1
|
Childs M, Chandrabalan A, Hodgson D, Ramachandran R, Luyt LG. Discovery of Ghrelin(1-8) Analogues with Improved Stability and Functional Activity for PET Imaging. ACS Pharmacol Transl Sci 2023; 6:1075-1086. [PMID: 37470019 PMCID: PMC10353549 DOI: 10.1021/acsptsci.3c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 07/21/2023]
Abstract
The highest affinity ghrelin-based analogue for fluorine-18 positron emission tomography, [Inp1,Dpr3(6-FN),1Nal4,Thr8]ghrelin(1-8) amide (1), has remarkable subnanomolar receptor affinity (IC50 = 0.11 nM) toward the growth hormone secretagogue receptor 1a (GHSR). However, initial in vivo PET imaging and biodistribution of [18F]1 in mice demonstrated an unfavorable pharmacokinetic profile with rapid clearance and accumulation in liver and intestinal tissue, prompting concerns about the metabolic stability of this probe. The aims of the present study were to examine the proteolytic stability of ghrelin analogue 1 in the presence of blood and liver enzymes, structurally modify the peptide to improve stability without impeding the strong binding affinity, and measure the presently unknown functional activity of ghrelin(1-8) analogues. The in vitro stability and metabolite formation of 1 in human serum and liver S9 fraction revealed a metabolic soft spot between amino acids Leu5 and Ser6 in the peptide sequence. A focused library of ghrelin(1-8) analogues was synthesized and evaluated in a structure-activity-stability relationship study to further understand the structural importance of the residues at these positions in the context of stability and receptor affinity. The critical nature of l-stereochemistry at position 5 was identified and substitution of Ser6 with l-2,3-diaminopropionic acid led to a novel ligand with substantially improved in vitro stability while maintaining subnanomolar GHSR affinity. Despite the highly modified nature of these analogues compared to human ghrelin, ghrelin(1-8) analogues were found to recruit all G protein subtypes (Gαq/11/13/i1/oB) known to associate with GHSR as well as β-arrestins with low micromolar to nanomolar potencies. The study of these analogues demonstrates the ability to balance desirable ligand properties, including affinity, stability, and potency to produce well-rounded candidate molecules for further in vivo evaluation.
Collapse
Affiliation(s)
- Marina
D. Childs
- Department
of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Arundhasa Chandrabalan
- Department
of Physiology and Pharmacology, University
of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Derian Hodgson
- Department
of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Rithwik Ramachandran
- Department
of Physiology and Pharmacology, University
of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Leonard G. Luyt
- Department
of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
- Departments
of Medical Imaging and Oncology, University
of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
- London
Regional Cancer Program, Lawson Health Research
Institute, 800 Commissioners
Road East, London, Ontario, N6A 4L6, Canada
| |
Collapse
|
2
|
Pons V, Garcia C, Tidten-Luksch N, Mac Sweeney A, Caroff E, Galés C, Riederer MA. Inverse agonist efficacy of selatogrel blunts constitutive P2Y12 receptor signaling by inducing the inactive receptor conformation. Biochem Pharmacol 2022; 206:115291. [DOI: 10.1016/j.bcp.2022.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
3
|
Giorgioni G, Del Bello F, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Advances in the Development of Nonpeptide Small Molecules Targeting Ghrelin Receptor. J Med Chem 2022; 65:3098-3118. [PMID: 35157454 PMCID: PMC8883476 DOI: 10.1021/acs.jmedchem.1c02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ghrelin is an octanoylated peptide acting by the activation of the growth hormone secretagogue receptor, namely, GHS-R1a. The involvement of ghrelin in several physiological processes, including stimulation of food intake, gastric emptying, body energy balance, glucose homeostasis, reduction of insulin secretion, and lipogenesis validates the considerable interest in GHS-R1a as a promising target for the treatment of numerous disorders. Over the years, several GHS-R1a ligands have been identified and some of them have been extensively studied in clinical trials. The recently resolved structures of GHS-R1a bound to ghrelin or potent ligands have provided useful information for the design of new GHS-R1a drugs. This perspective is focused on the development of recent nonpeptide small molecules acting as GHS-R1a agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - E Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
4
|
Molecular mechanism of agonism and inverse agonism in ghrelin receptor. Nat Commun 2022; 13:300. [PMID: 35027551 PMCID: PMC8758724 DOI: 10.1038/s41467-022-27975-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Much effort has been invested in the investigation of the structural basis of G protein-coupled receptors (GPCRs) activation. Inverse agonists, which can inhibit GPCRs with constitutive activity, are considered useful therapeutic agents, but the molecular mechanism of such ligands remains insufficiently understood. Here, we report a crystal structure of the ghrelin receptor bound to the inverse agonist PF-05190457 and a cryo-electron microscopy structure of the active ghrelin receptor-Go complex bound to the endogenous agonist ghrelin. Our structures reveal a distinct binding mode of the inverse agonist PF-05190457 in the ghrelin receptor, different from the binding mode of agonists and neutral antagonists. Combining the structural comparisons and cellular function assays, we find that a polar network and a notable hydrophobic cluster are required for receptor activation and constitutive activity. Together, our study provides insights into the detailed mechanism of ghrelin receptor binding to agonists and inverse agonists, and paves the way to design specific ligands targeting ghrelin receptors. Ghrelin receptor regulates energy homeostasis through constitutive activity or by the ghrelin. Here the authors report two structures of ghrelin receptor bound to agonist and inverse agonist, providing insights into the mechanism of inverse agonism, which is of interest for specific ligand design.
Collapse
|
5
|
Bergmann R, Chollet C, Els-Heindl S, Ullrich M, Berndt N, Pietzsch J, Máthé D, Bachmann M, Beck-Sickinger AG. Development of a ghrelin receptor inverse agonist for positron emission tomography. Oncotarget 2021; 12:450-474. [PMID: 33747360 PMCID: PMC7939532 DOI: 10.18632/oncotarget.27895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Imaging of Ghrelin receptors in vivo provides unique potential to gain deeper understanding on Ghrelin and its receptors in health and disease, in particular, in cancer. Ghrelin, an octanoylated 28-mer peptide hormone activates the constitutively active growth hormone secretagogue receptor type 1a (GHS-R1a) with nanomolar activity. We developed novel compounds, derived from the potent inverse agonist K-(D-1-Nal)-FwLL-NH2 but structurally varied by lysine conjugation with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), palmitic acid and/or diethylene glycol (PEG2) to allow radiolabeling and improve pharmacokinetics, respectively. All compounds were tested for receptor binding, potency and efficacy in vitro, for biodistribution and -kinetics in rats and in preclinical prostate cancer models on mice. Radiolabeling with Cu-64 and Ga-68 was successfully achieved. The Cu-64- or Ga-68-NODAGA-NH-K-K-(D-1-NaI)-F-w-L-L-NH2 radiotracer were specifically accumulated by the GHS-R1a in xenotransplanted human prostate tumor models (PC-3, DU-145) in mice. The tumors were clearly delineated by PET. The radiotracer uptake was also partially blocked by K-(D-1-Nal)-FwLL-NH2 in stomach and thyroid. The presence of the GHS-R1a was also confirmed by immunohistology. In the arterial rat blood plasma, only the original compounds were found. The Cu-64 or Ga-68-NODAGA-NH-K-K-(D-1-NaI)-F-w-L-L-NH2 radiolabeled inverse agonists turned out to be potent and safe. Due to their easy synthesis, high affinity, medium potency, metabolic stability, and the suitable pharmacokinetic profiles, they are excellent tools for imaging and quantitation of GHS-R1a expression in normal and cancer tissues by PET. These compounds can be used as novel biomarkers of the Ghrelin system in precision medicine.
Collapse
Affiliation(s)
- Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,These authors contributed equally to this work
| | - Constance Chollet
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig, Germany.,These authors contributed equally to this work
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Tumor Immunology, University Cancer Center, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
6
|
Ribeiro LF, Catarino T, Carvalho M, Cortes L, Santos SD, Opazo PO, Ribeiro LR, Oliveiros B, Choquet D, Esteban JA, Peça J, Carvalho AL. Ligand-independent activity of the ghrelin receptor modulates AMPA receptor trafficking and supports memory formation. Sci Signal 2021; 14:14/670/eabb1953. [PMID: 33593997 DOI: 10.1126/scisignal.abb1953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological signals of hunger, satiety, and memory are interconnected. The role of the hormone ghrelin in regulating feeding and memory makes ghrelin receptors attractive targets for associated disorders. We investigated the effects of the high ligand-independent activity of the ghrelin receptor GHS-R1a on the physiology of excitatory synapses in the hippocampus. Blocking this activity produced a decrease in the synaptic content of AMPA receptors in hippocampal neurons and a reduction in GluA1 phosphorylation at Ser845 Reducing the ligand-independent activity of GHS-R1a increased the surface diffusion of AMPA receptors and impaired AMPA receptor-dependent synaptic delivery induced by chemical long-term potentiation. Accordingly, we found that blocking this GHS-R1a activity impaired spatial and recognition memory in mice. These observations support a role for the ligand-independent activity of GHS-R1a in regulating AMPA receptor trafficking under basal conditions and in the context of synaptic plasticity that underlies learning.
Collapse
Affiliation(s)
- Luís F Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Tatiana Catarino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Mário Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,MIT-Portugal Bioengineering Systems Doctoral Program, NOVA University of Lisbon, 1099-85, Lisboa, Portugal
| | - Luísa Cortes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Sandra D Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, IIIUC-Institute for Interdisciplinary Research, 3030-789 Coimbra, Portugal
| | - Patricio O Opazo
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France
| | - Lyn Rosenbrier Ribeiro
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D AstraZeneca, Cambridge CB2 0SL, UK
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France.,CNRS, UMR 5297, 33000 Bordeaux, France.,Bordeaux Imaging Center, UMS 3420, CNRS-Bordeaux University, US4 INSERM, 33000 Bordeaux, France
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal. .,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Liang Y, Yin W, Yin Y, Zhang W. Ghrelin Based Therapy of Metabolic Diseases. Curr Med Chem 2021; 28:2565-2576. [PMID: 32538716 PMCID: PMC11213490 DOI: 10.2174/0929867327666200615152804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ghrelin, a unique 28 amino acid peptide hormone secreted by the gastric X/A like cells, is an endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin-GHSR signaling has been found to exert various physiological functions, including stimulation of appetite, regulation of body weight, lipid and glucose metabolism, and increase of gut motility and secretion. This system is thus critical for energy homeostasis. OBJECTIVE The objective of this review is to highlight the strategies of ghrelin-GHSR based intervention for therapy of obesity and its related metabolic diseases. RESULTS Therapeutic strategies of metabolic disorders targeting the ghrelin-GHSR pathway involve neutralization of circulating ghrelin by antibodies and RNA spiegelmers, antagonism of ghrelin receptor by its antagonists and inverse agonists, inhibition of ghrelin O-acyltransferase (GOAT), as well as potential pharmacological approach to decrease ghrelin synthesis and secretion. CONCLUSION Various compounds targeting the ghrelin-GHSR system have shown promising efficacy for the intervention of obesity and relevant metabolic disorders in animals and in vitro. Further clinical trials to validate their efficacy in human beings are urgently needed.
Collapse
Affiliation(s)
- Yuan Liang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhen Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| |
Collapse
|
8
|
Lu X, Huang L, Huang Z, Feng D, Clark RJ, Chen C. LEAP-2: An Emerging Endogenous Ghrelin Receptor Antagonist in the Pathophysiology of Obesity. Front Endocrinol (Lausanne) 2021; 12:717544. [PMID: 34512549 PMCID: PMC8428150 DOI: 10.3389/fendo.2021.717544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2), originally described as an antimicrobial peptide, has recently been recognized as an endogenous blocker of growth hormone secretagogue receptor 1a (GHS-R1a). GHS-R1a, also known as ghrelin receptor, is a G protein-coupled receptor (GPCR) widely distributed on the hypothalamus and pituitary gland where it exerts its major functions of regulating appetite and growth hormone (GH) secretion. The activity of GHS-R1a is controlled by two counter-regulatory endogenous ligands: Ghrelin (activation) and LEAP-2 (inhibition). Ghrelin activates GHS-R1a on the neuropeptide Y/Agouti-related protein (NPY/AgRP) neurons at the arcuate nucleus (ARC) to promote appetite, and on the pituitary somatotrophs to stimulate GH release. On the flip side, LEAP-2, acts both as an endogenous competitive antagonist of ghrelin and an inverse agonist of constitutive GHS-R1a activity. Such a biological property of LEAP-2 vigorously blocks ghrelin's effects on food intake and hormonal secretion. In circulation, LEAP-2 displays an inverse pattern as to ghrelin; it increases with food intake and obesity (positive energy balance), whereas decreases upon fasting and weight loss (negative energy balance). Thus, the LEAP-2/ghrelin molar ratio fluctuates in response to energy status and modulation of this ratio conversely influences energy intake. Inhibiting ghrelin's activity has shown beneficial effects on obesity in preclinical experiments, which sheds light on LEAP-2's anti-obesity potential. In this review, we will analyze LEAP-2's effects from a metabolic point of view with a focus on metabolic hormones (e.g., ghrelin, GH, and insulin), and discuss LEAP-2's potential as a promising therapeutic target for obesity.
Collapse
Affiliation(s)
- Xuehan Lu
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Dandan Feng
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Richard J. Clark
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Chen Chen,
| |
Collapse
|
9
|
Worm DJ, Els‐Heindl S, Beck‐Sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dennis J. Worm
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | - Sylvia Els‐Heindl
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | | |
Collapse
|
10
|
Lee MR, Tapocik JD, Ghareeb M, Schwandt ML, Dias AA, Le AN, Cobbina E, Farinelli LA, Bouhlal S, Farokhnia M, Heilig M, Akhlaghi F, Leggio L. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: preclinical safety experiments and a phase 1b human laboratory study. Mol Psychiatry 2020; 25:461-475. [PMID: 29728704 PMCID: PMC6215751 DOI: 10.1038/s41380-018-0064-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022]
Abstract
Rodent studies indicate that ghrelin receptor blockade reduces alcohol consumption. However, no ghrelin receptor blockers have been administered to heavy alcohol drinking individuals. Therefore, we evaluated the safety, tolerability, pharmacokinetic (PK), pharmacodynamic (PD) and behavioral effects of a novel ghrelin receptor inverse agonist, PF-5190457, when co-administered with alcohol. We tested the effects of PF-5190457 combined with alcohol on locomotor activity, loss-of-righting reflex (a measure of alcohol sedative actions), and on blood PF-5190457 concentrations in rats. Then, we performed a single-blind, placebo-controlled, within-subject human study with PF-5190457 (placebo/0 mg b.i.d., 50 mg b.i.d., 100 mg b.i.d.). Twelve heavy drinkers during three identical visits completed an alcohol administration session, subjective assessments, and an alcohol cue-reactivity procedure, and gave blood samples for PK/PD testing. In rats, PF-5190457 did not interact with the effects of alcohol on locomotor activity or loss-of-righting reflex. Alcohol did not affect blood PF-5190457 concentrations. In humans, all adverse events were mild or moderate and did not require discontinuation or dose reductions. Drug dose did not alter alcohol concentration or elimination, alcohol-induced stimulation or sedation, or mood during alcohol administration. Potential PD markers of PF-5190457 were acyl-to-total ghrelin ratio and insulin-like growth factor-1. PF-5190457 (100 mg b.i.d.) reduced alcohol craving during the cue-reactivity procedure. This study provides the first translational evidence of safety and tolerability of the ghrelin receptor inverse agonist PF-5190457 when co-administered with alcohol. PK/PD/behavioral findings support continued research of PF-5190457 as a potential pharmacological agent to treat alcohol use disorder.
Collapse
Affiliation(s)
- Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Jenica D Tapocik
- Section on Molecular Pathophysiology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mwlod Ghareeb
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra A Dias
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - April N Le
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Enoch Cobbina
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Sofia Bouhlal
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Markus Heilig
- Section on Molecular Pathophysiology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
| |
Collapse
|
11
|
Torres-Fuentes C, Golubeva AV, Zhdanov AV, Wallace S, Arboleya S, Papkovsky DB, El Aidy S, Ross P, Roy BL, Stanton C, Dinan TG, Cryan JF, Schellekens H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J 2019; 33:13546-13559. [DOI: 10.1096/fj.201901433r] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Shauna Wallace
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Silvia Arboleya
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | | | - Sahar El Aidy
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Nicke L, Müller R, Geyer A, Els-Heindl S. Side Chain Orientation of Tryptophan Analogues Determines Agonism and Inverse Agonism in Short Ghrelin Peptides. ChemMedChem 2019; 14:1849-1855. [PMID: 31442005 PMCID: PMC6899459 DOI: 10.1002/cmdc.201900409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Indexed: 02/06/2023]
Abstract
We describe two synthetic amino acids with inverted side chain stereochemistry, which induce opposite biological activity. Phe4 is an important part of the activation motif of ghrelin, and in short peptide inverse agonists such as KwFwLL-NH2 , the aromatic core is necessary for inactivation of the receptor. To restrict indole/phenyl mobility and simultaneously strengthen the interaction between peptide and receptor, we exchanged the natural monoaryl amino acids for diaryl amino acids derived from tryptophan. By standard solid-phase peptide synthesis, each of them was inserted into ghrelin or in the aromatic core of the inverse agonist. Both ghrelin analogues showed nanomolar activity, indicating sufficient space to accommodate the additional side chain. In contrast, diaryl amino acids in the inverse agonist had considerable influence on receptor signaling. Whereas the introduction of Wsf maintains inverse agonism of the peptide, Wrf shifts the receptor more to active states and can induce agonism depending on its introduction site.
Collapse
Affiliation(s)
- Lennart Nicke
- Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Ronny Müller
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Armin Geyer
- Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Sylvia Els-Heindl
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Obesity is affecting over 600 million adults worldwide and has numerous negative effects on health. Since ghrelin positively regulates food intake and body weight, targeting its signaling to induce weight loss under conditions of obesity seems promising. Thus, the present work reviews and discusses different possibilities to alter ghrelin signaling. RECENT FINDINGS Ghrelin signaling can be altered by RNA Spiegelmers, GHSR/Fc, ghrelin-O-acyltransferase inhibitors as well as antagonists, and inverse agonists of the ghrelin receptor. PF-05190457 is the first inverse agonist of the ghrelin receptor tested in humans shown to inhibit growth hormone secretion, gastric emptying, and reduce postprandial glucose levels. Effects on body weight were not examined. Although various highly promising agents targeting ghrelin signaling exist, so far, they were mostly only tested in vitro or in animal models. Further research in humans is thus needed to further assess the effects of ghrelin antagonism on body weight especially under conditions of obesity.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Farokhnia M, Faulkner ML, Piacentino D, Lee MR, Leggio L. Ghrelin: From a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol Behav 2019; 204:49-57. [DOI: 10.1016/j.physbeh.2019.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
|
15
|
Bender BJ, Vortmeier G, Ernicke S, Bosse M, Kaiser A, Els-Heindl S, Krug U, Beck-Sickinger A, Meiler J, Huster D. Structural Model of Ghrelin Bound to its G Protein-Coupled Receptor. Structure 2019; 27:537-544.e4. [PMID: 30686667 DOI: 10.1016/j.str.2018.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/14/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
The peptide ghrelin targets the growth hormone secretagogue receptor 1a (GHSR) to signal changes in cell metabolism and is a sought-after therapeutic target, although no structure is known to date. To investigate the structural basis of ghrelin binding to GHSR, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, site-directed mutagenesis, and Rosetta modeling. The use of saturation transfer difference NMR identified key residues in the peptide for receptor binding beyond the known motif. This information combined with assignment of the secondary structure of ghrelin in its receptor-bound state was incorporated into Rosetta using an approach that accounts for flexible binding partners. The NMR data and models revealed an extended binding surface that was confirmed via mutagenesis. Our results agree with a growing evidence of peptides interacting via two sites at G protein-coupled receptors.
Collapse
Affiliation(s)
- Brian Joseph Bender
- Department of Pharmacology and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gerrit Vortmeier
- Institute for Medical Physics and Biophysics, Medical Department, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Stefan Ernicke
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mathias Bosse
- Institute for Medical Physics and Biophysics, Medical Department, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Ulrike Krug
- Institute for Medical Physics and Biophysics, Medical Department, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Annette Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Jens Meiler
- Department of Pharmacology and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Medical Department, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
16
|
Ramirez VT, van Oeffelen WEPA, Torres-Fuentes C, Chruścicka B, Druelle C, Golubeva AV, van de Wouw M, Dinan TG, Cryan JF, Schellekens H. Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists. FASEB J 2018; 33:518-531. [PMID: 30020830 DOI: 10.1096/fj.201800655r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ghrelin receptor [growth hormone secretagogue receptor (GHSR)-1a] represents a promising pharmacologic target for the treatment of metabolic disorders, including obesity and cachexia, via central appetite modulation. The GHSR-1a has a complex pharmacology, highlighted by G-protein-dependent and -independent downstream signaling pathways and high basal constitutive activity. The functional selectivity and signaling bias of many GHSR-1a-specific ligands has not been fully characterized. In this study, we investigated the pharmacologic properties of ghrelin, MK-0677, L692,585, and [d-Lys3]-growth hormone-releasing peptide-6 (Dlys), JMV2959, and [d-Arg(1),d-Phe(5),d-Trp(7, 9),Leu(11)]-substance P (SP-analog). We investigated their effect on basal GHSR-1a constitutive signaling, ligand-directed downstream GHSR-1a signaling, functional selectivity, and signaling bias. Dlys behaved as a partial antagonist with a strong bias toward GHSR-1a-β-arrestin signaling, whereas JMV2959 acted as a full unbiased GHSR-1a antagonist. Moreover, the SP-analog behaved as an inverse agonist increasing G-protein-dependent signaling, but only at high concentrations, whereas, at low concentrations, the SP-analog attenuated β-arrestin-dependent signaling. Considering the limited success in the clinical development of GHSR-1a-targeted drugs so far, these findings provide a novel insight into the pharmacologic characteristics of GHSR-1a ligands and their signaling bias, which has important implications in the design of novel, more selective GHSR-1a ligands with predictable functional outcome and selectivity for preclinical and clinical drug development.-Ramirez, V. T., van Oeffelen, W. E. P. A., Torres-Fuentes, C., Chruścicka, B., Druelle, C., Golubeva, A. V., van de Wouw, M., Dinan, T. G., Cryan, J. F., Schellekens, H. Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists.
Collapse
Affiliation(s)
- Valerie T Ramirez
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Barbara Chruścicka
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clementine Druelle
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland; and
| | - John F Cryan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,Food for Health Ireland, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,Food for Health Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Farokhnia M, Lee MR, Farinelli LA, Ramchandani VA, Akhlaghi F, Leggio L. Pharmacological manipulation of the ghrelin system and alcohol hangover symptoms in heavy drinking individuals: Is there a link? Pharmacol Biochem Behav 2018; 172:39-49. [PMID: 30030128 DOI: 10.1016/j.pbb.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Ghrelin, an orexigenic peptide synthesized in the stomach, is a key player in the gut-brain axis. In addition to its role in regulating food intake and energy homeostasis, ghrelin has been shown to modulate alcohol-related behaviors. Alcohol consumption frequently results in hangover, an underexplored phenomenon with considerable medical, psychological, and socioeconomic consequences. While the pathophysiology of hangover is not clear, contributions of mechanisms such as alcohol-induced metabolic/endocrine changes, inflammatory/immune response, oxidative stress, and gut dysbiosis have been reported. Interestingly, these mechanisms considerably overlap with ghrelin's physiological functions. Here, we investigated whether pharmacological manipulation of the ghrelin system may affect alcohol hangover symptoms. Data were obtained from two placebo-controlled laboratory studies. The first study tested the effects of intravenous (IV) ghrelin and consisted of two experiments: a progressive-ratio IV alcohol self-administration (IV-ASA) and a fixed-dose IV alcohol clamp. The second study tested the effects of an oral ghrelin receptor inverse agonist (PF-5190457) and included a fixed-dose oral alcohol administration experiment. Alcohol hangover data were collected the morning after each alcohol administration experiment using the Acute Hangover Scale (AHS). IV ghrelin, compared to placebo, significantly reduced alcohol hangover after IV-ASA (p = 0.04) and alcohol clamp (p = 0.04); PF-5190457 had no significant effect on AHS scores. Females reported significantly higher hangover symptoms than males following the IV-ASA experiment (p = 0.04), but no gender × drug condition (ghrelin vs. placebo) effect was found. AHS total scores were positively correlated with peak subjective responses, including 'stimulation' (p = 0.08), 'sedation' (p = 0.009), 'feel high' (p = 0.05), and 'feel intoxicated' (p = 0.03) during the IV-ASA. IV ghrelin blunted the positive association between alcohol sedation and hangover as shown by trend-level drug × sedation effect (p = 0.08). This is the first study showing that exogenous ghrelin administration, but not ghrelin receptor inverse agonism, affects hangover symptoms. Future research should investigate the potential mechanism(s) underlying this effect.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
18
|
Torres-Fuentes C, Pastor-Cavada E, Cano R, Kandil D, Shanahan R, Juan R, Shaban H, McGlacken GP, Schellekens H. Quinolones Modulate Ghrelin Receptor Signaling: Potential for a Novel Small Molecule Scaffold in the Treatment of Cachexia. Int J Mol Sci 2018; 19:E1605. [PMID: 29848961 PMCID: PMC6032407 DOI: 10.3390/ijms19061605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a metabolic wasting disorder characterized by progressive weight loss, muscle atrophy, fatigue, weakness, and appetite loss. Cachexia is associated with almost all major chronic illnesses including cancer, heart failure, obstructive pulmonary disease, and kidney disease and significantly impedes treatment outcome and therapy tolerance, reducing physical function and increasing mortality. Current cachexia treatments are limited and new pharmacological strategies are needed. Agonists for the growth hormone secretagogue (GHS-R1a), or ghrelin receptor, prospectively regulate the central regulation of appetite and growth hormone secretion, and therefore have tremendous potential as cachexia therapeutics. Non-peptide GHS-R1a agonists are of particular interest, especially given the high gastrointestinal degradation of peptide-based structures, including that of the endogenous ligand, ghrelin, which has a half-life of only 30 min. However, few compounds have been reported in the literature as non-peptide GHS-R1a agonists. In this paper, we investigate the in vitro potential of quinolone compounds to modulate the GHS-R1a in both transfected human cells and mouse hypothalamic cells. These chemically synthesized compounds demonstrate a promising potential as GHS-R1a agonists, shown by an increased intracellular calcium influx. Further studies are now warranted to substantiate and exploit the potential of these novel quinolone-based compounds as orexigenic therapeutics in conditions of cachexia and other metabolic and eating disorders.
Collapse
Affiliation(s)
| | | | - Rafael Cano
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, T12 YT20 Cork, Ireland.
| | - Dalia Kandil
- Food for Health Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland.
| | - Rachel Shanahan
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, T12 YT20 Cork, Ireland.
| | - Rocio Juan
- Plant Biology and Ecology Department, Seville University, 41012 Seville, Spain.
| | - Hamdy Shaban
- Food for Health Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Gerard P McGlacken
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, T12 YT20 Cork, Ireland.
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Food for Health Ireland, University College Cork, T12 YT20 Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
19
|
Yang Z, Han S, Keller M, Kaiser A, Bender BJ, Bosse M, Burkert K, Kögler LM, Wifling D, Bernhardt G, Plank N, Littmann T, Schmidt P, Yi C, Li B, Ye S, Zhang R, Xu B, Larhammar D, Stevens RC, Huster D, Meiler J, Zhao Q, Beck-Sickinger AG, Buschauer A, Wu B. Structural basis of ligand binding modes at the neuropeptide Y Y 1 receptor. Nature 2018; 556:520-524. [PMID: 29670288 PMCID: PMC5920736 DOI: 10.1038/s41586-018-0046-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.
Collapse
Affiliation(s)
- Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Shuo Han
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Brian J. Bender
- Department of Pharmacology, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
| | - Mathias Bosse
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Kerstin Burkert
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Lisa M. Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - David Wifling
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Guenther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Nicole Plank
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Timo Littmann
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Schmidt
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Cuiying Yi
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Xu
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Jens Meiler
- Department of Pharmacology, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
- Departments of Chemistry and Bioinformatics, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
- CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Kaiser A, Hempel C, Wanka L, Schubert M, Hamm HE, Beck-Sickinger AG. G Protein Preassembly Rescues Efficacy of W6.48 Toggle Mutations in Neuropeptide Y2 Receptor. Mol Pharmacol 2018; 93:387-401. [DOI: 10.1124/mol.117.110544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
|
21
|
Els-Heindl S, Bellmann-Sickert K, Beck-Sickinger AG. C-terminus of a hexapeptidic ghrelin receptor inverse agonist can switch peptide behavior from inverse agonism to agonism. Biopolymers 2017; 106:101-8. [PMID: 26566778 DOI: 10.1002/bip.22768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/10/2022]
Abstract
Subtle changes in the sequence at the N-terminus and in the aromatic core of hexapeptidic ghrelin receptor inverse agonists can switch behavior from inverse agonism to agonism, but the C-terminal role of the sequence is unclear. Thus, analogs of the ghrelin receptor inverse agonist KbFwLL-NH2 (b = β-(3-benzothienyl)-d-alanine) were synthesized by solid phase peptide synthesis in order to identify the influence of aromaticity, charge, and hydrophobicity. Potency and efficacy of the hexapeptides were evaluated in inositol triphosphate turnover assays. Notably, modifications directly at the C-terminal Leu(6) could influence peptide efficacy leading to decreased constitutive activity. High hydrophobicity at the C-terminal position was of importance for elevated inverse agonist activity, the introduction of charged amino acids led to decreased potency. In contrast, structure-activity relationship studies of Leu(5) located closer to the aromatic core revealed an agonism-inducing position. These findings imply that amino acids with possible cation-π or π-π interactions and a suitable orientation at the C-terminus of the aromatic core induce agonism. Receptor binding studies showed that most peptides bind to the receptor at a concentration of 1 µM and modification directly at the C-terminus is generally more accepted than Leu(5) substitution. Interestingly, this observation is not dependent on the type of modification. These studies reveal another switch region of the short ghrelin receptor ligand pointing out the sensitivity of the ghrelin receptor binding pocket.
Collapse
Affiliation(s)
- Sylvia Els-Heindl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, Leipzig, 04103, Germany
| | - Kathrin Bellmann-Sickert
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, Leipzig, 04103, Germany
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, Leipzig, 04103, Germany
| |
Collapse
|
22
|
Burkert K, Zellmann T, Meier R, Kaiser A, Stichel J, Meiler J, Mittapalli GK, Roberts E, Beck-Sickinger AG. A Deep Hydrophobic Binding Cavity is the Main Interaction for Different Y 2 R Antagonists. ChemMedChem 2016; 12:75-85. [PMID: 27874262 DOI: 10.1002/cmdc.201600433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/28/2016] [Indexed: 12/29/2022]
Abstract
The neuropeptide Y2 receptor (Y2 R) is involved in various pathophysiological processes such as epilepsy, mood disorders, angiogenesis, and tumor growth. Therefore, the Y2 R is an interesting target for drug development. A detailed understanding of the binding pocket could facilitate the development of highly selective antagonists to study the role of Y2 R in vitro and in vivo. In this study, several residues crucial to the interaction of BIIE0246 and SF-11 derivatives with Y2 R were investigated by signal transduction assays. Using the experimental results as constraints, the antagonists were docked into a comparative structural model of the Y2 R. Despite differences in size and structure, all three antagonists display a similar binding site, including a deep hydrophobic cavity formed by transmembrane helices (TM) 4, 5, and 6, as well as a hydrophobic patch at the top of TM2 and 7. Additionally, we suggest that the antagonists block Q3.32 , a position that has been shown to be crucial for binding of the amidated C terminus of NPY and thus for receptor activation.
Collapse
Affiliation(s)
- Kerstin Burkert
- Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Institute of Biochemistry, Brüderstr. 34, 04103, Leipzig, Germany
| | - Tristan Zellmann
- Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Institute of Biochemistry, Brüderstr. 34, 04103, Leipzig, Germany
| | - René Meier
- Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Institute of Biochemistry, Brüderstr. 34, 04103, Leipzig, Germany
| | - Anette Kaiser
- Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Institute of Biochemistry, Brüderstr. 34, 04103, Leipzig, Germany
| | - Jan Stichel
- Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Institute of Biochemistry, Brüderstr. 34, 04103, Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37203, USA
| | - Gopi K Mittapalli
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Institute of Biochemistry, Brüderstr. 34, 04103, Leipzig, Germany
| |
Collapse
|
23
|
Pastor-Cavada E, Pardo LM, Kandil D, Torres-Fuentes C, Clarke SL, Shaban H, McGlacken GP, Schellekens H. A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo. Sci Rep 2016; 6:36456. [PMID: 27819353 PMCID: PMC5098229 DOI: 10.1038/srep36456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023] Open
Abstract
Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.
Collapse
Affiliation(s)
- Elena Pastor-Cavada
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland
| | - Leticia M Pardo
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Dalia Kandil
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland
| | - Sarah L Clarke
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Hamdy Shaban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Zhan X, Stoy H, Kaoud TS, Perry NA, Chen Q, Perez A, Els-Heindl S, Slagis JV, Iverson TM, Beck-Sickinger AG, Gurevich EV, Dalby KN, Gurevich VV. Peptide mini-scaffold facilitates JNK3 activation in cells. Sci Rep 2016; 6:21025. [PMID: 26868142 PMCID: PMC4751492 DOI: 10.1038/srep21025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/15/2016] [Indexed: 12/19/2022] Open
Abstract
Three-kinase mitogen-activated protein kinase (MAPK) signaling cascades are present in virtually all eukaryotic cells. MAPK cascades are organized by scaffold proteins, which assemble cognate kinases into productive signaling complexes. Arrestin-3 facilitates JNK activation in cells, and a short 25-residue arrestin-3 peptide was identified as the critical JNK3-binding element. Here we demonstrate that this peptide also binds MKK4, MKK7, and ASK1, which are upstream JNK3-activating kinases. This peptide is sufficient to enhance JNK3 activity in cells. A homologous arrestin-2 peptide, which differs only in four positions, binds MKK4, but not MKK7 or JNK3, and is ineffective in cells at enhancing activation of JNK3. The arrestin-3 peptide is the smallest MAPK scaffold known. This peptide or its mimics can regulate MAPKs, affecting cellular decisions to live or die.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Henriette Stoy
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- University of Tübingen, Tübingen 72074, Germany
| | - Tamer S. Kaoud
- Faculty of Pharmacy, Minia University, Minia, Egypt
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nicole A. Perry
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Qiuyan Chen
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alejandro Perez
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Sylvia Els-Heindl
- Universität Leipzig, Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Jack V. Slagis
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Tina M. Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Departments of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Annette G. Beck-Sickinger
- Universität Leipzig, Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Eugenia V. Gurevich
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
25
|
Kilian TM, Klöting N, Bergmann R, Els-Heindl S, Babilon S, Clément-Ziza M, Zhang Y, Beck-Sickinger AG, Chollet C. Rational design of dual peptides targeting ghrelin and Y2 receptors to regulate food intake and body weight. J Med Chem 2015; 58:4180-93. [PMID: 25905598 DOI: 10.1021/jm501702q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ghrelin and Y2 receptors play a central role in appetite regulation inducing opposite effects. The Y2 receptor induces satiety, while the ghrelin receptor promotes hunger and weight gain. However, the food regulating system is tightly controlled by interconnected pathways where redundancies can lead to poor efficacy and drug tolerance when addressing a single molecule. We developed a multitarget strategy to synthesize dual peptides simultaneously inhibiting the ghrelin receptor and stimulating the Y2 receptor. Dual peptides showed dual activity in vitro, and one compound induced a slight diminution of food intake in a rodent model of obesity. In addition, stability studies in rats revealed different behaviors between the dual peptide and its corresponding monomers. The Y2 receptor agonist was unstable in blood, while the dual peptide showed an intermediate stability compared to that of the highly stable ghrelin receptor inverse agonist.
Collapse
Affiliation(s)
- Tom-Marten Kilian
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nora Klöting
- ‡Integrated Research and Treatment Center Adiposity Diseases (IFB), Core Unit "Animal Models", Universität Leipzig, Liebigstrasse 21, 04103 Leipzig, Germany
| | - Ralf Bergmann
- §Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
| | - Sylvia Els-Heindl
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Stefanie Babilon
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mathieu Clément-Ziza
- ∥CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Yixin Zhang
- ⊥B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Annette G Beck-Sickinger
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Constance Chollet
- †Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany.,⊥B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| |
Collapse
|
26
|
Integrating solid-state NMR and computational modeling to investigate the structure and dynamics of membrane-associated ghrelin. PLoS One 2015; 10:e0122444. [PMID: 25803439 PMCID: PMC4372444 DOI: 10.1371/journal.pone.0122444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
Abstract
The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane.
Collapse
|
27
|
Orr STM, Beveridge R, Bhattacharya SK, Cameron KO, Coffey S, Fernando D, Hepworth D, Jackson MV, Khot V, Kosa R, Lapham K, Loria PM, McClure KF, Patel J, Rose C, Saenz J, Stock IA, Storer G, von Volkenburg M, Vrieze D, Wang G, Xiao J, Zhang Y. Evaluation and synthesis of polar aryl- and heteroaryl spiroazetidine-piperidine acetamides as ghrelin inverse agonists. ACS Med Chem Lett 2015; 6:156-61. [PMID: 25699143 DOI: 10.1021/ml500414n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/14/2014] [Indexed: 01/16/2023] Open
Abstract
Several polar heteroaromatic acetic acids and their piperidine amides were synthesized and evaluated as ghrelin or type 1a growth hormone secretagogue receptor (GHS-R1a) inverse agonists. Efforts to improve pharmacokinetic and safety profile was achieved by modulating physicochemical properties and, more specifically, emphasizing increased polarity of our chemical series. ortho-Carboxamide containing compounds provided optimal physicochemical, pharmacologic, and safety profile. pH-dependent chemical stability was also assessed with our series.
Collapse
Affiliation(s)
- Suvi T. M. Orr
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 10770
Science Center Drive, San Diego, California 92121, United States
| | - Ramsay Beveridge
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Samit K. Bhattacharya
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 610
Main St., Cambridge, Massachusetts 02139, United States
| | - Kimberly O. Cameron
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 610
Main St., Cambridge, Massachusetts 02139, United States
| | - Steven Coffey
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dilinie Fernando
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - David Hepworth
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 610
Main St., Cambridge, Massachusetts 02139, United States
| | - Margaret V. Jackson
- Cardiovascular
and Metabolic Research Unit, Pfizer Global Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Vishal Khot
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Rachel Kosa
- Pharmacokinetics,
Dynamics and Metabolism, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Pharmacokinetics,
Dynamics and Metabolism, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paula M. Loria
- Primary
Pharmacology Group, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kim F. McClure
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 610
Main St., Cambridge, Massachusetts 02139, United States
| | - Jigna Patel
- Pharmaceutical
Sciences, Pfizer Global Research and Development, 550 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Colin Rose
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 610
Main St., Cambridge, Massachusetts 02139, United States
| | - James Saenz
- Pharmaceutical
Sciences, Pfizer Global Research and Development, 550 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ingrid A. Stock
- Primary
Pharmacology Group, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory Storer
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Maria von Volkenburg
- Cardiovascular
and Metabolic Research Unit, Pfizer Global Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Derek Vrieze
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Guoqiang Wang
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jun Xiao
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yingxin Zhang
- Worldwide
Medicinal Chemistry, Pfizer Global Research and Development, 550
Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
28
|
High metabolic in vivo stability and bioavailability of a palmitoylated ghrelin receptor ligand assessed by mass spectrometry. Bioorg Med Chem 2014; 23:3925-32. [PMID: 25541202 DOI: 10.1016/j.bmc.2014.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 11/20/2022]
Abstract
The constitutive activity of the ghrelin receptor is of high physiological and pathophysiological relevance. In-depth structure-activity relationship studies revealed a palmitoylated ghrelin receptor ligand that displays an in vitro binding affinity in the low nanomolar range. Activity studies revealed inverse agonistic as well as antagonistic properties and in vitro metabolic analysis indicated a high stability in blood serum and liver homogenate. For metabolic testing in vivo, a combined approach of stable isotopic labeling and mass spectrometry-based analysis was established. Therefore, a heavy isotopic version of the peptide containing a (13)C-labeled palmitic acid was synthesized and a 1:1 ratio of a (12)C/(13)C-peptide mixture was injected into rats. Biological samples were analyzed by multiple reaction monitoring allowing simultaneous peptide detection and quantification. Measurements revealed a suitable bioavailability over 24h in rat serum and subsequent high-resolution mass spectrometry investigations showed only negligible degradation and slow body clearance. Hence, this method combination allowed the identification and evaluation of a highly potent and metabolically stable ghrelin receptor ligand in vivo.
Collapse
|
29
|
Torres-Fuentes C, Theeuwes WF, McMullen MK, McMullen AK, Dinan TG, Cryan JF, Schellekens H. Devil's Claw to suppress appetite--ghrelin receptor modulation potential of a Harpagophytum procumbens root extract. PLoS One 2014; 9:e103118. [PMID: 25068823 PMCID: PMC4113378 DOI: 10.1371/journal.pone.0103118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022] Open
Abstract
Ghrelin is a stomach-derived peptide that has been identified as the only circulating hunger hormone that exerts a potent orexigenic effect via activation of its receptor, the growth hormone secretagogue receptor (GHS-R1a). Hence, the ghrelinergic system represents a promising target to treat obesity and obesity-related diseases. In this study we analysed the GHS-R1a receptor activating potential of Harpagophytum procumbens, popularly known as Devil's Claw, and its effect on food intake in vivo. H. procumbens is an important traditional medicinal plant from Southern Africa with potent anti-inflammatory and analgesic effects. This plant has been also used as an appetite modulator but most evidences are anecdotal and to our knowledge, no clear scientific studies relating to appetite modulation have been done to this date. The ghrelin receptor activation potential of an extract derived from the dried tuberous roots of H. procumbens was analysed by calcium mobilization and receptor internalization assays in human embryonic kidney cells (Hek) stably expressing the GHS-R1a receptor. Food intake was investigated in male C57BL/6 mice following intraperitoneal administration of H. procumbens root extract in ad libitum and food restricted conditions. Exposure to H. procumbens extract demonstrated a significant increased cellular calcium influx but did not induce subsequent GHS-R1a receptor internalization, which is a characteristic for full receptor activation. A significant anorexigenic effect was observed in male C57BL/6 mice following peripheral administration of H. procumbens extract. We conclude that H. procumbens root extract is a potential novel source for potent anti-obesity bioactives. These results reinforce the promising potential of natural bioactives to be developed into functional foods with weight-loss and weight maintenance benefits.
Collapse
Affiliation(s)
| | - Wessel F. Theeuwes
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Michael K. McMullen
- Life Force Research, Ljungskile, Sweden
- School of Biosciences, University of Westminster, London, United Kingdom
| | | | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Dept of Psychiatry, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Mäde V, Els-Heindl S, Beck-Sickinger AG. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 2014; 10:1197-212. [PMID: 24991269 PMCID: PMC4077397 DOI: 10.3762/bjoc.10.118] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Abstract
The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS) offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.
Collapse
Affiliation(s)
- Veronika Mäde
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| |
Collapse
|
31
|
Bhattacharya SK, Andrews K, Beveridge R, Cameron KO, Chen C, Dunn M, Fernando D, Gao H, Hepworth D, Jackson VM, Khot V, Kong J, Kosa RE, Lapham K, Loria PM, Londregan AT, McClure KF, Orr STM, Patel J, Rose C, Saenz J, Stock IA, Storer G, VanVolkenburg M, Vrieze D, Wang G, Xiao J, Zhang Y. Discovery of PF-5190457, a Potent, Selective, and Orally Bioavailable Ghrelin Receptor Inverse Agonist Clinical Candidate. ACS Med Chem Lett 2014; 5:474-9. [PMID: 24900864 DOI: 10.1021/ml400473x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/18/2014] [Indexed: 01/15/2023] Open
Abstract
The identification of potent, highly selective orally bioavailable ghrelin receptor inverse agonists from a spiro-azetidino-piperidine series is described. Examples from this series have promising in vivo pharmacokinetics and increase glucose-stimulated insulin secretion in human whole and dispersed islets. A physicochemistry-based strategy to increase lipophilic efficiency for ghrelin receptor potency and retain low clearance and satisfactory permeability while reducing off-target pharmacology led to the discovery of 16h. Compound 16h has a superior balance of ghrelin receptor pharmacology and off-target selectivity. On the basis of its promising pharmacological and safety profile, 16h was advanced to human clinical trials.
Collapse
Affiliation(s)
- Samit K. Bhattacharya
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kim Andrews
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Ramsay Beveridge
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kimberly O. Cameron
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Chiliu Chen
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Matthew Dunn
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Dilinie Fernando
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Hua Gao
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - David Hepworth
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - V. Margaret Jackson
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Vishal Khot
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Jimmy Kong
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Rachel E. Kosa
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kimberly Lapham
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Paula M. Loria
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Allyn T. Londregan
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kim F. McClure
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Suvi T. M. Orr
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Jigna Patel
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Colin Rose
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - James Saenz
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Ingrid A. Stock
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Gregory Storer
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Maria VanVolkenburg
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Derek Vrieze
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Guoqiang Wang
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Jun Xiao
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Yingxin Zhang
- Worldwide Medicinal Chemistry, ‡Cardiovascular and
Metabolic Research Unit, §Pharmacokinetics,
Dynamics, and Metabolism, ∥Primary Pharmacology Group, and ⊥Pharmaceutical Sciences, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Fujimura K, Wakino S, Minakuchi H, Hasegawa K, Hosoya K, Komatsu M, Kaneko Y, Shinozuka K, Washida N, Kanda T, Tokuyama H, Hayashi K, Itoh H. Ghrelin protects against renal damages induced by angiotensin-II via an antioxidative stress mechanism in mice. PLoS One 2014; 9:e94373. [PMID: 24747517 PMCID: PMC3991592 DOI: 10.1371/journal.pone.0094373] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/14/2014] [Indexed: 02/07/2023] Open
Abstract
We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney.
Collapse
Affiliation(s)
- Keiko Fujimura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- * E-mail:
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koji Hosoya
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Motoaki Komatsu
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuka Kaneko
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Keisuke Shinozuka
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Naoki Washida
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koichi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
33
|
Schellekens H, Dinan TG, Cryan JF. Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward. Front Neurosci 2013; 7:148. [PMID: 24009547 PMCID: PMC3757321 DOI: 10.3389/fnins.2013.00148] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/25/2022] Open
Abstract
The gut hormone, ghrelin, is the only known peripherally derived orexigenic signal. It activates its centrally expressed receptor, the growth hormone secretagogue receptor (GHS-R1a), to stimulate food intake. The ghrelin signaling system has recently been suggested to play a key role at the interface of homeostatic control of appetite and the hedonic aspects of food intake, as a critical role for ghrelin in dopaminergic mesolimbic circuits involved in reward signaling has emerged. Moreover, enhanced plasma ghrelin levels are associated with conditions of physiological stress, which may underline the drive to eat calorie-dense "comfort-foods" and signifies a role for ghrelin in stress-induced food reward behaviors. These complex and diverse functionalities of the ghrelinergic system are not yet fully elucidated and likely involve crosstalk with additional signaling systems. Interestingly, accumulating data over the last few years has shown the GHS-R1a receptor to dimerize with several additional G-protein coupled receptors (GPCRs) involved in appetite signaling and reward, including the GHS-R1b receptor, the melanocortin 3 receptor (MC3), dopamine receptors (D1 and D2), and more recently, the serotonin 2C receptor (5-HT2C). GHS-R1a dimerization was shown to affect downstream signaling and receptor trafficking suggesting a potential novel mechanism for fine-tuning GHS-R1a receptor mediated activity. This review summarizes ghrelin's role in food reward and stress and outlines the GHS-R1a dimer pairs identified to date. In addition, the downstream signaling and potential functional consequences of dimerization of the GHS-R1a receptor in appetite and stress-induced food reward behavior are discussed. The existence of multiple GHS-R1a heterodimers has important consequences for future pharmacotherapies as it significantly increases the pharmacological diversity of the GHS-R1a receptor and has the potential to enhance specificity of novel ghrelin-targeted drugs.
Collapse
|
34
|
Fung JNT, Jeffery PL, Lee JD, Seim I, Roche D, Obermair A, Chopin LK, Chen C. Silencing of ghrelin receptor expression inhibits endometrial cancer cell growth in vitro and in vivo. Am J Physiol Endocrinol Metab 2013; 305:E305-13. [PMID: 23736537 DOI: 10.1152/ajpendo.00156.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ghrelin is a 28-amino acid peptide hormone produced predominantly in the stomach but also in a range of normal cell types and tumors, where it has endocrine, paracrine, and autocrine roles. Previously, we have demonstrated that ghrelin has proliferative and antiapoptotic effects in endometrial cancer cell lines, suggesting a potential role in promoting tumor growth. In the present study, we investigated the effect of ghrelin receptor, GHSR, and gene silencing in vitro and in vivo and characterized ghrelin and GHSR1a protein expression in human endometrial tumors. GHSR gene silencing was achieved in the Ishikawa and KLE endometrial cancer cell lines, using a lentiviral short-hairpin RNA targeting GHSR. The effects of GHSR1a knockdown were further analyzed in vivo using the Ishikawa cell line in a NOD/SCID xenograft model. Cell proliferation was reduced in cultured GHSR1a knockdown Ishikawa and KLE cells compared with scrambled controls in the absence of exogenously applied ghrelin and in response to exogenous ghrelin (1,000 nM). The tumor volumes were reduced significantly in GHSR1a knockdown Ishikawa mouse xenograft tumors compared with scrambled control tumours. Using immunohistochemistry, we demonstrated that ghrelin and GHSR1a are expressed in benign and cancerous glands in human endometrial tissue specimens, although there was no correlation between the intensity of staining and cancer grade. These data indicate that downregulation of GHSR expression significantly inhibits endometrial cancer cell line and mouse xenograft tumour growth. This is the first preclinical evidence that downregulation of GHSR may be therapeutic in endometrial cancer.
Collapse
Affiliation(s)
- Jenny N T Fung
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rathmann D, Pedragosa-Badia X, Beck-Sickinger AG. In vitro modification of substituted cysteines as tool to study receptor functionality and structure-activity relationships. Anal Biochem 2013; 439:173-83. [PMID: 23624320 DOI: 10.1016/j.ab.2013.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
Abstract
Mutagenic investigations of expressed membrane proteins are routine, but the variety of modifications is limited by the twenty canonical amino acids. We describe an easy and effective cysteine substitution mutagenesis method to modify and investigate distinct amino acids in vitro. The approach combines the substituted cysteine accessibility method (SCAM) with a functional signal transduction readout system using different thiol-specific reagents. We applied this approach to the prolactin-releasing peptide receptor (PrRPR) to facilitate biochemical structure-activity relationship studies of eight crucial positions. Especially for D(6.59)C, the treatment with the positively charged methanethiosulfonate (MTS) ethylammonium led to an induced basal activity, whereas the coupling of the negatively charged MTS ethylsulfonate nearly reconstituted full activity, obviously by mimicking the wild-type charged side chain. At E(5.26)C, W(5.28)C, Y(5.38)C, and Q(7.35)C, accessibility was observed but hindered transfer into the active receptor conformation. Accordingly, the combination of SCAM and signaling assay is feasible and can be adapted to other G-protein-coupled receptors (GPCRs). This method circumvents the laborious way of inserting non-proteinogenic amino acids to investigate activity and ligand binding, with rising numbers of MTS reagents allowing selective side chain modification. This method pinpoints to residues being accessible but also presents potential molecular positions to investigate the global conformation.
Collapse
Affiliation(s)
- Daniel Rathmann
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
36
|
Schellekens H, McNamara O, Dinan TG, McCarthy JV, McGlacken GP, Cryan JF. Semagacestat, a γ-secretase inhibitor, activates the growth hormone secretagogue (GHS-R1a) receptor. J Pharm Pharmacol 2012; 65:528-38. [PMID: 23488781 DOI: 10.1111/jphp.12010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Semagacestat, is a γ-secretase inhibitor, which belongs to a class of drugs that are being developed as therapeutic agents for Alzheimer's disease (AD). This study aims to evaluate another potential effect of semagacestat, namely its ability to stimulate the growth hormone secretagogue receptor (GHS-R1a), which may also contribute to its therapeutic efficacy. METHODS The GHS-R1a-activating potential of semagacestat and its synthetic precursor was assessed in an in vitro calcium mobilization assay in cells expressing the GHS-R1a receptor and compared with that of the endogenous peptide GHS-R1a agonist, acyl-ghrelin, as well as the non-peptidyl synthetic GHS-R1a agonist, MK0677. In addition, semagacestat-mediated cellular trafficking of the GHS-R1a receptor, expressed as an enhanced green fluorescent protein tagged fusion protein, was analysed. KEY FINDINGS Semagacestat and its precursor were shown to activate the GHS-R1a receptor, as demonstrated by an increased GHS-R1a-mediated intracellular calcium influx. Moreover, a synergistic GHS-R1a receptor activation was shown following a combined exposure to ghrelin and semagacestat. In addition, GHS-R1a receptor internalization was observed upon exposure to semagacestat and its precursor. CONCLUSION These data suggest a novel molecular mechanism of action for semagacestat via modest GHS-R1a receptor activation. Studies focusing on the relative functional consequence of such effects in vivo are now warranted.
Collapse
Affiliation(s)
- Harriët Schellekens
- Food for Health Ireland and School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
37
|
Schellekens H, van Oeffelen WEPA, Dinan TG, Cryan JF. Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J Biol Chem 2012; 288:181-91. [PMID: 23161547 DOI: 10.1074/jbc.m112.382473] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs), such as the ghrelin receptor (GHS-R1a), the melanocortin 3 receptor (MC(3)), and the serotonin 2C receptor (5-HT(2C)), are well known for their key role in the homeostatic control of food intake and energy balance. Ghrelin is the only known gut peptide exerting an orexigenic effect and has thus received much attention as an anti-obesity drug target. In addition, recent data have revealed a critical role for ghrelin in dopaminergic mesolimbic circuits involved in food reward signaling. This study investigates the downstream signaling consequences and ligand-mediated co-internalization following heterodimerization of the GHS-R1a receptor with the dopamine 1 receptor, as well as that of the GHS-R1a-MC(3) heterodimer. In addition, a novel heterodimer between the GHS-R1a receptor and the 5-HT(2C) receptor was identified. Interestingly, dimerization of the GHS-R1a receptor with the unedited 5-HT(2C)-INI receptor, but not with the partially edited 5-HT(2C)-VSV isoform, significantly reduced GHS-R1a agonist-mediated calcium influx, which was completely restored following pharmacological blockade of the 5-HT(2C) receptor. These results combined suggest a potential novel mechanism for fine-tuning GHS-R1a receptor-mediated activity via promiscuous dimerization of the GHS-R1a receptor with other G protein-coupled receptors involved in appetite regulation and food reward. These findings may uncover novel mechanisms of significant relevance for the future pharmacological targeting of the GHS-R1a receptor in the homeostatic regulation of energy balance and in hedonic appetite signaling, both of which play a significant role in the development of obesity.
Collapse
|
38
|
Held C, Plomer M, Hübner H, Meltretter J, Pischetsrieder M, Gmeiner P. Development of a Metabolically Stable Neurotensin Receptor 2 (NTS2) Ligand. ChemMedChem 2012; 8:75-81. [DOI: 10.1002/cmdc.201200376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/21/2012] [Indexed: 12/18/2022]
|
39
|
Els S, Schild E, Petersen PS, Kilian TM, Mokrosinski J, Frimurer TM, Chollet C, Schwartz TW, Holst B, Beck-Sickinger AG. An aromatic region to induce a switch between agonism and inverse agonism at the ghrelin receptor. J Med Chem 2012; 55:7437-49. [PMID: 22920150 DOI: 10.1021/jm300414b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ghrelin receptor displays a high constitutive activity suggested to be involved in the regulation of appetite and food intake. Here, we have created peptides with small changes in the core binding motif -wFw- of the hexapeptide KwFwLL-NH(2) that can swap the peptide behavior from inverse agonism to agonism, indicating the importance of this sequence. Introduction of β-(3-benzothienyl)-d-alanine (d-Bth), 3,3-diphenyl-d-alanine (d-Dip) and 1-naphthyl-d-alanine (d-1-Nal) at position 2 resulted in highly potent and efficient inverse agonists, whereas the substitution of d-tryptophane at position 4 with 1-naphthyl-d-alanine (d-1-Nal) and 2-naphthyl-d-alanine (d-2-Nal) induces agonism in functional assays. Competitive binding studies showed a high affinity of the inverse agonist K-(d-1-Nal)-FwLL-NH(2) at the ghrelin receptor. Moreover, mutagenesis studies of the receptor revealed key positions for the switch between inverse agonist and agonist response. Hence, only minor changes in the peptide sequence can decide between agonism and inverse agonism and have a major impact on the biological activity.
Collapse
Affiliation(s)
- Sylvia Els
- Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pekary AE, Sattin A. Rapid modulation of TRH and TRH-like peptide release in rat brain and peripheral tissues by ghrelin and 3-TRP-ghrelin. Peptides 2012; 36:157-67. [PMID: 22634385 DOI: 10.1016/j.peptides.2012.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 02/04/2023]
Abstract
Ghrelin is not only a modulator of feeding and energy expenditure but also regulates reproductive functions, CNS development and mood. Obesity and major depression are growing public health concerns which may derive, in part, from dysregulation of ghrelin feedback at brain regions regulating feeding and mood. We and others have previously reported that thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH(2)) and TRH-like peptides (pGlu-X-Pro-NH(2), where "X" can be any amino acid residue) have neuroprotective, antidepressant, anti-epileptic, analeptic, anti-ataxic, and anorectic properties. For this reason male Sprague-Dawley rats were injected ip with 0.1mg/kg rat ghrelin or 0.9mg/kg 3-Trp-rat ghrelin. Twelve brain regions: cerebellum, medulla oblongata, anterior cingulate, posterior cingulate, frontal cortex, nucleus accumbens, hypothalamus, entorhinal cortex, hippocampus, striatum, amygdala, piriform cortex and 5 peripheral tissues (adrenals, testes, epididymis, pancreas and prostate) were analyzed. Rapid and profound decreases in TRH and TRH-like peptide levels (increased release) occurred throughout brain and peripheral tissues following ip ghrelin. Because ghrelin is rapidly deacylated in vivo we also studied 3-Trp-ghrelin which cannot be deacylated. Significant increases in TRH and TRH-like peptide levels following 3-Trp-ghrelin, relative to those after ghrelin were observed in all brain regions except posterior cingulate and all peripheral tissues except prostate and testis. The rapid stimulation of TRH and TRH-like peptide release by ghrelin in contrast with the inhibition of such release by 3-Trp-TRH is consistent with TRH and TRH-like peptides modulating the downstream effects of both ghrelin and unacylated ghrelin.
Collapse
|
41
|
Stengel A, Taché Y. Yin and Yang - the Gastric X/A-like Cell as Possible Dual Regulator of Food Intake. J Neurogastroenterol Motil 2012; 18:138-49. [PMID: 22523723 PMCID: PMC3325299 DOI: 10.5056/jnm.2012.18.2.138] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/11/2012] [Indexed: 01/14/2023] Open
Abstract
Ingestion of food affects secretion of hormones from enteroendocrine cells located in the gastrointestinal mucosa. These hormones are involved in the regulation of various gastrointestinal functions including the control of food intake. One cell in the stomach, the X/A-like has received much attention over the past years due to the production of ghrelin. Until now, ghrelin is the only known orexigenic hormone that is peripherally produced and centrally acting to stimulate food intake. Subsequently, additional peptide products of this cell have been described including desacyl ghrelin, obestatin and nesfatin-1. Desacyl ghrelin seems to be involved in the regulation of food intake as well and could play a counter-balancing role of ghrelin's orexigenic effect. In contrast, the initially proposed anorexigenic action of obestatin did not hold true and therefore the involvement of this peptide in the regulation of feeding is questionable. Lastly, the identification of nesfatin-1 in the same cell in different vesicles than ghrelin extended the function of this cell type to the inhibition of feeding. Therefore, this X/A-like cell could play a unique role by encompassing yin and yang properties to mediate not only hunger but also satiety.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy, Charité, Campus Mitte, Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
42
|
Chollet C, Bergmann R, Pietzsch J, Beck-Sickinger AG. Design, Evaluation, and Comparison of Ghrelin Receptor Agonists and Inverse Agonists as Suitable Radiotracers for PET Imaging. Bioconjug Chem 2012; 23:771-84. [DOI: 10.1021/bc2005889] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ralf Bergmann
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | |
Collapse
|
43
|
Beyond PPARs and Metformin. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396492-2.00012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
44
|
Damian M, Marie J, Leyris JP, Fehrentz JA, Verdié P, Martinez J, Banères JL, Mary S. High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 2011; 287:3630-41. [PMID: 22117076 DOI: 10.1074/jbc.m111.288324] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite its central role in signaling and the potential therapeutic applications of inverse agonists, the molecular mechanisms underlying G protein-coupled receptor (GPCR) constitutive activity remain largely to be explored. In this context, ghrelin receptor GHS-R1a is a peculiar receptor in the sense that it displays a strikingly high, physiologically relevant, constitutive activity. To identify the molecular mechanisms responsible for this high constitutive activity, we have reconstituted a purified GHS-R1a monomer in a lipid disc. Using this reconstituted system, we show that the isolated ghrelin receptor per se activates G(q) in the absence of agonist, as assessed through guanosine 5'-O-(thiotriphosphate) binding experiments. The measured constitutive activity is similar in its extent to that observed in heterologous systems and in vivo. This is the first direct evidence for the high constitutive activity of the ghrelin receptor being an intrinsic property of the protein rather than the result of influence of its cellular environment. Moreover, we show that the isolated receptor in lipid discs recruits arrestin-2 in an agonist-dependent manner, whereas it interacts with μ-AP2 in the absence of ligand or in the presence of ghrelin. Of importance, these differences are linked to ligand-specific GHS-R1a conformations, as assessed by intrinsic fluorescence measurements. The distinct ligand requirements for the interaction of purified GHS-R1a with arrestin and AP2 provide a new rationale to the differences in basal and agonist-induced internalization observed in cells.
Collapse
Affiliation(s)
- Marjorie Damian
- Institut des Biomolécules Max Mousseron, CNRS UMR 5247, Université de Montpellier 1, Faculté de Pharmacie, 15 avenue Charles Flahaut, BP 14491, 34093 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Skibicka KP, Dickson SL. Ghrelin and food reward: the story of potential underlying substrates. Peptides 2011; 32:2265-73. [PMID: 21621573 DOI: 10.1016/j.peptides.2011.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
The incidence of obesity is increasing at an alarming rate and this worldwide epidemic represents a significant decrease in life span and quality of life of a large part of the affected population. Therefore an understanding of mechanisms underlying food overconsumption and obesity development is urgent and essential to find potential treatments. Research investigating mechanisms underlying obesity and the control of food intake has recently experienced a major shift in focus, from the brain's hypothalamus to additional important neural circuits controlling emotion, cognition and motivated behavior. Among them, the mesolimbic system, and the changes in reward and motivated behavior for food, emerge as new promising treatment targets. Furthermore, there is also growing appreciation of the impact of peripheral hormones that signal nutrition status to the mesolimbic areas, and especially the only known circulating orexigenic hormone, ghrelin. This review article provides a synthesis of recent evidence concerning the impact of manipulation of ghrelin and its receptor on models of food reward/food motivation behavior and the mesolimbic circuitry. Particular attention is given to the potential neurocircuitry and neurotransmitter systems downstream of ghrelin's effects on food reward.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, SE-405 30 Gothenburg, Sweden.
| | | |
Collapse
|
46
|
Einsiedel J, Held C, Hervet M, Plomer M, Tschammer N, Hübner H, Gmeiner P. Discovery of Highly Potent and Neurotensin Receptor 2 Selective Neurotensin Mimetics. J Med Chem 2011; 54:2915-23. [DOI: 10.1021/jm200006c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Cornelia Held
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Maud Hervet
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Manuel Plomer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|