1
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
2
|
Tschöp MH, Friedman JM. Seeking satiety: From signals to solutions. Sci Transl Med 2023; 15:eadh4453. [PMID: 37992155 DOI: 10.1126/scitranslmed.adh4453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Remedies for the treatment of obesity date to Hippocrates, when patients with obesity were directed to "reduce food and avoid drinking to fullness" and begin "running during the night." Similar recommendations have been repeated ever since, despite the fact that they are largely ineffective. Recently, highly effective therapeutics were developed that may soon enable physicians to manage body weight in patients with obesity in a manner similar to the way that blood pressure is controlled in patients with hypertension. These medicines have grown out of a revolution in our understanding of the molecular and neural control of appetite and body weight, reviewed here.
Collapse
Affiliation(s)
- Matthias H Tschöp
- Helmholtz Munich and Technical University Munich, Munich, 85758 Germany
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
3
|
Umapathysivam MM, Araldi E, Hastoy B, Dawed AY, Vatandaslar H, Sengupta S, Kaufmann A, Thomsen S, Hartmann B, Jonsson AE, Kabakci H, Thaman S, Grarup N, Have CT, Færch K, Gjesing AP, Nawaz S, Cheeseman J, Neville MJ, Pedersen O, Walker M, Jennison C, Hattersley AT, Hansen T, Karpe F, Holst JJ, Jones AG, Ristow M, McCarthy MI, Pearson ER, Stoffel M, Gloyn AL. Type 2 Diabetes risk alleles in Peptidyl-glycine Alpha-amidating Monooxygenase influence GLP-1 levels and response to GLP-1 Receptor Agonists. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288197. [PMID: 37090505 PMCID: PMC10120798 DOI: 10.1101/2023.04.07.23288197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.
Collapse
Affiliation(s)
- Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Department of Endocrinology, Queen Elizabeth Hospital, SA Health, Australia
- Southern Adelaide and Diabetes and Endocrinology Service, Bedford Park, Australia
- NHRMC Centre of Clinical research Excellence in Nutritional Physiology, Interventions and outcomes University of Adelaide, South Australia, Australia
| | - Elisa Araldi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Department of Cardiology and Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adem Y Dawed
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Adrian Kaufmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Søren Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
| | - Anna E Jonsson
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Hasan Kabakci
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
| | - Niels Grarup
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Christian T Have
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Færch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anette P Gjesing
- Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
| | - Jane Cheeseman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Matthew J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, UK
| | | | | | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Angus G Jones
- University of Exeter College of Medicine & Health, Exeter, UK
| | - Michael Ristow
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | - Ewan R Pearson
- Division of Population Health & Genomics, School of Medicine, University of Dundee, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, USA
- National Institute of Health Research, Oxford Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
- Stanford Diabetes Research Centre, Stanford, USA
| |
Collapse
|
4
|
Xie Y, Xiao K, Cai T, Shi X, Zhou L, Du H, Yang J, Hu G. Neuropeptides and hormones in hypothalamus-pituitary axis of Chinese sturgeon (Acipenser sinensis). Gen Comp Endocrinol 2023; 330:114135. [PMID: 36181879 DOI: 10.1016/j.ygcen.2022.114135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The hypothalamus and pituitary serve as important neuroendocrine center, which is able to secrete a variety of neuropeptides and hormones to participate in the regulation of reproduction, growth, stress and feeding in fish. Chinese sturgeon is a basal vertebrate lineage fish with a special evolutionary status, but the information on its neuroendocrine system is relatively scarce. Using the transcriptome data on the hypothalamus-pituitary axis of Chinese sturgeon as reference, we found out 46 hypothalamus neuropeptide genes, which were involved in regulation of reproduction, growth, stress and feeding. The results of sequence alignment showed that the neuroendocrine system of Chinese sturgeon evolves slowly, which confirms that Chinese sturgeon is a species with a slow phenotypic evolution rate. In addition, we also isolated six pituitary hormones genes from Chinese sturgeon, including reproductive hormones: follicle-stimulating homone (FSH) and luteinizing hormone (LH), growth-related hormones: growth hormone (GH)/prolactin (PRL)/somatolactin (SL), and stress-related hormone gene: proopiomelanocortin (POMC). Similar to teleost, immunostaining localization analysis in Chinese sturgeon pituitary showed that LH and FSH were located in the pituitary proximal pars distalis, SL was located in the pituitary rostral pars distalis, and POMC was located in the pituitary pars intermedia and pituitary rostral pars distalis. This study will give a contribution to enrich our information on the neuroendocrine system in Chinese sturgeon.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
The Role of a Natural Amphibian Skin-Based Peptide, Ranatensin, in Pancreatic Cancers Expressing Dopamine D2 Receptors. Cancers (Basel) 2022; 14:cancers14225535. [PMID: 36428628 PMCID: PMC9688159 DOI: 10.3390/cancers14225535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Despite the progress in early diagnostic and available treatments, pancreatic cancer remains one of the deadliest cancers. Therefore, there is an urgent need for novel anticancer agents with a good safety profile, particularly in terms of possible side-effects. Recently dopaminergic receptors have been widely studied as they were proven to play an important role in cancer progression. Although various synthetic compounds are known for their interactions with the dopaminergic system, peptides have recently made a great comeback. This is because peptides are relatively safe, easy to correct in terms of the improvement of their physicochemical and biological properties, and easy to predict. This paper aims to evaluate the anticancer activity of a naturally existing peptide-ranatensin, toward three different pancreatic cancer cell lines. Additionally, since there is no sufficient information confirming the exact character of the interaction between ranatensin and dopaminergic receptors, we provide, for the first time, binding properties of the compound to such receptors.
Collapse
|
6
|
Shi X, Ye C, Qin X, Zhou L, Xia C, Cai T, Xie Y, Yin Z, Hu G. Novel Pituitary Actions of TAC4 Gene Products in Teleost. Int J Mol Sci 2021; 22:ijms222312893. [PMID: 34884698 PMCID: PMC8657723 DOI: 10.3390/ijms222312893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation.
Collapse
Affiliation(s)
- Xuetao Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Xiangfeng Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Lingling Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Chuanhui Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Tianyi Cai
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Yunyi Xie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Z.Y.); (G.H.)
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Z.Y.); (G.H.)
| |
Collapse
|
7
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Guggenberger M, Engster KM, Hofmann T, Rose M, Stengel A, Kobelt P. Cholecystokinin and bombesin activate neuronatin neurons in the nucleus of the solitary tract. Brain Res 2020; 1746:147006. [DOI: 10.1016/j.brainres.2020.147006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
|
9
|
|
10
|
Wang P, Zhang L, Li H, Wang Y, Zhang S, Liu Z. Characterization of GRP as a functional neuropeptide in basal chordate amphioxus. Int J Biol Macromol 2019; 142:384-394. [PMID: 31593737 DOI: 10.1016/j.ijbiomac.2019.09.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
Abstract
Amphioxus belongs to the subphylum cephalochordata, an extant representative of the most basal chordates, whose regulation of endocrine system remains ambiguous. Here we clearly demonstrated the existence of a functional GRP neuropeptide in amphioxus, which was able to interact with GRP receptor, activate both PKC and PKA pathways, increase gh, igf, and vegf expression. We also showed that the transcription level of amphioxus grp was affected by temperature and light, indicating the role of this gene in the regulation of energy balance and circadian rhythms. In addition, the expression of the amphioxus grp was detected in cerebral vesicle that has been proposed to be the homologous organ of vertebrate brain. These data collectively suggested that a functional GRP neuropeptide had already emerged in amphioxus, which provided insights into the evolutionary origin of GRP in chordate and the functional homology between the cerebral vesicle and vertebrate brain.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Haoyi Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yunsheng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Zhenhui Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China.
| |
Collapse
|
11
|
Dafalla AI, Mhalhal TR, Washington MC, Spann S, Reguero AM, Morgan AL, Cruz Matos GA, Carson G, Barton KJ, Burke NA, Heath J, Sayegh AI. Non-sulfated cholecystokinin-8 reduces meal size and prolongs the intermeal interval in male Sprague Dawley rats. Neuropeptides 2019; 73:57-65. [PMID: 30470455 PMCID: PMC6613573 DOI: 10.1016/j.npep.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The current study measured seven feeding responses by non-sulfated cholecystokinin-8 (NS CCK-8) in freely fed adult male Sprague Dawley rats. The peptide (0, 0.5, 1, 3, 5 and 10 nmol/kg) was given intraperitoneally (ip) prior to the onset of the dark cycle, and first meal size (MS), second meal size, intermeal interval (IMI) length, satiety ratio (SR = IMI/MS), latency to first meal, duration of first meal, number of meals and 24-hour food intake were measured. We found that NS CCK-8 (0.5 and 1.0 nmol/kg) reduced MS, prolonged IMI length and increased SR during the dark cycle. Furthermore, the specific CCK-B receptor antagonist L365, 260 (1 mg/kg, ip) attenuated these responses. These results support a possible role for NS CCK-8 in regulating food intake.
Collapse
Affiliation(s)
- Amged I Dafalla
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Thaer R Mhalhal
- Department of Anatomy and Histology, College of Veterinary Medicine, Basrah University, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Sharonika Spann
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Adalis Montero Reguero
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Alexandra L Morgan
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Geishly A Cruz Matos
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Gabrielle Carson
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Kenya J Barton
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Nicole A Burke
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - John Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
12
|
Ma Z, Zhang Y, Su J, Yang S, Qiao W, Li X, Lei Z, Cheng L, An N, Wang W, Feng Y, Zhang J. Effects of neuromedin B on steroidogenesis, cell proliferation and apoptosis in porcine Leydig cells. J Mol Endocrinol 2018; 61:13-23. [PMID: 29632025 DOI: 10.1530/jme-17-0242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 02/05/2023]
Abstract
Neuromedin B (NMB), a mammalian bombesin-related peptide, has numerous physiological functions, including regulating hormone secretions, cell growth, and reproduction, by binding to its receptor (NMBR). In this study, we investigated the effects of NMB on testosterone secretion, steroidogenesis, cell proliferation, and apoptosis in cultured primary porcine Leydig cells. NMBR was mainly expressed in the Leydig cells of porcine testes, and a specific dose of NMB significantly promoted the secretion of testosterone in the primary Leydig cells; moreover, NMB increased the expression of mRNA and/or proteins of NMBR and steroidogenic mediators (steroidogenic acute regulatory (STAR), CYP11A1, and HSD3B1) in the Leydig cells. In addition, specific doses of NMB promoted the proliferation of Leydig cells and increased the expression of proliferating cell nuclear antigen and Cyclin B1 proteins, while suppressing Leydig cell apoptosis and decreasing BAX and Caspase-3 protein expression. These results suggest that the NMB/NMBR system might play an important role in regulating boar reproductive function by modulating steroidogenesis and/or cell growth in porcine Leydig cells.
Collapse
Affiliation(s)
- Zhiyu Ma
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
- College of Veterinary MedicineYangzhou University, Yangzhou, People's Republic of China
| | - Ying Zhang
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Juan Su
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Sheng Yang
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Wenna Qiao
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiang Li
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhihai Lei
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Ling Cheng
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Na An
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Wenshao Wang
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Yanyan Feng
- College of Veterinary MedicineNanjing Agricultural University, Nanjing, People's Republic of China
| | - Jinlong Zhang
- College of Veterinary MedicineYangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
13
|
Mhalhal TR, Washington MC, Newman KD, Heath JC, Sayegh AI. Combined gastrin releasing peptide-29 and glucagon like peptide-1 reduce body weight more than each individual peptide in diet-induced obese male rats. Neuropeptides 2018; 67:71-78. [PMID: 29180139 DOI: 10.1016/j.npep.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
To test the hypothesis that gastrin releasing peptide-29 (GRP-29) combined with glucagon like peptide-1 (7-36) (GLP-1 (7-36)) reduce body weight (BW) more than each of the peptides given individually, we infused the two peptides (0.5nmol/kg each) in the aorta of free feeding, diet-induced obese (DIO) male Sprague Dawley rats once daily for 25days and measured BW. We found that GRP-29 and GLP-1 reduce BW, GRP-29 reduced it more than GLP-1 and GRP-29+GLP-1 reduce BW more than each peptide given alone. This reduction was accompanied by decrease 24-hour food intake (normal rat chow), meal size (MS), duration of first meal and number of meals, and increase latency to the first meal, intermeal interval (IMI) and satiety ratio (IMI/MS, amount of food consumed per a unit of time). Furthermore, the peptides and their combination decreased 24-hour glucose levels. In conclusion, GRP-29+GLP-1 reduce BW more than each of the peptides given individually.
Collapse
Affiliation(s)
- Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; Department of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Kayla D Newman
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - John C Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
14
|
van der Klaauw AA. Neuropeptides in Obesity and Metabolic Disease. Clin Chem 2017; 64:173-182. [PMID: 29097517 DOI: 10.1373/clinchem.2017.281568] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The global rise in the prevalence of obesity and associated comorbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. CONTENT Studies in rodents with the use of global and targeted gene disruption, and mapping of neurocircuitry by using optogenetics and designer receptors exclusively activated by designer drugs (DREADDs) have greatly advanced our understanding of the neural control of body weight. In conjunction with analytical chemistry techniques involving classical immunoassays and mass spectrometry, many neuropeptides that are key to energy homeostasis have been identified. The actions of neuropeptides are diverse, from paracrine modulation of local neurotransmission to hormonal control of distant target organs. SUMMARY Multiple hormones, such as the adipocyte-derived leptin, insulin, and gut hormones, and nutrients signal peripheral energy state to the central nervous system. Neurons in distinct areas of the hypothalamus and brainstem integrate and translate this information by both direct inhibitory/excitatory projections and anorexigenic or orexigenic neuropeptides into actions on food intake and energy expenditure. The importance of these neuropeptides in human energy balance is most powerfully illustrated by genetic forms of obesity that involve neuropeptides such as melanocortin-4-receptor (MC4R) deficiency. Drugs that mimic the actions of neuropeptides are being tested for the treatment of obesity. Successful therapeutic strategies in obesity will require in-depth knowledge of the neuronal circuits they are working in, the downstream targets, and potential compensatory mechanisms.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- Department of Clinical Biochemistry, Metabolic Research Laboratories - Institute of Metabolic Science, University of Cambridge, Cambridge, England.
| |
Collapse
|
15
|
Grabauskas G, Owyang C. Plasticity of vagal afferent signaling in the gut. MEDICINA-LITHUANIA 2017; 53:73-84. [PMID: 28454890 PMCID: PMC6318799 DOI: 10.1016/j.medici.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Vagal sensory neurons mediate the vago-vagal reflex which, in turn, regulates a wide array of gastrointestinal functions including esophageal motility, gastric accommodation and pancreatic enzyme secretion. These neurons also transmit sensory information from the gut to the central nervous system, which then mediates the sensations of nausea, fullness and satiety. Recent research indicates that vagal afferent neurons process non-uniform properties and a significant degree of plasticity. These properties are important to ensure that vagally regulated gastrointestinal functions respond rapidly and appropriately to various intrinsic and extrinsic factors. Similar plastic changes in the vagus also occur in pathophysiological conditions, such as obesity and diabetes, resulting in abnormal gastrointestinal functions. A clear understanding of the mechanisms which mediate these events may provide novel therapeutic targets for the treatment of gastrointestinal disorders due to vago-vagal pathway malfunctions.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA.
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA
| |
Collapse
|
16
|
Infusion of exogenous cholecystokinin-8, gastrin releasing peptide-29 and their combination reduce body weight in diet-induced obese male rats. Appetite 2017; 109:172-181. [DOI: 10.1016/j.appet.2016.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022]
|
17
|
Washington MC, Mhalhal TR, Sayegh AI. The BB2 receptor antagonist BW2258U89 attenuates the feeding responses evoked by exogenous gastrin releasing peptide-29. Horm Behav 2016; 85:1-4. [PMID: 27381650 PMCID: PMC5026928 DOI: 10.1016/j.yhbeh.2016.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
This confirmatory work is aimed to test that the hypothesis that the gastrin releasing peptide (GRP) receptor - the BB2 receptor - is necessary for reduction of meal size (MS) and prolongation of the intermeal interval (IMI) by the small and the large forms of GRP in the rat, GRP-10 and GRP-29, and to confirm the sites of action regulating such responses - the vascular bed of the celiac artery (CA, supplying stomach and upper duodenum). To pursue these aims we measured first MS and IMI length in response to GRP-10 and GRP-29 (0, 0.5nmol/kg) infused in the CA (n=8 rats) and the cranial mesenteric artery (CMA, supplying the small and part of the large intestine, n=8 rats) in near spontaneously free feeding rats pretreated with the BB2 receptor antagonist BW2258U89 (0.1mg/kg) in the same arteries prior to the onset of the dark cycle. We found that GRP-29, but not GRP-10, infused by the CA reduced MS and prolonged the IMI by decreasing meal latency and meal duration and the BB2 receptor antagonist BW2258U89 infused in the same artery attenuated these responses. These results suggest that the BB2 receptor is necessary for reduction of MS and prolongation of the IMI by exogenous GRP-29, and the vascular bed of the CA, stomach and upper duodenum, contains sites of action regulating these feeding responses.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
18
|
Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. J Surg Res 2016; 206:517-524. [PMID: 27884350 DOI: 10.1016/j.jss.2016.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) is the most effective method for the treatment of obesity, and metabolic disease RYGB may reduce body weight by altering the feeding responses evoked by the short-term satiety peptides. MATERIALS AND METHODS Here, we measured meal size (MS, chow), intermeal interval (IMI) length, and satiety ratio (SR, IMI/MS; food consumed per a unit of time) by the small and the large forms of gastrin-releasing peptide (GRP) in rats, GRP-10 and GRP-29 (0, 0.1, 0.5 nmol/kg) infused in the celiac artery (CA, supplies stomach and upper duodenum) and the cranial mesenteric artery (CMA, supplies small and large intestine) in an RYGB rat model. RESULTS GRP-10 reduced MS, prolonged the IMI, and increased the SR only in the RYGB group, whereas GRP-29 evoked these responses by both routes and in both groups. CONCLUSIONS The RYGB procedure augments the feeding responses evoked by exogenous GRP, possibly by decreasing total food intake, increasing latency to the first meal, decreasing number of meals or altering the sites of action regulating MS and IMI length by the two peptides.
Collapse
|
19
|
Engster KM, Kroczek AL, Rose M, Stengel A, Kobelt P. Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons. Brain Res 2016; 1648:46-53. [PMID: 27396908 DOI: 10.1016/j.brainres.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023]
Abstract
As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (p<0.05) and NTS (p<0.05) compared to vehicle, while in the ARC no modulation was observed (p>0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (p<0.05). Moreover, an increase of activated NUCB2/nesfatin-1 immunoreactive neurons that co-expressed oxytocin in the PVN (p<0.05) or tyrosine hydroxylase in the NTS (p<0.05) was observed compared to vehicle. Our results show that peripherally injected bombesin activates NUCB2/nesfatin-1 neurons in the PVN and NTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake.
Collapse
Affiliation(s)
- Kim-Marie Engster
- Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Arthur L Kroczek
- Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
20
|
Nakamura T, Ramos-Álvarez I, Iordanskaia T, Moreno P, Mantey SA, Jensen RT. Molecular basis for high affinity and selectivity of peptide antagonist, Bantag-1, for the orphan BB3 receptor. Biochem Pharmacol 2016; 115:64-76. [PMID: 27346274 DOI: 10.1016/j.bcp.2016.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/21/2016] [Indexed: 12/15/2022]
Abstract
Bombesin-receptor-subtype-3 (BB3 receptor) is a G-protein-coupled-orphan-receptor classified in the mammalian Bombesin-family because of high homology to gastrin-releasing peptide (BB2 receptor)/neuromedin-B receptors (BB1 receptor). There is increased interest in BB3 receptor because studies primarily from knockout-mice suggest it plays roles in energy/glucose metabolism, insulin-secretion, as well as motility and tumor-growth. Investigations into its roles in physiological/pathophysiological processes are limited because of lack of selective ligands. Recently, a selective, peptide-antagonist, Bantag-1, was described. However, because BB3 receptor has low-affinity for all natural, Bn-related peptides, little is known of the molecular basis of its high-affinity/selectivity. This was systematically investigated in this study for Bantag-1 using a chimeric-approach making both Bantag-1 loss-/gain-of-affinity-chimeras, by exchanging extracellular (EC) domains of BB3/BB2 receptor, and using site-directed-mutagenesis. Receptors were transiently expressed and affinities determined by binding studies. Bantag-1 had >5000-fold selectivity for BB3 receptor over BB2/BB1 receptors and substitution of the first EC-domain (EC1) in loss-/gain-of affinity-chimeras greatly affected affinity. Mutagenesis of each amino acid difference in EC1 between BB3 receptor/BB2 receptor showed replacement of His(107) in BB3 receptor by Lys(107) (H107K-BB3 receptor-mutant) from BB2 receptor, decreased affinity 60-fold, and three replacements [H107K, E11D, G112R] decreased affinity 500-fold. Mutagenesis in EC1's surrounding transmembrane-regions (TMs) demonstrated TM2 differences were not important, but R127Q in TM3 alone decreased affinity 400-fold. Additional mutants in EC1/TM3 explored the molecular basis for these changes demonstrated in EC1, particularly important is the presence of aromatic-interactions by His(107), rather than hydrogen-bonding or charge-charge interactions, for determining Bantag-1 high affinity/selectivity. In regard to Arg(127) in TM3, both hydrogen-bonding and charge-charge interactions contribute to the high-affinity/selectivity for Bantag-1.
Collapse
Affiliation(s)
- Taichi Nakamura
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Paola Moreno
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA.
| |
Collapse
|
21
|
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20:1055-73. [PMID: 26981612 DOI: 10.1517/14728222.2016.1164694] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth and the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. AREAS COVERED The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. EXPERT OPINION Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing with BnRs in common tumors the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
Collapse
Affiliation(s)
- Paola Moreno
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Irene Ramos-Álvarez
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Terry W Moody
- b Center for Cancer Research, Office of the Director , NCI, National Institutes of Health , Bethesda , MD , USA
| | - Robert T Jensen
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
22
|
Ma Z, Su J, Guo T, Jin M, Li X, Lei Z, Hou Y, Li X, Jia C, Zhang Z, Ahmed E. Neuromedin B and Its Receptor: Gene Cloning, Tissue Distribution and Expression Levels of the Reproductive Axis in Pigs. PLoS One 2016; 11:e0151871. [PMID: 27010315 PMCID: PMC4807040 DOI: 10.1371/journal.pone.0151871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/04/2016] [Indexed: 01/18/2023] Open
Abstract
Neuromedin B is one member of a family of bombesin-like peptides, which performs a variety of physiological functions via their receptor (NMBR) in most mammals. However, the genes encoding NMB and NMBR and their functions especially reproduction of the pigs are currently not fully understood. To research the physiological functions of NMB, we cloned and analyzed the NMB and NMBR genes, and systematically investigated the expression levels of NMB and NMBR mRNA using relative real-time PCR and the distribution of NMBR by immunohistochemistry (IHC). Experimental results show that the sequences of the amino acid and gene of NMB and NMBR were highly conservative and homology in many species, Significantly, the relative RT-PCR results revealed that NMB was mainly expressed in the central nervous system (CNS), whereas NMBR is highly expressed in peripheral tissues and organs, such as endocrine tissues, glands and reproductive organs. The IHC results show that NMBR positive cells were widely distributed in the body, such as respiratory and circulatory system, digestive system, urogenital system, in lymphatic organs and in the endocrine system. We also systematically investigated expression levels of NMB and NMBR in the reproductive axis using relative real-time PCR. In sow estrous cycle, the hypothalamic levels of both NMB and NMBR mRAN were similar, but the expression levels of the pituitary were negatively correlated. Expression levels in the ovarian system are lowest in metestrus phases and highest in proestrus and estrus phases. In boar post-natal development stages, the hypothalamic, pituitary and testicular levels of NMB and NMBR mRNAs showed developmental changes on postnatal day 30, 60, 90 and 120. Taken together, this study provided molecular and morphological data necessary for further research of physiological function of NMB/NMBR system in the pigs.
Collapse
Affiliation(s)
- Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tingting Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengmeng Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- * E-mail:
| | - Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoliang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Cuicui Jia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zheng Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ejlal Ahmed
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
23
|
Ramos-Álvarez I, Nakamura T, Mantey SA, Moreno P, Nuche-Berenguer B, Jensen RT. Novel chiral-diazepines function as specific, selective receptor agonists with variable coupling and species variability in human, mouse and rat BRS-3 receptor cells. Peptides 2016; 75:8-17. [PMID: 26524625 PMCID: PMC5461819 DOI: 10.1016/j.peptides.2015.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/11/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown. Until recently, no selective agonists/antagonists were available; however, recently synthetic high-affinity agonists, chiral-diazepines nonpeptide-analogs (3F, 9D, 9F, 9G) with low CNS penetrance, were described, but are not well-categorized pharmacologically or in different labarotory species. The present study characterizes the affinities, potencies, selectivities of the chiral-diazepine BRS-3 agonists in human and rodents (mice,rat). In human BRS-3 receptors, the relative affinities of the chiral-diazepines was 9G>9D>9F>3F; each was selective for BRS-3. For stimulating PLC activity, in h-BRS-3 each of the four chiral diazepine analogs was fully efficacious and their relative potencies were: 9G (EC50: 9 nM)>9D (EC50: 9.4 nM)>9F (EC50: 39 nM)>3F (EC50: 48 nM). None of the four chiral diazepine analogs activated r,m,h-GRPR/NMBR. The nonpeptide agonists showed marked differences from each other and a peptide agonist in receptor-coupling-stiochiometry and in affinities/potencies in different species. These results demonstrate that chiral diazepine analogs (9G, 9D, 9F, 3F) have high/affinity/potency for the BRS-3 receptor in human and rodent cells, but different coupling-relationships and species differences from a peptide agonist.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
24
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
25
|
Williams KE, Washington MC, Johnson-Rouse T, Johnson RE, Freeman C, Reed C, Heath J, Sayegh AI. Exogenous glucagon-like peptide-1 acts in sites supplied by the cranial mesenteric artery to reduce meal size and prolong the intermeal interval in rats. Appetite 2015; 96:254-259. [PMID: 26431682 DOI: 10.1016/j.appet.2015.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Three experiments were done to better assess the gastrointestinal (GI) site(s) of action of GLP-1 on food intake in rats. First, near-spontaneous nocturnal chow meal size (MS), intermeal intervals (IMI) length and satiety ratios (SR = MS/IMI) were measured after infusion of saline, 0.025 or 0.5 nmol/kg GLP-1 into the celiac artery (CA, supplying the stomach and upper duodenum), cranial mesenteric artery (CMA, supplying small and all of the large intestine except the rectum), femoral artery (FA, control) or portal vein (PV, control). Second, infusion of 0.5 nmol/kg GLP-1 was tested after pretreatment with the GLP-1 receptor (GLP-1R) antagonist exendin-4(3-39) via the same routes. Third, the regional distribution of GLP-1R in the rat GI tract was determined using rtPCR. CA, CMA and FA GLP-1 reduced first MS relative to saline, with the CMA route more effective than the others. Only CMA GLP-1 prolonged the IMI. None of the infusions affected second MS or later eating. CA and CMA GLP-1 increased the SR, with the CMA route more effective than the CA route. CMA exendin-4 (3-39) infusion reduced the effect of CMA GLP-1. Finally GLP-1R expression was found throughout the GI tract. The results suggest that exogenous GLP-1 acts in multiple GI sites to reduce feeding under our conditions and that GLP-1R in the area supplied by the CMA, i.e., the small and part of the large intestine, plays the leading role.
Collapse
Affiliation(s)
- Kasey E Williams
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Tanisha Johnson-Rouse
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ruth E Johnson
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Corren Freeman
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Chris Reed
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - John Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
26
|
HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice. PLoS One 2015; 10:e0137757. [PMID: 26361040 PMCID: PMC4567349 DOI: 10.1371/journal.pone.0137757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022] Open
Abstract
Rationale Smoking during pregnancy increases the risk of bronchopulmonary dysplasia (BPD) and, in mice, gestational exposure to sidestream cigarette smoke (SS) induces BPD-like condition characterized by alveolar simplification, impaired angiogenesis, and suppressed surfactant protein production. Normal fetal development occurs in a hypoxic environment and nicotinic acetylcholine receptors (nAChRs) regulate the hypoxia-inducible factor (HIF)-1α that controls apoptosis and angiogenesis. To understand SS-induced BPD, we hypothesized that gestational SS affected alveolar development through HIF-1α. Methods Pregnant BALB/c mice were exposed to air (control) or SS throughout the gestational period and the 7-day-old lungs of the progeny were examined. Results Gestational SS increased apoptosis of alveolar and airway epithelial cells. This response was associated with increased alveolar volumes, higher levels of proapoptotic factors (FOXO3a, HIPK2, p53, BIM, BIK, and BAX) and the antiangiogenic factor (GAX), and lower levels of antiapoptotic factors (Akt-PI3K, NF-κB, HIF-1α, and Bcl-2) in the lung. Although gestational SS increased the cells containing the proangiogenic bombesin-like-peptide, it markedly decreased the expression of its receptor GRPR in the lung. The effects of SS on apoptosis were attenuated by the nAChR antagonist mecamylamine. Conclusions Gestational SS-induced BPD is potentially regulated by nAChRs and associated with downregulation of HIF-1α, increased apoptosis of epithelial cells, and increased alveolar volumes. Thus, in mice, exposure to sidestream tobacco smoke during pregnancy promotes BPD-like condition that is potentially mediated through the nAChR/HIF-1α pathway.
Collapse
|
27
|
Guo M, Qu X, Qin XQ. Bombesin-like peptides and their receptors: recent findings in pharmacology and physiology. Curr Opin Endocrinol Diabetes Obes 2015; 22:3-8. [PMID: 25517020 DOI: 10.1097/med.0000000000000126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW To highlight the research progress of roles of bombesin-like peptides and their receptors in pharmacology and physiology. RECENT FINDINGS Several new bombesin-derived radioactive or nonradioactive compounds were designed for the diagnosis and therapy of tumors that are overexpressing bombesin receptors. Both gastrin-releasing peptide receptor and neuromedin B receptor activation were shown to induce membrane depolarization and excite neurons in brain. Bombesin receptor subtype-3 was found to be downregulated in the muscle cells and myocytes from obese and type 2 diabetes patients, and its relevant cell signaling events in glucose homeostasis were also investigated. The molecular events triggered by bombesin receptors activation in different types of malignancies is being explored recently and new clues were provided for a better understanding of the biological roles of abnormal expression of bombesin receptors in tumors. Novel cross-talk between gastrin-releasing peptide receptor cell signaling and Sonic hedgehog pathways was identified in small-cell lung carcinoma. SUMMARY Increasing evidence shows bombesin-like peptides and their receptors play important roles in both physiological state and diseases. More specific and safe tumor targeting Bombesin derivatives are being developed for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Man Guo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | | | | |
Collapse
|
28
|
Reeve JR, Washington MC, Park KH, Johnson T, Hunt J, Shively JE, Ronk M, Lee TD, Goto Y, Chew P, Ho FJ, Sayegh AI. Sequence analysis and feeding responses evoked by the large molecular form of gastrin releasing peptide (GRP) in the rat GRP-29. Peptides 2014; 59:1-8. [PMID: 24993846 DOI: 10.1016/j.peptides.2014.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Microisolation techniques utilizing several reverse phase high performance liquid chromatography (HPLC) steps have resulted in the purification of two rat gastrin releasing peptide (GRP) forms suitable for microsequence and mass spectral analysis. The sequence of the larger form is APVSTGAGGGTVLAKMYPRGSHWAVGHLM-amide and the smaller form is GSHWAVGHLM-amide which is the carboxyl terminal decapeptide of the larger peptide. The peptides were synthesized and their feeding patterns e.g. first meal size (MS), intermeal interval (IMI) and satiety ratio (SR, IMI/MS) were determined in overnight food-, but not water deprived, male Sprague Dawley rats. The peptides were administered in the femoral vein (0, 0.21, 0.41 and 1.03 nmol/kg) immediately before presenting the rats with a 10% sucrose solution. We found that (1) GRP-10 (all doses) and GRP-29 (0.41 nmol/kg) reduced first MS, (2) both peptides prolonged IMI length and (3) both peptides increased the SR to similar extents. In conclusion, GRP-10 and GRP-29 are the two endogenous forms of GRP in the rat intestine and they reduce short term feeding to similar extents when administered intravenously.
Collapse
Affiliation(s)
- Joseph R Reeve
- CURE: Digestive Diseases Research Center VA GLAHS, Los Angeles, CA, USA; Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Karen H Park
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Tanisha Johnson
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Jizette Hunt
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - John E Shively
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Mike Ronk
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Terry D Lee
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yoshi Goto
- Department of Physiology, Tokushima Bunri University, Tokushima, Japan
| | - Peter Chew
- CURE: Digestive Diseases Research Center VA GLAHS, Los Angeles, CA, USA; Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fang-Jen Ho
- CURE: Digestive Diseases Research Center VA GLAHS, Los Angeles, CA, USA; Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA.
| |
Collapse
|
29
|
Washington MC, Park KH, Sayegh AI. Obese and lean Zucker rats respond similarly to intraperitoneal administration of gastrin-releasing peptides. Peptides 2014; 58:36-41. [PMID: 24874706 DOI: 10.1016/j.peptides.2014.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/23/2022]
Abstract
The Zucker rat is an animal model used to study obesity and the control of food intake by various satiety peptides. The amphibian peptide bombesin (Bn) reduces cumulative food intake similarly in both obese and lean weanling Zucker rats. Here, we hypothesized that intraperitoneal (i.p) administration of gastrin-releasing peptides-10, -27 and -29 (GRP-10, GRP-27, GRP-29), which are the mammalian forms of Bn, would reduce first meal size (MS, 10% sucrose) and prolong the intermeal interval (IMI, time between first and second meals) similarly in obese and lean adult Zucker rats. To test this hypothesis, we administered GRP-10, GRP-27 and GRP-29 (0, 2.1, 4.1 and 10.3 nmol/kg) i.p. to obese and lean male Zucker rats (who were deprived of overnight food but not water) and then measured the first and second MS, IMI and satiety ratio (SR, IMI/MS). We found that in both obese and lean rats, all forms of GRP reduced the first MS, and in lean rats, they also decreased the second MS. Additionally, GRP-10 and GRP-29 prolonged the IMI in both obese and lean rats, but GRP-27 only prolonged it in lean rats. Finally, we found that all forms of GRP increased the SR in both obese and lean rats. In agreement with our hypothesis, we conclude that all forms of GRP reduce food intake in obese and lean adult Zucker rats similar to Bn in weanling rats.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Karen H Park
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
30
|
Washington MC, Aglan AH, Sayegh AI. The stomach and/or upper duodenum contain sites of action that control meal size and intermeal interval length by exogenous rat gastrin releasing peptide. Peptides 2014; 55:41-6. [PMID: 24556509 DOI: 10.1016/j.peptides.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/16/2022]
Abstract
The site(s) of action that control the reduction of food intake in response to the amphibian skin peptide bombesin (Bn) has been determined to be the area supplied by the celiac artery (CA), i.e., the stomach and the upper duodenum. Here, we investigated the gastrointestinal site(s) of action which controls meal size (MS) (normal rat chow) and intermeal interval length (IMI) by the mammalian homologues of Bn gastrin releasing peptides (GRP-10, GRP-27 and GRP-29, 0.01, 0.05, 0.1, 0.2 and 0.5 nmol/kg) infused in the CA, the cranial mesenteric artery (CMA, supplying the small and large intestine), the femoral artery (FA, control) and the portal vein (PV, draining the gastrointestinal tract, control) in freely fed rats immediately prior to the onset of the dark cycle. We found that (1) GRP-29 (0.05, 0.1, 0.2 and 0.5 nmol/kg) and GRP-27 (0.2 and 0.5 nmol/kg) in the CA and GRP-29 (0.5 nmol/kg) in the CMA reduced the MS relative to saline, (2) GRP-29 (0.1, 0.2 and 0.5 nmol/kg) and GRP-27 (0.2 and 0.5 nmol/kg) in the CA prolonged the IMI, (3) GRP-29 (0.1, 0.2 and 0.5 nmol/kg) in the CA and GRP-29 (0.5 nmol/kg) in the CMA increased the satiety ratio (SR, IMI/MS - the amount of food consumed per a given unit of time) and (4) neither peptide nor route showed any effect on the second MS. These results support an upper gastrointestinal site of action for MS and IMI length by GRP-27 and GRP-29, which is most likely the stomach and/or the duodenum.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Amnah H Aglan
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States; School of Medicine, Wayne State University, Detroit, MI 48202, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
31
|
Washington MC, Salyer S, Aglan AH, Sayegh AI. Intravenous infusion of gastrin-releasing peptide-27 and bombesin in rats reveals differential effects on meal size and intermeal interval length. Peptides 2014; 51:145-9. [PMID: 24291388 PMCID: PMC4993526 DOI: 10.1016/j.peptides.2013.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/21/2022]
Abstract
We have previously shown that the intraperitoneal (i.p.) administration of gastrin-releasing peptide-27 (GRP-27) or bombesin (BN) (at 0.21, 0.41 and 1.03nmol/kg) reduces meal size (MS) and prolongs the intermeal interval (IMI). Here, we hypothesized that the intravenous (i.v.) administration of the same doses of GRP-27 and BN will be as effective as the i.p. administration in evoking these feeding responses. To test this hypothesis, we administered GRP-27 and BN i.v. and measured first MS (10% sucrose), IMI, satiety ratio (SR, IMI/MS) and second MS in overnight food-deprived but not water-deprived male Sprague Dawley rats. We found that (1) only GRP-27 reduced the first MS, (2) BN prolonged the IMI, (3) GRP-27 and BN increased the SR and (4) only BN reduced the size of the second meal. Contrary to our hypothesis, the i.v. administration of GRP-27 and BN affected the MS and IMI differently than did the i.p. administration. In conclusion, this pharmacological study suggests that the MS and IMI are regulated at different sites.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Sarah Salyer
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Amnah H Aglan
- School of Medicine, Wayne State University, Detroit, MI 48202, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
32
|
Merali Z, Graitson S, Mackay JC, Kent P. Stress and eating: a dual role for bombesin-like peptides. Front Neurosci 2013; 7:193. [PMID: 24298233 PMCID: PMC3829480 DOI: 10.3389/fnins.2013.00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022] Open
Abstract
The current obesity “epidemic” in the developed world is a major health concern; over half of adult Canadians are now classified as overweight or obese. Although the reasons for high obesity rates remain unknown, an important factor appears to be the role stressors play in overconsumption of food and weight gain. In this context, increased stressor exposure and/or perceived stress may influence eating behavior and food choices. Stress-induced anorexia is often noted in rats exposed to chronic stress (e.g., repeated restraint) and access to standard Chow diet; associated reduced consumption and weight loss. However, if a similar stressor exposure takes place in the presence of palatable, calorie dense food, rats often consume an increase proportion of palatable food relative to Chow, leading to weight gain and obesity. In humans, a similar desire to eat palatable or “comfort” foods has been noted under stressful situations; it is thought that this response may potentially be attributable to stress-buffering properties and/or through activation of reward pathways. The complex interplay between stress-induced anorexia and stress-induced obesity is discussed in terms of the overlapping circuitry and neurochemicals that mediate feeding, stress and reward pathways. In particular, this paper draws attention to the bombesin family of peptides (BBs) initially shown to regulate food intake and subsequently shown to mediate stress response as well. Evidence is presented to support the hypothesis that BBs may be involved in stress-induced anorexia under certain conditions, but that the same peptides could also be involved in stress-induced obesity. This hypothesis is based on the unique distribution of BBs in key cortico-limbic brain regions involved in food regulation, reward, incentive salience and motivationally driven behavior.
Collapse
Affiliation(s)
- Z Merali
- Department of Psychology, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; University of Ottawa Institute of Mental Health Research Ottawa, ON, Canada
| | | | | | | |
Collapse
|
33
|
Moreno P, Mantey SA, Nuche-Berenguer B, Reitman ML, González N, Coy DH, Jensen RT. Comparative pharmacology of bombesin receptor subtype-3, nonpeptide agonist MK-5046, a universal peptide agonist, and peptide antagonist Bantag-1 for human bombesin receptors. J Pharmacol Exp Ther 2013; 347:100-16. [PMID: 23892571 PMCID: PMC3781414 DOI: 10.1124/jpet.113.206896] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022] Open
Abstract
Bombesin-receptor-subtype-3 (BRS-3) is an orphan G-protein-coupled receptor of the bombesin (Bn) family whose natural ligand is unknown and which does not bind any natural Bn-peptide with high affinity. It is present in the central nervous system, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology is largely unknown because of the lack of selective ligands. Recently, MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-{[1-(trifluoromethyl)cyclopropyl]methyl}-1H-imidazol-2-yl)propan-2-ol] and Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate], a nonpeptide agonist and a peptide antagonist, respectively, for BRS-3 have been described, but there have been limited studies on their pharmacology. We studied MK-5046 and Bantag-1 interactions with human Bn-receptors-human bombesin receptor subtype-3 (hBRS-3), gastrin-releasing peptide receptor (GRP-R), and neuromedin B receptor (NMB-R)-and compared them with the nonselective, peptide-agonist [d-Tyr6,βAla11,Phe13,Nle14]Bn-(6-14) (peptide #1). Receptor activation was detected by activation of phospholipase C (PLC), mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK), paxillin, and Akt. In hBRS-3 cells, the relative affinities were Bantag-1 (1.3 nM) > peptide #1 (2 nM) > MK-5046 (37-160 nM) > GRP, NMB (>10 μM), and the binding-dose-inhibition curves were broad (>4 logs), with Hill coefficients differing significantly from unity. Curve-fitting demonstrated high-affinity (MK-5046, Ki = 0.08 nM) and low-affinity (MK-5046, Ki = 11-29 nM) binding sites. For PLC activation in hBRS-3 cells, the relative potencies were MK-5046 (0.02 nM) > peptide #1 (6 nM) > GRP, NMB, Bantag-1 (>10 μM), and MK-5046 had a biphasic dose response, whereas peptide #1 was monophasic. Bantag-1 was a specific hBRS-3-antagonist. In hBRS-3 cells, MK-5046 was a full agonist for activation of MAPK, FAK, Akt, and paxillin; however, it was a partial agonist for phospholipase A2 (PLA2) activation. The kinetics of activation/duration of action for PLC/MAPK activation of MK-5046 and peptide #1 differed, with peptide #1 causing more rapid stimulation; however, MK-5046 had more prolonged activity. Our study finds that MK-5046 and Bantag-1 have high affinity/selectivity for hBRS-3. The nonpeptide MK-5046 and peptide #1 agonists differ markedly in their receptor coupling, ability to activate different signaling cascades, and kinetics/duration of action. These results show that their hBRS-3 receptor activation is not always concordant and could lead to markedly different cellular responses.
Collapse
Affiliation(s)
- Paola Moreno
- Digestive Diseases Branch (P.M., S.M., B.N.-B., R.T.J.) and Diabetes, Endocrinology, and Obesity Branch (M.L.R.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; Department of Metabolism, Nutrition and Hormones (N.G.), IIS-Fundación Jiménez Díaz, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; and Peptide Research Laboratories, Department of Medicine, Tulane Health Sciences Center, New Orleans, Louisiana (D.H.C.)
| | | | | | | | | | | | | |
Collapse
|
34
|
Tao YX, Yuan ZH, Xie J. G Protein-Coupled Receptors as Regulators of Energy Homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:1-43. [DOI: 10.1016/b978-0-12-386933-3.00001-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|