1
|
Gonulkirmaz-Cancalar O, Bloch G. Sex-Related Variation in Circadian Rhythms in the Bumble Bee Bombus terrestris. J Biol Rhythms 2024:7487304241283863. [PMID: 39370745 DOI: 10.1177/07487304241283863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mating success depends on many factors, but first of all, a male and a female need to meet at the same place and time. The circadian clock is an endogenous system regulating activity and sex-related behaviors in animals. We studied bumble bees (Bombus terrestris) in which the influence of circadian rhythms on sexual behavior has been little explored. We characterized circadian rhythms in adult emergence and locomotor activity under different illumination regimes for males and gynes (unmated queens). We developed a method to monitor adult emergence from the pupal cocoon and found no circadian rhythms in this behavior for either males or gynes. These results are not consistent with the hypothesis that the circadian clock regulates emergence from the pupa in this species. Consistent with this premise, we found that both gynes and males do not show circadian rhythms in locomotor activity during the first 3 days after pupal emergence, but shortly after developed robust circadian rhythms that are readily shifted by a phase delay in illumination regime. We conclude that the bumble bees do not need strong rhythms in adult emergence and during early adult life in their protected and regulated nest environment, but do need strong activity rhythms for timing flights and mating-related behaviors. Next, we tested the hypothesis that the locomotor activity of males and gynes have a similar phase, which may improve mating success. We found that both males and gynes have strong endogenous circadian rhythms that are entrained by the illumination regime, but males show rhythms at an earlier age, their rhythms are stronger, and their phase is slightly advanced relative to that of gynes. An earlier phase may be advantageous to males competing to mate a receptive gyne. Our results are consistent with the hypothesis that sex-related variations in circadian rhythms is shaped by sexual selection.
Collapse
Affiliation(s)
- Ozlem Gonulkirmaz-Cancalar
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Ghosh S, Suray C, Bozzolan F, Palazzo A, Monsempès C, Lecouvreur F, Chatterjee A. Pheromone-mediated command from the female to male clock induces and synchronizes circadian rhythms of the moth Spodoptera littoralis. Curr Biol 2024; 34:1414-1425.e5. [PMID: 38479388 DOI: 10.1016/j.cub.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 04/11/2024]
Abstract
To extract any adaptive benefit, the circadian clock needs to be synchronized to the 24-h day-night cycles. We have investigated if it is a general property of the brain's circadian clock to recognize social interactions as external time givers. Sociosexual interactions with the opposite sex are universal, prevalent even in the lives of solitary animals. The solitary adult life of the Spodoptera littoralis moth is singularly dedicated to sex, offering an ideal context for exploring the impact of sociosexual cues on circadian timekeeping. We have identified specific olfactory cues responsible for social entrainment, revealing a surprisingly strong influence of pheromone-mediated remote sociosexual interactions on circadian rhythms. Males' free-running rhythms are induced and synchronized by the sex pheromone that the female releases in a rhythmic fashion, highlighting a hierarchical relation between the female and male circadian oscillators. Even a single pulse of the sex pheromone altered clock gene expression in the male brain, surpassing the effect of light on the clock. Our finding of a daytime-dependent, lasting impact of pheromone on male's courtship efficacy indicates that circadian timing in moths is a trait under sexual selection. We have identified specific components of the sex-pheromone blend that lack mate-attractive property but have powerful circadian effects, providing rationale for their continued retention by the female. We show that such volatiles, when shared across sympatric moth species, can trigger communal synchronization. Our results suggest that the sex pheromone released by female moths entrains males' behavioral activity rhythm to ensure synchronized timing of mating.
Collapse
Affiliation(s)
- Sagnik Ghosh
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Caroline Suray
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Antonio Palazzo
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - François Lecouvreur
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France
| | - Abhishek Chatterjee
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, 78026 Versailles, France.
| |
Collapse
|
3
|
Sotelo MI, Markunas C, Kudlak T, Kohtz C, Vyssotski AL, Rothschild G, Eban-Rothschild A. Neurophysiological and behavioral synchronization in group-living and sleeping mice. Curr Biol 2024; 34:132-146.e5. [PMID: 38141615 PMCID: PMC10843607 DOI: 10.1016/j.cub.2023.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Social interactions profoundly influence animal development, physiology, and behavior. Yet, how sleep-a central behavioral and neurophysiological process-is modulated by social interactions is poorly understood. Here, we characterized sleep behavior and neurophysiology in freely moving and co-living mice under different social conditions. We utilized wireless neurophysiological devices to simultaneously record multiple individuals within a group for 24 h, alongside video acquisition. We first demonstrated that mice seek physical contact before sleep initiation and sleep while in close proximity to each other (hereafter, "huddling"). To determine whether huddling during sleep is a motivated behavior, we devised a novel behavioral apparatus allowing mice to choose whether to sleep in close proximity to a conspecific or in solitude, under different environmental conditions. We also applied a deep-learning-based approach to classify huddling behavior. We demonstrate that mice are willing to forgo their preferred sleep location, even under thermoneutral conditions, to gain access to social contact during sleep. This strongly suggests that the motivation for prolonged physical contact-which we term somatolonging-drives huddling behavior. We then characterized sleep architecture under different social conditions and uncovered a social-dependent modulation of sleep. We also revealed coordination in multiple neurophysiological features among co-sleeping individuals, including in the timing of falling asleep and waking up and non-rapid eye movement sleep (NREMS) intensity. Notably, the timing of rapid eye movement sleep (REMS) was synchronized among co-sleeping male siblings but not co-sleeping female or unfamiliar mice. Our findings provide novel insights into the motivation for physical contact and the extent of social-dependent plasticity in sleep.
Collapse
Affiliation(s)
- Maria I Sotelo
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chelsea Markunas
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tyler Kudlak
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chani Kohtz
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich, Zürich 8057, Switzerland
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
4
|
Yang HH, Li JQ, Ma S, Yao WC, Chen YW, El Wakil A, Dewer Y, Zhu XY, Sun L, Zhang YN. RNAi-mediated silencing of SlitPer disrupts sex pheromone communication behavior in Spodoptera litura. PEST MANAGEMENT SCIENCE 2023; 79:3993-3998. [PMID: 37269066 DOI: 10.1002/ps.7593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The 24-h circadian rhythm is considered crucial for insect sexual communication. However, its molecular mechanisms and signaling pathways, particularly the roles of the clock gene period (Per), remain largely unclear. The sex pheromone communication behavior of Spodoptera litura displays typical circadian rhythm characteristics. Thus, it represents an excellent model for functional analyses of the clock gene Per. RESULTS In this study, we investigated the potential roles of SlitPer in regulating sex pheromone communication in S. litura using RNA interference, quantitative real-time polymerase chain reactions (qPCR), gas chromatography, and behavioral assays. The qPCR results showed that the expression levels of SlitPer and two desaturase genes (SlitDes5 and SlitDes11) in the siPer group differed significantly at most time points from those in the siNC group. Dynamic variation in the three major sex pheromone titers and calling behavior of S. litura females in the siPer group was disordered. In addition, the mating rates of siPer S. litura females decreased significantly by 33.33%. Oviposition by mated siPer females was substantially reduced by 84.84%. CONCLUSION These findings provide a fundamental basis for elucidating the molecular mechanism by which Per regulates sex pheromone communication behavior in lepidopteran species. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui-Hui Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jian-Qiao Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Sai Ma
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yu-Wen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
5
|
Liu X, Cai L, Zhu L, Tian Z, Shen Z, Cheng J, Zhang S, Li Z, Liu X. Mutation of the clock gene timeless disturbs diapause induction and adult emergence rhythm in Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2023; 79:1876-1884. [PMID: 36654480 DOI: 10.1002/ps.7363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Circadian rhythms are physical and behavioral changes that follow the 24-h cycle of Earth's light and temperature and are regulated by clock genes. Timeless (Tim) has been identified as a canonical clock gene in some insects, however, its functions have been little studied in lepidopteran pests. RESULTS To investigate Tim (HaTim) gene function in Helicoverpa armigera, an important lepidopteran pest, we obtained the HaTim mutant using the CRISPR/Cas9 gene editing system. Our results showed that the transcript levels of HaTim rhythmically peaked at night in heads of the wild larvae and adult, and the diel expression of HaTim was sensitive to photoperiod and temperature. The expression rhythms of other clock genes, such as HaPer, HaCry1, HaCry2 and HaCwo, were disturbed in the HaTim mutant larvae, as that stage is a sensitivity period for diapause induction. Fifth-instar wild-type larvae could be induced to pupate in diapause under a short-day photoperiod and low temperature, however, fifth-instar HaTim mutant larvae could not be induced under the same conditions. In addition, the emergence of wild-type adults peaked early at night, but the rhythm was disturbed in the HaTim mutant with arrhythmic expression of some clock genes, such as HaPer, HaCry1 and HaCwo in adults. CONCLUSION Our results suggest that the clock gene Tim is involved in diapause induction and adult emergence in H. armigera, and is a potential target gene for controlling pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Wang Y, Belušič G, Pen I, Beukeboom LW, Wertheim B, Stavenga DG, Hut RA. Circadian rhythm entrainment of the jewel wasp, Nasonia vitripennis, by antagonistic interactions of multiple spectral inputs. Proc Biol Sci 2023; 290:20222319. [PMID: 36750184 PMCID: PMC9904953 DOI: 10.1098/rspb.2022.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Circadian light entrainment in some insects is regulated by blue-light-sensitive cryptochrome (CRY) protein that is expressed in the clock neurons, but this is not the case in hymenopterans. The hymenopteran clock does contain CRY, but it appears to be light-insensitive. Therefore, we investigated the role of retinal photoreceptors in the photic entrainment of the jewel wasp Nasonia vitripennis. Application of monochromatic light stimuli at different light intensities caused phase shifts in the wasp's circadian activity from which an action spectrum with three distinct peaks was derived. Electrophysiological recordings from the compound eyes and ocelli revealed the presence of three photoreceptor classes, with peak sensitivities at 340 nm (ultraviolet), 450 nm (blue) and 530 nm (green). An additional photoreceptor class in the ocelli with sensitivity maximum at 560-580 nm (red) was found. Whereas a simple sum of photoreceptor spectral sensitivities could not explain the action spectrum of the circadian phase shifts, modelling of the action spectrum indicates antagonistic interactions between pairs of spectral photoreceptors, residing in the compound eyes and the ocelli. Our findings imply that the photic entrainment mechanism in N. vitripennis encompasses the neural pathways for measuring the absolute luminance as well as the circuits mediating colour opponency.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Doekele G. Stavenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| |
Collapse
|
7
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
8
|
van Wassenhove V. Temporal disorientations and distortions during isolation. Neurosci Biobehav Rev 2022; 137:104644. [PMID: 35364190 DOI: 10.1016/j.neubiorev.2022.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 11/19/2022]
Abstract
Understanding how the brain maps time is central to neuroscience, behavior, psychology, and cognition. Just as in spatial navigation, self-positioning in a temporal cognitive map depends on numerous factors that are both exogenous and endogenous (e.g. time of day and experienced durations, respectively). The deprivation of external temporal landmarks can greatly reduce the ability of participants to orient in time and to formulate an adequate endogenous representation of time. However, this area of investigation in humans shows a great paucity of empirical data. This article aims at unearthing some of the experimental work that has systematically explored how humans' awareness of time is affected by varying degrees of isolation protocols. The assessment of the literature on the impact of isolation (broadly construed) on human temporalities may contribute to contextualizing the temporal distortions and disorientations reported during the ongoing worldwide pandemic Covid-19.
Collapse
Affiliation(s)
- Virginie van Wassenhove
- CEA, NeuroSpin, Cognitive Neuroimaging Unit, INSERM, CNRS, Université Paris-Saclay, 91191 Gif/Yvette, France.
| |
Collapse
|
9
|
Siehler O, Wang S, Bloch G. Remarkable Sensitivity of Young Honey Bee Workers to Multiple Non-photic, Non-thermal, Forager Cues That Synchronize Their Daily Activity Rhythms. Front Physiol 2022; 12:789773. [PMID: 35002771 PMCID: PMC8733668 DOI: 10.3389/fphys.2021.789773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Honey bees live in colonies containing tens of thousands of workers that coordinate their activities to produce efficient colony-level behavior. In free-foraging colonies, nest bees are entrained to the forager daily phase of activity even when experiencing conflicting light-dark illumination regime, but little is known on the cues mediating this potent social synchronization. We monitored locomotor activity in an array of individually caged bees in which we manipulated the contact with neighbour bees. We used circular statistics and coupling function analyses to estimate the degree of social synchronization. We found that young bees in cages connected to cages housing foragers showed stronger rhythms, better synchronization with each other, higher coupling strength, and a phase more similar to that of the foragers compared to similar bees in unconnected cages. These findings suggest that close distance contacts are sufficient for social synchronization or that cage connection facilitated the propagation of time-giving social cues. Coupling strength was higher for bees placed on the same tray compared with bees at a similar distance but on a different tray, consistent with the hypothesis that substrate borne vibrations mediate phase synchronization. Additional manipulation of the contact between cages showed that social synchronization is better among bees in cages connected with tube with a single mesh partition compared to sealed tubes consistent with the notion that volatile cues act additively to substrate borne vibrations. These findings are consistent with self-organization models for social synchronization of activity rhythms and suggest that the circadian system of honey bees evolved remarkable sensitivity to non-photic, non-thermal, time giving entraining cues enabling them to tightly coordinate their behavior in the dark and constant physical environment of their nests.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shuo Wang
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Siehler O, Wang S, Bloch G. Social synchronization of circadian rhythms with a focus on honeybees. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200342. [PMID: 34420390 PMCID: PMC8380977 DOI: 10.1098/rstb.2020.0342] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Many animals benefit from synchronizing their daily activities with conspecifics. In this hybrid paper, we first review recent literature supporting and extending earlier evidence for a lack of clear relationship between the level of sociality and social entrainment of circadian rhythms. Social entrainment is specifically potent in social animals that live in constant environments in which some or all individuals do not experience the ambient day-night cycles. We next focus on highly social honeybees in which there is good evidence that social cues entrain the circadian clocks of nest bees and can override the influence of conflicting light-dark cycles. The current understanding of social synchronization in honeybees is consistent with self-organization models in which surrogates of forager activity, such as substrate-borne vibrations and colony volatiles, entrain the circadian clocks of bees dwelling in the dark cavity of the nest. Finally, we present original findings showing that social synchronization is effective even in an array of individually caged callow bees placed on the same substrate and is improved for bees in connected cages. These findings reveal remarkable sensitivity to social time-giving cues and show that bees with attenuated rhythms (weak oscillators) can nevertheless be socially synchronized to a common phase of activity. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Shuo Wang
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Traoré AS, Porciani A, Moiroux N, Dabiré RK, Simard F, Costantini C, Mouline K. Effects of insemination and blood-feeding on locomotor activity of wild-derived females of the malaria mosquito Anopheles coluzzii. Parasit Vectors 2021; 14:457. [PMID: 34493324 PMCID: PMC8422633 DOI: 10.1186/s13071-021-04967-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Behavioural shifts in the canonical location and timing of biting have been reported in natural populations of anopheline malaria vectors following the implementation of insecticide-based indoor vector control interventions. These modifications increase the likelihood of human-vector contact and allow mosquitoes to avoid insecticides, both conditions being favourable to residual transmission of the malarial parasites. The biting behaviour of mosquitoes follows rhythms that are under the control of biological clocks and environmental conditions, modulated by physiological states. In this work we explore modifications of spontaneous locomotor activity expressed by mosquitoes in different physiological states to highlight phenotypic variability associated to circadian control that may contribute to explain residual transmission in the field. METHODS The F10 generation progeny of field-collected Anopheles coluzzii from southwestern Burkina Faso was tested using an automated recording apparatus (Locomotor Activity Monitor, TriKinetics Inc.) under LD 12:12 or DD light regimens in laboratory-controlled conditions. Activity recordings of each test were carried out for a week with 6-day-old females belonging to four experimental treatments, representing factorial combinations of two physiological variables: insemination status (virgin vs inseminated) and gonotrophic status (glucose fed vs blood fed). Chronobiological features of rhythmicity in locomotor activity were explored using periodograms, diversity indices, and generalized linear mixed modelling. RESULTS The average strength of activity, onset of activity, and acrophase were modulated by both nutritional and insemination status as well as by the light regimen. Inseminated females showed a significant excess of arrhythmic activity under DD. When rhythmicity was observed in DD, females displayed sustained activity also during the subjective day. CONCLUSIONS Insemination and gonotrophic status influence the underlying light and circadian control of chronobiological features of locomotor activity. Overrepresentation of arrhythmic chronotypes as well as the sustained activity of inseminated females during the subjective day under DD conditions suggests potential activity of natural populations of A. coluzzii during daytime under dim conditions, with implications for residual transmission of malarial parasites.
Collapse
Affiliation(s)
- Amadou S Traoré
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France.
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso.
- Agro Paris Tech, Institut Des Sciences Et Industries du Vivant Et de L'environnement, Université Paris-Saclay, Paris, France.
| | | | - Nicolas Moiroux
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | | | | | - Karine Mouline
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
12
|
Quigley TP, Amdam GV. Social modulation of ageing: mechanisms, ecology, evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190738. [PMID: 33678020 PMCID: PMC7938163 DOI: 10.1098/rstb.2019.0738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Human life expectancy increases, but the disease-free part of lifespan (healthspan) and the quality of life in old people may not show the same development. The situation poses considerable challenges to healthcare systems and economies, and calls for new strategies to increase healthspan and for sustainable future approaches to elder care. This call has motivated innovative research on the role of social relationships during ageing. Correlative data from clinical surveys indicate that social contact promotes healthy ageing, and it is time to reveal the causal mechanisms through experimental research. The fruit fly Drosophila melanogaster is a prolific model animal, but insects with more developed social behaviour can be equally instrumental for this research. Here, we discuss the role of social contact in ageing, and identify lines of study where diverse insect models can help uncover the mechanisms that are involved. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Tyler P. Quigley
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5002, N-1432 Aas, Norway
| |
Collapse
|
13
|
Fujioka H, Abe MS, Okada Y. Individual Ants Do Not Show Activity-Rest Rhythms in Nest Conditions. J Biol Rhythms 2021; 36:297-310. [PMID: 33818189 DOI: 10.1177/07487304211002934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian rhythms, which respond to the day-night cycle on the earth, arise from the endogenous timekeeping system within organisms, called the "biological clock." For accurate circadian rhythms, daily fluctuations in light and temperature are considered one of the important time cues. In social insects, both abiotic and biotic factors (i.e., social interactions) play a significant role in activity-rest rhythm regulation. However, it is challenging to monitor individual activity-rest rhythms in a colony because of the large group size and small body size. Therefore, it is unclear whether individuals in a colony exhibit activity-rest rhythms and how social interactions regulate their activity-rest rhythms in the colony. This study developed an image-based tracking system using 2D barcodes for Diacamma cf. indicum from Japan (a monomorphic ant) and measured the locomotor activities of all colony members under laboratory colony conditions. We also investigated the effect of broods on activity-rest rhythms by removing all broods under colony conditions. Activity-rest rhythms appeared only in isolated ants, not under colony conditions. In addition, workers showed arrhythmic activities after brood removal. These results suggested that a mixture of social interactions, and not light and temperature, induces the loss of activity-rest rhythms. These results contribute to the knowledge of a diverse pattern of circadian activity rhythms in social insects.
Collapse
Affiliation(s)
- Haruna Fujioka
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Science, Osaka City University, Osaka, Japan.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Masato S Abe
- Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Yasukazu Okada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
14
|
Beer K, Helfrich-Förster C. Post-embryonic Development of the Circadian Clock Seems to Correlate With Social Life Style in Bees. Front Cell Dev Biol 2020; 8:581323. [PMID: 33282863 PMCID: PMC7689364 DOI: 10.3389/fcell.2020.581323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Social life style can influence many aspects of an animal’s daily life, but it has not yet been clarified, whether development of the circadian clock in social and solitary living bees differs. In a comparative study, with the social honey bee, Apis mellifera, and the solitary mason bee, Osmia bicornis, we now found indications for a differentially timed clock development in social and solitary bees. Newly emerged solitary bees showed rhythmic locomotion right away and the number of neurons in the brain that produce the clock component pigment-dispersing factor (PDF) did not change during aging of the adult solitary bee. Honey bees on the other hand, showed no circadian locomotion directly after emergence and the neuronal clock network continued to grow after emergence. Social bees appear to emerge at an early developmental stage at which the circadian clock is still immature, but bees are already able to fulfill in-hive tasks.
Collapse
Affiliation(s)
- Katharina Beer
- Department of Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
15
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
16
|
Pandey A, Motro U, Bloch G. Juvenile hormone affects the development and strength of circadian rhythms in young bumble bee (Bombus terrestris) workers. Neurobiol Sleep Circadian Rhythms 2020; 9:100056. [PMID: 33364524 PMCID: PMC7752729 DOI: 10.1016/j.nbscr.2020.100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian and endocrine systems influence many physiological processes in animals, but little is known on the ways they interact in insects. We tested the hypothesis that juvenile hormone (JH) influences circadian rhythms in the social bumble bee Bombus terrestris. JH is the major gonadotropin in this species coordinating processes such as vitellogenesis, oogenesis, wax production, and behaviors associated with reproduction. It is unknown however, whether it also influences circadian processes. We topically treated newly-emerged bees with the allatoxin Precocene-I (P-I) to reduce circulating JH titers and applied the natural JH (JH-III) for replacement therapy. We repeated this experiment in three trials, each with bees from different source colonies. Measurements of ovarian activity suggest that our JH manipulations were effective; bees treated with P-I had inactive ovaries, and this effect was fully recovered by subsequent JH treatment. We found that JH augments the strength of circadian rhythms and the pace of rhythm development in individually isolated newly emerged worker bees. JH manipulation did not affect the free-running circadian period, overall level of locomotor activity, sleep amount, or sleep structure. Given that acute manipulation at an early age produced relatively long-lasting effects, we propose that JH effects on circadian rhythms are mostly organizational, accelerating the development or integration of the circadian system.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uzi Motro
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
18
|
Going gentle into that pathogen-induced goodnight. J Invertebr Pathol 2020; 174:107398. [PMID: 32473941 DOI: 10.1016/j.jip.2020.107398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
A diverse set of pathogens have evolved extended phenotypes that manipulate the moribund behavior of their various insect hosts. By elevating host positioning at death, a phenomenon called "summit disease", these pathogens have been shown to have higher fitness. Though a few summit disease systems have been intensively characterized, in particular the Ophiocordyceps-ant system, summit diseases lack an overarching theory for the underlying mechanisms of this complex behavioral manipulation. In this article, we combine the gamut of summiting systems into a cohesive framework: we propose two types of summit disease (juvenile and adult), which both exploit natural insect behaviors during periods of quiescence. We place this framework in the context of available literature and propose investigations that follow from this comprehensive understanding of summit disease in insects.
Collapse
|
19
|
Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol 2020; 432:3578-3610. [PMID: 32376454 PMCID: PMC7781158 DOI: 10.1016/j.jmb.2020.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Under normal circadian function, metabolic control is temporally coordinated across tissues and behaviors with a 24-h period. However, circadian disruption results in negative consequences for metabolic homeostasis including energy or redox imbalances. Yet, circadian disruption has become increasingly prevalent within today's society due to many factors including sleep loss. Metabolic consequences of both have been revealed by metabolomics analyses of circadian biology and sleep. Specifically, two primary analytical platforms, mass spectrometry and nuclear magnetic resonance spectroscopy, have been used to study molecular clock and sleep influences on overall metabolic rhythmicity. For example, human studies have demonstrated the prevalence of metabolic rhythms in human biology, as well as pan-metabolome consequences of sleep disruption. However, human studies are limited to peripheral metabolic readouts primarily through minimally invasive procedures. For further tissue- and organism-specific investigations, a number of model systems have been studied, based upon the conserved nature of both the molecular clock and sleep across species. Here we summarize human studies as well as key findings from metabolomics studies using mice, Drosophila, and zebrafish. While informative, a limitation in existing literature is a lack of interpretation regarding dynamic synthesis or catabolism within metabolite pools. To this extent, future work incorporating isotope tracers, specific metabolite reporters, and single-cell metabolomics may provide a means of exploring dynamic activity in pathways of interest.
Collapse
Affiliation(s)
- Dania M Malik
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Penn Chronobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Siehler O, Bloch G. Colony Volatiles and Substrate-borne Vibrations Entrain Circadian Rhythms and Are Potential Cues Mediating Social Synchronization in Honey Bee Colonies. J Biol Rhythms 2020; 35:246-256. [PMID: 32295458 DOI: 10.1177/0748730420913362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Internal circadian clocks organize animal behavior and physiology and are entrained by ecologically relevant external time-givers such as light and temperature cycles. In the highly social honey bee, social time-givers are potent and can override photic entrainment, but the cues mediating social entrainment are unknown. Here, we tested whether substrate-borne vibrations and hive volatiles can mediate social synchronization in honey bees. We first placed newly emerged worker bees on the same or on a different substrate on which we placed cages with foragers entrained to ambient day-night cycles, while minimizing the spread of volatiles between cages. In the second experiment, we exposed young bees to constant airflow drawn from either a free-foraging colony or a similar-size control hive containing only heated empty honeycombs, while minimizing transfer of substrate-borne vibrations between cages. After 6 days, we isolated each focal bee in an individual cage in an environmental chamber and monitored her locomotor activity. We repeated each experiment 5 times, each trial with bees from a different source colony, monitoring a total of more than 1000 bees representing diverse genotypes. We found that bees placed on the same substrate as foragers showed a stronger phase coherence and a phase more similar to that of foragers compared with bees placed on a different substrate. In the second experiment, bees exposed to air drawn from a colony showed a stronger phase coherence and a phase more similar to that of foragers compared with bees exposed to air from an empty hive. These findings lend credence to the hypothesis that surrogates of activity entrain circadian rhythms and suggest that multiple social cues can act in concert to entrain social insect colonies to a common phase.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| |
Collapse
|
21
|
Ping Y, Shao L, Li M, Yang L, Zhang J. Contribution of Social Influences through Superposition of Visual and Olfactory Inputs to Circadian Re-entrainment. iScience 2020; 23:100856. [PMID: 32058967 PMCID: PMC6997854 DOI: 10.1016/j.isci.2020.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/13/2019] [Accepted: 01/15/2020] [Indexed: 11/17/2022] Open
Abstract
Circadian patterns of locomotor activity are influenced by social interactions. Studies on insects highlight the importance of volatile odors and the olfactory system. Wild-type Drosophila exhibit immediate re-entrainment to new light:dark (LD) cycles, whereas cryb and jetc mutants show deficits in re-entrainability. We found that both male mutants re-entrained faster to phase-shifted LD cycles when social interactions with WT female flies were promoted than the isolated males. In addition, we found that accelerated re-entrainment mediated by social interactions depended on both visual and olfactory cues, and the effect of both cues presented jointly was nearly identical to the sum of the effects of the two cues presented separately. Moreover, we found that re-entrainment deficits in period (per) expression-oscillation in jetc mutants were partially restored by promoting social interactions. Our results demonstrated that, in addition to olfaction, social interactions through the visual system also play important roles in clock entrainment. Interactions with WT females accelerates re-entrainment in jetc and cryb male mutants Both visual and olfactory inputs contribute to fast re-entrainment in jetc mutants jetc mutants in groups re-entrain faster on per expression rhythms than isolated one
Collapse
Affiliation(s)
- Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Lingzhan Shao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minzhe Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luna Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Beckwith EJ, French AS. Sleep in Drosophila and Its Context. Front Physiol 2019; 10:1167. [PMID: 31572216 PMCID: PMC6749028 DOI: 10.3389/fphys.2019.01167] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
A prominent idea emerging from the study of sleep is that this key behavioural state is regulated in a complex fashion by ecologically and physiologically relevant environmental factors. This concept implies that sleep, as a behaviour, is plastic and can be regulated by external agents and changes in internal state. Drosophila melanogaster constitutes a resourceful model system to study behaviour. In the year 2000, the utility of the fly to study sleep was realised, and has since extensively contributed to this exciting field. At the centre of this review, we will discuss studies showing that temperature, food availability/quality, and interactions with conspecifics can regulate sleep. Indeed the relationship can be reciprocal and sleep perturbation can also affect feeding and social interaction. In particular, different environmental temperatures as well as gradual changes in temperature regulate when, and how much flies sleep. Moreover, the satiation/starvation status of an individual dictates the balance between sleep and foraging. Nutritional composition of diet also has a direct impact on sleep amount and its fragmentation. Likewise, aggression between males, courtship, sexual arousal, mating, and interactions within large groups of animals has an acute and long-lasting effect on sleep amount and quality. Importantly, the genes and neuronal circuits that relay information about the external environment and internal state to sleep centres are starting to be elucidated in the fly and are the focus of this review. In conclusion, sleep, as with most behaviours, needs the full commitment of the individual, preventing participation in other vital activities. A vast array of behaviours that are modulated by external and internal factors compete with the need to sleep and thus have a significant role in regulating it.
Collapse
Affiliation(s)
- Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alice S French
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
|
24
|
Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018; 43:937-952. [PMID: 29206811 PMCID: PMC5854814 DOI: 10.1038/npp.2017.294] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Humans have been fascinated by sleep for millennia. After almost a century of scientific interrogation, significant progress has been made in understanding the neuronal regulation and functions of sleep. The application of new methods in neuroscience that enable the analysis of genetically defined neuronal circuits with unprecedented specificity and precision has been paramount in this endeavor. In this review, we first discuss electrophysiological and behavioral features of sleep/wake states and the principal neuronal populations involved in their regulation. Next, we describe the main modulatory drives of sleep and wakefulness, including homeostatic, circadian, and motivational processes. Finally, we describe a revised integrative model for sleep/wake regulation.
Collapse
Affiliation(s)
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Nagari M, Szyszka P, Galizia G, Bloch G. Task-Related Phasing of Circadian Rhythms in Antennal Responsiveness to Odorants and Pheromones in Honeybees. J Biol Rhythms 2017; 32:593-608. [PMID: 28984167 DOI: 10.1177/0748730417733573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The insect antennae receive olfactory information from the environment. In some insects, it has been shown that antennal responsiveness is dynamically regulated by circadian clocks. However, it is unknown how general this phenomenon is and what functions it serves. Circadian regulation in honeybee workers is particularly interesting in this regard because they show natural task-related chronobiological plasticity. Forager bees show strong circadian rhythms in behavior and brain gene expression, whereas nurse bees tend brood around-the-clock and have attenuated circadian rhythms in activity and whole-brain gene expression. Here, we tested the hypothesis that there is task-related plasticity in circadian rhythms of antennal responsiveness to odorants in worker honeybees. We used electroantennogram (EAG) to measure the antennal responsiveness of nurses and foragers to general odorants and pheromones around the day. The capacity to track 10-Hz odorant pulses varied with time of day for both task groups but with different phases. The antennal pulse-tracking capacity was higher during the subjective day for the day-active foragers, whereas it was better during the night for around-the-clock active nurses. The task-related phases of pulse-tracking rhythms were similar for all the tested stimuli. We also found evidence for circadian rhythms in the EAG response magnitude of foragers but not of nurses. To the best of our knowledge, these results provide the first evidence for circadian regulation of antennal olfactory responsiveness and odorant pulse-tracking capacity in bees or any other hymenopteran insect. Importantly, our study shows for the first time that the circadian phase of olfactory responsiveness may be socially regulated.
Collapse
Affiliation(s)
- Moshe Nagari
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Szyszka
- Department of Neuroscience, University of Konstanz, Germany
| | | | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Burggren W, Souder BM, Ho DH. Metabolic rate and hypoxia tolerance are affected by group interactions and sex in the fruit fly ( Drosophila melanogaster): new data and a literature survey. Biol Open 2017; 6:471-480. [PMID: 28202465 PMCID: PMC5399560 DOI: 10.1242/bio.023994] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Population density and associated behavioral adjustments are potentially important in regulating physiological performance in many animals. In r-selected species like the fruit fly (Drosophila), where population density rapidly shifts in unpredictable and unstable environments, density-dependent physiological adjustments may aid survival of individuals living in a social environment. Yet, how population density (and associated social behaviors) affects physiological functions like metabolism is poorly understood in insects. Additionally, insects often show marked sexual dimorphism (larger females). Thus, in this study on D. melanogaster, we characterized the effects of fly density and sex on both mass-specific routine oxygen consumption (V̇O2) and hypoxia tolerance (PCrit). Females had significantly lower routine V̇O2 (∼4 µl O2 mg−1 h−1) than males (∼6 µl O2 mg−1 h−1) at an average fly density of 28 flies·respirometer chamber−1. However, V̇O2 was inversely related to fly density in males, with V̇O2 ranging from 4 to 11 µl O2 mg−1 h−1 at a density of 10 and 40 flies·chamber−1, respectively (r2=0.58, P<0.001). Female flies showed a similar but less pronounced effect, with a V̇O2 of 4 and 7 µl O2 mg−1 h−1 at a density of 10 and 40 flies·chamber−1, respectively (r2=0.43, P<0.001). PCrit (∼5.5 to 7.5 kPa) varied significantly with density in male (r2=0.50, P<0.01) but not female (r2=0.02, P>0.5) flies, with higher fly densities having a lower PCrit. An extensive survey of the literature on metabolism in fruit flies indicates that not all studies control for, or even report on, fly density and gender, both of which may affect metabolic measurements. Summary: Technical advances allowing oxygen consumption measurement in individual fruit flies actually take them out of their normal highly social context, resulting in higher oxygen consumption rates than in natural groups.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - BriAnna M Souder
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Dao H Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA
| |
Collapse
|
27
|
Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017; 6:212. [PMID: 28357049 PMCID: PMC5345773 DOI: 10.12688/f1000research.9677.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 11/20/2022] Open
Abstract
Animals continuously alternate between sleep and wake states throughout their life. The daily organization of sleep and wakefulness is orchestrated by circadian, homeostatic, and motivational processes. Over the last decades, much progress has been made toward determining the neuronal populations involved in sleep/wake regulation. Here, we will discuss how the application of advanced
in vivo tools for cell type–specific manipulations now permits the functional interrogation of different features of sleep/wake state regulation: initiation, maintenance, and structural organization. We will specifically focus on recent studies examining the roles of wake-promoting neuronal populations.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
28
|
Nagari M, Brenner Y, Bloch G. Nurse honeybee workers tend capped-brood, which does not require feeding, around-the-clock. J Exp Biol 2017; 220:4130-4140. [DOI: 10.1242/jeb.166884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
“Nurse” honeybees tend brood around-the-clock with attenuated or no circadian rhythms, but the brood signals inducing this behavior remain elusive. We first tested the hypothesis that worker circadian rhythms are regulated by brood pheromones. We monitored locomotor activity of individually isolated nurse bees that were either exposed to various doses of larval extracts or synthetic brood ester pheromone (BEP). Bees orally treated with larvae extracts showed attenuated circadian rhythms in one of four tested colonies; a similar but statistically non-significant trend was seen in two additional colonies. Nurse bees treated with synthetic BEP showed rhythm attenuation in one of three tested colonies. Next, we tested the hypothesis that capped brood, which does not require feeding, nevertheless induces around-the-clock activity in nurses. By combining a new protocol that enables brood care by individually isolated nurse bees, detailed behavioral observations, and automatic high resolution monitoring of locomotor activity, we found that isolated nurses tended capped brood around-the-clock with attenuated circadian rhythms. Bees individually isolated in similar cages but without brood, showed strong circadian rhythms in locomotor activity and rest. This study shows for the first time that the need to feed hungry larvae is not the only factor accounting for around-the-clock activity in nurse bees. Our results further suggest that the transition between activity with and without circadian rhythms is not a simple switch triggered by brood pheromones. Around-the-clock tending may enhance brood development and health in multiple ways that may include improved larval feeding, thermoregulation and hygienic behavior.
Collapse
Affiliation(s)
- Moshe Nagari
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| | - Yafit Brenner
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| | - Guy Bloch
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| |
Collapse
|
29
|
Fuchikawa T, Eban-Rothschild A, Nagari M, Shemesh Y, Bloch G. Potent social synchronization can override photic entrainment of circadian rhythms. Nat Commun 2016; 7:11662. [PMID: 27210069 PMCID: PMC4879263 DOI: 10.1038/ncomms11662] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts.
Collapse
Affiliation(s)
- Taro Fuchikawa
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Moshe Nagari
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Yair Shemesh
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 Israel
| |
Collapse
|
30
|
Behavioural Contagion Explains Group Cohesion in a Social Crustacean. PLoS Comput Biol 2015; 11:e1004290. [PMID: 26067565 PMCID: PMC4465910 DOI: 10.1371/journal.pcbi.1004290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/17/2015] [Indexed: 11/26/2022] Open
Abstract
In gregarious species, social interactions maintain group cohesion and the associated adaptive values of group living. The understanding of mechanisms leading to group cohesion is essential for understanding the collective dynamics of groups and the spatio-temporal distribution of organisms in environment. In this view, social aggregation in terrestrial isopods represents an interesting model due to its recurrence both in the field and in the laboratory. In this study, and under a perturbation context, we experimentally tested the stability of groups of woodlice according to group size and time spent in group. Our results indicate that the response to the disturbance of groups decreases with increases in these two variables. Models neglecting social effects cannot reproduce experimental data, attesting that cohesion of aggregation in terrestrial isopods is partly governed by a social effect. In particular, models involving calmed and excited individuals and a social transition between these two behavioural states more accurately reproduced our experimental data. Therefore, we concluded that group cohesion (and collective response to stimulus) in terrestrial isopods is governed by a transitory resting state under the influence of density of conspecifics and time spent in group. Lastly, we discuss the nature of direct or indirect interactions possibly implicated. Terrestrial isopods, commonly named woodlice or pill bugs, are commonly distributed soil-dwelling arthropods, particularly important in soils as macro-decomposers of leaf litter. Many species of woodlice are synanthropic and, for this reason, are easily observable in gardens, urban parks or composts. Harmless organisms and easy to raise, the woodlice represent an excellent pedagogical model in many schools, so that children may perform on these organisms various behavioral tests such as light escape or introduction to social behaviors. Indeed, woodlice are gregarious species and exhibit long phases of aggregation. Here, we propose a model based on simple rules involving calmed and excited individuals and a social transition between these two behavioural states to explain group cohesion in woodlice. This contagion model well reproduces our experimental results. Our approach provides important clues for the understanding of how social group effects and collective mechanisms may govern the stability and dispersion of aggregates in gregarious arthropods.
Collapse
|
31
|
Eban-Rothschild A, Bloch G. The colony environment modulates sleep in honey bee workers. ACTA ACUST UNITED AC 2014; 218:404-11. [PMID: 25524987 DOI: 10.1242/jeb.110619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience-dependent modulation of an essential biological process.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
32
|
Michel M, Lyons LC. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci 2014; 8:133. [PMID: 25136297 PMCID: PMC4120776 DOI: 10.3389/fnsys.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University Tallahassee, FL, USA
| |
Collapse
|
33
|
Camiletti AL, Awde DN, Thompson GJ. How flies respond to honey bee pheromone: the role of the foraging gene on reproductive response to queen mandibular pheromone. Naturwissenschaften 2013; 101:25-31. [DOI: 10.1007/s00114-013-1125-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/13/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
|