollerbach E, Deller T, Naumann T, Frotscher M. Up-regulation of growth-associated protein 43 mRNA in rat medial septum neurons axotomized by fimbria-fornix transection. Eur J Neurosci 2000; 12:4233-42. [PMID: 11122335 DOI: 10.1046/j.0953-816x.2000.01329.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transection of septohippocampal fibres is widely used to study the response of CNS neurons to axotomy. Septohippocampal projection neurons survive axotomy and selectively up-regulate the transcription factor c-Jun. In the present study we investigated whether these cells concomitantly up-regulate the growth-associated protein-43 (GAP-43), a potential target gene of c-Jun implicated in axonal growth and regeneration. Using in situ hybridization histochemistry (ISHH) it was demonstrated that postlesional c-jun mRNA expression is accompanied by an increased expression of GAP-43 mRNA in the medial septum 3 days following fimbria-fornix transection (FFT). The increase reached a maximum at 7 days and gradually declined thereafter (17 days, 3 weeks). Retrograde prelabeling with Fluoro-Gold followed by axotomy and ISHH revealed that GAP-43 mRNA was up-regulated in septohippocampal projection neurons. Colocalization of GAP-43 mRNA and choline acetyltransferase protein showed that GAP-43 mRNA was expressed by cholinergic medial septal neurons after axotomy. Selective immunolesioning of the cholinergic component of the septohippocampal projection with 192 IgG-saporin followed by FFT demonstrated that GAP-43 mRNA was also synthesized by axotomized GABAergic neurons. These results demonstrate an up-regulation of GAP-43 mRNA in axotomized septohippocampal projection neurons independent of their transmitter phenotype which is closely correlated with c-Jun expression. Because the GAP-43 gene contains an AP-1 site, we hypothesize a c-Jun-driven up-regulation of GAP-43 in lesioned medial septal neurons that may contribute to their survival and regenerative potential following axotomy.
Collapse
Affiliation(s)
- C A Haas
- Institute of Anatomy I, University of Freiburg, PO Box 111, D-79001 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
34
|
McNamara RK, Lenox RH. Differential regulation of primary protein kinase C substrate (MARCKS, MLP, GAP-43, RC3) mRNAs in the hippocampus during kainic acid-induced seizures and synaptic reorganization. J Neurosci Res 2000; 62:416-26. [PMID: 11054811 DOI: 10.1002/1097-4547(20001101)62:3<416::aid-jnr12>3.0.co;2-v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the mature hippocampus, kainic acid seizures lead to excitotoxic cell death and synaptic reorganization in which granule cell axons (mossy fibers) form ectopic synapses on granule cell dendrites. In the present study, we examined the expression of four major, developmentally regulated protein kinase C (PKC) substrates (MARCKS, MLP, GAP-43, RC3), which have different subcellular and regional localizations in the hippocampus at several time points (6 hr, 12 hr, 18 hr, 24 hr, 48 hr, 5 days, or 15 days) following kainic acid seizures using in situ hybridization. Consistent with previous reports, following kainate seizures, GAP-43 mRNA expression exhibited a delayed and protracted elevation in the granule cell layer, which peaked at 24 hr, whereas expression in fields CA1 and CA3 remained relatively unchanged. Conversely, RC3 mRNA expression exhibited a delayed reduction in the granule cell layer that was maximal at 18 hr, as well as a reduction CA1 at 48 hr, whereas CA3 levels did not change. MARCKS mRNA expression in the granule cell layer and CA1 remained stable following kainate, although an elevation was observed in subfield CA3c at 12 hr. Similarly, MLP mRNA expression did not change in the granule cell layer or CA1 following kainate but exhibited a protracted elevation in subfields CA3b,c beginning at 6 hr post-kainate. Collectively these data demonstrate that different PKC substrate mRNAs exhibit unique expression profiles and regulation in the different cell fields of the mature hippocampus following kainic acid seizures and during subsequent synaptic reorganization. The expression profiles following kainate seizures bear resemblance to those observed during postnatal hippocampal development, which may indicate the recruitment of common regulatory mechanisms.
Collapse
Affiliation(s)
- R K McNamara
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia 19104-6140, USA.
| | | |
Collapse
|
35
|
Mobarak CD, Anderson KD, Morin M, Beckel-Mitchener A, Rogers SL, Furneaux H, King P, Perrone-Bizzozero NI. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells. Mol Biol Cell 2000; 11:3191-203. [PMID: 10982410 PMCID: PMC14985 DOI: 10.1091/mbc.11.9.3191] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The RNA-binding protein HuD binds to a regulatory element in the 3' untranslated region (3' UTR) of the GAP-43 mRNA. To investigate the functional significance of this interaction, we generated PC12 cell lines in which HuD levels were controlled by transfection with either antisense (pDuH) or sense (pcHuD) constructs. pDuH-transfected cells contained reduced amounts of GAP-43 protein and mRNA, and these levels remained low even after nerve growth factor (NGF) stimulation, a treatment that is normally associated with protein kinase C (PKC)-dependent stabilization of the GAP-43 mRNA and neuronal differentiation. Analysis of GAP-43 mRNA stability demonstrated that the mRNA had a shorter half-life in these cells. In agreement with their deficient GAP-43 expression, pDuH cells failed to grow neurites in the presence of NGF or phorbol esters. These cells, however, exhibited normal neurite outgrowth when exposed to dibutyryl-cAMP, an agent that induces outgrowth independently from GAP-43. We observed opposite effects in pcHuD-transfected cells. The GAP-43 mRNA was stabilized in these cells, leading to an increase in the levels of the GAP-43 mRNA and protein. pcHuD cells were also found to grow short spontaneous neurites, a process that required the presence of GAP-43. In conclusion, our results suggest that HuD plays a critical role in PKC-mediated neurite outgrowth in PC12 cells and that this protein does so primarily by promoting the stabilization of the GAP-43 mRNA.
Collapse
Affiliation(s)
- C D Mobarak
- Department of Neurosciences, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Namgung U, Routtenberg A. Transcriptional and post-transcriptional regulation of a brain growth protein: regional differentiation and regeneration induction of GAP-43. Eur J Neurosci 2000; 12:3124-36. [PMID: 10998096 DOI: 10.1046/j.1460-9568.2000.00196.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During axonal regeneration synthesis of different growth-associated proteins is increased. As yet there is no clear picture of the specific contribution made by the transcriptional and post-transcriptional machinery that provides the gene products necessary for process outgrowth. Here we focus our study on the transcriptional processes in neurons by using intron-directed in situ hybridization to the primary transcript of a brain growth protein GAP-43. In most brain regions, levels of primary transcript expression of GAP-43 were highly correlated with levels of its mRNA. However, there were notable dissociations: in hippocampal granule cells, high levels of primary transcript were evident yet no GAP-43 mRNA was detected. In locus coeruleus the reverse was true; there were high levels of GAP-43 mRNA but no detectable primary transcript. A primary transcript antitermination mechanism is proposed to explain the first dissociation, and a post-transcriptional mRNA stabilization mechanism to explain the second. Transcriptional activation during nerve regeneration was monitored by assessing primary transcript induction of GAP-43 in mouse facial motor neurons. This induction, as well as its mRNA, was restricted to the side of the facial nerve crush. Increases were first observed at 24 h with a rapid increase in both measures up to 3 days. To our knowledge, this is the first in vivo evidence demonstrating transcriptional activation of a brain growth protein in regenerating neurons. The present study points to the GAP-43 transcriptional mechanism as a key determinant of GAP-43 synthesis. Along with the recruitment of post-transcriptional mechanisms, such synthesis occurs in response to both intrinsic developmental programs and extrinsic environmental signals.
Collapse
Affiliation(s)
- U Namgung
- Cresap Neuroscience Laboratory, 2021 Sheridan Road, Northwestern University, Evanston, IL60208, USA
| | | |
Collapse
|
37
|
Anderson KD, Morin MA, Beckel-Mitchener A, Mobarak CD, Neve RL, Furneaux HM, Burry R, Perrone-Bizzozero NI. Overexpression of HuD, but not of its truncated form HuD I+II, promotes GAP-43 gene expression and neurite outgrowth in PC12 cells in the absence of nerve growth factor. J Neurochem 2000; 75:1103-14. [PMID: 10936192 DOI: 10.1046/j.1471-4159.2000.0751103.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that the RNA-binding protein HuD binds to a regulatory element in the growth-associated protein (GAP)-43 mRNA and that this interaction involves its first two RNA recognition motifs (RRMs). In this study, we investigated the functional significance of this interaction by overexpression of human HuD protein (pcHuD) or its truncated form lacking the third RRM (pcHuD I+II) in PC12 cells. Morphological analysis revealed that pcHuD cells extended short neurites containing GAP-43-positive growth cones in the absence of nerve growth factor (NGF). These processes also contained tubulin and F-actin filaments but were not stained with antibodies against neurofilament M protein. In correlation with this phenotype, pcHuD cells contained higher levels of GAP-43 without changes in levels of other NGF-induced proteins, such as SNAP-25 and tau. In mRNA decay studies, HuD stabilized the GAP-43 mRNA, whereas HuD I+II did not have any effect either on GAP-43 mRNA stability or on the levels of GAP-43 protein. Likewise, pcHuD I+II cells showed no spontaneous neurite outgrowth and deficient outgrowth in response to NGF. Our results indicate that HuD is sufficient to increase GAP-43 gene expression and neurite outgrowth in the absence of NGF and that the third RRM in the protein is critical for this function.
Collapse
Affiliation(s)
- K D Anderson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Paratcha GC, Ibarra GR, Wolansky MJ, Rodriguez JA, Azcurra JM. Decreased GAP-43/B-50 phosphorylation in striatal synaptic plasma membranes after circling motor behavior during development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:34-43. [PMID: 10036305 DOI: 10.1016/s0169-328x(98)00327-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We evaluated the in vitro phosphorylation of the presynaptic substrate of protein kinase C (PKC), GAP-43/B-50 and the PKC activity in the striatum of rats submitted to a circling training (CT) test during postnatal development. Motor activity at 30 days of age, but not at other ages, produced a unilateral reduction (-29.5%; p<0.001) in the level of GAP-43/B-50 endogenous phosphorylation in the contralateral striatum with respect to the ipsilateral side, while non-trained control animals did not show asymmetric differences. Compared to controls, the contralateral striatum of trained animals also showed a significant reduction (-29.3%; p<0. 001) in the incorporation of 32P-phosphate into GAP-43. This decreased in vitro GAP-43 phosphorylation was seen at 30 min, but not immediately after circling motor behavior. This contralateral change in GAP-43 phosphorylation correlated with the running speed developed by the animals [(r=0.9443, p=0.0046, n=6, relative to control group) and (r=0.8813, p=0.0203, n=6, with respect to the ipsilateral side of the exercised animals)]. On the contrary, GAP-43/B-50 immunoblots did not show changes in the amount of this phosphoprotein among the different experimental groups. Back phosphorylation assays, performed in the presence of bovine purified PKC, increased the level of GAP-43/B-50 phosphorylation in the striatum contralateral to the sense of turning [(+22%; p<0.05, with respect to ipsilateral side of the same trained group) and (+21%; p<0.05, relative to control group)]. Taken together, these results demonstrate that the activity developed in the CT test induces a reduction in the phosphorylation state of GAP-43/B-50 in the specific site for PKC. We conclude that general markers of activity-dependent neuronal plasticity are also altered in the same period that long-lasting changes in striatal neuroreceptors are triggered by circling motor behavior.
Collapse
Affiliation(s)
- G C Paratcha
- Laboratorio de Biologia Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellon II, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
39
|
Neve RL, Ivins KJ, Tsai KC, Rogers SL, Perrone-Bizzozero NI. cis-acting regulatory elements in the GAP-43 mRNA 3'-untranslated region can function in trans to suppress endogenous GAP-43 gene expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:52-60. [PMID: 10036307 DOI: 10.1016/s0169-328x(98)00337-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of the GAP-43 gene is controlled partly by changes in the stability of its mRNA, a process that is mediated by the interaction of specific sequences in the 3'-untranslated region (3'UTR) with neuronal-specific RNA-binding proteins. Limiting amounts of these trans-acting factors are available in the cell, thus we proposed that overexpression of the GAP-43 3'UTR could affect the levels of the endogenous mRNA via competitive binding to specific RNA-binding proteins. In this study, we show that chronic expression of GAP-43 3'UTR sequences in PC12 cells causes the depletion of the endogenous mRNA and consequent reduction of GAP-43 protein levels. The levels of the mRNAs for c-fos, the amyloid precursor protein (APP) and the microtubule associated protein tau, all three containing similar 3'UTR sequences, were not affected by the treatment. These results thus suggest that the effect of excess GAP-43 3'UTR is specific for its corresponding mRNA. We also used an HSV (herpes simplex virus)-1 vector and a mammalian expression vector with an inducible promoter to acutely express a 10 to 50 fold excess of 3'UTR sequences. Under these conditions, we found that transient expression of the GAP-43 3'UTR was effective in inhibiting both GAP-43 gene expression and neurite outgrowth in nerve growth factor (NGF)-treated PC12 cells and in primary neuronal cultures. These results underscore the role of 3'UTR sequences in the control of GAP-43 gene expression and suggest that overexpression of specific 3'UTR sequences could be used as a potential tool for probing the function of other post-transcriptionally-regulated proteins during neuronal differentiation.
Collapse
Affiliation(s)
- R L Neve
- Department of Genetics, Harvard Medical School, McLean Hospital, Belmont, MA 02178, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The peripheral myelin protein PMP22 gene has been described as a growth arrest-specific gene gas3 and has been identified as disease gene of various demyelinating neuropathies. The gene consists of two highly conserved alternative noncoding 5'-exons la (CD25) and 1b (SR13), respectively. Differential expression patterns of these transcripts in vivo and in vitro suggest a very complex mode of PMP22 gene regulation, which cannot be explained merely by transcriptional control. In fact, the PMP22 gene is regulated on different post-transcriptional levels. While reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no alterations in stability for both PMP22 transcripts in randomly growing Schwann cell cultures of rat sciatic nerve for at least 8 hours, in serum-induced synchronized cultures of resting cells we observed a specific cell cycle-regulated degradation of both transcripts. We further prepared diverse PMP22/CAT fusion genes to study the influence of the alternative 5'UTRs on PMP22 translation. Transient transfection of NIH3T3-fibroblasts and rat Schwann cells demonstrated that the alternative 5'UTRs (CD25 and SR13) and the 3'UTR exert differential regulatory influences on the translation efficiency.
Collapse
Affiliation(s)
- F Bosse
- Department of Neurology, Heinrich-Heine-University of Düsseldorf, Federal Republic of Germany.
| | | | | |
Collapse
|
41
|
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627-86. [PMID: 9447616 DOI: 10.1016/s0301-0082(97)00043-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly conserved during evolution. The B-50 gene contains two promoters and three exons which specify functional domains of the protein. The first exon encoding the 1-10 sequence, harbors the palmitoylation site for attachment to the axolemma and the minimal domain for interaction with G0 protein. The second exon contains the "GAP module", including the calmodulin binding and the protein kinase C phosphorylation domain which is shared by the family of IQ proteins. Downstream sequences of the second and non-coding sequences in the third exon encode species variability. The third exon also contains a conserved domain for phosphorylation by casein kinase II. Functional interference experiments using antisense oligonucleotides or antibodies, have shown inhibition of neurite outgrowth and neurotransmitter release. Overexpression of B-50 in cells or transgenic mice results in excessive sprouting. The various interactions, specified by the structural domains, are thought to underlie the role of B-50 in synaptic plasticity, participating in membrane extension during neuritogenesis, in neurotransmitter release and long-term potentiation. Apparently, B-50 null-mutant mice do not display gross phenotypic changes of the nervous system, although the B-50 deletion affects neuronal pathfinding and reduces postnatal survival. The experimental evidence suggests that neuronal morphology and communication are critically modulated by, but not absolutely dependent on, (enhanced) B-50 presence.
Collapse
Affiliation(s)
- A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Post-transcriptional regulation of the GAP-43 gene by specific sequences in the 3' untranslated region of the mRNA. J Neurosci 1997. [PMID: 9045724 DOI: 10.1523/jneurosci.17-06-01950.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have shown previously that GAP-43 gene expression during neuronal differentiation is controlled by selective changes in mRNA stability. This process was found to depend on highly conserved sequences in the 3' untranslated region (3' UTR) of the mRNA. To map the sequences in the GAP-43 3' UTR that mediate this post-transcriptional event, we generated specific 3' UTR deletion mutants and chimeras with the beta-globin gene and measured their half-lives in transfected PC12 cells. Our results indicate that there are two distinct instability-conferring elements localized at the 5' and 3' ends of the GAP-43 3' UTR. Of these destabilizing elements, only the one at the 3' end is required for the stabilization of the mRNA in response to treatment with the phorbol ester TPA. This 3' UTR element consists of highly conserved uridine-rich sequences and contains specific recognition sites for two neural-specific GAP-43 mRNA-binding proteins. Analysis of the levels of mRNA and protein derived from various 3' UTR deletion mutants indicated that all mutants were translated effectively and that differences in gene expression in response to TPA were attributable to changes in GAP-43 mRNA stability. In addition, the phorbol ester was found to affect the binding of specific RNA-binding proteins to the 3' UTR of the GAP-43 mRNA. Given that, like the GAP-43 mRNA, its degradation machinery and the GAP-43 mRNA-binding proteins are expressed primarily in neural cells, we propose that these factors may be involved in the post-transcriptional regulation of GAP-43 gene expression during neuronal differentiation.
Collapse
|
43
|
Chung S, Eckrich M, Perrone-Bizzozero N, Kohn DT, Furneaux H. The Elav-like proteins bind to a conserved regulatory element in the 3'-untranslated region of GAP-43 mRNA. J Biol Chem 1997; 272:6593-8. [PMID: 9045688 DOI: 10.1074/jbc.272.10.6593] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies have identified three brain proteins (40, 65 and 95 kDa, respectively) that specifically bind to the 3'-untranslated region of GAP-43 mRNA. In this study, using a specific monoclonal antibody, we now show that the 40-kDa proteins are members of the Elav-like protein family. This family of specific RNA-binding proteins comprise three neural specific members called HuD, HuC, and Hel-N1. We have shown that purified recombinant HuD can bind with high affinity to GAP-43 mRNA. In addition, we have mapped the binding site to a highly conserved 26-nucleotide sequence within the regulatory element. The binding of HuD to this site is readily displaced by RNA oligonucleotides encoding other HuD binding sites. We also show that only the first and second RNA binding domains of HuD are required for selective binding to GAP-43 mRNA.
Collapse
Affiliation(s)
- S Chung
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
44
|
McNamara RK, Lenox RH. Comparative distribution of myristoylated alanine-rich C kinase substrate (MARCKS) and F1/GAP-43 gene expression in the adult rat brain. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970303)379:1<48::aid-cne4>3.0.co;2-i] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Abstract
Several lines of investigation have helped clarify the role of GAP-43 (FI, B-50 or neuromodulin) in regulating the growth state of axon terminals. In transgenic mice, overexpression of GAP-43 leads to the spontaneous formation of new synapses and enhanced sprouting after injury. Null mutation of the GAP-43 gene disrupts axonal pathfinding and is generally lethal shortly after birth. Manipulations of GAP-43 expression likewise have profound effects on neurite outgrowth for cells in culture. GAP-43 appears to be involved in transducing intra- and extracellular signals to regulate cytoskeletal organization in the nerve ending. Phosphorylation by protein kinase C is particularly significant in this regard, and is linked with both nerve-terminal sprouting and long-term potentiation. In the brains of humans and other primates, high levels of GAP-43 persist in neocortical association areas and in the limbic system throughout life, where the protein might play an important role in mediating experience-dependent plasticity.
Collapse
Affiliation(s)
- L I Benowitz
- Children's Hospital, Dept of Surgery, Boston, MA, USA
| | | |
Collapse
|
46
|
Bolden DA, Sternini C, Kruger L. GAP-43 mRNA and calcitonin gene-related peptide mRNA expression in sensory neurons are increased following sympathectomy. Brain Res Bull 1997; 42:39-50. [PMID: 8978933 DOI: 10.1016/s0361-9230(96)00108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sympathectomy has been shown to result in an increased density of fibers immunoreactive for sensory peptides in peripheral targets innervated by both sensory and sympathetic neurons, providing evidence for functional interactions between sympathetic and sensory systems. These findings provided the background for examining the hypothesis that axonal outgrowth is induced from sensory neurons following sympathectomy. We examined the expression of GAP-43 mRNA, a specific marker for axonal outgrowth, in cervical (C3, C7, C8) and thoracic (T1, T2) dorsal root ganglia (DRG) of the rat following bilateral removal of the superior cervical ganglion, to assess whether the described increases in peptidergic afferent fibers reflected axonal outgrowth. In situ hybridization was used with 35S labeled riboprobes complementary to GAP-43 mRNA, and to calcitonin gene-related peptide (CGRP) mRNA, a marker for a major subset of thin-fiber sensory neurons. The density of GAP-43 mRNA nearly doubled by 18 h following sympathectomy and reached a threefold increase by 3 days. By 45 days following surgery, the GAP-43 mRNA level was still nearly twice that of normal animals, CGRP immunoreactivity was also examined: the density of fibers in the iris and cornea of sympathectomized animals was considerably greater from two weeks to 45 days following surgery, than in sham-operated controls. Concomitantly, there was a slight but significant increase in CGRP mRNA expression in T1 and C3 DRG 14 days postsympathectomy. Quantitative computerized image analysis demonstrated that GAP 43 mRNA expression in sympathectomized animals was 1.5 times greater in medium-sized DRG neurons and almost fourfold greater in small DRG neurons than in control rats. These results indicate that sympathetic denervation elicits axonal outgrowth in the population of sensory neurons that give rise to the small unmyelinated and thinly myelinated axons of peripheral nerves.
Collapse
Affiliation(s)
- D A Bolden
- Department of Neurobiology, UCLA, School of Medicine, USA
| | | | | |
Collapse
|
47
|
Schrama LH, Lepperdinger G, Moritz A, van den Engel NK, Marquart A, Oestreicher AB, Eggen BJ, Hage WJ, Richter K, Destrée OH. B-50/growth-associated protein-43, a marker of neural development in Xenopus laevis. Neuroscience 1997; 76:635-52. [PMID: 9015344 DOI: 10.1016/s0306-4522(96)00400-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To study the regulation and function of the growth-associated protein B-50/growth-associated protein-43 (mol. wt 43,000) in Xenopus laevis, B-50/growth-associated protein-43 complementary DNAs were isolated and characterized. The deduced amino acid sequence revealed potential functional domains of Xenopus B-50/growth-associated protein-43 that may be involved in G-protein interaction, membrane-binding, calmodulin-binding and protein kinase C phosphorylation. The expression of B-50/growth-associated protein-43 at the RNA and protein level during development was investigated using the Xenopus complementary DNA and the monoclonal B-50/growth-associated protein-43 antibody NM2. The antibody NM2 recognized the gene product on western blot and in whole-mount immunocytochemistry of Xenopus embryos. Moreover, visualization of the developmentally regulated appearance of B-50/growth-associated protein-43 immunoreactivity showed that this mode of detection may be used to monitor axonogenesis under various experimental conditions. In the adult Xenopus, XB-50/growth-associated protein-43 messenger RNA was shown to be expressed at high levels in brain, spinal cord and eye using northern blotting. The earliest expression detected on northern blot was at developmental stage 13 with poly(A) RNA. By whole-mount immunofluorescence, applying the confocal laser scanning microscope, the protein was first detected in embryos from stage 20, where it was expressed in the developing trigeminal ganglion. Also later in development the expression of the B-50/growth-associated protein-43 gene was restricted to the nervous system in Xenopus, as was previously found for the mouse. In conclusion, we find that XB-50/growth-associated protein-43 is a good marker to study the development of the nervous system in Xenopus laevis.
Collapse
Affiliation(s)
- L H Schrama
- Laboratory for Physiological Chemistry, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Two alternative promoters direct neuron-specific expression of the rat microtubule-associated protein 1B gene. J Neurosci 1996. [PMID: 8756433 DOI: 10.1523/jneurosci.16-16-05026.1996] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microtubule-associated protein 1B (MAP1B) is a major constituent of the neuronal cytoskeleton that is expressed at high levels during early brain development and plays a role in axonal growth and neuronal plasticity. Previous studies suggested that the regulation of its gene expression is primarily at the transcriptional level. Thus, the characterization of the promoter region should help to define regulatory elements that control neuron-specific and developmental expression of the MAP1B gene. We have isolated genomic clones containing up to 11 kb of the upstream region of the rat MAP1B gene, sequenced approximately 1.8 kb upstream from the translation start codon, and identified several consensus sequences. These sequences include a consensus element common to several neuronal genes, a TCC repeat, a cAMP response element, and two TATA boxes that were 134 nucleotides apart from each other. S1 nuclease and RNase protection assays identified two corresponding groups of transcription initiation sites that were used selectively in distinct regions of the nervous system and during different stages of development. Transient transfection assays with neuronal and non-neuronal cell lines demonstrated that each TATA sequence and its corresponding adjacent region could independently direct neuron-specific expression of a reporter gene. Furthermore, the transcription of the reporter gene was initiated from the same sites as those of the MAP1B gene in vivo. These results suggest that two alternative and overlapping promoters, one inducible and the other constitutive, regulate the temporal and tissue-specific expression of the rat MAP1B gene.
Collapse
|
49
|
McNamara RK, Namgung U, Routtenberg A. Distinctions between hippocampus of mouse and rat: protein F1/GAP-43 gene expression, promoter activity, and spatial memory. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 40:177-87. [PMID: 8872301 DOI: 10.1016/0169-328x(96)00048-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We began these experiments as an attempt to replicate in the mouse the induction by kainate (KA) of F1/GAP-43 mRNA we observed in adult rat hippocampal granule cells [Mol. Brain Res., 33 (1995) 22-28]. However, even though KA induced behavioral seizures in the mouse similar to those in the rat, neither induction of F1/GAP-43 mRNA nor subsequent mossy fiber sprouting observed in the rat was detected in three different mouse strains. It was also surprising that the distribution of constitutive levels of F1/GAP-43 mRNA in mouse and rat hippocampus was qualitatively different. Indeed, F1/GAP-43 expression in CA3 pyramidal cells was significantly greater in rat than mouse, while F1/GAP-43 expression in CA1 cells of rat and mouse was equivalent using densitometric analysis. Thus, F1/GAP-43 expression in rat is quantitatively higher in CA3 and CA1 pyramidal cells. In mouse, expression was equivalent in these two subfields. In a transgenic mouse bearing a rat F1/GAP-43 promoter-reporter (lacZ) construct (line 252), in-vivo promoter activity of F1/GAP-43 was studied in hippocampal cells. Transgene expression in hippocampal pyramidal subfields, high in CA3, low in CA1 pyramidal cells, paralleled the distribution of rat F1/GAP-43 mRNA levels, not mouse. Differences in the constitutive F1/GAP-43 expression pattern in hippocampus between rat and mouse may therefore be determined by different recognition elements present on the F1/GAP-43 promoter. KA injected into the line 252 transgenic mouse did not activate the rat F1/GAP-43 promoter in mouse hippocampal granule cells. The absence of both F1/GAP-43 mRNA expression induction and promoter activation in mouse granule cells after KA is likely related to genera differences in transcriptional regulatory mechanisms, though post-transcriptional mechanisms cannot be excluded. Since the different hippocampal chemistry of F1/GAP-43 in rat and mouse likely extends to other molecular species, behaviors in rat and mouse that depend on hippocampal function might be different as well. We therefore evaluated spatial memory ability in a delayed matching-to-sample task. In contrast to rat, we were surprised to find no evidence of the ability to learn this task in three different mouse strains. Since interest in mouse genetics in relation to behavior and memory functions of hippocampus is growing, generalizations concerning hippocampal function from studies carried out on the mouse need to be made with caution considering the specific behavioral, pharmacological, and general molecular differences observed here. One can also be opportunistic and exploit the natural variations between these two genera to gain insight into the molecular mechanisms underlying information storage.
Collapse
Affiliation(s)
- R K McNamara
- Cresap Neuroscience Laboratory, Department of Psychology, Northwestern University, Evanston, IL 60208 USA
| | | | | |
Collapse
|
50
|
Tolentino PJ, Villa-Komaroff L. Regulation of vasoactive intestinal polypeptide and galanin mRNA stabilities. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 39:89-98. [PMID: 8804717 DOI: 10.1016/0169-328x(96)00004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The stabilities of vasoactive intestinal polypeptide (VIP) and galanin mRNAs were examined in a human neuroblastoma cell line (NBFL) treated with agents that alter second-messenger pathways. VIP and galanin mRNA stabilities were estimated by the decay of steady-state levels of transcripts following transcriptional arrest with actinomycin D or 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). In the presence of actinomycin D, phorbol ester treatment stabilized VIP mRNA while treatment with adenylate cyclase activators, calcium ionophore, or CNTF did not. In the presence of DRB, VIP mRNA was not stabilized in phorbol ester-treated cells but instead was stabilized in cells treated with adenylate cyclase activators. With either transcriptional inhibitor, stability of galanin mRNA was not significantly altered. The difference in the behavior of VIP mRNA in the presence of actinomycin D and DRB may result from their different mechanisms of action-actinomycin D intercalates into nucleic acids while DRB is a kinase inhibitor. Using an assay for RNA stability that did not require transcriptional inhibitors, an in vitro transcribed VIP RNA fragment was relatively stable in extracts from phorbol ester-treated cells. Although treatment with phorbol ester alone resulted in stabilization of VIP mRNA, treatment with a combination of phorbol ester and adenylate cyclase activator, calcium ionophore, or CNTF did not-implying a complex interaction of these second-messenger pathways in the regulation of RNA stability.
Collapse
Affiliation(s)
- P J Tolentino
- Department of Neurology, Children's Hospital, MA 02115, USA
| | | |
Collapse
|