1
|
Xu H, Li Y, Jiang Y, Wang J, Sun H, Wu W, LV Y, Liu S, Zhai Y, Tian L, Li L, Zhao Z. A Novel Defined Super-Enhancer Associated Gene Signature to Predict Prognosis in Patients With Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:827840. [PMID: 35774514 PMCID: PMC9237400 DOI: 10.3389/fgene.2022.827840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that can have profound differences in survival outcomes. A variety of powerful prognostic factors and models have been constructed; however, the development of more accurate prognosis prediction and targeted treatment for DLBCL still faces challenges. An explosion of research on super-enhancer (SE)–associated genes provide the possibility to use in prognostication for cancer patients. Here, we aimed to establish a novel effective prognostic model using SE-associated genes from DLBCL. Methods: A total of 1,105 DLBCL patients from the Gene Expression Omnibus database were included in this study and were divided into a training set and a validation set. A total of 11 SE-associated genes (BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and MYC) were initially screened and identified by the least absolute shrinkage and selection operator (Lasso) penalized Cox regression, univariate and multivariate Cox regression analysis. Finally, a risk score model based on these 11 genes was constructed. Results: Kaplan–Meier (K–M) curves showed that the low-risk group appeared to have better clinical survival outcomes. The excellent performance of the model was determined via time-dependent receiver operating characteristic (ROC) curves. A nomogram based on the polygenic risk score was further established to promote reliable prognostic prediction. This study proposed that the SE-associated-gene risk signature can effectively predict the response to chemotherapy in DLBCL patients. Conclusion: A novel and reliable SE-associated-gene signature that can effectively classify DLBCL patients into high-risk and low-risk groups in terms of overall survival was developed, which may assist clinicians in the treatment of DLBCL.
Collapse
Affiliation(s)
- Hong Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuhang Li
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanan Jiang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinhuan Wang
- Department of Oncology, Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huimeng Sun
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenqi Wu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yangyang LV
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Liu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yixin Zhai
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - LinYan Tian
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lanfang Li
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Lanfang Li, ; Zhigang Zhao,
| | - Zhigang Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Lanfang Li, ; Zhigang Zhao,
| |
Collapse
|
2
|
Martinez-Ramirez AS, Borders TL, Paul L, Schipma M, Wang X, Korobova F, Wright CV, Sosa-Pineda B. Specific Temporal Requirement of Prox1 Activity During Pancreatic Acinar Cell Development. GASTRO HEP ADVANCES 2022; 1:807-823. [PMID: 37829188 PMCID: PMC10569262 DOI: 10.1016/j.gastha.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND AIMS An interactive regulatory network assembled through the induction and downregulation of distinct transcription factors governs acinar cell maturation. Understanding how this network is built is relevant for protocols of directed pancreatic acinar differentiation. The murine transcription factor Prox1 is highly expressed in multipotent pancreatic progenitors and in various mature pancreatic cell types except for acinar cells. In this study, we investigated when is Prox1 expression terminated in developing acinar cells and the potential involvement of its activity in acinar cell specification/differentiation. We also investigated the effects of sustained Prox1 expression in acinar maturation and maintenance. METHODS Prox1 acinar expression was analyzed by immunofluorescence and confocal microscopy. Prox1-null embryos (Prox1GFPCre/Δ), Prox1AcOE transgenic mice, histologic and immunostaining methods, transmission electron microscopy, functional assays, and quantitative RNA and RNA-sequencing methods were used to investigate the effects of Prox1 functional deficiency and sustained Prox1 expression in acinar maturation and homeostasis. RESULTS Immunostaining results reveal transient Prox1 expression in newly committed embryonic acinar cells. RNA-sequencing demonstrate precocious expression of multiple "late" acinar genes in the pancreas of Prox1GFPCre/Δ embryos. Prox1AcOE transgenic mice carrying sustained Prox1 acinar expression have relatively normal pancreas development. In contrast, Prox1AcOE adult mice have severe pancreatic alterations involving reduced acinar gene expression, abnormal acinar secretory granules, acinar atrophy, increased endoplasmic reticulum stress, and mild chronic inflammation. CONCLUSION Prox1 transient expression in early acinar cells is necessary for correct sequential gene expression. Prox1 expression is terminated in developing acinar cells to complete maturation and to preserve homeostasis.
Collapse
Affiliation(s)
- Angelica S. Martinez-Ramirez
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas L. Borders
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Leena Paul
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xinkun Wang
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Farida Korobova
- Center for Advanced Microscopy, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher V. Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Beatriz Sosa-Pineda
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
3
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
5
|
Parte S, Nimmakayala RK, Batra SK, Ponnusamy MP. Acinar to ductal cell trans-differentiation: A prelude to dysplasia and pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188669. [PMID: 34915061 DOI: 10.1016/j.bbcan.2021.188669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer (PC) is the deadliest neoplastic epithelial malignancies and is projected to be the second leading cause of cancer-related mortality by 2024. Five years overall survival being ~10%, mortality and incidence rates are disturbing. Acinar to ductal cell metaplasia (ADM) encompasses cellular reprogramming and phenotypic switch-over, making it a cardinal event in tumor initiation. Differential cues and varied regulatory factors drive synchronous functions of metaplastic cell populations leading to multiple cell fates and physiological outcomes. ADM is a precursor for developing early pre-neoplastic lesions further progressing into PC due to oncogenic signaling. Hence delineating molecular events guiding tumor initiation may provide cues for regenerative medicine and precision onco-medicine. Therefore, understanding PC pathogenesis and early diagnosis are crucial. We hereby provide a timely overview of the current progress in this direction and future perspectives we foresee unfolding in the best interest of patient well-being and better clinical management of PC.
Collapse
Affiliation(s)
- Seema Parte
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
MECOM permits pancreatic acinar cell dedifferentiation avoiding cell death under stress conditions. Cell Death Differ 2021; 28:2601-2615. [PMID: 33762742 PMCID: PMC8408219 DOI: 10.1038/s41418-021-00771-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Maintenance of the pancreatic acinar cell phenotype suppresses tumor formation. Hence, repetitive acute or chronic pancreatitis, stress conditions in which the acinar cells dedifferentiate, predispose for cancer formation in the pancreas. Dedifferentiated acinar cells acquire a large panel of duct cell-specific markers. However, it remains unclear to what extent dedifferentiated acini differ from native duct cells and which genes are uniquely regulating acinar cell dedifferentiation. Moreover, most studies have been performed on mice since the availability of human cells is scarce. Here, we applied a non-genetic lineage tracing method of human pancreatic exocrine acinar and duct cells that allowed cell-type-specific gene expression profiling by RNA sequencing. Subsequent to this discovery analysis, one transcription factor that was unique for dedifferentiated acinar cells was functionally characterized. RNA sequencing analysis showed that human dedifferentiated acinar cells expressed genes in "Pathways of cancer" with a prominence of MECOM (EVI-1), a transcription factor that was not expressed by duct cells. During mouse embryonic development, pre-acinar cells also transiently expressed MECOM and in the adult mouse pancreas, MECOM was re-expressed when mice were subjected to acute and chronic pancreatitis, conditions in which acinar cells dedifferentiate. In human cells and in mice, MECOM expression correlated with and was directly regulated by SOX9. Mouse acinar cells that, by genetic manipulation, lose the ability to upregulate MECOM showed impaired cell adhesion, more prominent acinar cell death, and suppressed acinar cell dedifferentiation by limited ERK signaling. In conclusion, we transcriptionally profiled the two major human pancreatic exocrine cell types, acinar and duct cells, during experimental stress conditions. We provide insights that in dedifferentiated acinar cells, cancer pathways are upregulated in which MECOM is a critical regulator that suppresses acinar cell death by permitting cellular dedifferentiation.
Collapse
|
7
|
Streicher SA, Lim U, Park SL, Li Y, Sheng X, Hom V, Xia L, Pooler L, Shepherd J, Loo LWM, Darst BF, Highland HM, Polfus LM, Bogumil D, Ernst T, Buchthal S, Franke AA, Setiawan VW, Tiirikainen M, Wilkens LR, Haiman CA, Stram DO, Cheng I, Le Marchand L. Genome-wide association study of pancreatic fat: The Multiethnic Cohort Adiposity Phenotype Study. PLoS One 2021; 16:e0249615. [PMID: 34329319 PMCID: PMC8323875 DOI: 10.1371/journal.pone.0249615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023] Open
Abstract
Several studies have found associations between higher pancreatic fat content and adverse health outcomes, such as diabetes and the metabolic syndrome, but investigations into the genetic contributions to pancreatic fat are limited. This genome-wide association study, comprised of 804 participants with MRI-assessed pancreatic fat measurements, was conducted in the ethnically diverse Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS). Two genetic variants reaching genome-wide significance, rs73449607 on chromosome 13q21.2 (Beta = -0.67, P = 4.50x10-8) and rs7996760 on chromosome 6q14 (Beta = -0.90, P = 4.91x10-8) were associated with percent pancreatic fat on the log scale. Rs73449607 was most common in the African American population (13%) and rs79967607 was most common in the European American population (6%). Rs73449607 was also associated with lower risk of type 2 diabetes (OR = 0.95, 95% CI = 0.89-1.00, P = 0.047) in the Population Architecture Genomics and Epidemiology (PAGE) Study and the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), which included substantial numbers of non-European ancestry participants (53,102 cases and 193,679 controls). Rs73449607 is located in an intergenic region between GSX1 and PLUTO, and rs79967607 is in intron 1 of EPM2A. PLUTO, a lncRNA, regulates transcription of an adjacent gene, PDX1, that controls beta-cell function in the mature pancreas, and EPM2A encodes the protein laforin, which plays a critical role in regulating glycogen production. If validated, these variants may suggest a genetic component for pancreatic fat and a common etiologic link between pancreatic fat and type 2 diabetes.
Collapse
Affiliation(s)
- Samantha A. Streicher
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Unhee Lim
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - S. Lani Park
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Yuqing Li
- Department of Epidemiology and Biostatistics, University of California – San Francisco, San Francisco, California, United States of America
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Victor Hom
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lucy Xia
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loreall Pooler
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - John Shepherd
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Lenora W. M. Loo
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Burcu F. Darst
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Linda M. Polfus
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - David Bogumil
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Thomas Ernst
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Buchthal
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Adrian A. Franke
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Veronica Wendy Setiawan
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Maarit Tiirikainen
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Lynne R. Wilkens
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel O. Stram
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California – San Francisco, San Francisco, California, United States of America
| | - Loïc Le Marchand
- University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
8
|
Nyeng P, Heilmann S, Löf-Öhlin ZM, Pettersson NF, Hermann FM, Reynolds AB, Semb H. p120ctn-Mediated Organ Patterning Precedes and Determines Pancreatic Progenitor Fate. Dev Cell 2019; 49:31-47.e9. [PMID: 30853440 DOI: 10.1016/j.devcel.2019.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/13/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
Abstract
The mechanism of how organ shape emerges and specifies cell fate is not understood. Pancreatic duct and endocrine lineages arise in a spatially distinct domain from the acinar lineage. Whether these lineages are pre-determined or settle once these niches have been established remains unknown. Here, we reconcile these two apparently opposing models, demonstrating that pancreatic progenitors re-localize to establish the niche that will determine their ultimate fate. We identify a p120ctn-regulated mechanism for coordination of organ architecture and cellular fate mediated by differential E-cadherin based cell sorting. Reduced p120ctn expression is necessary and sufficient to re-localize a subset of progenitors to the peripheral tip domain, where they acquire an acinar fate. The same mechanism is used re-iteratively during endocrine specification, where it balances the choice between the alpha and beta cell fates. In conclusion, organ patterning is regulated by p120ctn-mediated cellular positioning, which precedes and determines pancreatic progenitor fate.
Collapse
Affiliation(s)
- Pia Nyeng
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Silja Heilmann
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Zarah M Löf-Öhlin
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Florian Malte Hermann
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Henrik Semb
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark; Institute of Translational Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
9
|
Sánchez-Arévalo Lobo VJ, Fernández LC, Carrillo-de-Santa-Pau E, Richart L, Cobo I, Cendrowski J, Moreno U, Del Pozo N, Megías D, Bréant B, Wright CV, Magnuson M, Real FX. c-Myc downregulation is required for preacinar to acinar maturation and pancreatic homeostasis. Gut 2018; 67:707-718. [PMID: 28159836 DOI: 10.1136/gutjnl-2016-312306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/02/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS c-Myc is highly expressed in pancreatic multipotent progenitor cells (MPC) and in pancreatic cancer. The transition from MPC to unipotent acinar progenitors is associated with c-Myc downregulation; a role for c-Myc in this process, and its possible relationship to a role in cancer, has not been established. DESIGN Using coimmunoprecipitation assays, we demonstrate that c-Myc and Ptf1a interact. Using reverse transcriptase qPCR, western blot and immunofluorescence, we show the erosion of the acinar programme. To analyse the genomic distribution of c-Myc and Ptf1a and the global transcriptomic profile, we used ChIP-seq and RNA-seq, respectively; validation was performed with ChIP-qPCR and RT-qPCR. Lineage-tracing experiments were used to follow the effect of c-Myc overexpression in preacinar cells on acinar differentiation. RESULTS c-Myc binds and represses the transcriptional activity of Ptf1a. c-Myc overexpression in preacinar cells leads to a massive erosion of differentiation. In adult Ela1-Myc mice: (1) c-Myc binds to Ptf1a, and Tcf3 is downregulated; (2) Ptf1a and c-Myc display partially overlapping chromatin occupancy but do not bind the same E-boxes; (3) at the proximal promoter of genes coding for digestive enzymes, we find reduced PTF1 binding and increased levels of repressive chromatin marks and PRC2 complex components. Lineage tracing of committed acinar precursors reveals that c-Myc overexpression does not restore multipotency but allows the persistence of a preacinar-like cell population. In addition, mutant KRas can lead to c-Myc overexpression and acinar dysregulation. CONCLUSIONS c-Myc repression during development is crucial for the maturation of preacinar cells, and c-Myc overexpression can contribute to pancreatic carcinogenesis through the induction of a dedifferentiated state.
Collapse
Affiliation(s)
- Victor J Sánchez-Arévalo Lobo
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Luis César Fernández
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Enrique Carrillo-de-Santa-Pau
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Laia Richart
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Isidoro Cobo
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Jaroslaw Cendrowski
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Ulisses Moreno
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | | | - Christopher V Wright
- Department of Cell & Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Mark Magnuson
- Department of Cell & Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
10
|
MIST1 and PTF1 Collaborate in Feed-Forward Regulatory Loops That Maintain the Pancreatic Acinar Phenotype in Adult Mice. Mol Cell Biol 2016; 36:2945-2955. [PMID: 27644326 DOI: 10.1128/mcb.00370-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/22/2016] [Accepted: 09/10/2016] [Indexed: 12/26/2022] Open
Abstract
Much remains unknown regarding the regulatory networks formed by transcription factors in mature, differentiated mammalian cells in vivo, despite many studies of individual DNA-binding transcription factors. We report a constellation of feed-forward loops formed by the pancreatic transcription factors MIST1 and PTF1 that govern the differentiated phenotype of the adult pancreatic acinar cell. PTF1 is an atypical basic helix-loop-helix transcription factor complex of pancreatic acinar cells and is critical to acinar cell fate specification and differentiation. MIST1, also a basic helix-loop-helix transcription factor, enhances the formation and maintenance of the specialized phenotype of professional secretory cells. The MIST1 and PTF1 collaboration controls a wide range of specialized cellular processes, including secretory protein synthesis and processing, exocytosis, and homeostasis of the endoplasmic reticulum. PTF1 drives Mist1 transcription, and MIST1 and PTF1 bind and drive the transcription of over 100 downstream acinar genes. PTF1 binds two canonical bipartite sites within a 0.7-kb transcriptional enhancer upstream of Mist1 that are essential for the activity of the enhancer in vivo MIST1 and PTF1 coregulate target genes synergistically or additively, depending on the target transcriptional enhancer. The frequent close binding proximity of PTF1 and MIST1 in pancreatic acinar cell chromatin implies extensive collaboration although the collaboration is not dependent on a stable physical interaction.
Collapse
|
11
|
Xiao X, Jones G, Sevilla WA, Stolz DB, Magee KE, Haughney M, Mukherjee A, Wang Y, Lowe ME. A Carboxyl Ester Lipase (CEL) Mutant Causes Chronic Pancreatitis by Forming Intracellular Aggregates That Activate Apoptosis. J Biol Chem 2016; 291:23224-23236. [PMID: 27650499 DOI: 10.1074/jbc.m116.734384] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/23/2022] Open
Abstract
Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP.
Collapse
Affiliation(s)
- Xunjun Xiao
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Gabrielle Jones
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Wednesday A Sevilla
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Kelsey E Magee
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Margaret Haughney
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Amitava Mukherjee
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Yan Wang
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Mark E Lowe
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| |
Collapse
|
12
|
Pérez-García A, Pérez-Durán P, Wossning T, Sernandez IV, Mur SM, Cañamero M, Real FX, Ramiro AR. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway. EMBO Mol Med 2016; 7:1327-36. [PMID: 26282919 PMCID: PMC4604686 DOI: 10.15252/emmm.201505348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms.
Collapse
Affiliation(s)
- Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Thomas Wossning
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Isora V Sernandez
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sonia M Mur
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
13
|
Epidemiology and Inherited Predisposition for Sporadic Pancreatic Adenocarcinoma. Hematol Oncol Clin North Am 2016; 29:619-40. [PMID: 26226901 DOI: 10.1016/j.hoc.2015.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Given the changing demographics of Western populations, the numbers of pancreatic cancer cases are projected to increase during the next decade. Diabetes, recent cigarette smoking, and excess body weight are the cancer's most consistent risk factors. The search for common and rare germline variants that influence risk of pancreatic cancer through genome-wide association studies and high-throughput-sequencing-based studies is underway and holds the promise of increasing the knowledge of variants and genes that play a role in inherited susceptibility of this disease. Research reported in this review has advanced the understanding of pancreatic cancer.
Collapse
|
14
|
Abstract
Although relatively rare, pancreatic tumors are highly lethal [1]. In the United States, an estimated 48,960 individuals will be diagnosed with pancreatic cancer and 40,560 will die from this disease in 2015 [1]. Globally, 337,872 new pancreatic cancer cases and 330,391 deaths were estimated in 2012 [2]. In contrast to most other cancers, mortality rates for pancreatic cancer are not improving; in the US, it is predicted to become the second leading cause of cancer related deaths by 2030 [3, 4]. The vast majority of tumors arise in the exocrine pancreas, with pancreatic ductal adenocarcinoma (PDAC) accounting for approximately 95% of tumors. Tumors arising in the endocrine pancreas (pancreatic neuroendocrine tumors) represent less than 5% of all pancreatic tumors [5]. Smoking, type 2 diabetes mellitus (T2D), obesity and pancreatitis are the most consistent epidemiological risk factors for pancreatic cancer [5]. Family history is also a risk factor for developing pancreatic cancer with odds ratios (OR) ranging from 1.7-2.3 for first-degree relatives in most studies, indicating that shared genetic factors may play a role in the etiology of this disease [6-9]. This review summarizes the current knowledge of germline pancreatic cancer risk variants with a special emphasis on common susceptibility alleles identified through Genome Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Silencing Mist1 Gene Expression Is Essential for Recovery from Acute Pancreatitis. PLoS One 2015; 10:e0145724. [PMID: 26717480 PMCID: PMC4696804 DOI: 10.1371/journal.pone.0145724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
Acinar cells of the exocrine pancreas are tasked with synthesizing, packaging and secreting vast quantities of pro-digestive enzymes to maintain proper metabolic homeostasis for the organism. Because the synthesis of high levels of hydrolases is potentially dangerous, the pancreas is prone to acute pancreatitis (AP), a disease that targets acinar cells, leading to acinar-ductal metaplasia (ADM), inflammation and fibrosis—events that can transition into the earliest stages of pancreatic ductal adenocarcinoma. Despite a wealth of information concerning the broad phenotype associated with pancreatitis, little is understood regarding specific transcriptional regulatory networks that are susceptible to AP and the role these networks play in acinar cell and exocrine pancreas responses. In this study, we examined the importance of the acinar-specific maturation transcription factor MIST1 to AP damage and organ recovery. Analysis of wild-type and Mist1 conditional null mice revealed that Mist1 gene transcription and protein accumulation were dramatically reduced as acinar cells underwent ADM alterations during AP episodes. To test if loss of MIST1 function was primarily responsible for the damaged status of the organ, mice harboring a Cre-inducible Mist1 transgene (iMist1) were utilized to determine if sustained MIST1 activity could alleviate AP damage responses. Unexpectedly, constitutive iMist1 expression during AP led to a dramatic increase in organ damage followed by acinar cell death. We conclude that the transient silencing of Mist1 expression is critical for acinar cells to survive an AP episode, providing cells an opportunity to suppress their secretory function and regenerate damaged cells. The importance of MIST1 to these events suggests that modulating key pancreas transcription networks could ease clinical symptoms in patients diagnosed with pancreatitis and pancreatic cancer.
Collapse
|
16
|
Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, Arslan AA, Beane-Freeman L, Bracci PM, Buring J, Canzian F, Duell EJ, Gallinger S, Giles GG, Goodman GE, Goodman PJ, Jacobs EJ, Kamineni A, Klein AP, Kolonel LN, Kulke MH, Li D, Malats N, Olson SH, Risch HA, Sesso HD, Visvanathan K, White E, Zheng W, Abnet CC, Albanes D, Andreotti G, Austin MA, Barfield R, Basso D, Berndt SI, Boutron-Ruault MC, Brotzman M, Büchler MW, Bueno-de-Mesquita HB, Bugert P, Burdette L, Campa D, Caporaso NE, Capurso G, Chung C, Cotterchio M, Costello E, Elena J, Funel N, Gaziano JM, Giese NA, Giovannucci EL, Goggins M, Gorman MJ, Gross M, Haiman CA, Hassan M, Helzlsouer KJ, Henderson BE, Holly EA, Hu N, Hunter DJ, Innocenti F, Jenab M, Kaaks R, Key TJ, Khaw KT, Klein EA, Kogevinas M, Krogh V, Kupcinskas J, Kurtz RC, LaCroix A, Landi MT, Landi S, Le Marchand L, Mambrini A, Mannisto S, Milne RL, Nakamura Y, Oberg AL, Owzar K, Patel AV, Peeters PHM, Peters U, Pezzilli R, Piepoli A, Porta M, Real FX, Riboli E, Rothman N, Scarpa A, Shu XO, Silverman DT, Soucek P, Sund M, Talar-Wojnarowska R, Taylor PR, Theodoropoulos GE, Thornquist M, Tjønneland A, Tobias GS, Trichopoulos D, Vodicka P, Wactawski-Wende J, Wentzensen N, Wu C, Yu H, Yu K, Zeleniuch-Jacquotte A, Hoover R, Hartge P, Fuchs C, Chanock SJ, Stolzenberg-Solomon RS, Amundadottir LT. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet 2014; 46:994-1000. [PMID: 25086665 PMCID: PMC4191666 DOI: 10.1038/ng.3052] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/10/2014] [Indexed: 02/06/2023]
Abstract
We performed a multistage genome-wide association study including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT, per-allele odds ratio (OR) = 0.79, 95% confidence interval (CI) 0.74-0.84, P = 3.0 × 10(-12)), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2, OR = 1.46, 95% CI 1.30-1.65, P = 1.1 × 10(-10)), rs9581943 at 13q12.2 (PDX1, OR = 1.15, 95% CI 1.10-1.20, P = 2.4 × 10(-9)) and rs16986825 at 22q12.1 (ZNRF3, OR = 1.18, 95% CI 1.12-1.25, P = 1.2 × 10(-8)). We identified an independent signal in exon 2 of TERT at the established region 5p15.33 (rs2736098, OR = 0.80, 95% CI 0.76-0.85, P = 9.8 × 10(-14)). We also identified a locus at 8q24.21 (rs1561927, P = 1.3 × 10(-7)) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies.
Collapse
Affiliation(s)
- Brian M Wolpin
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3]
| | - Cosmeri Rizzato
- 1] Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. [2]
| | - Peter Kraft
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA. [3]
| | - Charles Kooperberg
- 1] Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2]
| | - Gloria M Petersen
- 1] Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. [2]
| | - Zhaoming Wang
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alan A Arslan
- 1] Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York, USA. [2] Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA. [3] New York University Cancer Institute, New York, New York, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Julie Buring
- 1] Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric J Duell
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Graham G Giles
- 1] Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. [2] Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia. [3] Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Phyllis J Goodman
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Aruna Kamineni
- Group Health Research Institute, Seattle, Washington, USA
| | - Alison P Klein
- 1] Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Epidemiology, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Howard D Sesso
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Emily White
- 1] Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2] Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Wei Zheng
- 1] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa A Austin
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Richard Barfield
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Daniela Basso
- Department of Laboratory Medicine, University Hospital of Padova, Padua, Italy
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie-Christine Boutron-Ruault
- 1] INSERM, Centre for Research in Epidemiology and Population Health (CESP), Nutrition, Hormones and Women's Health Team, Villejuif, France. [2] University Paris Sud, UMRS 1018, Villejuif, France. [3] Institut Gustave Roussy (IGR), Villejuif, France
| | | | - Markus W Büchler
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - H Bas Bueno-de-Mesquita
- 1] National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. [2] Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, the Netherlands. [3] Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Laurie Burdette
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daniele Campa
- Division of Cancer Epidemiology, DKFZ, Heidelberg, Germany
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy
| | - Charles Chung
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michelle Cotterchio
- 1] Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada. [2] Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Eithne Costello
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Joanne Elena
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Niccola Funel
- Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy
| | - J Michael Gaziano
- 1] Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Massachusetts Veteran's Epidemiology, Research and Information Center, Geriatric Research Education and Clinical Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | - Nathalia A Giese
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Edward L Giovannucci
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Michael Goggins
- 1] Department of Pathology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. [2] Department of Medicine, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. [3] Department of Oncology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA
| | - Megan J Gorman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Myron Gross
- Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher A Haiman
- Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Manal Hassan
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kathy J Helzlsouer
- Prevention and Research Center, Mercy Medical Center, Baltimore, Maryland, USA
| | - Brian E Henderson
- Cancer Prevention, University of Southern California, Los Angeles, California, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David J Hunter
- 1] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard School of Public Health, Boston, Massachusetts, USA. [3] Harvard Medical School, Boston, Massachusetts, USA
| | - Federico Innocenti
- The University of North Carolina Eshelman School of Pharmacy, Center for Pharmacogenomics and Individualized Therapy, Lineberger Comprehensive Cancer Center, School of Medicine, Chapel Hill, North Carolina, USA
| | - Mazda Jenab
- International Agency for Research on Cancer, Lyon, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, DKFZ, Heidelberg, Germany
| | - Timothy J Key
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Manolis Kogevinas
- 1] Centre de Recerca en Epidemiologia Ambiental (CREAL), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain. [2] Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Spain. [3] Department of Nutrition, National School of Public Health, Athens, Greece
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Robert C Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Andrea LaCroix
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Maria T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Loic Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Andrea Mambrini
- Oncology Department, ASL1 Massa Carrara, Massa Carrara, Italy
| | - Satu Mannisto
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Roger L Milne
- 1] Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. [2] Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yusuke Nakamura
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ann L Oberg
- Alliance Statistics and Data Center, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Kouros Owzar
- Alliance Statistics and Data Center, Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Petra H M Peeters
- 1] Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands. [2] Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Ulrike Peters
- Department of Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Ada Piepoli
- Department of Gastroenterology, Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo, Italy
| | - Miquel Porta
- 1] Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Spain. [2] Department of Epidemiology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. [3] CIBERESP, Madrid, Spain
| | - Francisco X Real
- 1] Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain. [2] Departament de Ciències i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aldo Scarpa
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Xiao-Ou Shu
- 1] Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2] Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel Soucek
- Toxicogenomics Unit, Center for Toxicology and Safety, National Institute of Public Health, Prague, Czech Republic
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | | | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Mark Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anne Tjønneland
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dimitrios Trichopoulos
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. [3] Hellenic Health Foundation, Athens, Greece
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jean Wactawski-Wende
- Department of Social and Preventive Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chen Wu
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Zeleniuch-Jacquotte
- 1] Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA. [2] New York University Cancer Institute, New York, New York, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia Hartge
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Charles Fuchs
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3]
| | - Stephen J Chanock
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. [3]
| | - Rachael S Stolzenberg-Solomon
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2]
| | - Laufey T Amundadottir
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. [2]
| |
Collapse
|
17
|
Hale MA, Swift GH, Hoang CQ, Deering TG, Masui T, Lee YK, Xue J, MacDonald RJ. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development 2014; 141:3123-33. [PMID: 25063451 DOI: 10.1242/dev.109405] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype.
Collapse
Affiliation(s)
- Michael A Hale
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Galvin H Swift
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Chinh Q Hoang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tye G Deering
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Toshi Masui
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Youn-Kyoung Lee
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Jumin Xue
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Raymond J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
18
|
Cano DA, Soria B, Martín F, Rojas A. Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 2014; 71:2383-402. [PMID: 24221136 PMCID: PMC11113897 DOI: 10.1007/s00018-013-1510-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Abstract
The field of pancreas development has markedly expanded over the last decade, significantly advancing our understanding of the molecular mechanisms that control pancreas organogenesis. This growth has been fueled, in part, by the need to generate new therapeutic approaches for the treatment of diabetes. The creation of sophisticated genetic tools in mice has been instrumental in this progress. Genetic manipulation involving activation or inactivation of genes within specific cell types has allowed the identification of many transcription factors (TFs) that play critical roles in the organogenesis of the pancreas. Interestingly, many of these TFs act at multiple stages of pancreatic development, and adult organ function or repair. Interaction with other TFs, extrinsic signals, and epigenetic regulation are among the mechanisms by which TFs may play context-dependent roles during pancreas organogenesis. Many of the pancreatic TFs directly regulate each other and their own expression. These combinatorial interactions generate very specific gene regulatory networks that can define the different cell lineages and types in the developing pancreas. Here, we review recent progress made in understanding the role of pancreatic TFs in mouse pancreas formation. We also summarize our current knowledge of human pancreas development and discuss developmental pancreatic TFs that have been associated with human pancreatic diseases.
Collapse
Affiliation(s)
- David A. Cano
- Endocrinology Unit, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Bernat Soria
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Francisco Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
19
|
Flandez M, Cendrowski J, Cañamero M, Salas A, del Pozo N, Schoonjans K, Real FX. Nr5a2 heterozygosity sensitises to, and cooperates with, inflammation in KRas(G12V)-driven pancreatic tumourigenesis. Gut 2014; 63:647-55. [PMID: 23598351 DOI: 10.1136/gutjnl-2012-304381] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Nr5a2 participates in biliary acid metabolism and is a major regulator of the pancreatic exocrine programme. Single nucleotide polymorphisms in the vicinity of NR5A2 are associated with the risk of pancreatic ductal adenocarcinoma (PDAC). AIMS To determine the role of Nr5a2 in pancreatic homeostasis, damage-induced regeneration and mutant KRas-driven pancreatic tumourigenesis. DESIGN Nr5a2+/- and KRas(G12V);Ptf1a-Cre;Nr5a2+/- mice were used to investigate whether a full dose of Nr5a2 is required for normal pancreas development, recovery from caerulein-induced pancreatitis, and protection from tumour development. RESULTS Adult Nr5a2+/- mice did not display histological abnormalities in the pancreas but showed a more severe acute pancreatitis, increased acino-ductal metaplasia and impaired recovery from damage. This was accompanied by increased myeloid cell infiltration and proinflammatory cytokine gene expression, and hyperactivation of nuclear factor κb and signal transducer and activator of transcription 3 signalling pathways. Induction of multiple episodes of acute pancreatitis was associated with more severe damage and delayed regeneration. Inactivation of one Nr5a2 allele selectively in pancreatic epithelial cells was sufficient to cause impaired recovery from pancreatitis. In comparison with Nr5a2+/+ mice, KRas(G12V);Ptf1a(Cre/+);Nr5a2+/- mice showed a non-statistically significant increase in the area affected by preneoplastic lesions. However, a single episode of acute pancreatitis cooperated with loss of one Nr5a2 allele to accelerate KRas(G12V)-driven development of preneoplastic lesions. CONCLUSIONS A full Nr5a2 dose is required to restore pancreatic homeostasis upon damage and to suppress the KRas(G12V)-driven mouse pancreatic intraepithelial neoplasia progression, indicating that Nr5a2 is a novel pancreatic tumour suppressor. Nr5a2 could contribute to PDAC through a role in the recovery from pancreatitis-induced damage.
Collapse
Affiliation(s)
- Marta Flandez
- Epithelial Carcinogenesis Group, Molecular Pathology Programme, CNIO-Spanish National Cancer Research Center, , Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Martinelli P, Cañamero M, del Pozo N, Madriles F, Zapata A, Real FX. Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice. Gut 2013; 62:1481-8. [PMID: 23002247 DOI: 10.1136/gutjnl-2012-303328] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Previous studies have suggested an important role of the transcription factor Gata6 in endocrine pancreas, while GATA6 haploinsufficient inactivating mutations cause pancreatic agenesis in humans. We aimed to analyse the effects of Gata6 inactivation on pancreas development and function. DESIGN We deleted Gata6 in all epithelial cells in the murine pancreas at the onset of its development. Acinar proliferation, apoptosis, differentiation and exocrine functions were assessed using reverse transcriptase quantitative PCR (RT-qPCR), chromatin immunoprecipitation, immunohistochemistry and enzyme assays. Adipocyte transdifferentiation was assessed using electron microscopy and genetic lineage tracing. RESULTS Gata6 is expressed in all epithelial cells in the adult mouse pancreas but it is only essential for exocrine pancreas homeostasis: while dispensable for pancreatic development after e10.5, it is required for complete acinar differentiation, for establishment of polarity and for the maintenance of acinar cells in the adult. Gata6 regulates directly the promoter of genes coding for digestive enzymes and the transcription factors Rbpjl and Mist1. Upon pancreas-selective Gata6 inactivation, massive loss of acinar cells and fat replacement take place. This is accompanied by increased acinar apoptosis and proliferation, acinar-to-ductal metaplasia and adipocyte transdifferentiation. By contrast, the endocrine pancreas is spared. CONCLUSIONS Our data show that Gata6 is required for the complete differentiation of acinar cells through multiple transcriptional regulatory mechanisms. In addition, it is required for the maintenance of the adult acinar cell compartment. Our studies suggest that GATA6 alterations may contribute to diseases of the human adult exocrine pancreas.
Collapse
Affiliation(s)
- Paola Martinelli
- Epithelial Carcinogenesis Group, Molecular Pathology Programme, CNIO-Spanish National Cancer Research Centre, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Prévot PP, Augereau C, Simion A, Van den Steen G, Dauguet N, Lemaigre FP, Jacquemin P. Let-7b and miR-495 stimulate differentiation and prevent metaplasia of pancreatic acinar cells by repressing HNF6. Gastroenterology 2013; 145:668-78.e3. [PMID: 23684747 DOI: 10.1053/j.gastro.2013.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Diseases of the exocrine pancreas are often associated with perturbed differentiation of acinar cells. MicroRNAs (miRNAs) regulate pancreas development, yet little is known about their contribution to acinar cell differentiation. We aimed to identify miRNAs that promote and control the maintenance of acinar differentiation. METHODS We studied mice with pancreas- or acinar-specific inactivation of Dicer (Foxa3-Cre/Dicer(loxP/-) mice), combined (or not) with inactivation of hepatocyte nuclear factor (HNF) 6 (Foxa3-Cre/Dicer(loxP/-)/Hnf6-/- mice). The role of specific miRNAs in acinar differentiation was investigated by transfecting cultured cells with miRNA mimics or inhibitors. Pancreatitis-induced metaplasia was investigated in mice after administration of cerulein. RESULTS Inhibition of miRNA synthesis in acini by inactivation of Dicer and pancreatitis-induced metaplasia were associated with repression of acinar differentiation and with induction of HNF6 and hepatic genes. The phenotype of Dicer-deficient acini depends on the induction of HNF6; overexpression of this factor in developing acinar cells is sufficient to repress acinar differentiation and to induce hepatic genes. Let-7b and miR-495 repress HNF6 and are expressed in developing acini. Their expression is inhibited in Dicer-deficient acini, as well as in pancreatitis-induced metaplasia. In addition, inhibiting let-7b and miR-495 in acinar cells results in similar effects to those found in Dicer-deficient acini and metaplastic cells, namely induction of HNF6 and hepatic genes and repression of acinar differentiation. CONCLUSIONS Let-7b, miR-495, and their targets constitute a gene network that is required to establish and maintain pancreatic acinar cell differentiation. Additional studies of this network will increase our understanding of pancreatic diseases.
Collapse
|
22
|
ICAT is a novel Ptf1a interactor that regulates pancreatic acinar differentiation and displays altered expression in tumours. Biochem J 2013; 451:395-405. [PMID: 23339455 DOI: 10.1042/bj20120873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The PTF1 (pancreas transcription factor 1) complex is a master regulator of differentiation of acinar cells, responsible for the production of digestive enzymes. In the adult pancreas, PTF1 contains two pancreas-restricted transcription factors: Ptf1a and Rbpjl. PTF1 recruits P/CAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] which acetylates Ptf1a and enhances its transcriptional activity. Using yeast two-hybrid screening, we identified ICAT (inhibitor of β-catenin and Tcf4) as a novel Ptf1a interactor. ICAT regulates the Wnt pathway and cell proliferation. We validated and mapped the ICAT-Ptf1a interaction in vitro and in vivo. We demonstrated that, following its overexpression in acinar tumour cells, ICAT regulates negatively PTF1 activity in vitro and in vivo. This effect was independent of β-catenin and was mediated by direct binding to Ptf1a and displacement of P/CAF. ICAT also modulated the expression of Pdx1 and Sox9 in acinar tumour cells. ICAT overexpression reduced the interaction of Ptf1a with Rbpjl and P/CAF and impaired Ptf1a acetylation by P/CAF. ICAT did not affect the subcellular localization of Ptf1a. In human pancreas, ICAT displayed a cell-type-specific distribution; in acinar and endocrine cells, it was nuclear, whereas in ductal cells, it was cytoplasmic. In ductal adenocarcinomas, ICAT displayed mainly a nuclear or mixed distribution and the former was an independent marker of survival. ICAT regulates acinar differentiation and it does so through a novel Wnt pathway-independent mechanism that may contribute to pancreatic disease.
Collapse
|
23
|
Wauters E, Sanchez-Arévalo Lobo VJ, Pinho AV, Mawson A, Herranz D, Wu J, Cowley MJ, Colvin EK, Njicop EN, Sutherland RL, Liu T, Serrano M, Bouwens L, Real FX, Biankin AV, Rooman I. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer. Cancer Res 2013; 73:2357-67. [PMID: 23370328 DOI: 10.1158/0008-5472.can-12-3359] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Elke Wauters
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tourlakis ME, Zhong J, Gandhi R, Zhang S, Chen L, Durie PR, Rommens JM. Deficiency of Sbds in the mouse pancreas leads to features of Shwachman-Diamond syndrome, with loss of zymogen granules. Gastroenterology 2012; 143:481-92. [PMID: 22510201 DOI: 10.1053/j.gastro.2012.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 04/01/2012] [Accepted: 04/10/2012] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. METHODS Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. RESULTS Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. CONCLUSIONS We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function.
Collapse
Affiliation(s)
- Marina E Tourlakis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Direnzo D, Hess DA, Damsz B, Hallett JE, Marshall B, Goswami C, Liu Y, Deering T, Macdonald RJ, Konieczny SF. Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells. Gastroenterology 2012; 143:469-80. [PMID: 22510200 PMCID: PMC3664941 DOI: 10.1053/j.gastro.2012.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Early embryogenesis involves cell fate decisions that define the body axes and establish pools of progenitor cells. Development does not stop once lineages are specified; cells continue to undergo specific maturation events, and changes in gene expression patterns lead to their unique physiological functions. Secretory pancreatic acinar cells mature postnatally to synthesize large amounts of protein, polarize, and communicate with other cells. The transcription factor MIST1 is expressed by only secretory cells and regulates maturation events. MIST1-deficient acinar cells in mice do not establish apical-basal polarity, properly position zymogen granules, or communicate with adjacent cells, disrupting pancreatic function. We investigated whether MIST1 directly induces and maintains the mature phenotype of acinar cells. METHODS We analyzed the effects of Cre-mediated expression of Mist1 in adult Mist1-deficient (Mist1(KO)) mice. Pancreatic tissues were collected and analyzed by light and electron microscopy, immunohistochemistry, real-time polymerase chain reaction analysis, and chromatin immunoprecipitation. Primary acini were isolated from mice and analyzed in amylase secretion assays. RESULTS Induced expression of Mist1 in adult Mist1(KO) mice restored wild-type gene expression patterns in acinar cells. The acinar cells changed phenotypes, establishing apical-basal polarity, increasing the size of zymogen granules, reorganizing the cytoskeletal network, communicating intercellularly (by synthesizing gap junctions), and undergoing exocytosis. CONCLUSIONS The exocrine pancreas of adult mice can be remodeled by re-expression of the transcription factor MIST1. MIST1 regulates acinar cell maturation and might be used to repair damaged pancreata in patients with pancreatic disorders.
Collapse
Affiliation(s)
- Daniel Direnzo
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - David A. Hess
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Barbara Damsz
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Judy E. Hallett
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Brett Marshall
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Chirayu Goswami
- Laboratory for Computational Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Laboratory for Computational Genomics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tye Deering
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raymond J. Macdonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen F. Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
26
|
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012401. [PMID: 22587935 DOI: 10.1101/cshperspect.a012401] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5329, USA
| | | | | |
Collapse
|
27
|
Mastracci TL, Sussel L. The endocrine pancreas: insights into development, differentiation, and diabetes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:609-28. [PMID: 23799564 PMCID: PMC3420142 DOI: 10.1002/wdev.44] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the developing embryo, appropriate patterning of the endoderm fated to become pancreas requires the spatial and temporal coordination of soluble factors secreted by the surrounding tissues. Once pancreatic progenitor cells are specified in the developing gut tube epithelium, epithelial-mesenchymal interactions, as well as a cascade of transcription factors, subsequently delineate three distinct lineages, including endocrine, exocrine, and ductal cells. Simultaneous morphological changes, including branching, vascularization, and proximal organ development, also influence the process of specification and differentiation. Decades of research using mouse genetics have uncovered many of the key factors involved in pancreatic cell fate decisions. When pancreas development or islet cell functions go awry, due to mutations in genes important for proper organogenesis and development, the result can lead to a common pancreatic affliction, diabetes mellitus. Current treatments for diabetes are adequate but not curative. Therefore, researchers are utilizing the current understanding of normal embryonic pancreas development in vivo, to direct embryonic stem cells toward a pancreatic fate with the goal of transplanting these in vitro generated 'islets' into patients. Mimicking development in vitro has proven difficult; however, significant progress has been made and the current differentiation protocols are becoming more efficient. The continued partnership between developmental biologists and stem cell researchers will guarantee that the in vitro generation of insulin-producing β cells is a possible therapeutic option for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Lori Sussel
- Department of Genetics and Development, Columbia University
| |
Collapse
|
28
|
Reichert M, Rustgi AK. Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest 2011. [PMID: 22133881 DOI: 10.1172/jci57131.4572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pancreas is a complex organ comprised of three critical cell lineages: islet (endocrine), acinar, and ductal. This review will focus upon recent insights and advances in the biology of pancreatic ductal cells. In particular, emphasis will be placed upon the regulation of ductal cells by specific transcriptional factors during development as well as the underpinnings of acinar-ductal metaplasia as an important adaptive response during injury and regeneration. We also address the potential contributions of ductal cells to neoplastic transformation, specifically in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Maximilian Reichert
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
29
|
Reichert M, Rustgi AK. Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest 2011; 121:4572-8. [PMID: 22133881 DOI: 10.1172/jci57131] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pancreas is a complex organ comprised of three critical cell lineages: islet (endocrine), acinar, and ductal. This review will focus upon recent insights and advances in the biology of pancreatic ductal cells. In particular, emphasis will be placed upon the regulation of ductal cells by specific transcriptional factors during development as well as the underpinnings of acinar-ductal metaplasia as an important adaptive response during injury and regeneration. We also address the potential contributions of ductal cells to neoplastic transformation, specifically in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Maximilian Reichert
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
30
|
Mastracci TL, Wilcox CL, Arnes L, Panea C, Golden JA, May CL, Sussel L. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol 2011; 359:1-11. [PMID: 21856296 PMCID: PMC3192309 DOI: 10.1016/j.ydbio.2011.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/29/2022]
Abstract
Nkx2.2 and Arx are essential pancreatic transcription factors. Nkx2.2 is necessary for the appropriate specification of the islet alpha, beta, PP and epsilon cell lineages, whereas Arx is required to form the correct ratio of alpha, beta, delta and PP cells. To begin to understand the cooperative functions of Nkx2.2 and Arx in the development of endocrine cell lineages, we generated progenitor cell-specific deletions of Arx on the Nkx2.2 null background. The analysis of these mutants demonstrates that expansion of the ghrelin cell population in the Nkx2.2 null pancreas is not dependent on Arx; however, Arx is necessary for the upregulation of ghrelin mRNA levels in Nkx2.2 mutant epsilon cells. Alternatively, in the absence of Arx, delta cell numbers are increased and Nkx2.2 becomes essential for the repression of somatostatin gene expression. Interestingly, the dysregulation of ghrelin and somatostatin expression in the Nkx2.2/Arx compound mutant (Nkx2.2(null);Arx(Δpanc)) results in the appearance of ghrelin+/somatostatin+ co-expressing cells. These compound mutants also revealed a genetic interaction between Nkx2.2 and Arx in the regulation of the PP cell lineage; the PP cell population is reduced when Nkx2.2 is deleted but is restored back to wildtype numbers in the Nkx2.2(null);Arx(Δpanc) mutant. Moreover, conditional deletion of Arx in specific pancreatic cell populations established that the functions of Arx are necessary in the Neurog3+ endocrine progenitors. Together, these experiments identify novel genetic interactions between Nkx2.2 and Arx within the endocrine progenitor cells that ensure the correct specification and regulation of endocrine hormone-producing cells.
Collapse
Affiliation(s)
- Teresa L Mastracci
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA
| | - Crystal L Wilcox
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis Arnes
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA
| | - Casandra Panea
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA
| | - Jeffrey A Golden
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Lori Sussel
- Department of Genetics and Development, Russ Berrie Medical Pavilion, Columbia University, 1150 St. Nicholas Ave., New York, NY 10032, USA.
| |
Collapse
|