1
|
Akbar N, Razzaq SS, Salim A, Haneef K. Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration. J Cardiovasc Transl Res 2024; 17:505-522. [PMID: 37875715 DOI: 10.1007/s12265-023-10449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart regeneration are reviewed.
Collapse
Affiliation(s)
- Nukhba Akbar
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
2
|
Pielok A, Kępska M, Steczkiewicz Z, Grobosz S, Bourebaba L, Marycz K. Equine Hoof Progenitor Cells Display Increased Mitochondrial Metabolism and Adaptive Potential to a Highly Pro-Inflammatory Microenvironment. Int J Mol Sci 2023; 24:11446. [PMID: 37511204 PMCID: PMC10379971 DOI: 10.3390/ijms241411446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Medicinal signaling cells (MSC) exhibit distinct molecular signatures and biological abilities, depending on the type of tissue they originate from. Recently, we isolated and described a new population of stem cells residing in the coronary corium, equine hoof progenitor cells (HPCs), which could be a new promising cell pool for the treatment of laminitis. Therefore, this study aimed to compare native populations of HPCs to well-established adipose-derived stem cells (ASCs) in standard culture conditions and in a pro-inflammatory milieu to mimic a laminitis condition. ASCs and HPCs were either cultured in standard conditions or subjected to priming with a cytokines cocktail mixture. The cells were harvested and analyzed for expression of key markers for phenotype, mitochondrial metabolism, oxidative stress, apoptosis, and immunomodulation using RT-qPCR. The morphology and migration were assessed based on fluorescent staining. Microcapillary cytometry analyses were performed to assess the distribution in the cell cycle, mitochondrial membrane potential, and oxidative stress. Native HPCs exhibited a similar morphology to ASCs, but a different phenotype. The HPCs possessed lower migration capacity and distinct distribution across cell cycle phases. Native HPCs were characterized by different mitochondrial dynamics and oxidative stress levels. Under standard culture conditions, HPCs displayed different expression patterns of apoptotic and immunomodulatory markers than ASCs, as well as distinct miRNA expression. Interestingly, after priming with the cytokines cocktail mixture, HPCs exhibited different mitochondrial dynamics than ASCs; however, the apoptosis and immunomodulatory marker expression was similar in both populations. Native ASCs and HPCs exhibited different baseline expressions of markers involved in mitochondrial dynamics, the oxidative stress response, apoptosis and inflammation. When exposed to a pro-inflammatory microenvironment, ASCs and HPCs differed in the expression of mitochondrial condition markers and chosen miRNAs.
Collapse
Affiliation(s)
- Ariadna Pielok
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Martyna Kępska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Zofia Steczkiewicz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Sylwia Grobosz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| |
Collapse
|
3
|
Zhao S, Liu Y, Wang J, Wen Y, Wu B, Yang D, Wang G, Xiu G, Ling B, Du D, Xu J. ADSCs increase the autophagy of chondrocytes through decreasing miR-7-5p in Osteoarthritis rats by targeting ATG4A. Int Immunopharmacol 2023; 120:110390. [PMID: 37262955 DOI: 10.1016/j.intimp.2023.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly degenerative joint disease, mainly companying with progressive destruction of articular cartilage. Adipose-derived stromal cells (ADSCs) therapy enhances articular cartilage repair, extracellular matrix (ECM) synthesis and attenuates joints inflammation, but specific mechanisms of therapeutic benefit remain poorly understood. This study aimed to clarify the therapeutic effects and mechanisms of ADSCs on cartilage damage in the keen joint of OA rat model. METHODS Destabilization of the medial meniscus (DMM) and anterior cruciate ligament transection (ACLT) surgery-induced OA rats were treated with allogeneic ADSCs by intra-articular injections for 6 weeks. The protective effect of ADSCs in vivo was measured using Safranin O and fast green staining, immunofluorescence and western blot analysis. Meanwhile, the miRNA-7-5p (miR-7-5p) expression was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The mechanism of increased autophagy with ADSCs addition through decreasing miR-7-5p was revealed using oligonucleotides, and adenovirus in rat chondrocytes. The luciferase reporter assay revealed the molecular role of miR-7-5p and autophagy related 4A (ATG4A). The substrate of mTORC1 pathway: (p-)p70S6 and (p-)S6 in OA models with ADSCs addition were detected by western blotting. RESULTS The ADSCs treatment repaired the articular cartilage and maintained chondrocytes ECM homeostasis through modulating chondrocytes autophagy in the OA model, indicators of the change of autophagic proteins expression and autophagic flux. Meanwhile, the increased autophagy induced by ADSCs treatment was closely related to the decreased expression of host-derived miR-7-5p, a negative modulator of OA progression. Functional genomics (overexpression of genes) in vitro studies demonstrate the inhibition of host-derived miR-7-5p in mediating the benefit of ADSCs administration in OA model. Then ATG4A was defined as a target gene of miR-7-5p, and the negative relation between miR-7-5p and ATG4A was investigated in the OA model treated with ADSCs. Furthermore, miR-7-5p mediated chondrocyte autophagy by targeting ATG4A in the OA model treated with ADSCs was confirmed with the rescue trial of ATG4A/miR-7-5p overexpression on rat chondrocyte. Finally, the mTORC1 signaling pathways mediated by host-derived miR-7-5p with ADSCs treatment were decreased in OA rats. CONCLUSIONS ADSCs promote the chondrocytes autophagy by decreasing miR-7-5p in articular cartilage by targeting ATG4A and a potential role for ADSCs based therapeutics for preventing of articular cartilage destruction and extracellular matrix (ECM) degradation in OA.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu'e Liu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Thomaidou AC, Goulielmaki M, Tsintarakis A, Zoumpourlis P, Toya M, Christodoulou I, Zoumpourlis V. miRNA-Guided Regulation of Mesenchymal Stem Cells Derived from the Umbilical Cord: Paving the Way for Stem-Cell Based Regeneration and Therapy. Int J Mol Sci 2023; 24:ijms24119189. [PMID: 37298143 DOI: 10.3390/ijms24119189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The human body is an abundant source of multipotent cells primed with unique properties that can be exploited in a multitude of applications and interventions. Mesenchymal stem cells (MSCs) represent a heterogenous population of undifferentiated cells programmed to self-renew and, depending on their origin, differentiate into distinct lineages. Alongside their proven ability to transmigrate toward inflammation sites, the secretion of various factors that participate in tissue regeneration and their immunoregulatory function render MSCs attractive candidates for use in the cytotherapy of a wide spectrum of diseases and conditions, as well as in different aspects of regenerative medicine. In particular, MSCs that can be found in fetal, perinatal, or neonatal tissues possess additional capabilities, including predominant proliferation potential, increased responsiveness to environmental stimuli, and hypoimmunogenicity. Since microRNA (miRNA)-guided gene regulation governs multiple cellular functions, miRNAs are increasingly being studied in the context of driving the differentiation process of MSCs. In the present review, we explore the mechanisms of miRNA-directed differentiation of MSCs, with a special focus on umbilical cord-derived mesenchymal stem cells (UCMSCs), and we identify the most relevant miRNAs and miRNA sets and signatures. Overall, we discuss the potent exploitations of miRNA-driven multi-lineage differentiation and regulation of UCMSCs in regenerative and therapeutic protocols against a range of diseases and/or injuries that will achieve a meaningful clinical impact through maximizing treatment success rates, while lacking severe adverse events.
Collapse
Affiliation(s)
- Arsinoe C Thomaidou
- Laboratory of Clinical Virology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Marialena Toya
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
5
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
6
|
Vail DJ, Somoza RA, Caplan AI. MicroRNA Regulation of Bone Marrow Mesenchymal Stem Cell Chondrogenesis: Toward Articular Cartilage. Tissue Eng Part A 2022; 28:254-269. [PMID: 34328786 PMCID: PMC8971999 DOI: 10.1089/ten.tea.2021.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of a clinically useful engineered cartilage is an outstanding and unmet clinical need. High-throughput RNA sequencing provides a means of characterizing the molecular phenotype of populations of cells and can be leveraged to better understand differences among source cells, derivative engineered tissues, and target phenotypes. In this study, small RNA sequencing is utilized to comprehensively characterize the microRNA transcriptomes (miRNomes) of native human neonatal articular cartilage and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) differentiating into cartilage organoids, contrasting the microRNA regulation of engineered cartilage with that of a promising target phenotype. Five dominant microRNAs are upregulated during cartilage organoid differentiation and disproportionately regulate transcription factors: miR-148a-3p, miR-140-3p, miR-27b-3p, miR-140-5p, and miR-181a-5p. Two microRNAs that dominate the miRNomes of hBM-MSCs, miR-21-5p and miR-143-3p, persist throughout the differentiation process and may limit the ability of these cells to differentiate into an engineered cartilage resembling target native articular cartilage. By using predictive bioinformatics tools and antagomir inhibition, these persistent microRNAs are shown to destabilize the mRNA of genes with known or potential roles in cartilage biology including FGF18, TGFBR2, TET1, STOX2, ARAP2, N4BP2L1, LHX9, NFIA, and RPS6KA5. These results shed light on the extent to which only a few microRNAs contribute to the complex regulatory environment of hBM-MSCs for engineered tissues. Impact statement MicroRNAs are emerging as important controlling elements in the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). By using a robust bioinformatic approach and further validation in vitro, here we provide a comprehensive characterization of the microRNA transcriptomes (miRNomes) of a commonly studied and clinically promising source of multipotent cells (hBM-MSCs), a gold standard model of in vitro chondrogenesis (hBM-MSC-derived cartilage organoids), and an attractive in vivo target phenotype for clinically useful engineered cartilage (neonatal articular cartilage). These analyses highlighted a specific set of microRNAs involved in the chondrogenic program that could be manipulated to acquire a more robust articular cartilage-like phenotype. This characterization provides researchers in the cartilage tissue engineering field a useful atlas with which to contextualize microRNA involvement in complex differentiation pathways.
Collapse
Affiliation(s)
- Daniel J. Vail
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Address correspondence to: Daniel J. Vail, PhD, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Biomedical Research Building, Room 647C, Cleveland, OH 44106, USA
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I. Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, Aschner M, Pourghadamyari H, Mollazadeh S, Mirzaei H. miRNA-148b and its role in various cancers. Epigenomics 2021; 13:1939-1960. [PMID: 34852637 DOI: 10.2217/epi-2021-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
miRNA-148b belongs to the family miR-148/-152, with significant differences in nonseed sequences, which can target diverse mRNA molecules. Reportedly, it may undergo deregulation in lung and ovarian cancers and downregulation in gastric, pancreatic and colon cancers. However, there is a need for further studies to better characterize its mechanism of action and in different types of cancer. In this review, we focus on the aberrant expression of miR-148b in different cancer types and highlight its main target genes and signaling pathways, as well as its pathophysiologic role and relevance to tumorigenesis in several types of cancer.
Collapse
Affiliation(s)
- Najmeh Dorraki
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Sadegh Ahmadi
- Department of Genetics, Faculty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Arash Salmani Nejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Mollazadeh
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Zhao YJ, Gao ZC, He XJ, Li J. The let-7f-5p-Nme4 pathway mediates tumor necrosis factor α-induced impairment in osteogenesis of bone marrow-derived mesenchymal stem cells. Biochem Cell Biol 2021; 99:488-498. [PMID: 34297624 DOI: 10.1139/bcb-2020-0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although tumor necrosis factor α (TNF-α)-mediated inflammation significantly impacts osteoporosis, the mechanisms underlying the osteogenic differentiation defects of bone marrow-derived mesenchymal stem cells (BM-MSCs) caused by TNF-α remain poorly understood. We found that TNF-α stimulation of murine BM-MSCs significantly upregulated the expression levels of several microRNAs (miRNAs), including let-7f-5p, but this increase was significantly reversed by treatment with the kinase inhibitor BAY 11-7082. To study gain- or loss of function, we transfected cells with an miRNA inhibitor or miRNA mimic. We then demonstrated that let-7f-5p impaired osteogenic differentiation of BM-MSCs in the absence and presence of TNF-α, as evidenced by alkaline phosphatase and alizarin red staining as well as quantitative assays of the mRNA levels of bone formation marker genes in differentiated BM-MSCs. Moreover, let-7f-5p targets the 3' untranslated region of Nucleoside diphosphate kinase 4 (Nme4) mRNA and negatively regulates Nme4 expression in mouse BM-MSCs. Ectopic expression of Nme4 completely reversed the inhibitory effects of the let-7f-5p mimic on osteogenic differentiation of mouse BM-MSCs. Furthermore, inhibition of let-7f-5p or overexpression of Nme4 in BM-MSCs restored in-vivo bone formation in an ovariectomized animal model. Collectively, our work indicates that let-7f-5p is involved in TNF-α-mediated reduction of BM-MSC osteogenesis via targeting Nme4.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng-Chao Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi-Jing He
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Li
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
9
|
Ektesabi AM, Mori K, Tsoporis JN, Vaswani CM, Gupta S, Walsh C, Varkouhi AK, Mei SH, Stewart DJ, Liles WC, Marshall JC, Hu P, Parker TG, dos Santos CC. Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis. Shock 2021; 56:133-141. [PMID: 33378320 PMCID: PMC8240645 DOI: 10.1097/shk.0000000000001701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Sepsis-induced myocardial dysfunction (MD) is an important pathophysiological feature of multiorgan failure caused by a dysregulated host response to infection. Patients with MD continue to be managed in intensive care units with limited understanding of the molecular mechanisms controlling disease pathogenesis. Emerging evidences support the use of mesenchymal stem/stromal cell (MSC) therapy for treating critically ill septic patients. Combining this with the known role that microRNAs (miRNAs) play in reversing sepsis-induced myocardial-dysfunction, this study sought to investigate how MSC administration alters miRNA expression in the heart. Mice were randomized to experimental polymicrobial sepsis induced by cecal ligation and puncture (CLP) or sham surgery, treated with either MSCs (2.5 × 105) or placebo (saline). Twenty-eight hours post-intervention, RNA was collected from whole hearts for transcriptomic and microRNA profiling. The top microRNAs differentially regulated in hearts by CLP and MSC administration were used to generate a putative mRNA-miRNA interaction network. Key genes, termed hub genes, within the network were then identified and further validated in vivo. Network analysis and RT-qPCR revealed that septic hearts treated with MSCs resulted in upregulation of five miRNAs, including miR-187, and decrease in three top hit putative hub genes (Itpkc, Lrrc59, and Tbl1xr1). Functionally, MSC administration decreased inflammatory and apoptotic pathways, while increasing cardiac-specific structural and functional, gene expression. Taken together, our data suggest that MSC administration regulates host-derived miRNAs production to protect cardiomyocytes from sepsis-induced MD.
Collapse
Affiliation(s)
- Amin M. Ektesabi
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Keisuke Mori
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Chirag M. Vaswani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sahil Gupta
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Chris Walsh
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amir K. Varkouhi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Shirley H.J. Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J. Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - W. Conrad Liles
- Department of Medicine and Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, Washington
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas G. Parker
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Claudia C. dos Santos
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, Dos Santos CC. Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Rev Rep 2021; 16:812-827. [PMID: 32671645 PMCID: PMC7363458 DOI: 10.1007/s12015-020-10000-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immunomodulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genetically modified by application of different techniques and tools leading to overexpress or inhibit genes related to their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.
Collapse
Affiliation(s)
- Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology (NJIT), Newark, NJ, 07102, USA
| | - Ana Paula Teixeira Monteiro
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James N Tsoporis
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Claudia C Dos Santos
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada. .,Interdepartmental Division of Critical Care, St. Michael's Hospital/University of Toronto, 30 Bond Street, Room 4-008, Toronto, ON, M5B 1WB, Canada.
| |
Collapse
|
11
|
Liubaviciute A, Ivaskiene T, Biziuleviciene G. Modulated mesenchymal stromal cells improve skin wound healing. Biologicals 2020; 67:1-8. [DOI: 10.1016/j.biologicals.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
|
12
|
Younes N, Zhou L, Amatullah H, Mei SHJ, Herrero R, Lorente JA, Stewart DJ, Marsden P, Liles WC, Hu P, Dos Santos CC. Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax 2020; 75:556-567. [PMID: 32546573 PMCID: PMC7361025 DOI: 10.1136/thoraxjnl-2019-213561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 01/11/2023]
Abstract
Introduction Mesenchymal stromal cell (MSC) therapy mitigates lung injury and improves survival in murine models of sepsis. Precise mechanisms of therapeutic benefit remain poorly understood. Objectives To identify host-derived regulatory elements that may contribute to the therapeutic effects of MSCs, we profiled the microRNAome (miRNAome) and transcriptome of lungs from mice randomised to experimental polymicrobial sepsis-induced lung injury treated with either placebo or MSCs. Methods and results A total of 11 997 genes and 357 microRNAs (miRNAs) expressed in lungs were used to generate a statistical estimate of association between miRNAs and their putative mRNA targets; 1395 miRNA:mRNA significant association pairs were found to be differentially expressed (false discovery rate ≤0.05). MSC administration resulted in the downregulation of miR-27a-5p and upregulation of its putative target gene VAV3 (adjusted p=1.272E-161) in septic lungs. In human pulmonary microvascular endothelial cells, miR-27a-5p expression levels were increased while VAV3 was decreased following lipopolysaccharide (LPS) or tumour necrosis factor (TNF) stimulation. Transfection of miR-27a-5p mimic or inhibitor resulted in increased or decreased VAV3 message, respectively. Luciferase reporter assay demonstrated specific binding of miR-27a-5p to the 3′UTR of VAV3. miR27a-5p inhibition mitigated TNF-induced (1) delayed wound closure, increased (2) adhesion and (3) transendothelial migration but did not alter permeability. In vivo, cell infiltration was attenuated by intratracheal coinstillation of the miR-27a-5p inhibitor, but this did not protect against endotoxin-induced oedema formation. Conclusions Our data support involvement of miR-27a-5p and VAV3 in cellular adhesion and infiltration during acute lung injury and a potential role for miR-27a-based therapeutics for acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nadim Younes
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada
| | - Louis Zhou
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hajera Amatullah
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Raquel Herrero
- Critical Care Service, Hospital Universitario de Getafe-CIBER de Enfermedades Respiratorias (CIBERES), Getafe, Spain
| | - Jose Angel Lorente
- Critical Care Service, Hospital Universitario de Getafe-CIBER de Enfermedades Respiratorias (CIBERES), Getafe, Spain
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Philip Marsden
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudia C Dos Santos
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada .,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Liu Y, Liu X, Ye P, Zhang X, Schilling AF, Yonezawa T, Gao G, Cui X. MicroRNA-191 regulates differentiation and migration of mesenchymal stem cells and their paracrine effect on angiogenesis. Biotechnol Lett 2020; 42:1777-1788. [PMID: 32436119 DOI: 10.1007/s10529-020-02907-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are critical regulators in organ development. Among them, miR-191 is known to be regulated in early embryogenesis and dysregulated in cancer. This role in undifferentiated tissues suggests a possible part of miR-191 also in bone marrow derived mesenchymal stem cells (BMSCs) physiology. Here, we report that miR-191 decreased MMP expression and migration of BMSCs. Conditioned media of miR-191 overexpressing BMSCs block VEGF expression, and inhibit angiogenesis of HUVECs. Under osteogenic culture conditions, inhibition of miR-191 significantly induces bone formation. Moreover, our studies showed miR-191 might influence chondrogenesis of BMSCs by directly targeting CCAAT Enhancer Binding Protein Beta (CEBPB). Taken together, here we demonstrate the role of miR-191 in differentiation, migration and paracrine function of BMSCs.
Collapse
Affiliation(s)
- Yuanxing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, Zhejiang Province, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, Zhejiang Province, China
| | - Pengxiang Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei Province, China
| | - Xiafei Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei Province, China
| | - Arndt F Schilling
- Clinic for Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Tomo Yonezawa
- Center for Therapeutic Innovation, Gene Research Center for Frontier Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-14 Sakamoto, Nagasaki, 852-8523- 0022, Japan
| | - Guifang Gao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei Province, China. .,Department of Plastic Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Xiaofeng Cui
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
14
|
Cardiac Extracellular Vesicles (EVs) Released in the Presence or Absence of Inflammatory Cues Support Angiogenesis in Different Manners. Int J Mol Sci 2019; 20:ijms20246363. [PMID: 31861211 PMCID: PMC6940836 DOI: 10.3390/ijms20246363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Cells release extracellular vesicles (EVs) to communicate in a paracrine manner with other cells, and thereby influence processes, such as angiogenesis. The conditioned medium of human cardiac-derived adherent proliferating (CardAP) cells was recently shown to enhance angiogenesis. To elucidate whether their released EVs are involved, we isolated them by differential centrifugation from the conditioned medium derived either in the presence or absence of a pro-inflammatory cytokine cocktail. Murine recipient cells internalized CardAP-EVs as determined by an intracellular detection of human proteins, such as CD63, by a novel flow cytometry method for studying EV–cell interaction. Moreover, endothelial cells treated for 24 h with either unstimulated or cytokine stimulated CardAP-EVs exhibited a higher tube formation capability on Matrigel. Interestingly, unstimulated CardAP-EVs caused endothelial cells to release significantly more vascular endothelial growth factor and interleukin (IL)-6, while cytokine stimulated CardAP-EVs significantly enhanced the release of IL-6 and IL-8. By nCounter® miRNA expression assay (NanoString Technologies) we identified microRNA 302d-3p to be enhanced in unstimulated CardAP-EVs compared to their cytokine stimulated counterparts, which was verified by quantitative polymerase chain reaction. This study demonstrates that both CardAP-EVs are pro-angiogenic by inducing different factors from endothelial cells. This would allow to select potent targets for a safe and efficient therapeutic application.
Collapse
|
15
|
Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol 2019; 74:105689. [PMID: 31207404 DOI: 10.1016/j.intimp.2019.105689] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neutrophils are short-lived cells of the innate immune system that have an important role in defending against pathogens by producing reactive oxygen species (ROS). Therefore, effective strategies for increasing neutrophil's viability and function may be beneficial, especially in many conditions such as infections and immunodeficiency diseases. Some studies suggest using multipotent mesenchymal stromal cells (MSCs) and MSC-conditioned media (MSC-CM) for this aim. But, there is no study on using MSC-derived exosomes for improving neutrophil's viability and function. So, we examined the effects of MSC-exosomes and also MSC-CM on neutrophil's function and survival and compared them with each other. METHODS Exosomes and CM were isolated from human adipose tissue MSCs. Exosomes were characterized, and the protein content of them was determined. Neutrophils were isolated from five healthy donors, and the effects of the two independent treatments (exosomes and conditioned media) on neutrophil's apoptosis were measured by Annexin V-PI method, then neutrophil's function was evaluated using NBT and phagocytosis assays. RESULTS It was recognized that exosomes decreased neutrophils apoptosis and increased their phagocytosis capacity. The conditioned media augmented neutrophil's phagocytosis and reactive oxygen species (ROS) production, but it couldn't decrease neutrophil's apoptosis. DISCUSSION Briefly, we concluded that MSC-exosomes augment neutrophil's viability more than their function while MSC-CM increase neutrophil's function more than the survival. This report showed that the use of MSC-exosomes and CM might be useful for increasing immunity by improving neutrophil's function and survival.
Collapse
Affiliation(s)
- Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Secretomes from Mesenchymal Stem Cells against Acute Kidney Injury: Possible Heterogeneity. Stem Cells Int 2018; 2018:8693137. [PMID: 30651737 PMCID: PMC6311717 DOI: 10.1155/2018/8693137] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
A kidney has the ability to regenerate itself after a variety of renal injuries. Mesenchymal stem cells (MSCs) have been shown to ameliorate tissue damages during renal injuries and diseases. The regenerations induced by MSCs are primarily mediated by the paracrine release of soluble factors and extracellular vesicles, including exosomes and microvesicles. Extracellular vesicles contain proteins, microRNAs, and mRNAs that are transferred into recipient cells to induce several repair signaling pathways. Over the past few decades, many studies identified trophic factors from MSCs, which attenuate renal injury in a variety of animal acute kidney injury models, including renal ischemia-reperfusion injury and drug-induced renal injury, using microarray and proteomic analysis. Nevertheless, these studies have revealed the heterogeneity of trophic factors from MSCs that depend on the cell origins and different stimuli including hypoxia, inflammatory stimuli, and aging. In this review article, we summarize the secretomes and regenerative mechanisms induced by MSCs and highlight the possible heterogeneity of trophic factors from different types of MSC and different circumstances for renal regeneration.
Collapse
|
17
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Sun J, Lv J, Zhang W, Li L, Lv J, Geng Y, Yin A. Combination with miR-124a improves the protective action of BMSCs in rescuing injured rat podocytes from abnormal apoptosis and autophagy. J Cell Biochem 2018; 119:7166-7176. [PMID: 29904949 DOI: 10.1002/jcb.26771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
This in vitro study was performed to identify the role of miR-124a in bone marrow stromal stem cells (BMSCs) therapy for H2 O2 -induced rat podocyte injury, and determine whether combination treatment with miR-124a could improve the protective effect of BMSCs. Cell viability of podocytes was detected by CCK-8 assay. Detection of ROS level, apoptotic rate, and autophagy rate was carried out using flow cytometry assays. Oxidative stress parameters were analyzed using the ELISA assays. MiR-124a and mRNA levels were determined using real-time PCR. Protein expression was detected using Western blotting. Our study revealed a pivotal role of miR-124a in the protective action of BMSCs on podocyte injury driven by oxidative stress. BMSCs could rescue injured podocytes from aberrant apoptosis and autophagy by regulating cleaved caspase-3, Bax, Bcl-2, LC3-II/I, and p62. Suppression of the PI3 K/Akt/mTOR signaling pathway is likely one of the main mechanisms underlying the protective action of BMSCs transfected with miR-124a. Our study revealed that miR-124a further improves the protective effect of BMSCs in injured podocytes. Thus, the combination of BMSCs and microRNAs could be a beneficial treatment for renal diseases in the near future.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Lv
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjing Zhang
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lili Li
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jia Lv
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingzhou Geng
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aiping Yin
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 2018; 9:44. [PMID: 29482607 PMCID: PMC5828435 DOI: 10.1186/s13287-018-0773-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the past years, cardiac mortality has decreased, but cardiac diseases are still responsible for millions of deaths every year worldwide. Bone-marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapeutic strategy because of its capacity to differentiate into cardiac cells. Current research indicates that chemical substances, microRNAs, and cytokines have biological functions that regulate the cardiomyocytes differentiation of BMSCs. In this review, we chiefly summarize the regulatory factors that induce BMSCs to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofei Guo
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yan Bai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Li Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Bo Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Katherine Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | - Zhimin Du
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Benzhi Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
20
|
Hsa_circ_0001859 Regulates ATF2 Expression by Functioning as an MiR-204/211 Sponge in Human Rheumatoid Arthritis. J Immunol Res 2018; 2018:9412387. [PMID: 29577053 PMCID: PMC5822876 DOI: 10.1155/2018/9412387] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022] Open
Abstract
Background circRNAs are part of the competitive endogenous RNA network, which putatively function as miRNA sponges and play a crucial role in the development of numerous diseases. However, studies of circRNAs in rheumatoid arthritis (RA) disease are limited. This work aims to identify the expression pattern of circRNAs in synovial tissues and their inflammatory regulation mechanism. Methods We first compared the mRNA expression in rheumatoid arthritis patients with that in healthy volunteers by GEO database mining to identify gene loci specifically expressed in synovial tissues. Functional enrichment algorithms were then used to draw the interactome diagram of circRNAs-miRNAs-mRNAs. Finally, loss-of-function and rescue assays of the candidate circRNAs were performed in vitro. Results A total of 29 differentially expressed circRNAs related to rheumatoid arthritis were discovered. Silencing of hsa_circ_0001859 suppressed ATF2 expression and decreased inflammatory activity in SW982 cells. Hsa_circ_0001859 could compete with ATF2 for miR-204/211. Discussion These findings indicate that hsa_circ_0001859 participates deeply in the process of chronic inflammatory disease in synovial tissue.
Collapse
|
21
|
Fayyad-Kazan H, Fayyad-Kazan M, Merimi M, Meuleman N, Bron D, Lagneaux L, Najar M. The micronome of mesenchymal stromal cells is partially responsive to inflammation. Cell Biol Int 2017; 42:254-260. [PMID: 29064609 DOI: 10.1002/cbin.10897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/22/2017] [Indexed: 11/09/2022]
Abstract
Mesenchymal stromal cells (MSCs) display a special immunological profile that allows their potential use as immunotherapeutic cells. Nowadays, foreskin (FSK) represents a valuable reservoir of MSCs with International Society for Cellular Therapy (ISCT) compliant criteria and relevant functional properties. However, their mode of action is poorly understood and needs to be more elucidated to optimize their therapeutic use. Because microRNAs (miRNAs) act as key regulators in a wide variety of biological processes, we decided to establish the micronome of FSK-MSCs, the influence of inflammation and the predicted target pathways. Here, we provide the full list of unchanged and additional four differentially expressed miRNAs, miR-199b, -296-3p and -589-5p being downregulated whilst miR-146-3p being upregulated, in MSCs following their exposure to a cocktail of proinflammatory cytokines. MicroRNA target prediction in addition to Pathway enrichment analysis performed using miRNet, showed that miR-296-3p is linked to antigen processing and presentation pathway. Collectively, our data indicate that the micronome of FSK-MSCs is partially responsive to inflammation. Differentially expressed miRNAs are subsequently modulated by inflammation and seem to be involved in regulating the immunological fate of FSK-MSCs. These miRNAs deserve more attention in order to optimize MSC-based therapy and achieve the appropriate therapeutic effect.
Collapse
Affiliation(s)
- Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Makram Merimi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Nathalie Meuleman
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.,Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Dominique Bron
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.,Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
22
|
Daltro PS, Barreto BC, Silva PG, Neto PC, Sousa Filho PHF, Santana Neta D, Carvalho GB, Silva DN, Paredes BD, de Alcantara AC, Freitas LAR, Couto RD, Santos RR, Souza BSF, Soares MBP, Macambira SG. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model. Cytotherapy 2017; 19:1176-1188. [PMID: 28801055 DOI: 10.1016/j.jcyt.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/13/2017] [Accepted: 07/04/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Obesity is associated with numerous cardiac complications, including arrhythmias, cardiac fibrosis, remodeling and heart failure. Here we evaluated the therapeutic potential of mesenchymal stromal cells (MSCs) and their conditioned medium (CM) to treat cardiac complications in a mouse model of high-fat diet (HFD)-induced obesity. METHODS After obesity induction and HFD withdrawal, obese mice were treated with MSCs, CM or vehicle. Cardiac function was assessed using electrocardiography, echocardiography and treadmill test. Body weight and biochemical parameters were evaluated. Cardiac tissue was used for real time (RT)-polymerase chain reaction (PCR) and histopathologic analysis. RESULTS/DISCUSSION Characterization of CM by protein array showed the presence of different cytokines and growth factors, including chemokines, osteopontin, cystatin C, Serpin E1 and Gas 6. HFD-fed mice presented cardiac arrhythmias, altered cardiac gene expression and fibrosis reflected in physical exercise incapacity associated with obesity and diabetes. Administration of MSCs or CM improved arrhythmias and exercise capacity. This functional improvement correlated with normalization of GATA4 gene expression in the hearts of MSC- or CM-treated mice. The gene expression of connexin 43, troponin I, adiponectin, transforming growth factor (TGF) β, peroxisome proliferator activated receptor gamma (PPARγ), insulin-like growth factor 1 (IGF-1), matrix metalloproteinase-9 (MMP9) and tissue inhibitor of metalloproteinases 1 (TIMP1) were significantly reduced in MSCs, but not in CM-treated mice. Moreover, MSC or CM administration reduced the intensity of cardiac fibrosis. CONCLUSION Our results suggest that MSCs and CM have a recovery effect on cardiac disturbances due to obesity and corroborate to the paracrine action of MSCs in heart disease models.
Collapse
Affiliation(s)
- P S Daltro
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Multicentric Program in Biochemistry and Molecular Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - B C Barreto
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Faculty of Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - P G Silva
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - P Chenaud Neto
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - P H F Sousa Filho
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - D Santana Neta
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil
| | - G B Carvalho
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil
| | - D N Silva
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil
| | - B D Paredes
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil
| | | | - L A R Freitas
- Faculty of Medicine, Federal University of Bahia, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil
| | - R D Couto
- Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - R R Santos
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - B S F Souza
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - M B P Soares
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - S G Macambira
- Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
23
|
Zhang X, Sun Y, Liu J, Yi Z, Gao F, Liu Q, Chen Y. In situ forming hydrogels with long-lasting miR-21 enhances the therapeutic potential of MSC by sustaining stimulation of target gene. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1639-1650. [PMID: 28602136 DOI: 10.1080/09205063.2017.1341675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xianwei Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
- The Health Department of Guard Bureau in the Joint Staff, Beijing, China
| | - Yufa Sun
- The Health Department of Guard Bureau in the Joint Staff, Beijing, China
| | - Jianfeng Liu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Anzhen Hospital, Beijing, China
| | - Zhiyong Yi
- The Health Department of Guard Bureau in the Joint Staff, Beijing, China
| | - Feng Gao
- The Health Department of Guard Bureau in the Joint Staff, Beijing, China
| | - Qiaowei Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Liu K, Jing Y, Zhang W, Fu X, Zhao H, Zhou X, Tao Y, Yang H, Zhang Y, Zen K, Zhang C, Li D, Shi Q. Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone 2017; 97:130-138. [PMID: 28108317 DOI: 10.1016/j.bone.2017.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a serious health problem worldwide. MicroRNA is a post-transcriptional regulator of gene expression by either promoting mRNA degradation or interfering with mRNA translation of specific target genes. It plays a significant role in the pathogenesis of osteoporosis. Here, we first demonstrated that miR-106b (miR-106b-5p) negatively regulated osteogenic differentiation of mesenchymal stem cells in vitro. Then, we found that miR-106b expression increased in C57BL/6 mice with glucocorticoid-induced osteoporosis (GIOP), and that silencing of miR-106b signaling protected mice against GIOP through promoting bone formation and inhibiting bone resorption. At last, we showed that miR-106b inhibited osteoblastic differentiation and bone formation partly through directly targeting bone morphogenetic protein 2 (BMP2) both in vitro and in the GIOP model. Together, our findings have identified the role and mechanism of miR-106b in negatively regulating osteogenesis. Inhibition of miR-106b might be a potential new strategy for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- Ke Liu
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Ying Jing
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Wen Zhang
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Xuejie Fu
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Huan Zhao
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Xichao Zhou
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Yunxia Tao
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Huilin Yang
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China
| | - Chenyu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China.
| | - Donghai Li
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing 210093, PR China.
| | - Qin Shi
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, No.188 Shizi Street, Suzhou 215006, PR China.
| |
Collapse
|
25
|
Fayyad-Kazan H, Fayyad-Kazan M, Badran B, Bron D, Lagneaux L, Najar M. Study of the microRNA expression profile of foreskin derived mesenchymal stromal cells following inflammation priming. J Transl Med 2017; 15:10. [PMID: 28086811 PMCID: PMC5237315 DOI: 10.1186/s12967-016-1106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 12/06/2016] [Indexed: 11/25/2022] Open
Abstract
Background Due to their self-renewal capacity, multi-lineage potential, and immunomodulatory properties, mesenchymal stromal cells (MSCs) are an attractive tool for different therapeutic strategies. Foreskin (FSK), considered as a biological waste material, has already been shown to be a valuable source of MSCs. Besides their typical fibroblast like morphology and International Society for cellular Therapy compliant phenotype, foreskin-MSCs (FSK–MSCs) are clonogenic, and highly proliferative cells with multi-lineage and strong immunomodulatory capacities. Of importance, FSK–MSCs properly adjust their fate following exposure to inflammatory signals. Being potent regulators of gene expression, miRNAs are involved in modulating nearly all cellular processes and in orchestrating the roles of different immune cells. In this study, we characterized the miRNome of FSK–MSCs by determining the expression profile of 380 different miRNAs in inflammation primed vs. control non-primed cells. Methods TaqMan low density array (TLDA) was performed to identify dysregulated miRNAs after exposing FSK–MSCs to inflammatory signals. Quantitative real-time RT-PCR was carried out to validate the observations. DIANA-miRPath analysis web server was used to identify potential pathways that could be targeted by the dysregulated miRNAs. Results Sixteen miRNAs were differentially expressed in inflammation-primed vs. non-primed FSK–MSCs. The expression level of miR-27a, -145, -149, -194, -199a, -221, -328, -345, -423-5p, -485-3p, -485-5p, -615-5p and -758 was downregulated whilst that of miR-155, -363 and -886-3p was upregulated. Target pathway prediction of those differentially expressed miRNAs identified different inflammation linked pathways. Conclusions After determining their miRNome, we identified a striking effect of inflammatory signals on the miRNAs’ expression levels in FSK–MSCs. Our results highlight a potential role of miRNAs in modulating the transcription programs of FSK–MSCs in response to inflammatory signals. Further, we propose that specific miRNAs could serve as interesting targets to manipulate some functions of FSK–MSCs, thus ameliorating their therapeutic potential.
Collapse
Affiliation(s)
- Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.
| | - Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|
26
|
MiR-218 Induces Neuronal Differentiation of ASCs in a Temporally Sequential Manner with Fibroblast Growth Factor by Regulation of the Wnt Signaling Pathway. Sci Rep 2017; 7:39427. [PMID: 28045049 PMCID: PMC5206743 DOI: 10.1038/srep39427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Differentiation of neural lineages from mesenchymal stem cells has raised the hope of generating functional cells as seed cells for nerve tissue engineering. As important gene regulators, microRNAs (miRNAs) have been speculated to play a vital role in accelerating stem cell differentiation and repairing neuron damage. However, miRNA roles in directing differentiation of stem cells in current protocols are underexplored and the mechanisms of miRNAs as regulators of neuronal differentiation remain ambiguous. In this study, we have determined that miR-218 serves as crucial constituent regulator in neuronal differentiation of adipose stem cells (ASCs) through Wnt signaling pathway based on comprehensive annotation of miRNA sequencing data. Moreover, we have also discovered that miR-218 and Fibroblast Growth Factor-2 (FGF2) modulate neuronal differentiation in a sequential manner. These findings provide additional understanding of the mechanisms regulating stem cell neuronal differentiation as well as a new method for neural lineage differentiation of ASCs.
Collapse
|
27
|
Lindsay SL, Johnstone SA, McGrath MA, Mallinson D, Barnett SC. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells. Stem Cell Reports 2016; 6:729-742. [PMID: 27117785 PMCID: PMC4940454 DOI: 10.1016/j.stemcr.2016.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022] Open
Abstract
Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs) derived from the olfactory mucosa (OM) enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs). miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo. OM-MSCs share 64% miRNA homology to BM-MSCs and differentially express 26 miRNAs CXCL12 promotes CNS myelination and is negatively regulated by miR-140-5p in BM-MSCs miR-146a-5p negatively regulates IL-6, IL-8, TLR2, and TLR4 on OM-MSCs These properties make OM-MSCs a suitable candidate for transplant-mediated CNS repair
Collapse
Affiliation(s)
- Susan Louise Lindsay
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Steven Andrew Johnstone
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Michael Anthony McGrath
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - David Mallinson
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK; Sistemic UK, Kelvin Campus, Maryhill Road, Glasgow G20 0SP, UK
| | - Susan Carol Barnett
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
28
|
Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther 2014; 5:130. [PMID: 25418617 PMCID: PMC4446090 DOI: 10.1186/scrt520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) transplantation has been demonstrated to be an effective strategy for the treatment of cardiovascular disease. However, the low survival rate of MSCs at local diseased tissue reduces the therapeutic efficacy. We therefore investigated the influence of MicroRNA-378 (miR-378) transfection on MSCs survival and vascularization under hypoxic-ischemic condition in vitro. Methods MSCs were isolated from bone marrow of Sprague–Dawley rats and cultured in vitro. The third passage of MSCs were divided into the miR-378 group and control group. For the miR-378 group, cells were transfected with miR-378 mimic. Both groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 hours, using normoxia (20% O2) as a negative control during the process. After 24 hours of reoxygenation (20% O2), cell proliferation and apoptosis were evaluated. Expressions of apoptosis and angiogenesis related genes were detected. Both groups were further co-cultured with human umbilical vein endothelial cells to promote vascular differentiation for another 6 hours. Vascular density was assessed thereafter. Results Compared with the control group, MSCs transfected with miR-378 showed more rapid growth. Their proliferation rates were much higher at 72 h and 96 h under hypoxic condition (257.33% versus 246.67%, P <0.01; 406.84% versus 365.39%, P <0.05). Cell apoptosis percentage in the miR-378 group was significantly declined under normoxic and hypoxic condition (0.30 ± 0.10% versus 0.50 ± 0.10%, P <0.05; 0.60 ± 0.40% versus 1.70 ± 0.20%, P <0.01). The miR-378 group formed a larger number of vascular branches on matrigel. BCL2 level was decreased accompanied with an upregulated expression of BAX in the two experimental groups under the hypoxic environment. BAX expression was reduced in the miR-378 group under the hypoxic environment. In the miR-378 group, there was a decreased expression of tumor necrosis factor-α on protein level and a reduction of TUSC-2 under normoxic environment. Their expressions were both downregulated under hypoxic environment. For the angiogenesis related genes, enhanced expressions of vascular endothelial growth factorα, platelet derived growth factor-β and transforming growth factor-β1 could be detected both in normoxic and hypoxic-ischemic conditions. Conclusion MiR-378 transfection could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro.
Collapse
|
29
|
Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M. The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res 2014; 358:651-65. [PMID: 25173883 DOI: 10.1007/s00441-014-1984-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.
Collapse
Affiliation(s)
- Abbas Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
30
|
Alizadeh E, Akbarzadeh A, Eslaminejad MB, Barzegar A, Hashemzadeh S, Nejati-Koshki K, Zarghami N. Up regulation of liver-enriched transcription factors HNF4a and HNF6 and liver-specific microRNA (miR-122) by inhibition of let-7b in mesenchymal stem cells. Chem Biol Drug Des 2014; 85:268-79. [PMID: 25059576 DOI: 10.1111/cbdd.12398] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/31/2014] [Accepted: 07/12/2014] [Indexed: 12/15/2022]
Abstract
MicroRNAs are small non-coding RNAs that regulate key processes of the stem cells. Although, microRNAs have emerged as powerful regulators of differentiation, few studies have been focused on the post-transcriptional regulation of hepatic differentiation in mesenchymal stem cells (MSCs) by microRNAs. The aim of this study was to evaluate the specific effect of let-7 microRNAs in particular let-7b in hepatic commitment of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). The dynamic expression profile of let-7a, b, c microRNAs and two liver-enriched transcription factors (LETFs) HNF4a and HNF6 was studied during in vitro hepatic differentiation of hAT-MSCs. Let-7b was used for transient overexpression and knockdown investigations. It was shown that the expression of LETFs is inversely correlated with those of let-7 miRNAs during differentiation progress (p < 0.05). Inhibition of let-7b caused upregulation of LETFs, an increase in the expression of miR-122 (p < 0.01) emulating the features of functional hepatocytes, and accumulation of hAT-MSCs in the G0 /G1 phase of cell cycle, triggering initiation of hepatic commitment. In conclusion, transient inhibition of let-7b activates hepatic differentiation of hAT-MSCs. The findings of this work might help optimization of in vitro hepatogenic differentiation utilizing microRNAs and hAT-MSCs that could be used for therapeutic purposes.
Collapse
Affiliation(s)
- Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
31
|
Bone marrow derived stem cells in joint and bone diseases: a concise review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1787-801. [PMID: 25005462 DOI: 10.1007/s00264-014-2445-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/21/2014] [Indexed: 12/11/2022]
Abstract
Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.
Collapse
|
32
|
Chen J, Venkat P, Zacharek A, Chopp M. Neurorestorative therapy for stroke. Front Hum Neurosci 2014; 8:382. [PMID: 25018718 PMCID: PMC4072966 DOI: 10.3389/fnhum.2014.00382] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 05/14/2014] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is responsible for many deaths and long-term disability world wide. Development of effective therapy has been the target of intense research. Accumulating preclinical literature has shown that substantial functional improvement after stroke can be achieved using subacutely administered cell-based and pharmacological therapies. This review will discuss some of the latest findings on bone marrow-derived mesenchymal stem cells (BMSCs), human umbilical cord blood cells, and off-label use of some pharmacological agents, to promote recovery processes in the sub-acute and chronic phases following stroke. This review paper also focuses on molecular mechanisms underlying the cell-based and pharmacological restorative processes, which enhance angiogenesis, arteriogenesis, neurogenesis, and white matter remodeling following cerebral ischemia as well as an analysis of the interaction/coupling among these restorative events. In addition, the role of microRNAs mediating the intercellular communication between exogenously administered cells and parenchymal cells, and their effects on the regulation of angiogenesis and neuronal progenitor cell proliferation and differentiation, and brain plasticity after stroke are described.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Neurology, Henry Ford Hospital , Detroit, MI , USA
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital , Detroit, MI , USA ; Department of Physics, Oakland University , Rochester, MI , USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital , Detroit, MI , USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital , Detroit, MI , USA ; Department of Physics, Oakland University , Rochester, MI , USA
| |
Collapse
|
33
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
34
|
MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Mol Cell Biochem 2013; 387:151-8. [DOI: 10.1007/s11010-013-1880-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/18/2013] [Indexed: 01/15/2023]
|
35
|
Wu R, Wang N, Li M, Zang W, Xu Y. Experimental study on the facilitative effects of miR-125b on the differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells. Cell Biol Int 2013; 37:812-9. [DOI: 10.1002/cbin.10103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 03/09/2013] [Indexed: 12/17/2022]
Affiliation(s)
| | - Na Wang
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Min Li
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Wenqiao Zang
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Yuming Xu
- Department of Neurology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou; 450052; P.R.; China
| |
Collapse
|
36
|
Wang Y, Fan H, Zhao G, Liu D, Du L, Wang Z, Hu Y, Hou Y. miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J 2012; 279:4510-24. [PMID: 23083510 DOI: 10.1111/febs.12037] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/21/2022]
Abstract
Pre-eclampsia is thought to be a systemic disease of maternal endothelial cell dysfunctions. miRNAs regulate various basic biological functions in cells, including stem cells. Mesenchymal stem cells exist in almost all tissues and are the key cellular source for tissue repair and regeneration. Our aims are to investigate whether miRNAs regulate MSCs in fetal-maternal interfaces to influence the pathogenesis of pre-eclampsia. The differential expression of miRNAs in decidua-derived mesenchymal stem cells of all patients with severe pre-eclampsia (n = 20) and normal groups (n = 20) was first screened by microarray analysis and validated by quantitative real-time PCR analysis. The integrated bioinformatics analysis showed that miR-16 showed the highest number of connections in the miRNA GO network and the miRNA gene network. Moreover, over-expressed miR-16 inhibited the proliferation and migration of decidua-derived mesenchymal stem cells and induced cell-cycle arrest by targeting cyclin E1. Interestingly, over-expression of miR-16 by decidua-derived mesenchymal stem cells reduced the ability of human umbilical vein endothelial cells to form blood vessels and reduced the migration of trophoblast cells. Furthermore, decidua-derived mesenchymal stem cell-expressed endothelial growth factor VEGF-A was involved in migration of trophoblast cells and human umbilical vein endothelial cells as well as tube and network formation. Importantly, the levels of cyclin E1 and VEGF-A were negatively correlated with the level of miR-16 expression in decidua-derived mesenchymal stem cells from the patients with severe pre-eclampsia. Together, these data suggest that the alteration of miR-16 expression in decidua-derived mesenchymal stem cells may be involved in the development of pre-eclampsia.
Collapse
Affiliation(s)
- Yaping Wang
- Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hass R, Otte A. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal 2012; 10:26. [PMID: 22943670 PMCID: PMC3444900 DOI: 10.1186/1478-811x-10-26] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSC) represent a heterogeneous population exhibiting stem cell-like properties which are distributed almost ubiquitously among perivascular niches of various human tissues and organs. Organismal requirements such as tissue damage determine interdisciplinary functions of resident MSC including self-renewal, migration and differentiation, whereby MSC support local tissue repair, angiogenesis and concomitant immunomodulation. However, growth of tumor cells and invasion also causes local tissue damage and injury which subsequently activates repair mechanisms and consequently, attracts MSC. Thereby, MSC exhibit a tissue-specific functional biodiversity which is mediated by direct cell-to-cell communication via adhesion molecule signaling and by a tightly regulated exchange of a multifactorial panel of cytokines, exosomes, and micro RNAs. Such interactions determine either tumor-promoting or tumor-inhibitory support by MSC. Moreover, fusion with necrotic/apoptotic tumor cell bodies contributes to re-program MSC into an aberrant phenotype also suggesting that tumor tissue in general represents different types of neoplastic cell populations including tumor-associated stem cell-like cells. The present work summarizes some functional characteristics and biodiversity of MSC and highlights certain controversial interactions with normal and tumorigenic cell populations, including associated modulations within the MSC microenvironment.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology (OE 6410), Medical University Hannover, Carl-Neuberg-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|
38
|
Cantaluppi V, Biancone L, Quercia A, Deregibus MC, Segoloni G, Camussi G. Rationale of mesenchymal stem cell therapy in kidney injury. Am J Kidney Dis 2012; 61:300-9. [PMID: 22938846 DOI: 10.1053/j.ajkd.2012.05.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
Numerous preclinical and clinical studies suggest that mesenchymal stem cells, also known as multipotent mesenchymal stromal cells (MSCs), may improve pathologic conditions involving different organs. These beneficial effects initially were ascribed to the differentiation of MSCs into organ parenchymal cells. However, at least in the kidney, this is a very rare event and the kidney-protective effects of MSCs have been attributed mainly to paracrine mechanisms. MSCs release a number of trophic, anti-inflammatory, and immune-modulatory factors that may limit kidney injury and favor recovery. In this article, we provide an overview of the biologic activities of MSCs that may be relevant for the treatment of kidney injury in the context of a case vignette concerning a patient at high immunologic risk who underwent a second kidney transplantation followed by the development of ischemia-reperfusion injury and acute allograft rejection. We discuss the possible beneficial effect of MSC treatment in the light of preclinical and clinical data supporting the regenerative and immunomodulatory potential of MSCs.
Collapse
Affiliation(s)
- Vincenzo Cantaluppi
- Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Iglesias DM, El-Kares R, Taranta A, Bellomo F, Emma F, Besouw M, Levtchenko E, Toelen J, van den Heuvel L, Chu L, Zhao J, Young YK, Eliopoulos N, Goodyer P. Stem cell microvesicles transfer cystinosin to human cystinotic cells and reduce cystine accumulation in vitro. PLoS One 2012; 7:e42840. [PMID: 22912749 PMCID: PMC3418268 DOI: 10.1371/journal.pone.0042840] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/11/2012] [Indexed: 11/25/2022] Open
Abstract
Cystinosis is a rare disease caused by homozygous mutations of the CTNS gene, encoding a cystine efflux channel in the lysosomal membrane. In Ctns knockout mice, the pathologic intralysosomal accumulation of cystine that drives progressive organ damage can be reversed by infusion of wildtype bone marrow-derived stem cells, but the mechanism involved is unclear since the exogeneous stem cells are rarely integrated into renal tubules. Here we show that human mesenchymal stem cells, from amniotic fluid or bone marrow, reduce pathologic cystine accumulation in co-cultured CTNS mutant fibroblasts or proximal tubular cells from cystinosis patients. This paracrine effect is associated with release into the culture medium of stem cell microvesicles (100–400 nm diameter) containing wildtype cystinosin protein and CTNS mRNA. Isolated stem cell microvesicles reduce target cell cystine accumulation in a dose-dependent, Annexin V-sensitive manner. Microvesicles from stem cells expressing CTNSRed transfer tagged CTNS protein to the lysosome/endosome compartment of cystinotic fibroblasts. Our observations suggest that exogenous stem cells may reprogram the biology of mutant tissues by direct microvesicle transfer of membrane-associated wildtype molecules.
Collapse
Affiliation(s)
- Diana M. Iglesias
- Department of Pediatrics, Montreal Children's Hospital Research Institute, McGill University, Montréal, Québec, Canada
| | - Reyhan El-Kares
- Department of Pediatrics, Montreal Children's Hospital Research Institute, McGill University, Montréal, Québec, Canada
| | - Anna Taranta
- U.O.C. di Nefrologia e Dialisi, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesco Bellomo
- U.O.C. di Nefrologia e Dialisi, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesco Emma
- U.O.C. di Nefrologia e Dialisi, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Martine Besouw
- Department of Pediatric Nephrology University Hospitals Leuven, Laboratory of Pediatrics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatric Nephrology University Hospitals Leuven, Laboratory of Pediatrics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Pediatric Nephrology University Hospitals Leuven, Laboratory of Pediatrics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lambertus van den Heuvel
- Department of Pediatric Nephrology University Hospitals Leuven, Laboratory of Pediatrics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - LeeLee Chu
- Department of Pediatrics, Montreal Children's Hospital Research Institute, McGill University, Montréal, Québec, Canada
| | - Jing Zhao
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Yoon Kow Young
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Division of Surgical Research, Department of Surgery, McGill University, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Paul Goodyer
- Department of Pediatrics, Montreal Children's Hospital Research Institute, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|