1
|
Chen Y, Song W, Wang G, Wang Y, Dong S, Wu Y, Wang R, Ma C. Metabolic Engineering of High L-Lysine-Producing Escherichia coli for de Novo Production of L-Lysine-Derived Compounds. ACS Synth Biol 2024; 13:2948-2959. [PMID: 39158285 DOI: 10.1021/acssynbio.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
5-Aminovalerate (5-AVA), 5-hydroxyvalerate (5-HV), and 1,5-pentanediol (1,5-PDO) are l-lysine derivatives with extensive applications in the production of materials such as polyesters, polyurethane, plasticizers, inks, and coatings. However, their large-scale production is limited by the lack of efficient synthetic pathways. Here, we aimed to construct multiple synthetic pathways by screening the key enzymes involved in the synthesis of these compounds in Escherichia coli. The engineered pathway utilizing RaiP demonstrated a superior catalytic efficiency. The LER strain that overexpressed only raiP successfully synthesized 9.70 g/L 5-HV and 8.31 g/L 5-AVA, whereas the strain LERGY that overexpressed raiP, gabT, and yahK accumulated 9.72 g/L 5-HV and 7.95 g/L 5-AVA from 20 g/L glucose. The introduction of exogenous transaminases and dehydrogenases enhanced cell growth and fermentation efficiency with respect to 5-HV synthesis, albeit without significantly impacting the yield. Strain LE05, incorporating only two exogenous enzymes, RaiP and CaR, produced 1.87 g/L 1,5-PDO, 3.85 g/L 5-HV, and 4.78 g/L 5-hydroxyglutaraldehyde from 20 g/L glucose after 6 days. The strain LE02G, fortified with transaminase, dehydrogenase, and NADPH regeneration system, accumulated 7.82 g/L 1,5-PDO, whereas the aldp-knock out LE02G2 synthesized 10.98 g/L 1,5-PDO from 50 g/L glucose in fed-batch fermentation after 6 days, yielding 0.22 g/g glucose (0.37 mol/mol). Introducing the NADPH regeneration pathway and deleting the NADPH-consuming pathways increased the 1,5-PDO yield and decreased the precursor concentration. The proposed pathways and engineering strategies presented in this study can prove instrumental in developing biological routes for the practical production of 5-AVA, 5-HV, and 1,5-PDO.
Collapse
Affiliation(s)
- Yonghua Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| | - Wenzhu Song
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| | - Guodong Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| | - Yuanwei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| | - Shitong Dong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| | - Yingshuai Wu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| | - Chunling Ma
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Republic of China
| |
Collapse
|
2
|
Jakobowski A, Hill SG, Guy SW, Offenbacher AR. Substitution of the mononuclear, non-heme iron cofactor in lipoxygenases for structural studies. Methods Enzymol 2024; 704:59-87. [PMID: 39300657 DOI: 10.1016/bs.mie.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This Chapter describes methods for the biosynthetic substitution of the mononuclear, non-heme iron in plant and animal lipoxygenases (LOXs). Substitution of this iron center for a manganese ion results in an inactive, yet faithful structural surrogate of the LOX enzymes. This metal ion substitution permits structural and dynamical studies of enzyme-substrate complexes in solution and immobilized on lipid membrane surfaces. Representative procedures for two LOXs, soybean lipoxygenase (SLO) from plants and human epithelial 15-lipoxygenase-2 (15-LOX-2) from mammals, are described as examples.
Collapse
Affiliation(s)
- Andrew Jakobowski
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - S Wyatt Guy
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
3
|
Alsherif EA, Hajjar D, AbdElgawad H. Future Climate CO 2 Reduces the Tungsten Effect in Rye Plants: A Growth and Biochemical Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1924. [PMID: 37653841 PMCID: PMC10222005 DOI: 10.3390/plants12101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Heavy metal pollution is one of the major agronomic challenges. Tungsten (W) exposure leads to its accumulation in plants, which in turn reduces plant growth, inhibits photosynthesis and induces oxidative damage. In addition, the predicted increase in CO2 could boost plant growth under both optimal and heavy metal stress conditions. The aim of the present study was to investigate the effect of W on growth, photosynthetic parameters, oxidative stress and redox status in rye plants under ambient and elevated (eCO2) levels. To this end, rye plants were grown under the following conditions: ambient CO2 (aCO2, 420 ppm), elevated CO2 (eCO2, 720 ppm), W stress (350 mg kg-1 soil) and W+eCO2. W stress induced significant (p < 0.05) decreases in growth and photosynthesis, increases in oxidative damages (lipid peroxidation) and the antioxidant defense system, i.e., ascorbate (ASC), reduced glutathione (GSH), GSH reductase (GR), peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), ASC peroxide (APX) and dehydroascorbate reductase (DHAR). On the other hand, eCO2 decreased W uptake and improved photosynthesis, which sequentially improved plant growth. The obtained results showed that eCO2 can decrease the phytotoxicity risks of W in rye plants. This positive impact of eCO2 on reducing the negative effects of soil W was related to their ability to enhance plant photosynthesis, which in turn provided energy and a carbon source for scavenging the reactive oxygen species (ROS) accumulation caused by soil W stress.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Dina Hajjar
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2018 Antwerp, Belgium;
| |
Collapse
|
4
|
Alsherif EA, AbdElgawad H. Elevated CO 2 Suppresses the Vanadium Stress in Wheat Plants under the Future Climate CO 2. PLANTS (BASEL, SWITZERLAND) 2023; 12:1535. [PMID: 37050160 PMCID: PMC10096617 DOI: 10.3390/plants12071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Increases in atmospheric CO2 is known to promote plant growth under heavy metals stress conditions. However, vanadium (V) stress mitigating the impact of eCO2 as well as the physiological and biochemical bases of this stress mitigation have not been well studied. To this end, this study investigated the growth, photosynthetic parameters, oxidative damages antioxidants, and antioxidants enzymes in wheat plants grown under ambient (420 PPM) and high eCO2 (720 ppm) levels. Exposing wheat plants to higher V increased its accumulation in plants which consequentially inhibited plant growth and induced oxidative damage. An increase in antioxidant and detoxification defense systems was observed but it was not enough to reduce V stress toxicity. On the other hand, wheat growth was improved as a result of reduced V uptake and toxicity on photosynthesis under eCO2. To reduce V uptake, wheat accumulated citric acid, and oxalic acid in soil preferentially under both treatments but to more extend under V and eCO2. Additionally, improved photosynthesis induced high carbon availability that was directed to produce chelating proteins (metallothioneins, phytochelatin) and antioxidants (phenolics, flavonoids, total antioxidant capacity). This study advances our knowledge of the processes behind the variations in the physiological and biochemical responses of the wheat crop under V and eCO2 conditions.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2180 Antwerp, Belgium
| |
Collapse
|
5
|
Selim S, AbdElgawad H, Reyad AM, Alowaiesh BF, Hagagy N, Al-Sanea MM, Alsharari SS, Madany MMY. Potential use of a novel actinobacterial species to ameliorate tungsten nanoparticles induced oxidative damage in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:226-239. [PMID: 34973889 DOI: 10.1016/j.plaphy.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Tungsten nanoparticles (WNPs) could induce hazard impact on plant growth and development; however, no study investigated their phytotoxicity. On the other hand, plant growth-promoting bacteria (PGPB) can effectively reduce WNPs toxicity. To this end, Nocardiopsis sp. was isolated and employed to mitigate the phytotoxic effect of WNPs on three crops (wheat, barley, and oat). Soil contamination with WPNs induced the W accumulation in all tested crops, inhibited both growth and photosynthesis and induced oxidative damage. On the other hand, pre-inoculation with Nocardiopsis sp. significantly reduced W level in treated plants. Concomitantly, Nocardiopsis sp. strikingly mitigated the inhibitory effect of WNPs by augmenting both growth and reactive oxygen species (ROS) homeostasis. To cope with heavy metal stress, all the tested species orchestrated their antioxidant homeostasis through enhancing the production of antioxidant metabolites (e.g., phenolics, flavonoids and tocopherols) and elevated the activities of ROS-scavenging enzymes (e.g., APX, POX, CAT, as well as the enzymes involved in AsA/GSH cycle). Moreover, pre-inoculation with Nocardiopsis sp. improved the detoxification metabolism by enhancing the accumulation of phytochelatins (PCs), metallothionein (MTC) and glutathione-S-transferase (GST) in grasses grown in WNPs-contaminated soils. Overall, restrained ROS homeostasis and improved WNPs detoxification systems were the bases underlie the WNPs stress mitigating impact of Nocardiopsis sp treatment.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72341, Saudi Arabia.
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Mohamed Reyad
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Bassam F Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka, P.O. Box 72341, Saudi Arabia
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammad M Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, 72341, Aljouf Province, Saudi Arabia
| | - Salam S Alsharari
- Biology Department, College of Science, Jouf University, Sakaka, P.O. Box 72341, Saudi Arabia
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
6
|
Lu J, Zhang C, Leong HY, Show PL, Lu F, Lu Z. Overproduction of lipoxygenase from Pseudomonas aeruginosa in Escherichia coli by auto-induction expression and its application in triphenylmethane dyes degradation. J Biosci Bioeng 2020; 129:327-332. [DOI: 10.1016/j.jbiosc.2019.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/10/2019] [Accepted: 09/07/2019] [Indexed: 01/28/2023]
|
7
|
Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment. Sci Rep 2020; 10:990. [PMID: 31969619 PMCID: PMC6976619 DOI: 10.1038/s41598-020-57752-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023] Open
Abstract
Microorganisms can utilize biomass to produce valuable chemicals, showing sustainable, renewable and economic advantages compared with traditional chemical synthesis. As a potential five-carbon platform polymer monomer, 5-aminovalerate has been widely used in industrial fields such as clothes and disposable goods. Here we establish an efficient whole-cell catalysis for 5-aminovalerate production with ethanol pretreatment. In this study, the metabolic pathway from L-lysine to 5-aminovalerate was constructed at the cellular level by introducing L-lysine α-oxidase. The newly produced H2O2 and added ethanol both are toxic to the cells, obviously inhibiting their growth. Here, a promising strategy of whole-cell catalysis with ethanol pretreatment is proposed, which greatly improves the yield of 5-aminovalerate. Subsequently, the effects of ethanol pretreatment, substrate concentration, reaction temperature, pH value, metal ion additions and hydrogen peroxide addition on the whole-cell biocatalytic efficiency were investigated. Using 100 g/L of L-lysine hydrochloride as raw material, 50.62 g/L of 5-aminovalerate could be excellently produced via fed-batch bioconversion with the yield of 0.84 mol/mol. The results show that a fast, environmentally friendly and efficient production of 5-aminovalerate was established after introducing the engineered whole-cell biocatalysts. This strategy, combined with ethanol pretreatment, can not only greatly enhance the yield of 5-aminovalerate but also be applied to the biosynthesis of other valuable chemicals.
Collapse
|
8
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
9
|
Zaragoza JPT, Nguy A, Minnetian N, Deng Z, Iavarone AT, Offenbacher AR, Klinman JP. Detecting and Characterizing the Kinetic Activation of Thermal Networks in Proteins: Thermal Transfer from a Distal, Solvent-Exposed Loop to the Active Site in Soybean Lipoxygenase. J Phys Chem B 2019; 123:8662-8674. [PMID: 31580070 PMCID: PMC6944211 DOI: 10.1021/acs.jpcb.9b07228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting chemical reaction catalyzed by soybean lipoxygenase (SLO) involves quantum mechanical tunneling of a hydrogen atom from substrate to its active site ferric-hydroxide cofactor. SLO has emerged as a prototypical system for linking the thermal activation of a protein scaffold to the efficiency of active site chemistry. Significantly, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) experiments on wild type and mutant forms of SLO have uncovered trends in the enthalpic barriers for HDX within a solvent-exposed loop (positions 317-334) that correlate well with trends in the corresponding enthalpic barriers for kcat. A model for this behavior posits that collisions between water and loop 317-334 initiate thermal activation at the protein surface that is then propagated 15-34 Å inward toward the reactive carbon of substrate in proximity to the iron catalyst. In this study, we have prepared protein samples containing cysteine residues either at the tip of the loop 317-334 (Q322C) or on a control loop, 586-603 (S596C). Chemical modification of cysteines with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (Badan, BD) provides site-specific probes for the measurement of fluorescence relaxation lifetimes and Stokes shift decays as a function of temperature. Computational studies indicate that surface water structure is likely to be largely preserved in each sample. While both loops exhibit temperature-independent fluorescence relaxation lifetimes as do the Stokes shifts for S596C-BD, the activation enthalpy for the nanosecond solvent reorganization at Q322C-BD (Ea(ksolv) = 2.8(0.9) kcal/mol)) approximates the enthalpy of activation for catalytic C-H activation (Ea(kcat) = 2.3(0.4) kcal/mol). This study establishes and validates the methodology for measuring rates of rapid local motions at the protein/solvent interface of SLO. These new findings, when combined with previously published correlations between protein motions and the rate-limiting hydride transfer in a thermophilic alcohol dehydrogenase, provide experimental evidence for thermally induced "protein quakes" as the origin of enthalpic barriers in catalysis.
Collapse
Affiliation(s)
- Jan Paulo T. Zaragoza
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Andy Nguy
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Natalie Minnetian
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Zhenyu Deng
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Hershelman D, Kahler KM, Price MJ, Lu I, Fu Y, Plumeri PA, Karaisz F, Bassett NF, Findeis PM, Clapp CH. Oxygenation reactions catalyzed by the F557V mutant of soybean lipoxygenase-1: Evidence for two orientations of substrate binding. Arch Biochem Biophys 2019; 674:108082. [PMID: 31473191 DOI: 10.1016/j.abb.2019.108082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/18/2023]
Abstract
Plant lipoxygenases oxygenate linoleic acid to produce 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPOD) or 9-hydroperoxy-10E,12Z-octadecadienoic acid (9(S)-HPOD). The manner in which these enzymes bind substrates and the mechanisms by which they control regiospecificity are uncertain. Hornung et al. (Proc. Natl. Acad. Sci. USA96 (1999) 4192-4197) have identified an important residue, corresponding to phe-557 in soybean lipoxygenase-1 (SBLO-1). These authors proposed that large residues in this position favored binding of linoleate with the carboxylate group near the surface of the enzyme (tail-first binding), resulting in formation of 13(S)-HPOD. They also proposed that smaller residues in this position facilitate binding of linoleate in a head-first manner with its carboxylate group interacting with a conserved arginine residue (arg-707 in SBLO-1), which leads to 9(S)-HPOD. In the present work, we have tested these proposals on SBLO-1. The F557V mutant produced 33% 9-HPOD (S:R = 87:13) from linoleic acid at pH 7.5, compared with 8% for the wild-type enzyme and 12% with the F557V,R707L double mutant. Experiments with 11(S)-deuteriolinoleic acid indicated that the 9(S)-HPOD produced by the F557V mutant involves removal of hydrogen from the pro-R position on C-11 of linoleic acid, as expected if 9(S)-HPOD results from binding in an orientation that is inverted relative to that leading to 13(S)-HPOD. The product distributions obtained by oxygenation of 10Z,13Z-nonadecadienoic acid and arachidonic acid by the F557V mutant support the hypothesis that ω6 oxygenation results from tail-first binding and ω10 oxygenation from head-first binding. The results demonstrate that the regiospecificity of SBLO-1 can be altered by a mutation that facilitates an alternative mode of substrate binding and adds to the body of evidence that 13(S)-HPOD arises from tail-first binding.
Collapse
Affiliation(s)
| | - Kirsten M Kahler
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Morgan J Price
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Iris Lu
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Yuhan Fu
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | | | - Fred Karaisz
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | | | - Peter M Findeis
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Charles H Clapp
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA.
| |
Collapse
|
11
|
Pereira AM, Machado R, da Costa A, Ribeiro A, Collins T, Gomes AC, Leonor IB, Kaplan DL, Reis RL, Casal M. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. Acta Biomater 2017; 47:50-59. [PMID: 27713086 DOI: 10.1016/j.actbio.2016.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials.
Collapse
|
12
|
Wang N, Ren K, Jia R, Chen W, Sun R. Expression of a fungal manganese peroxidase in Escherichia coli: a comparison between the soluble and refolded enzymes. BMC Biotechnol 2016; 16:87. [PMID: 27908283 PMCID: PMC5134096 DOI: 10.1186/s12896-016-0317-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Manganese peroxidase (MnP) from Irpex lacteus F17 has been shown to have a strong ability to degrade recalcitrant aromatic pollutants. In this study, a recombinant MnP from I. lacteus F17 was expressed in Escherichia coli Rosetta (DE3) in the form of inclusion bodies, which were refolded to achieve an active enzyme. Further, we optimized the in vitro refolding conditions to increase the recovery yield of the recombinant protein production. Additionally, we attempted to express recombinant MnP in soluble form in E. coli, and compared its activity with that of refolded MnP. RESULTS Refolded MnP was obtained by optimizing the in vitro refolding conditions, and soluble MnP was produced in the presence of four additives, TritonX-100, Tween-80, ethanol, and glycerol, through incubation at 16 °C. Hemin and Ca2+ supplementation was crucial for the activity of the recombinant protein. Compared with refolded MnP, soluble MnP showed low catalytic efficiencies for Mn2+ and H2O2 substrates, but the two enzymes had an identical, broad range substrate specificity, and the ability to decolorize azo dyes. Furthermore, their enzymatic spectral characteristics were analysed by circular dichroism (CD), electronic absorption spectrum (UV-VIS), fluorescence and Raman spectra, indicating the differences in protein conformation between soluble and refolded MnP. Subsequently, size exclusion chromatography (SEC) and dynamic light scattering (DLS) analyses demonstrated that refolded MnP was a good monomer in solution, while soluble MnP predominantly existed in the oligomeric status. CONCLUSIONS Our results showed that two forms of recombinant MnP could be expressed in E. coli by varying the culture conditions during protein expression.
Collapse
Affiliation(s)
- Nan Wang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| | - Kai Ren
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| | - Rong Jia
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China.
| | - Wenting Chen
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| | - Ruirui Sun
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui, 230601, People's Republic of China
| |
Collapse
|
13
|
Hayward S, Cilliers T, Swart P. Lipoxygenases: From Isolation to Application. Compr Rev Food Sci Food Saf 2016; 16:199-211. [DOI: 10.1111/1541-4337.12239] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Stefan Hayward
- Dept. of Biochemistry; Stellenbosch Univ; Private Bag X1 Stellenbosch 7602 South Africa
| | - Tertius Cilliers
- Dept. of Biochemistry; Stellenbosch Univ; Private Bag X1 Stellenbosch 7602 South Africa
| | - Pieter Swart
- Dept. of Biochemistry; Stellenbosch Univ; Private Bag X1 Stellenbosch 7602 South Africa
| |
Collapse
|
14
|
Abstract
Most interfacial enzymes undergo activation upon membrane binding. Interfacial activation is determined not only by the binding strength but also by the specific mode of protein-membrane interactions, including the angular orientation and membrane insertion of the enzymes. This chapter describes biophysical techniques to quantitatively evaluate membrane binding, orientation, membrane insertion, and activity of secreted phospholipase A2 (PLA2) and lipoxygenase (LO) enzymes. Procedures for recombinant production and purification of human pancreatic PLA2 and human 5-lipoxygenase (5-LO) are also presented. Several methods for measurements of membrane binding of peripheral proteins are described, i.e., fluorescence resonance energy transfer (FRET) from tryptophan or tyrosine residues of the protein to a fluorescent lipid in vesicles, changes in fluorescence of an environment-sensitive fluorescent lipid upon binding of proteins to membranes, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. These methods produce the apparent binding constant, the protein-to-lipid binding stoichiometry, and the Hill cooperativity coefficient. Experimental procedures for segmental isotope labeling of proteins and determination of the orientation of membrane-bound proteins by polarized ATR-FTIR spectroscopy are described. Furthermore, evaluation of membrane insertion of peripheral proteins by a fluorescence quenching technique is outlined. Combination of the orientation and membrane insertion provides a unique configuration of the protein-membrane complex and hence elucidates certain details of the enzyme function, such as the modes of acquisition of a membrane-residing substrate and product release. Finally, assays for determination of the activities of secreted PLA2, soybean LO, and human 5-LO are described.
Collapse
Affiliation(s)
- S A Tatulian
- College of Sciences, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
15
|
Heshof R, de Graaff LH, Villaverde JJ, Silvestre AJ, Haarmann T, Dalsgaard TK, Buchert J. Industrial potential of lipoxygenases. Crit Rev Biotechnol 2015; 36:665-74. [DOI: 10.3109/07388551.2015.1004520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Leo H. de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Juan J. Villaverde
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal,
- On leave to INIA, DTEVPF, Plant Protection Products Unit, Ctra. de La Coruña, Madrid, Spain,
| | | | | | - Trine K. Dalsgaard
- Department of Food Sciences, Faculty of Science and Technology, Aarhus University, Tjele, Denmark, and
| | | |
Collapse
|
16
|
AbdElgawad H, Farfan-Vignolo ER, de Vos D, Asard H. Elevated CO₂ mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:1-10. [PMID: 25575986 DOI: 10.1016/j.plantsci.2014.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 05/24/2023]
Abstract
Increasing atmospheric CO2 will affect plant growth, including mitigation of stress impact. Such effects vary considerably between species-groups. Grasses (Lolium perenne, Poa pratensis) and legumes (Medicago lupulina, Lotus corniculatus) were subjected to drought, elevated temperature and elevated CO2. Drought inhibited plant growth, photosynthesis and stomatal conductance, and induced osmolytes and antioxidants in all species. In contrast, oxidative damage was more strongly induced in the legumes than in the grasses. Warming generally exacerbated drought effects, whereas elevated CO2 reduced stress impact. In the grasses, photosynthesis and chlorophyll levels were more protected by CO2 than in the legumes. Oxidative stress parameters (lipid peroxidation, H2O2 levels), on the other hand, were generally more reduced in the legumes. This is consistent with changes in molecular antioxidants, which were reduced by elevated CO2 in the grasses, but not in the legumes. Antioxidant enzymes decreased similarly in both species-groups. The ascorbate-glutathione cycle was little affected by drought and CO2. Overall, elevated CO2 reduced drought effects in grasses and legumes, and this mitigation was stronger in the legumes. This is possibly explained by stronger reduction in H2O2 generation (photorespiration and NADPH oxidase), and a higher availability of molecular antioxidants. The grass/legume-specificity was supported by principal component analysis.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Evelyn Roxana Farfan-Vignolo
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Dirk de Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, B-2020 Antwerp, Belgium
| | - Han Asard
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium.
| |
Collapse
|
17
|
Lee KJ, Hwang JE, Velusamy V, Ha BK, Kim JB, Kim SH, Ahn JW, Kang SY, Kim DS. Selection and molecular characterization of a lipoxygenase-free soybean mutant line induced by gamma irradiation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2405-13. [PMID: 25190478 DOI: 10.1007/s00122-014-2385-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/15/2014] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE A lipoxygenase-free soybean mutant line (H70) induced by gamma ray was selected and its detailed information about the lipoxygenase was analyzed by comparison of DNA sequence. Soybean seeds contain three lipoxygenase enzymes, which induce a beany or grassy flavor. The elimination of lipoxygenases can reduce the poor stability and off-flavors of soybean oil and protein products. In this study, we selected a soybean mutant (H70) in which the three lipoxygenases had been mutated using gamma rays. To obtain detailed information about the lipoxygenase, we investigated the sequences of the Lox1, Lox2 and Lox3 genes in H70 compared to the original cultivar, Hwanggum. Comparisons of the sequences of the Lox1 and Lox2 genes in H70 with those in a line with normal lipoxygenase (HG) showed that the mutations in these genes affected a highly conserved group of six histidine residues necessary for enzymatic activity. Lox1 in H70 contained a 74 bp deletion in exon 8, creating a stop codon that prematurely terminates translation. A single point mutation (T-A) in exon 8 of Lox2 changed histidine (H532, one of the iron-binding ligands essential for Lox2 activity) to glutamine. The mutation in the Lox3 gene in H70 was a single-point mutation in exon 6 (A-G), which changed the amino acid from histidine to arginine. This amino acid alteration in Lox3 was located in the N-terminal barrel, which might play a role in molecular recognition during catalysis and/or proteolysis. These results suggest that gene analysis based on DNA sequencing could be useful for elucidating the lipoxygenase content in soybean mutant lines. Additionally, the soybean mutant line selected in this study could be used to develop soybean cultivars with improved flavor.
Collapse
Affiliation(s)
- Kyung Jun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong, Jeongeup, Jeonbuk, 580-185, Republic of Korea,
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In the recent past years, a large number of proteins have been expressed in Escherichia coli with high productivity due to rapid development of genetic engineering technologies. There are many hosts used for the production of recombinant protein but the preferred choice is E. coli due to its easier culture, short life cycle, well-known genetics, and easy genetic manipulation. We often face a problem in the expression of foreign genes in E. coli. Soluble recombinant protein is a prerequisite for structural, functional and biochemical studies of a protein. Researchers often face problems producing soluble recombinant proteins for over-expression, mainly the expression and solubility of heterologous proteins. There is no universal strategy to solve these problems but there are a few methods that can improve the level of expression, non-expression, or less expression of the gene of interest in E. coli. This review addresses these issues properly. Five levels of strategies can be used to increase the expression and solubility of over-expressed protein; (1) changing the vector, (2) changing the host, (3) changing the culture parameters of the recombinant host strain, (4) co-expression of other genes and (5) changing the gene sequences, which may help increase expression and the proper folding of desired protein. Here we present the resources available for the expression of a gene in E. coli to get a substantial amount of good quality recombinant protein. The resources include different strains of E. coli, different E. coli expression vectors, different physical and chemical agents and the co expression of chaperone interacting proteins. Perhaps it would be the solutions to such problems that will finally lead to the maturity of the application of recombinant proteins. The proposed solutions to such problems will finally lead to the maturity of the application of recombinant proteins.
Collapse
|
19
|
Lu X, Zhang J, Liu S, Zhang D, Xu Z, Wu J, Li J, Du G, Chen J. Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli. Appl Microbiol Biotechnol 2012; 97:5793-800. [PMID: 23064455 DOI: 10.1007/s00253-012-4457-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 09/16/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Lipoxygenase (LOX; EC 1.13.11.12,) is an enzyme that is widely used in food industry to improve aroma, rheological, or baking properties of foods. In this study, we described the expression and characterization of Pseudomonas aeruginosa LOX in Escherichia coli. The recombinant LOX was successfully expressed and secreted by E. coli using its endogenous signal peptide. When induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (final concentration) at 20 °C for 47 h, the titer of the recombinant enzyme reached 3.89 U/mL. In order to characterize the catalytic properties, the recombinant LOX was purified to homogeneity on Q High Performance and Mono Q5/50GL sequentially. The molecular weight of the LOX was estimated as 70 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The Km and Vmax of the recombinant enzyme were 48.9 μM and 0.226 μmol/min, respectively. The purified enzyme exhibited a maximum activity at 25 °C and pH 7.5. High-performance liquid chromatography analysis of the linoleic acid hydroperoxides produced by recombinant LOX revealed that the LOX from P. aeruginosa falls into linoleic acid 13(S)-LOX. To the best of our knowledge, this is the first report on the overexpression of extracellular LOX in microorganisms, and the achieved LOX yield is the highest ever reported.
Collapse
Affiliation(s)
- Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang YJ, Choi YS, Jung D, Cha HJ. Expression of redesigned mussel silk-like protein in Escherichia coli. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-011-0140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Kai G, Yang S, Zhang Y, Luo X, Fu X, Zhang A, Xiao J. Effects of different elicitors on yield of tropane alkaloids in hairy roots of Anisodus acutangulus. Mol Biol Rep 2011; 39:1721-9. [PMID: 21625855 DOI: 10.1007/s11033-011-0912-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/18/2011] [Indexed: 02/08/2023]
Abstract
The four tropane alkaloids have played a pivotal role in controlling diseases such as the toxic and septic shock, the organophosphorus poison and the acute lung injury. Here, the elicitation effect of different elicitors on the production of tropane alkaloids and the molecular mechanism of enzyme genes in the pathway was firstly demonstrated in hairy roots of Anisodus acutangulus. The results showed ethanol, methyl jasmonate and Ag(+) could improve the accumulation of tropane alkaloids up to 1.51, 1.13 and 1.08 times after 24 h treatment, respectively (P < 0.05), whereas salicylic acid decreased the average content of tropane alkaloids. Furthermore, expression profile analysis results revealed that up-regulation of hyoscyamine-6b-hydroxylase (AaH6H) and little regulation of tropinone reducase II (AaTR2) elicited by ethanol, increased expression of putrescine N-methyltransferase I (AaPMT1) elicited by Ag(+), elevated expression of tropinone reducase I (AaTR1) elicited by methyl jasmonate, respectively, resulted in tropane alkaloids improvement. Our results showed that hairy root culture of A. acutangulus in combination with elicitors was a promising way for production of tropane alkaloids in the future.
Collapse
Affiliation(s)
- Guoyin Kai
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Park S, Kang K, Lee SW, Ahn MJ, Bae JM, Back K. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Appl Microbiol Biotechnol 2010; 89:1387-94. [DOI: 10.1007/s00253-010-2994-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
23
|
Visser H, De Oliveira Villela Filho M, Liese A, Weijers CAGM, Verdoes JC. Construction and Characterisation of a Genetically EngineeredEscherichia coliStrain for the Epoxide Hydrolase-catalysed Kinetic Resolution of Epoxides. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/1024242031000076215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
GroES and GroEL are essential chaperones for refolding of recombinant human phospholipid scramblase 1 in E. coli. Biotechnol Lett 2009; 31:1745-52. [DOI: 10.1007/s10529-009-0073-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/10/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
25
|
el Jaber-Vazdekis N, Barres ML, Ravelo AG, Zarate R. Effects of elicitors on tropane alkaloids and gene expression in Atropa baetica transgenic hairy roots. JOURNAL OF NATURAL PRODUCTS 2008; 71:2026-2031. [PMID: 19053510 DOI: 10.1021/np800573j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Elicitation of transgenic Atropa baetica overexpressing the h6h gene with salicylic acid (SA), acetylsalicylic acid (ASA),or methyl jasmonate (MeJ) was conducted to boost tropane alkaloid yields. Scopolamine (1) amounts increased after treatment with ASA and MeJ, but not with SA. The highest enhancement of 1 was achieved with MeJ followed by ASA dissolved in EtOH. Transcriptomic analyses showed a direct relationship between content of 1 and gene expressions;the engineered h6h gene and other biosynthetic genes were stimulated. ASA dissolved in EtOH showed a high h6h gene expression, increasing 25-fold and 5-fold compared to controls; tr-I also displayed a 5-fold increase. The controls to which EtOH was added showed a 5-fold increase in h6h gene expression and 125-fold for pmt, demonstrating that EtOH also functioned as an enhancer of 1. MeJ was the best elicitor, displaying a 25-fold increase in h6h expression level, not affecting the expression of the other three genes analyzed, and it appears to possibly stimulate the phenylpropanoids branch of the tropane alkaloid pathway.
Collapse
Affiliation(s)
- Nabil el Jaber-Vazdekis
- Instituto Universitario de Bio-Orgánica AG González, University of La Laguna, 38206 La Laguna, Tenerife, Spain
| | | | | | | |
Collapse
|
26
|
Velmurugan GV, Tewari AK, Rao JR, Baidya S, Kumar MU, Mishra AK. High-level expression of SAG1 and GRA7 gene of Toxoplasma gondii (Izatnagar isolate) and their application in serodiagnosis of goat toxoplasmosis. Vet Parasitol 2008; 154:185-92. [DOI: 10.1016/j.vetpar.2008.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 11/27/2022]
|
27
|
Gene cloning, expression, purification and characterization of rice (Oryza sativa L.) class II chitinase CHT11. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2007; 2:2632-9. [DOI: 10.1038/nprot.2007.400] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Gerth ML, Lutz S. Mutagenesis of non-conserved active site residues improves the activity and narrows the specificity of human thymidine kinase 2. Biochem Biophys Res Commun 2007; 354:802-7. [PMID: 17266931 PMCID: PMC1853344 DOI: 10.1016/j.bbrc.2007.01.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 01/16/2007] [Indexed: 11/26/2022]
Abstract
Human thymidine kinase 2 (TK2) is critical for the nucleotide salvage pathway and phosphorylation of nucleoside analog prodrugs in vivo; however, it remains poorly studied because of difficulties in expressing it heterologously. TK2 is strictly pyrimidine-specific, whereas its phylogenetic relative, the Drosophila melanogaster deoxyribonucleoside kinase (DmdNK), shows higher activity and broader specificity towards both pyrimidines and purines. These differences are counterintuitive, as only two of 29 active site residues differ in the two enzymes: F80 and M118 in DmdNK are L78 and L116 in TK2. In addition to reporting an optimized protocol for the expression and purification of TK2, we have used site-directed mutagenesis to introduce the DmdNK-like amino acids into TK2, and characterized the three resulting enzymes (L78F-TK2, L116M-TK2, and L78F/L116M-TK2). These mutations improve the K(M) for thymidine, increasing the catalytic activity of L78F/L116M-TK2 4.4-fold, yet leaving the activity for deoxycytidine or the purine nucleosides unchanged.
Collapse
Affiliation(s)
- Monica L Gerth
- Chemistry Department, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
30
|
Ventzki R, Stegemann J, Martinez L, de Marco A. Automated protein analysis by online detection of laser-induced fluorescence in slab gels and 3-D geometry gels. Electrophoresis 2006; 27:3338-48. [PMID: 16850506 DOI: 10.1002/elps.200600006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) still remains the most reliable and comprehensive analytical method for the evaluation of protein extracts. However, conventional SDS-PAGE is time-consuming and, thus, unpractical if several tens or hundreds of samples must be examined. We show that SDS-PAGE protein analysis can be automated using slab gel DNA sequencers and compare the instrument's performance with conventional SDS-PAGE in terms of resolution, sensitivity and sample capacity. Labeled protein bands are detected online by laser-induced fluorescence (LIF) and the acquired signals are electronically stored for further processing, avoiding gel staining and scanning. Appropriate software allows immediate display of recorded data and convenient evaluation. The method provides a higher sensitivity and dynamic range than conventional Coomassie-stained gels and the resolution of proteins with different masses is independent of the polyacrylamide concentration. Internal markers can also be used for direct quantification and assignment of the molecular masses. Additionally, we present a novel electrophoresis instrument for the simultaneous separation and online LIF detection of all samples of a microtiterplate in parallel lanes in a 3-D geometry gel cylinder. The specific gel thermostatting concept prevents irregular sample migration (smiling) and improves the reproducibility and comparability of individual separation patterns. In combination with the expected large capacity of 384 or 1,536 samples, this makes the instrument a valuable tool for high-throughput comparative screening applications.
Collapse
Affiliation(s)
- Robert Ventzki
- Scientific Core Facilities, Services & Technology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
31
|
Huang H, Liu J, de Marco A. Induced fit of passenger proteins fused to Archaea maltose binding proteins. Biochem Biophys Res Commun 2006; 344:25-9. [PMID: 16615999 DOI: 10.1016/j.bbrc.2006.03.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Maltose binding proteins (MBPs) are used as carriers for improving the solubility of passenger proteins. Our results indicate that the higher solubility of the fusions correlates with their elevated heat stability. Fusions of the otherwise thermo-sensitive GFP with MBPs from Archaea, but not GST-GFP and Escherichia coli MBP-GFP, maintained their fluorescence and structure after 10min incubation at 100 degrees C and could be purified by heating the bacteria lysate, with yields even higher than those obtained using metal affinity chromatography. Furthermore, only correctly folded proteins could stand the heating treatment and, therefore, the heat-purification method can be used as a quality control step to select homogeneous monodispersed material whereas soluble aggregates are removed by precipitation.
Collapse
Affiliation(s)
- He Huang
- Protein Expression Core Facility, EMBL, Meyerhofstr. 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
32
|
de Marco A, Vigh L, Diamant S, Goloubinoff P. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 2006; 10:329-39. [PMID: 16333986 PMCID: PMC1283876 DOI: 10.1379/csc-139r.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.
Collapse
Affiliation(s)
- Ario de Marco
- Protein Expression Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | |
Collapse
|
33
|
Gadgil M, Kapur V, Hu WS. Transcriptional response of Escherichia coli to temperature shift. Biotechnol Prog 2005; 21:689-99. [PMID: 15932244 DOI: 10.1021/bp049630l] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temperature shift is often practiced in the cultivation of Escherichia coli to reduce undesired metabolite formation and to maximize synthesis of correctly folded heterologous protein. As the culture temperature is decreased below the optimal 37 degrees C, growth rate decreases and many physiological changes occur. In this study, we investigated the gene expression dynamics of E. coli on switching its cultivation temperature from 37 to 33 and 28 degrees C using whole genome DNA microarrays. Approximately 9% of the genome altered expression level on temperature shift. Overall, the alteration of transcription upon the downshift of temperature is rapid and globally distributed over a wide range of gene classes. The general trends of transcriptional changes at 28 and 33 degrees C were similar. The largest functional class among the differentially expressed genes was energy metabolism. About 12% of genes in energy metabolism show a decrease in their level of expression, and approximately 6% show an increase. Consistent with the decrease in the glucose uptake rate, many genes involved in glycolysis and the PTS sugar transport systems show decreased expression. Genes encoding enzymes related to amino acid biosynthesis and transport also have reduced expression levels. Such decrease in expression probably reflects the reduced growth rate and the accompanying reduction in energy and amino acid demand at lower temperatures. However, nearly all genes encoding enzymes in the TCA cycle have increased expression levels, which may well be compensating the reduction of the activity of TCA cycle enzymes at lower temperatures. Temperature shift also results in shift of the cytochromes from the high affinity cytochrome o system to the low affinity cytochrome d system. There is no evidence that protein processing genes are selectively altered to create favorable conditions for heterologous protein synthesis. Our results indicate that the beneficial effect of temperature shift in many biotechnological processes is likely to be attributed to the general effect of reduced growth and metabolism.
Collapse
Affiliation(s)
- Mugdha Gadgil
- Department of Chemical Engineering and Materials Science, Biomedical Genomics Center, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, USA
| | | | | |
Collapse
|
34
|
Schrödel A, de Marco A. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC BIOCHEMISTRY 2005; 6:10. [PMID: 15927061 PMCID: PMC1175841 DOI: 10.1186/1471-2091-6-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 05/31/2005] [Indexed: 11/21/2022]
Abstract
Background The first aim of the work was to analyze in detail the complexity of the aggregates formed upon overexpression of recombinant proteins in E. coli. A sucrose step gradient succeeded in separating aggregate subclasses of a GFP-GST fusion protein with specific biochemical and biophysical features, providing a novel approach for studying recombinant protein aggregates. Results The total lysate separated into 4 different fractions whereas only the one with the lowest density was detected when the supernatant recovered after ultracentrifugation was loaded onto the sucrose gradient. The three further aggregate sub-classes were otherwise indistinctly precipitated in the pellet. The distribution of the recombinant protein among the four subclasses was strongly dependent on the DnaK availability, with larger aggregates formed in Dnak- mutants. The aggregation state of the GFP-GST recovered from each of the four fractions was further characterized by examining three independent biochemical parameters. All of them showed an increased complexity of the recombinant protein aggregates starting from the top of the sucrose gradient (lower mass aggregates) to the bottom (larger mass aggregates). These results were also confirmed by electron microscopy analysis of the macro-structure formed by the different aggregates. Large fibrils were rapidly assembled when the recombinant protein was incubated in the presence of cellular extracts, but the GFP-GST fusion purified soon after lysis failed to undergo amyloidation, indicating that other cell components probably participate in the active formation of large aggregates. Finally, we showed that aggregates of lower complexity are more efficiently disaggregated by a combination of molecular chaperones. Conclusion An additional analytical tool is now available to investigate the aggregation process and separate subclasses by their mass. It was possible to demonstrate the complexity of the aggregation pattern of a recombinant protein expressed in bacteria and to characterize biochemically the different aggregate subclasses. Furthermore, we have obtained evidence that the cellular environment plays a role in the development of the aggregates and the problem of the artifact generation of aggregates has been discussed using in vitro models. Finally, the possibility of separating aggregate fractions with different complexities offers new options for biotechnological strategies aimed at improving the yield of folded and active recombinant proteins.
Collapse
Affiliation(s)
- Andrea Schrödel
- EMBL, Protein Expression Core Facility, Meyerhofstr. 1, D-69117, Heidelberg – Germany
| | - Ario de Marco
- EMBL, Protein Expression Core Facility, Meyerhofstr. 1, D-69117, Heidelberg – Germany
| |
Collapse
|
35
|
Wilson RA, Gardner HW, Keller NP. Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:980-7. [PMID: 11497470 DOI: 10.1094/mpmi.2001.14.8.980] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Maize kernels are highly susceptible to Aspergillus spp. infection and aflatoxin (AF) contamination. Fatty acid signaling molecules appear to mediate the plant-fungal interaction by affecting the growth, development, and AF production of the fungus. In particular, fatty acid derivatives of the plant lipoxygenase (LOX) pathway are implicated in the Aspergillus spp.-seed interaction. The 9(S)-hydroperoxide derivative of linoleic acid promotes transcription of AF genes, whereas the 13(S)-hydroperoxide derivative decreases AF gene expression and production; both are sporulation factors. Our goal was to identify LOX genes responsive to Aspergillus spp. colonization and determine their specificities, 9(S)- or 13(S)-. Screening maize LOX expressed sequence tags (ESTs) identified one clone, cssap 92, which is highly expressed in Aspergillus spp.-infected seed susceptible to AF contamination and repressed in lines with resistance to AF contamination. The accumulation of cssap 92 transcript was similar during Fusarium spp. infection. The cDNA clone has 94% identity to the previously described L2 LOX gene from maize. Product-specificity analysis of the CSSAP 92 protein shows that it preferentially adds oxygen to carbon 9 of linoleic acid. Because 9(S)-hydroperoxy linoleic acid has been implicated as an aflatoxin-signaling molecule, it is possible that cssap 92 could be used as a biomarker that is indicative of AF resistance in maize lines.
Collapse
Affiliation(s)
- R A Wilson
- Department of Plant Pathology and Microbiology, Texas A & M University, College Station 77843-2132, USA
| | | | | |
Collapse
|
36
|
Hughes RK, Lawson DM, Hornostaj AR, Fairhurst SA, Casey R. Mutagenesis and modelling of linoleate-binding to pea seed lipoxygenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1030-40. [PMID: 11179969 DOI: 10.1046/j.1432-1327.2001.01964.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have produced a model to define the linoleate-binding pocket of pea 9/13-lipoxygenase and have validated it by the construction and characterization of eight point mutants. Three of the mutations reduced, to varying degrees, the catalytic centre activity (kcat) of the enzyme with linoleate. In two of the mutants, reductions in turnover were associated with changes in iron-coordination. Multiple sequence alignments of recombinant plant and mammalian lipoxygenases of known positional specificity, and the results from numerous other mutagenesis and modelling studies, have been combined to discuss the possible role of the mutated residues in pea 9/13-lipoxygenase catalysis. A new nomenclature for recombinant plant lipoxygenases based on positional specificity has subsequently been proposed. The null-effect of mutating pea 9/13-lipoxygenase at the equivalent residue to that which controlled dual positional specificity in cucumber 13/9-lipoxygenase, strongly suggests that the mechanisms controlling dual positional specificity in pea 9/13-lipoxygenase and cucumber 13/9-lipoxygenase are different. This was supported from modelling of another isoform of pea lipoxygenase, pea 13/9-lipoxygenase. Dual positional specificity in pea lipoxygenases is more likely to be determined by the degree of penetration of the methyl terminus of linoleate and the volume of the linoleate-binding pocket rather than substrate orientation. A single model for positional specificity, that has proved to be inappropriate for arachidonate-binding to mammalian 5-, 12- and 15-lipoxygenases, would appear to be true also for linoleate-binding to plant 9- and 13-lipoxygenases.
Collapse
Affiliation(s)
- R K Hughes
- John Innes Centre, Norwich Research Park, Norwich, UK.
| | | | | | | | | |
Collapse
|
37
|
Zhang CC, Glenn KA, Kuntz MA, Shapiro DJ. High level expression of full-length estrogen receptor in Escherichia coli is facilitated by the uncoupler of oxidative phosphorylation, CCCP. J Steroid Biochem Mol Biol 2000; 74:169-78. [PMID: 11162922 DOI: 10.1016/s0960-0760(00)00120-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression of high levels of full-length human estrogen receptor alpha (hERalpha) in Escherichia coli has proven difficult. We found that expression of the ER DNA binding domain is highly toxic to E. coli, resulting in rapid loss of the expression plasmid. Using a tightly regulated arabinose expression system and the antibiotic Timentin, we were able to overcome ER toxicity and express substantial levels of ER. The expressed ER exhibited protease cleavage at a single site near the N-terminus of the hinge region. Of the many measures we tested to eliminate ER cleavage, only addition of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), an uncoupler of oxidative phosphorylation, completely blocked intracellular proteolysis of the ER. Using CCCP and our expression methods, full-length FLAG epitope-tagged hERalpha (fER) was expressed in E. coli at approximately 1 mg/l. The fER was purified to homogeneity in a single step by immunoaffinity chromatography with anti-FLAG monoclonal antibody. Purified full-length bacterial fER binds 17beta-estradiol with the same affinity as hER expressed in human cells (K(D) approximately 0.5 nM). At high concentrations of fER (20 nM), a bell-shaped estrogen binding curve with a Hill coefficient of 1.7 was seen. Bacterially-expressed fER exhibits a reduced affinity for the estrogen response element (ERE). Anti-FLAG antibody restores high affinity binding of the fER to the ERE, suggesting that impaired dimerization may be responsible for the reduced affinity of bacterially-expressed fER for the ERE. The use of Timentin and CCCP may provide a general method for high level bacterial expression of steroid/nuclear receptors and other proteins important in hormone action.
Collapse
Affiliation(s)
- C C Zhang
- Department of Biochemistry, 413 RAL, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
38
|
Holman TR, Zhou J, Solomon EI. Spectroscopic and Functional Characterization of a Ligand Coordination Mutant of Soybean Lipoxygenase-1: First Coordination Sphere Analogue of Human 15-Lipoxygenase. J Am Chem Soc 1998. [DOI: 10.1021/ja982844c] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Theodore R. Holman
- Contribution from the Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Jing Zhou
- Contribution from the Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Edward I. Solomon
- Contribution from the Department of Chemistry, Stanford University, Stanford, California 94305, and Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
39
|
Dunford RP, Catley MA, Raines CA, Lloyd JC, Dyer TA. Purification of active chloroplast sedoheptulose-1,7-bisphosphatase expressed in Escherichia coli. Protein Expr Purif 1998; 14:139-45. [PMID: 9758762 DOI: 10.1006/prep.1998.0939] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sedoheptulose-1,7-bisphosphatase (SBPase) is an enzyme unique to photosynthetic organisms and has a key role in regulating the photosynthetic Calvin cycle through which nearly all carbon enters the biosphere. This makes SBPase an appropriate target for intensive study. We have expressed wheat SBPase in Escherichia coli either with or without an N-terminal polyhistidine tag. The identity of the recombinant SBPases was confirmed by SDS-PAGE analysis and immunological detection with a specific antibody. Recombinant SBPase with a polyhistidine tag (His-SBPase) was obtained in soluble, active form and purified by one-step metal-chelate chromatography. Like the native enzyme, recombinant His-SBPase was specific for the substrate sedoheptulose-1,7-bisphosphate and required the presence of a reducing agent for activity. Polyclonal antibodies were raised against recombinant SBPase and were then used to determine relative levels of the enzyme in plant extracts. The availability of large amounts of active recombinant SBPase will also allow detailed structural studies by site-directed mutagenesis and X-ray crystallography.
Collapse
Affiliation(s)
- R P Dunford
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Hughes RK, Wu Z, Robinson DS, Hardy D, West SI, Fairhurst SA, Casey R. Characterization of authentic recombinant pea-seed lipoxygenases with distinct properties and reaction mechanisms. Biochem J 1998; 333 ( Pt 1):33-43. [PMID: 9639559 PMCID: PMC1219552 DOI: 10.1042/bj3330033] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The two major isoforms of lipoxygenase (LOX-2 and LOX-3) from pea (Pisum sativum L. cv. Birte) seeds have been cloned and expressed from full-length cDNAs as soluble, active, non-fusion proteins in Escherichia coli. A comparison of both isoforms purified to apparent homogeneity from E. coli and pea seeds has confirmed the authenticity of the recombinant products and established the properties of the native enzymes. Despite 86% similarity at the amino acid sequence level, the enzymes have distinct properties. They have been characterized in terms of specific activity, Fe content, optimum pH, substrate and product specificity, apparent Km and Vmax for the preferred substrate, linoleic acid, and interfacial behaviour with linoleic acid. We have used this evidence, in addition to EPR spectroscopy of the hydroperoxide-activated enzymes and estimates of kcat/Km, to propose different reaction mechanisms for linoleic acid oxidation for the two isoforms. The differences relate primarily to carbonyl production from linoleic acid for which we propose a mechanism. This implicates the release of a peroxyl radical in an aerobic hydroperoxidase reaction, as the source of the carbonyl compounds formed by dismutation of the liberated peroxyl radical.
Collapse
Affiliation(s)
- R K Hughes
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | | | | | | | | | | | | |
Collapse
|
41
|
Poch MT, Qin W, Caperelli CA. The human trifunctional enzyme of de novo purine biosynthesis: heterologous expression, purification, and preliminary characterization. Protein Expr Purif 1998; 12:17-24. [PMID: 9473452 DOI: 10.1006/prep.1997.0799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cDNA for the human trifunctional enzyme of de novo purine biosynthesis, which encodes glycinamide ribonucleotide synthetase, aminoimidazole ribonucleotide synthetase, and glycinamide ribonucleotide trans-formylase, has been overexpressed in Escherichia coli and its protein product has been purified to homogeneity. The glycinamide ribonucleotide transformylase activity, which constitutes the C-terminal domain of the trifunctional enzyme, has been characterized with respect to its kinetic constants, Vmax = 3.03 +/- 0.15 micromol/min-mg and Km values for beta-glycinamide ribonucleotide and 10-formyl-5,8-dideazafolate of 0.94 +/- 0.21 and 1.58 +/- 0.25 microM, respectively, and its kinetic mechanism, which is ordered-sequential with the folate substrate binding first. The correspondence of these data to those obtained for the glycinamide ribonucleotide transformylase activity of the mammalian trifunctional enzyme indicates that the recombinant enzyme is fully functional.
Collapse
Affiliation(s)
- M T Poch
- College of Pharmacy, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0004, USA
| | | | | |
Collapse
|
42
|
Thomas JG, Baneyx F. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Expr Purif 1997; 11:289-96. [PMID: 9425634 DOI: 10.1006/prep.1997.0796] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The proper folding of aggregation-prone recombinant proteins in Escherichia coli can be facilitated by co-overexpressing specific molecular chaperones or by culturing the cells in the presence of ethanol or other agents that upregulate the synthesis of all heat-shock proteins (hsps). We have investigated the effect of combining direct chaperone overproduction with ethanol supplementation on the cytoplasmic folding of two aggregation-prone model proteins, preS2-S'-beta-galactosidase and human SPARC. In 25-ml shake flask cultures grown at 30 degrees C, addition of 3% (v/v) ethanol to the growth medium prior to inoculation improved the chaperone-mediated increase in the yields of active preS2-S'-beta-galactosidase 1.5- to 2-fold. When cultures overexpressing the dnaKJ operon were grown in the presence of ethanol, the levels of enzymatic activity were 5-fold higher relative to control cells and preS2-S'-beta-galactosidase aggregation was almost entirely abolished. Combining DnaK-DnaJ overexpression and growth of the cells at temperatures lower than 30 degrees C did not result in a comparable increase in activity. Although the individual effects of ethanol supplementation and dnaKJ overproduction were more limited when the culture volume was raised, a synergistic improvement in preS2-S'-beta-galactosidase activity was observed when the two approaches were used in concert. In contrast, ethanol supplementation promoted the aggregation of human SPARC, a protein exhibiting a chaperone dependency similar to that of preS2-S'-beta-galactosidase. Our results show that ethanol can exert complex and divergent effects on inclusion body formation and that the beneficial effect of the solvent on recombinant protein folding cannot simply be explained by an increase in the intracellular concentration of molecular chaperones.
Collapse
Affiliation(s)
- J G Thomas
- Department of Chemical Engineering, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
43
|
Koljak R, Boutaud O, Shieh BH, Samel N, Brash AR. Identification of a naturally occurring peroxidase-lipoxygenase fusion protein. Science 1997; 277:1994-6. [PMID: 9302294 DOI: 10.1126/science.277.5334.1994] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A distant relative of catalase that is specialized for metabolism of a fatty acid hydroperoxide was identified. This heme peroxidase occurs in coral as part of a fusion protein, the other component of which is a lipoxygenase that forms the hydroperoxide substrate. The end product is an unstable epoxide (an allene oxide) that is a potential precursor of prostaglandin-like molecules. These results extend the known chemistry of catalase-like proteins and reveal a distinct type of enzymatic construct involved in the metabolism of polyunsaturated fatty acids.
Collapse
Affiliation(s)
- R Koljak
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Thomas JG, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold. Appl Biochem Biotechnol 1997; 66:197-238. [PMID: 9276922 DOI: 10.1007/bf02785589] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The high-level expression of recombinant gene products in the gram-negative bacterium Escherichia coli often results in the misfolding of the protein of interest and its subsequent degradation by cellular proteases or its deposition into biologically inactive aggregates known as inclusion bodies. It has recently become clear that in vivo protein folding is an energy-dependent process mediated by two classes of folding modulators. Molecular chaperones, such as the DnaK-DnaJ-GrpE and GroEL-GroES systems, suppress off-pathway aggregation reactions and facilitate proper folding through ATP-coordinated cycles of binding and release of folding intermediates. On the other hand, folding catalysts (foldases) accelerate rate-limiting steps along the protein folding pathway such as the cis/trans isomerization of peptidyl-prolyl bonds and the formation and reshuffling of disulfide bridges. Manipulating the cytoplasmic folding environment by increasing the intracellular concentration of all or specific folding modulators, or by inactivating genes encoding these proteins, holds great promise in facilitating the production and purification of heterologous proteins. Purified folding modulators and artificial systems that mimic their mode of action have also proven useful in improving the in vitro refolding yields of chemically denatured polypeptides. This review examines the usefulness and limitations of molecular chaperones and folding catalysts in both in vivo and in vitro folding processes.
Collapse
Affiliation(s)
- J G Thomas
- University of Washington, Department of Chemical Engineering, Seattle 98195-1750, USA
| | | | | |
Collapse
|
46
|
Vasina JA, Baneyx F. Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 1997; 9:211-8. [PMID: 9056486 DOI: 10.1006/prep.1996.0678] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aggregation-prone fusion protein preS2-S'-beta-galactosidase was used as a model system to compare the efficiencies of the IPTG-inducible tac promoter and the low-temperature-inducible cspA promoter in directing the expression of soluble recombinant polypeptides at reduced growth temperatures in Escherichia coli. At 37 degrees C, the fusion protein was produced at high levels from the tac promoter, but aggregated quantitatively in a biologically inactive form. In contrast, little preS2-S'-beta-galactosidase was synthesized from the cspA promoter at this temperature, presumably due to transcript instability. The highest yields of active enzyme were obtained following temperature downshift from 37 to 30 degrees C for the tac promoter and 25 degrees C for the cspA promoter. At 25 degrees C, the kinetics of accumulation of beta-galactosidase activity, ratios of soluble to insoluble fusion protein, and synthesis rates of preS2-S'-beta-galactosidase were virtually identical for both promoters for a period of 2 h postinduction. Thereafter, the cspA promoter became repressed, whereas synthesis of the fusion protein continued with the tac system. Following transfer to 10 degrees C, the tac promoter was almost completely inhibited while the cspA promoter was able to direct the synthesis of soluble preS2-S'-beta-galactosidase for up to 2 h. However, the levels of active enzyme produced were approximately threefold lower than those measured at 25 degrees C. Overexpression of native CspA had no effect on the accumulation of active preS2-S'-beta-galactosidase from the cspA promoter. It is therefore unlikely that CspA acts as it own positive inducer. Our results indicate that the cspA promoter can efficiently substitute for the tac system at 25 degrees C and may be particularly valuable for the expression of highly aggregation-prone or unstable gene products at 10 degrees C.
Collapse
Affiliation(s)
- J A Vasina
- Department of Chemical Engineering, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
47
|
Purification and characterization of a lentil seedling lipoxygenase expressed in E. coli: Implications for the mechanism of oxodiene formation by lipoxygenases. Int J Biochem Cell Biol 1996. [DOI: 10.1016/1357-2725(96)00018-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Thomas JG, Baneyx F. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J Biol Chem 1996; 271:11141-7. [PMID: 8626659 DOI: 10.1074/jbc.271.19.11141] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PreS2-S'-beta-galactosidase, a three-domain fusion protein that aggregates extensively in the cytoplasm of Escherichia coli, was used to systematically investigate the effects of heat-shock protein (hsp) overproduction on protein misfolding and inclusion body formation. While the co-overexpression of the DnaK and DnaJ molecular chaperones led to a 3-6 fold increase in the recovery of enzymatically active preS2-S'-beta-galactosidase over a wide range of growth temperatures (30-42 degrees C), an increase in the concentration of the GroEL and GroES chaperonins had a significant effect at 30 degrees C only. Co-immunoprecipitation experiments confirmed that preS2-S'-beta-galactosidase formed a stable complex with DnaK, but not with GroEL, at 42 degrees C. When the intracellular concentration of chromosomal heat-shock proteins was increased by overproduction of the heat-shock transcription factor sigma 32, or by addition of 3% ethanol (v/v) to the growth medium, a 2-3 fold higher recovery of active enzyme was observed at 30 and 42 degrees C, but not at 37 degrees C. The overexpression of all heat-shock proteins or specific chaperone operons did not significantly affect the synthesis rates or stability of preS2-S'-beta-galactosidase and did not lead to the disaggregation of preformed inclusion bodies. Rather, the improvements in the recovery of soluble and active fusion protein resulted primarily from facilitated folding and assembly. Our findings suggest that titration of the DnaK-DnaJ early folding factors leads to the formation of preS2-S'-beta-galactosidase inclusion bodies.
Collapse
Affiliation(s)
- J G Thomas
- Department of Chemical Engineering, University of Washington, Seattle 98195-1750, USA
| | | |
Collapse
|
49
|
Affiliation(s)
- D Shibata
- Mitsui Plant Biotechnology Research Institute, Ibaraki, Japan
| | | |
Collapse
|
50
|
Wu J, Dunham WR, Weiss B. Overproduction and physical characterization of SoxR, a [2Fe-2S] protein that governs an oxidative response regulon in Escherichia coli. J Biol Chem 1995; 270:10323-7. [PMID: 7730338 DOI: 10.1074/jbc.270.17.10323] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SoxR protein governs the soxRS (superoxide response) regulon of Escherichia coli by becoming a transcriptional activator when the cells are exposed to compounds that mediate univalent redox reactions, many of which produce superoxide as a by-product. SoxR was overproduced and purified to near homogeneity from a strain bearing an expression vector. It could bind specifically to the soxS operator even in the absence of RNA polymerase. The aerobically purified protein, which is readily autooxidized, could activate the transcription of soxS DNA even without exposure to known inducing agents. SoxR is a globular homodimer. It contains one [2Fe-2S] cluster per polypeptide chain, as demonstrated by optical and EPR spectroscopy combined with stoichiometric analysis of iron content, unpaired-electron-spin density, and reduction by dithionite. The protein is active in its oxidized ([2Fe-2S]2+) state. The presence of a prosthetic group capable of univalent redox reactions may help to explain the activation of the regulon in vivo by compounds that can mediate such reactions.
Collapse
Affiliation(s)
- J Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0602, USA
| | | | | |
Collapse
|