1
|
Chim SM, Howell K, Dronzek J, Wu W, Van Hout C, Ferreira MAR, Ye B, Li A, Brydges S, Arunachalam V, Marcketta A, Locke AE, Bovijn J, Verweij N, De T, Lotta L, Mitnaul L, LeBlanc M, Center RG, Carey DJ, Melander O, Shuldiner A, Karalis K, Economides AN, Nistala H. Genetic inactivation of zinc transporter SLC39A5 improves liver function and hyperglycemia in obesogenic settings. eLife 2024; 12:RP90419. [PMID: 39671241 DOI: 10.7554/elife.90419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.
Collapse
Affiliation(s)
| | | | - John Dronzek
- Regeneron Genetics Center, New York, United States
| | - Weizhen Wu
- Regeneron Genetics Center, New York, United States
| | | | | | - Bin Ye
- Regeneron Genetics Center, New York, United States
| | - Alexander Li
- Regeneron Genetics Center, New York, United States
| | | | | | | | - Adam E Locke
- Regeneron Genetics Center, New York, United States
| | - Jonas Bovijn
- Regeneron Genetics Center, New York, United States
| | - Niek Verweij
- Regeneron Genetics Center, New York, United States
| | - Tanima De
- Regeneron Genetics Center, New York, United States
| | - Luca Lotta
- Regeneron Genetics Center, New York, United States
| | | | | | | | | | | | | | | | - Aris N Economides
- Regeneron Genetics Center, New York, United States
- Regeneron Pharmaceuticals, New York, United States
| | | |
Collapse
|
2
|
Hu J, Jiang Y. Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. Crit Rev Biochem Mol Biol 2024; 59:245-266. [PMID: 39431645 DOI: 10.1080/10409238.2024.2405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
The Zrt/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent d-block metal transporters that play central roles in the uptake, secretion, excretion, and distribution of several essential and toxic metals in living organisms. The past few years has witnessed rapid progress in the molecular basis of these membrane transport proteins. In this critical review, we summarize the research progress at the molecular level of the ZIP family and discuss the future prospects. Furthermore, an evolutionary path for the unique ZIP fold and a new classification of the ZIP family are proposed based on the presented structural and sequence analyses.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Liu H, Li L, Lu R. ZIP transporters-regulated Zn 2+ homeostasis: A novel determinant of human diseases. J Cell Physiol 2024; 239:e31223. [PMID: 38530191 DOI: 10.1002/jcp.31223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
As an essential trace element for organisms, zinc participates in various physiological processes, such as RNA transcription, DNA replication, cell proliferation, and cell differentiation. The destruction of zinc homeostasis is associated with various diseases. Zinc homeostasis is controlled by the cooperative action of zinc transporter proteins that are responsible for the influx and efflux of zinc. Zinc transporter proteins are mainly categorized into two families: Zrt/Irt-like protein (SLC39A/ZIP) family and zinc transporter (SLC30A/ZNT) family. ZIP transporters contain 14 members, namely ZIP1-14, which can be further divided into four subfamilies. Currently, ZIP transporters-regulated zinc homeostasis is one of the research hotspots. Cumulative evidence suggests that ZIP transporters-regulated zinc homeostasis may cause physiological dysfunction and contribute to the onset and progression of diverse diseases, such as cancers, neurological diseases, and cardiovascular diseases. In this review, we initially discuss the structure and distribution of ZIP transporters. Furthermore, we comprehensively review the latest research progress of ZIP transporters-regulated zinc homeostasis in diseases, providing a new perspective into new therapeutic targets for treating related diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Mendoza AD, Dietrich N, Tan CH, Herrera D, Kasiah J, Payne Z, Cubillas C, Schneider DL, Kornfeld K. Lysosome-related organelles contain an expansion compartment that mediates delivery of zinc transporters to promote homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2307143121. [PMID: 38330011 PMCID: PMC10873617 DOI: 10.1073/pnas.2307143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.
Collapse
Affiliation(s)
- Adelita D. Mendoza
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Herrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Zachary Payne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
5
|
Hussain R, Graham U, Elder A, Nedergaard M. Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci 2023; 46:901-911. [PMID: 37777345 DOI: 10.1016/j.tins.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Epidemiological evidence demonstrates a link between air pollution exposure and the onset and progression of cognitive impairment and Alzheimer's disease (AD). However, current understanding of the underlying pathophysiological mechanisms is limited. This opinion article examines the hypothesis that air pollution-induced impairment of glymphatic clearance represents a crucial etiological event in the development of AD. Exposure to airborne particulate matter (PM) leads to systemic inflammation and neuroinflammation, increased metal load, respiratory and cardiovascular dysfunction, and sleep abnormalities. All these factors are known to reduce the efficiency of glymphatic clearance. Rescuing glymphatic function by restricting the impact of causative agents, and improving sleep and cardiovascular system health, may increase the efficiency of waste metabolite clearance and subsequently slow the progression of AD. In sum, we introduce air pollution-mediated glymphatic impairment as an important mechanistic factor to be considered when interpreting the etiology and progression of AD as well as its responsiveness to therapeutic interventions.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.
| | | | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Jiang Y, Sui D, Hu J. Cell-based transport assay to study kinetics and substrate specificity of human ZIPs. Methods Enzymol 2023; 687:139-155. [PMID: 37666630 PMCID: PMC10999280 DOI: 10.1016/bs.mie.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Kinetic study of human ZIPs is crucial for understanding the transport mechanism and the molecular basis of substrate specificity. In this chapter, we describe the detailed experimental procedures for functional studies of two human ZIPs, including the zinc-preferring ZIP4 and the multi-metal transporter ZIP8, by using the cell-based transport assays. Kinetic study of ZIP4 is elaborated in the first section; in the second section, comparison of ZIP4 and ZIP8 in terms of the zinc/cadmium selectivity is performed by using an internal competition assay adapted from the established cell-based approach. The protocols provided in this chapter will facilitate mechanistic and engineering studies of the ZIPs.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
7
|
Liu Y, Bafaro EM, Dempski RE. Single-molecule quantification of the oligomeric state of ZIP transporters in mammalian cells with fluorescence correlation spectroscopy. Methods Enzymol 2023; 687:103-137. [PMID: 37666629 DOI: 10.1016/bs.mie.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The SLC39 family of transporters, otherwise known as ZIPs for Zrt and Irt-like Proteins, function to increase cytosolic levels of transition metals. ZIP transporters have been identified at all phylogenetic levels and are members of the SoLute Carrier (SLC) superfamily. There are fourteen ZIP transporters encoded in the human genome. ZIP transmembrane proteins are expressed in the plasma membrane or membranes of intracellular organelles and have unique expression profiles across cell types. While direct structural efforts including x-ray crystallography, NMR and ab initio approaches have been effective tools in elucidating the structure of ZIPs, direct elucidation of the oligomeric state of these proteins is essential in understanding how wild type ZIP proteins function and whether mutations alter the oligomeric state of ZIPs. Unfortunately, several tools to quantify oligomeric states of proteins require overexpression of proteins which can lead to artifacts in experimental results. In contrast, fluorescence correlation spectroscopy (FCS) is a single-molecule technique which can be used to quantify the oligomeric state of transmembrane proteins. FCS takes advantage of the observation that the molecular brightness of a cluster of fluorescent molecules is directly proportional to the number of fluorescent molecules within the protein complex. This chapter describes how to implement FCS, focused on ZIP transporters, to quantify the oligomeric state of transmembrane in vivo. Included within this chapter are procedures to design constructs for experiments, transfection of mammalian cells as well as data acquisition and analysis. Taken together, FCS is a powerful mechanism to investigate the oligomeric state of proteins embedded within membranes of cells.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Elizabeth M Bafaro
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States.
| |
Collapse
|
8
|
Olea-Flores M, Kan J, Carlson A, Syed SA, McCann C, Mondal V, Szady C, Ricker HM, McQueen A, Navea JG, Caromile LA, Padilla-Benavides T. ZIP11 Regulates Nuclear Zinc Homeostasis in HeLa Cells and Is Required for Proliferation and Establishment of the Carcinogenic Phenotype. Front Cell Dev Biol 2022; 10:895433. [PMID: 35898402 PMCID: PMC9309433 DOI: 10.3389/fcell.2022.895433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc (Zn) is an essential trace element that plays a key role in several biological processes, including transcription, signaling, and catalysis. A subcellular network of transporters ensures adequate distribution of Zn to facilitate homeostasis. Among these are a family of importers, the Zrt/Irt-like proteins (ZIP), which consists of 14 members (ZIP1-ZIP14) that mobilize Zn from the extracellular domain and organelles into the cytosol. Expression of these transporters varies among tissues and during developmental stages, and their distribution at various cellular locations is essential for defining the net cellular Zn transport. Normally, the ion is bound to proteins or sequestered in organelles and vesicles. However, though research has focused on Zn internalization in mammalian cells, little is known about Zn mobilization within organelles, including within the nuclei under both normal and pathological conditions. Analyses from stomach and colon tissues isolated from mouse suggested that ZIP11 is the only ZIP transporter localized to the nucleus of mammalian cells, yet no clear cellular role has been attributed to this protein. We hypothesized that ZIP11 is essential to maintaining nuclear Zn homeostasis in mammalian cells. To test this, we utilized HeLa cells, as research in humans correlated elevated expression of ZIP11 with poor prognosis in cervical cancer patients. We stably knocked down ZIP11 in HeLa cancer cells and investigated the effect of Zn dysregulation in vitro. Our data show that ZIP11 knockdown (KD) reduced HeLa cells proliferation due to nuclear accumulation of Zn. RNA-seq analyses revealed that genes related to angiogenesis, apoptosis, mRNA metabolism, and signaling pathways are dysregulated. Although the KD cells undergoing nuclear Zn stress can activate the homeostasis response by MTF1 and MT1, the RNA-seq analyses showed that only ZIP14 (an importer expressed on the plasma membrane and endocytic vesicles) is mildly induced, which may explain the sensitivity to elevated levels of extracellular Zn. Consequently, ZIP11 KD HeLa cells have impaired migration, invasive properties and decreased mitochondrial potential. Furthermore, KD of ZIP11 delayed cell cycle progression and rendered an enhanced senescent state in HeLa cells, pointing to a novel mechanism whereby maintenance of nuclear Zn homeostasis is essential for cancer progression.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Julia Kan
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Sabriya A. Syed
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Cat McCann
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Varsha Mondal
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Cecily Szady
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Heather M. Ricker
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Amy McQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Juan G. Navea
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Leslie A. Caromile
- Department of Cell Biology, Center for Vascular Biology, UCONN Health-Center, Farmington, CT, United States
| | - Teresita Padilla-Benavides
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
- *Correspondence: Teresita Padilla-Benavides,
| |
Collapse
|
9
|
Heterologous Expression of Full-Length and Truncated Human ZIP4 Zinc Transporter in Saccharomyces cerevisiae. Biomolecules 2022; 12:biom12050726. [PMID: 35625653 PMCID: PMC9138318 DOI: 10.3390/biom12050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The human (h) transporter hZIP4 is the primary Zn2+ importer in the intestine. hZIP4 is also expressed in a variety of organs such as the pancreas and brain. Dysfunction of hZIP4 can result in the Zn2+ deficiency disease acrodermatitis enteropathica (AE). AE can disrupt digestive and immune system homeostasis. A limited number of hZIP4 expression strategies have hindered increasing knowledge about this essential transmembrane protein. Here, we report the heterologous expression of hZIP4 in Saccharomyces cerevisiae. Both a wild-type and a mutant S. cerevisiae strain, in which the endogenous Zn2+ transporters were deleted, were used to test the expression and localization of an hZIP4–GFP fusion protein. A full-length hZIP4–GFP and a truncated membrane-domain-only (mhZIP4–GFP) protein were observed to be present in the plasma membrane in yeast.
Collapse
|
10
|
High Temperature-Induced Oxidative Stress Affects Systemic Zinc Homeostasis in Broilers by Regulating Zinc Transporters and Metallothionein in the Liver and Jejunum. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1427335. [PMID: 35387265 PMCID: PMC8979716 DOI: 10.1155/2022/1427335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
To investigate the change in zinc homeostasis of broilers under heat stress, 512 broiler chickens were raised to the age of 28 days. The broilers were then assigned to heat stress and normal temperature (36.0°C vs. 26.0°C) groups for 7 days. The results showed that oxidative stress induced by high temperature had a negative effect on the growth performance of broilers. Heat stress altered zinc homeostasis and led to a redistribution of zinc in broilers, which was reflected in increased zinc concentrations in the jejunum, liver, and tibia. Upregulation of the expression of the zinc exporter ZnT1 and importers ZIP8 and ZIP14 in the jejunum indicated that more zinc was absorbed and transported from the jejunum into the blood, while the liver increased its capacity to hold zinc through upregulation of metallothionein (MT) expression, which was achieved by reducing ZnT1 expression and upregulating the expression of the importer ZIP3. The pathway was mediated by zinc transporters, but the capacity of MT to chelate and release zinc ions also played a crucial role. The mechanism of alterations in zinc homeostasis under heat stress was revealed by the changes in zinc transporters and MT levels in the intestine and liver. Heat stress also altered cecal microbial diversity and reduced the relative abundances of Bilophila and Dialister. In conclusion, broilers altered systemic zinc homeostasis through the regulation of zinc transporters and MT in the liver and jejunum to resist oxidative stress induced by high temperature.
Collapse
|
11
|
Puccio T, Kunka KS, An SS, Kitten T. Contribution of a ZIP-family protein to manganese uptake and infective endocarditis virulence in Streptococcus sanguinis. Mol Microbiol 2021; 117:353-374. [PMID: 34855265 PMCID: PMC8844249 DOI: 10.1111/mmi.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Streptococcus sanguinis is an important cause of infective endocarditis. In strain SK36, the ABC‐family manganese transporter, SsaACB, is essential for virulence. We have now identified a ZIP‐family protein, TmpA, as a secondary manganese transporter. A tmpA mutant had no phenotype, but a ΔssaACB ΔtmpA mutant was more attenuated for serum growth and for virulence in a rabbit model than its ΔssaACB parent. The growth of both mutants was restored by supplemental manganese, but the ΔssaACB ΔtmpA mutant required twenty‐fold more and accumulated less. Although ZIP‐family proteins are known for zinc and iron transport, TmpA‐mediated transport of either metal was minimal. While ssaACB appears ubiquitous in St. sanguinis, tmpA was present in a majority of strains and a mntH gene encoding an NRAMP‐family transporter was identified in relatively few, including VMC66. As in SK36, deletion of ssaACB greatly diminished VMC66 endocarditis virulence and serum growth, and deletion of tmpA from this mutant diminished virulence further. Virulence was not significantly altered by deletion of mntH from either VMC66 or its ΔssaACB mutant. This and the accompanying paper together suggest that SsaACB is of primary importance for endocarditis virulence while secondary transporters TmpA and MntH contribute to growth under differing conditions.
Collapse
Affiliation(s)
- Tanya Puccio
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Karina S Kunka
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| |
Collapse
|
12
|
Tibbett M, Green I, Rate A, De Oliveira VH, Whitaker J. The transfer of trace metals in the soil-plant-arthropod system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146260. [PMID: 33744587 DOI: 10.1016/j.scitotenv.2021.146260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Essential and non-essential trace metals are capable of causing toxicity to organisms above a threshold concentration. Extensive research has assessed the behaviour of trace metals in biological and ecological systems, but has typically focused on single organisms within a trophic level and not on multi-trophic transfer through terrestrial food chains. This reinforces the notion of metal toxicity as a closed system, failing to consider one trophic level as a pollution source to another; therefore, obscuring the full extent of ecosystem effects. Given the relatively few studies on trophic transfer of metals, this review has taken a compartment-based approach, where transfer of metals through trophic pathways is considered as a series of linked compartments (soil-plant-arthropod herbivore-arthropod predator). In particular, we consider the mechanisms by which trace metals are taken up by organisms, the forms and transformations that can occur within the organism and the consequences for trace metal availability to the next trophic level. The review focuses on four of the most prevalent metal cations in soil which are labile in terrestrial food chains: Cd, Cu, Zn and Ni. Current knowledge of the processes and mechanisms by which these metals are transformed and moved within and between trophic levels in the soil-plant-arthropod system are evaluated. We demonstrate that the key factors controlling the transfer of trace metals through the soil-plant-arthropod system are the form and location in which the metal occurs in the lower trophic level and the physiological mechanisms of each organism in regulating uptake, transformation, detoxification and transfer. The magnitude of transfer varies considerably depending on the trace metal concerned, as does its toxicity, and we conclude that biomagnification is not a general property of plant-arthropod and arthropod-arthropod systems. To deliver a more holistic assessment of ecosystem toxicity, integrated studies across ecosystem compartments are needed to identify critical pathways that can result in secondary toxicity across terrestrial food-chains.
Collapse
Affiliation(s)
- Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Whiteknights, RG6 6AR, UK.
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK
| | - Andrew Rate
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Vinícius H De Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Jeanette Whitaker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4AP, UK
| |
Collapse
|
13
|
Becares ER, Pedersen PA, Gourdon P, Gotfryd K. Overproduction of Human Zip (SLC39) Zinc Transporters in Saccharomyces cerevisiae for Biophysical Characterization. Cells 2021; 10:cells10020213. [PMID: 33494457 PMCID: PMC7911073 DOI: 10.3390/cells10020213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc constitutes the second most abundant transition metal in the human body, and it is implicated in numerous cellular processes, including cell division, DNA and protein synthesis as well as for the catalytic activity of many enzymes. Two major membrane protein families facilitate zinc homeostasis in the animal kingdom, i.e., Zrt/Irt-like proteins (ZIPs aka solute carrier 39, SLC39, family) and Zn transporters (ZnTs), essentially conducting zinc flux in the opposite directions. Human ZIPs (hZIPs) regulate import of extracellular zinc to the cytosol, being critical in preventing overaccumulation of this potentially toxic metal, and crucial for diverse physiological and pathological processes, including development of neurodegenerative disorders and several cancers. To date, our understanding of structure-function relationships governing hZIP-mediated zinc transport mechanism is scarce, mainly due to the notorious difficulty in overproduction of these proteins for biophysical characterization. Here we describe employment of a Saccharomyces cerevisiae-based platform for heterologous expression of hZIPs. We demonstrate that yeast is able to produce four full-length hZIP members belonging to three different subfamilies. One target (hZIP1) is purified in the high quantity and homogeneity required for the downstream biochemical analysis. Our work demonstrates the potential of the described production system for future structural and functional studies of hZIP transporters.
Collapse
Affiliation(s)
- Eva Ramos Becares
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark;
| | - Per Amstrup Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark;
| | - Pontus Gourdon
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark;
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
- Correspondence: (P.G.); (K.G.); Tel.: +45-503-39990; (+45)-414-02869
| | - Kamil Gotfryd
- Membrane Protein Structural Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark;
- Correspondence: (P.G.); (K.G.); Tel.: +45-503-39990; (+45)-414-02869
| |
Collapse
|
14
|
Gordon SJV, Fenker DE, Vest KE, Padilla-Benavides T. Manganese influx and expression of ZIP8 is essential in primary myoblasts and contributes to activation of SOD2. Metallomics 2019; 11:1140-1153. [PMID: 31086870 PMCID: PMC6584035 DOI: 10.1039/c8mt00348c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace elements such as copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) function as enzyme cofactors and second messengers in cell signaling. Trace elements are emerging as key regulators of differentiation and development of mammalian tissues including blood, brain, and skeletal muscle. We previously reported an influx of Cu and dynamic expression of metal transporters during differentiation of skeletal muscle cells. Here, we demonstrate that during differentiation of skeletal myoblasts an increase of Mn, Fe and Zn also occurs. Interestingly the Mn increase is concomitant with increased Mn-dependent SOD2 levels. To better understand the Mn import pathway in skeletal muscle cells, we probed the functional relevance of the closely related proteins ZIP8 and ZIP14, which are implicated in Zn, Mn, and Fe transport. Partial depletion of ZIP8 severely impaired growth of myoblasts and led to cell death under differentiation conditions, indicating that ZIP8-mediated metal transport is essential in skeletal muscle cells. Moreover, knockdown of Zip8 impaired activity of the Mn-dependent SOD2. Growth defects were partially rescued only by Mn supplementation to the medium, suggesting additional functions for ZIP8 in the skeletal muscle lineage. Restoring wild type Zip8 into the knockdown cells rescued the proliferation and differentiation phenotypes. On the other hand, knockdown of Zip14, had only a mild effect on myotube size, consistent with a role for ZIP14 in muscle hypertrophy. Simultaneous knockdown of both Zip8 and Zip14 further impaired differentiation and led cell death. This is the first report on the functional relevance of two members of the ZIP family of metal transporters in the skeletal muscle lineage, and further supports the paradigm that trace metal transporters are important modulators of mammalian tissue development.
Collapse
Affiliation(s)
- Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| | - Daniel E. Fenker
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| |
Collapse
|
15
|
Richardson CER, Nolan EM, Shoulders MD, Lippard SJ. A Sensitive, Nonradioactive Assay for Zn(II) Uptake into Metazoan Cells. Biochemistry 2018; 57:6807-6815. [PMID: 30381945 PMCID: PMC6437758 DOI: 10.1021/acs.biochem.8b01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive measurements of cellular Zn(II) uptake currently rely on quantitating radioactive emissions from cells treated with 65Zn(II). Here, we describe a straightforward and reliable method employing a stable isotope to sensitively measure Zn(II) uptake by metazoan cells. First, biological medium selectively depleted of natural abundance Zn(II) using A12-resin [Richardson, C. E. R., et al. (2018) J. Am. Chem. Soc. 140, 2413] is restored to physiological levels of Zn(II) by addition of a non-natural Zn(II) isotope distribution comprising 70% 70Zn(II). The resulting 70Zn(II)-enriched medium facilitates quantitation of Zn(II) uptake using inductively coupled plasma-mass spectrometry (ICP-MS). This sensitive and reliable assay assesses Zn(II)-uptake kinetics at early time points and can be used to delineate how chemical and genetic perturbations influence Zn(II) uptake. Further, the use of ICP-MS in a Zn(II)-uptake assay permits simultaneous measurement of multiple metal ion concentrations. We used this capability to show that, across three cell lines, Zn(II) deficiency enhances selectivity for Zn(II) over Cd(II) uptake.
Collapse
Affiliation(s)
- Christopher E. R. Richardson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
|
17
|
Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:909-954. [PMID: 29447378 DOI: 10.1093/jxb/erx465] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Many trace metals are essential micronutrients, but also potent toxins. Due to natural and anthropogenic causes, vastly different trace metal concentrations occur in various habitats, ranging from deficient to toxic levels. Therefore, one focus of plant research is on the response to trace metals in terms of uptake, transport, sequestration, speciation, physiological use, deficiency, toxicity, and detoxification. In this review, we cover most of these aspects for the essential micronutrients copper, iron, manganese, molybdenum, nickel, and zinc to provide a broader overview than found in other recent reviews, to cross-link aspects of knowledge in this very active research field that are often seen in a separated way. For example, individual processes of metal usage, deficiency, or toxicity often were not mechanistically interconnected. Therefore, this review also aims to stimulate the communication of researchers following different approaches, such as gene expression analysis, biochemistry, or biophysics of metalloproteins. Furthermore, we highlight recent insights, emphasizing data obtained under physiologically and environmentally relevant conditions.
Collapse
Affiliation(s)
- Elisa Andresen
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, Ceské Budejovice, Czech Republic
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Plant Nutrition Laboratory, Betty-Heimann-Strasse, Halle (Saale), Germany
| | - Hendrik Küpper
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Xiao G, Zhou B. ZIP13: A Study of Drosophila Offers an Alternative Explanation for the Corresponding Human Disease. Front Genet 2018; 8:234. [PMID: 29445391 PMCID: PMC5797780 DOI: 10.3389/fgene.2017.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
The fruit fly Drosophila melanogaster has become an important model organism to investigate metal homeostasis and human diseases. Previously we identified dZIP13 (CG7816), a member of the ZIP transporter family (SLC39A) and presumably a zinc importer, is in fact physiologically primarily responsible to move iron from the cytosol into the secretory compartments in the fly. This review will discuss the implication of this finding for the etiology of Spondylocheirodysplasia-Ehlers-Danlos Syndrome (SCD–EDS), a human disease defective in ZIP13. We propose an entirely different model in that lack of iron in the secretory compartment may underlie SCD-EDS. Altogether three different working models are discussed, supported by relevant findings made in different studies, with uncertainties, and questions remained to be solved. We speculate that the distinct ZIP13 sequence features, different from those of all other ZIP family members, may confer it special transport properties.
Collapse
Affiliation(s)
- Guiran Xiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Fernández-Martín KG, Alvarez-Sánchez ME, Arana-Argáez VE, Alvarez-Sánchez LC, Lara-Riegos JC, Torres-Romero JC. Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to Zinc and Iron. Biometals 2017; 30:663-675. [PMID: 28733845 DOI: 10.1007/s10534-017-0034-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023]
Abstract
Trace elements such as Zinc and Iron are essential components of metalloproteins and serve as cofactors or structural elements for enzymes involved in several important biological processes in almost all organisms. Because either excess or insufficient levels of Zn and Fe can be harmful for the cells, the homeostatic levels of these trace minerals must be tightly regulated. The Zinc regulated transporter, Iron regulated transporter-like Proteins (ZIP) comprise a diverse family, with several paralogues in diverse organisms and are considered essential for the Zn and Fe uptake and homeostasis. Zn and Fe has been shown to regulate expression of proteins involved in metabolism and pathogenicity mechanisms in the protozoan pathogen Trichomonas vaginalis, in contrast high concentrations of these elements were also found to be toxic for T. vaginalis trophozoites. Nevertheless, Zn and Fe uptake and homeostasis mechanisms is not yet clear in this parasite. We performed a genome-wide analysis and localized the 8 members of the ZIP gene family in T. vaginalis (TvZIP1-8). The bioinformatic programs predicted that the TvZIP proteins are highly conserved and show similar properties to the reported in other ZIP orthologues. The expression patterns of TvZIP1, 3, 5 and 7 were diminished in presence of Zinc, while the rest of the TvZIP genes showed an unchanged profile in this condition. In addition, TvZIP2 and TvZIP4 showed a differential expression pattern in trophozoites growth under different Iron conditions. These results suggest that TvZIP genes encode membrane transporters that may be responsible for the Zn and Fe acquisition in T. vaginalis.
Collapse
Affiliation(s)
- K G Fernández-Martín
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Calle 43 No. 613 x C. 90 Col. Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - M E Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Ciudad de México, Mexico
| | - V E Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química de la Universidad Autónoma de Yucatán, Calle 43 No. 613 x C. 90 Col. Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - L C Alvarez-Sánchez
- Laboratorio de Virología, Centro de Investigaciones Regionales "Dr, Hideyo Noguchi" de la Universidad Autónoma de Yucatán, Calle 43 s/n x C. 90 Col. Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - J C Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Calle 43 No. 613 x C. 90 Col. Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - J C Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Calle 43 No. 613 x C. 90 Col. Inalámbrica, 97069, Mérida, Yucatán, Mexico.
| |
Collapse
|
20
|
Kurita H, Okuda R, Yokoo K, Inden M, Hozumi I. Protective roles of SLC30A3 against endoplasmic reticulum stress via ERK1/2 activation. Biochem Biophys Res Commun 2016; 479:853-859. [DOI: 10.1016/j.bbrc.2016.09.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
|
21
|
The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNAP activation. Biochem J 2016; 473:2611-21. [PMID: 27303047 DOI: 10.1042/bcj20160324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
Secretory and membrane-bound zinc-requiring enzymes are thought to be activated by binding zinc in the early secretory pathway. One such enzyme, tissue-non-specific alkaline phosphatase (TNAP), is activated through a two-step mechanism, via protein stabilization and subsequent enzyme activation through metalation, by ZnT5-ZnT6 heterodimers or ZnT7 homodimers. However, little is known about the molecular basis underlying the activation process. In the present study, we found that the di-proline motif (PP-motif) in luminal loop 2 of ZnT5 and ZnT7 is important for TNAP activation. TNAP activity was significantly reduced in cells lacking ZnT5-ZnT6 heterodimers and ZnT7 homodimers [triple knockout (TKO) cells]. The decreased TNAP activity was restored by expressing hZnT5 with hZnT6 or hZnT7, but significantly less so (almost 90% less) by expressing mutants thereof in which the PP-motif was mutated to alanine (PP-AA). In TKO cells, overexpressed hTNAP was not completely activated, and it was converted less efficiently into the holo form by expressing a PP-AA mutant of hZnT5 with hZnT6, whose defects were not restored by zinc supplementation. The zinc transport activity of hZnT7 was not significantly impaired by the PP-AA mutation, indicating that the PP-motif is involved in the TNAP maturation process, although it does not control zinc transport activity. The PP-motif is highly conserved in ZnT5 and ZnT7 orthologues, and its importance for TNAP activation is conserved in the Caenorhabditis elegans hZnT5 orthologue CDF5. These results provide novel molecular insights into the TNAP activation process in the early secretory pathway.
Collapse
|
22
|
Liang X, Dempski RE, Burdette SC. Zn(2+) at a cellular crossroads. Curr Opin Chem Biol 2016; 31:120-5. [PMID: 27010344 PMCID: PMC4870122 DOI: 10.1016/j.cbpa.2016.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/18/2016] [Indexed: 11/27/2022]
Abstract
Zinc is an essential micronutrient for cellular homeostasis. Initially proposed to only contribute to cellular viability through structural roles and non-redox catalysis, advances in quantifying changes in nM and pM quantities of Zn(2+) have elucidated increasing functions as an important signaling molecule. This includes Zn(2+)-mediated regulation of transcription factors and subsequent protein expression, storage and release of intracellular compartments of zinc quanta into the extracellular space which modulates plasma membrane protein function, as well as intracellular signaling pathways which contribute to the immune response. This review highlights some recent advances in our understanding of zinc signaling.
Collapse
Affiliation(s)
- Xiaomeng Liang
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609-2280, United States
| | - Robert E Dempski
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609-2280, United States
| | - Shawn C Burdette
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609-2280, United States.
| |
Collapse
|
23
|
Kambe T, Takeda TA, Nishito Y. Activation of zinc-requiring ectoenzymes by ZnT transporters during the secretory process: Biochemical and molecular aspects. Arch Biochem Biophys 2016; 611:37-42. [PMID: 27046342 DOI: 10.1016/j.abb.2016.03.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
In humans, about 1000 enzymes are estimated to bind zinc. In most of these enzymes, zinc is present at the active site; thus, these enzymes are functional as "zinc-requiring enzymes". Of these zinc-requiring enzymes, zinc-requiring ectoenzymes (defined as secretory, membrane-bound, and organelle-resident enzymes) have received much attention because of their important physiological functions, involvement in a number of diseases, and potential applications as therapeutic targets for diseases. Zinc-requiring ectoenzymes may become active by coordinating zinc at their active site during the secretory process, which requires elaborate control of zinc mobilization from the extracellular milieu to the cytosol and then lumen in the early secretory pathway. Therefore, zinc transporters should properly maintain the process at systemic, cellular, and subcellular levels by mobilizing zinc across biological membranes. However, few studies have examined the mechanisms underlying this process. In this review, current knowledge of the activation process of zinc-requiring ectoenzymes by ZnT zinc transporters in the early secretory pathway is briefly reviewed at the molecular level, with a focus on tissue-nonspecific alkaline phosphatase. Moreover, we also discuss whether zinc-chaperone proteins function during the activation of these enzymes.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Basa PN, Antala S, Dempski RE, Burdette SC. A Zinc(II) Photocage Based on a Decarboxylation Metal Ion Release Mechanism for Investigating Homeostasis and Biological Signaling. Angew Chem Int Ed Engl 2015; 54:13027-31. [PMID: 26346802 DOI: 10.1002/anie.201505778] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/29/2015] [Indexed: 01/03/2023]
Abstract
Metal ion signaling in biology has been studied extensively with ortho-nitrobenzyl photocages; however, the low quantum yields and other optical properties are not ideal for these applications. We describe the synthesis and characterization of NTAdeCage, the first member in a new class of Zn(2+) photocages that utilizes a light-driven decarboxylation reaction in the metal ion release mechanism. NTAdeCage binds Zn(2+) with sub-pM affinity using a modified nitrilotriacetate chelator and exhibits an almost 6 order of magnitude decrease in metal binding affinity upon uncaging. In contrast to other metal ion photocages, NTAdeCage and the corresponding Zn(2+) complex undergo efficient photolysis with quantum yields approaching 30 %. The ability of NTAdeCage to mediate the uptake of (65) Zn(2+) by Xenopus laevis oocytes expressing hZIP4 demonstrates the viability of this photocaging strategy to execute biological assays.
Collapse
Affiliation(s)
- Prem N Basa
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (USA)
| | - Sagar Antala
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (USA)
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (USA)
| | - Shawn C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (USA).
| |
Collapse
|
25
|
Basa PN, Antala S, Dempski RE, Burdette SC. A Zinc(II) Photocage Based on a Decarboxylation Metal Ion Release Mechanism for Investigating Homeostasis and Biological Signaling. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Bafaro EM, Antala S, Nguyen TV, Dzul SP, Doyon B, Stemmler TL, Dempski RE. The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain. Metallomics 2015; 7:1319-30. [PMID: 25882556 PMCID: PMC4558264 DOI: 10.1039/c5mt00066a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human (h) ZIP4 transporter is a plasma membrane protein which functions to increase the cytosolic concentration of zinc. hZIP4 transports zinc into intestinal cells and therefore has a central role in the absorption of dietary zinc. hZIP4 has eight transmembrane domains and encodes a large intracellular loop between transmembrane domains III and IV, M3M4. Previously, it has been postulated that this domain regulates hZIP4 levels in the plasma membrane in a zinc-dependent manner. The objective of this research was to examine the zinc binding properties of the large intracellular loop of hZIP4. Therefore, we have recombinantly expressed and purified M3M4 and showed that this domain binds two zinc ions. Using a combination of site-directed mutagenesis, metal binding affinity assays, and X-ray absorption spectroscopy, we demonstrated that the two Zn(2+) ions bind sequentially, with the first Zn(2+) binding to a CysHis3 site with a nanomolar binding affinity, and the second Zn(2+) binding to a His4 site with a weaker affinity. Circular dichroism spectroscopy revealed that the M3M4 domain is intrinsically disordered, with only a small structural change induced upon Zn(2+) coordination. Our data supports a model in which the intracellular M3M4 domain senses high cytosolic Zn(2+) concentrations and regulates the plasma membrane levels of the hZIP4 transporter in response to Zn(2+) binding.
Collapse
Affiliation(s)
- Elizabeth M Bafaro
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Antala S, Ovchinnikov S, Kamisetty H, Baker D, Dempski RE. Computation and Functional Studies Provide a Model for the Structure of the Zinc Transporter hZIP4. J Biol Chem 2015; 290:17796-17805. [PMID: 25971965 PMCID: PMC4505028 DOI: 10.1074/jbc.m114.617613] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/24/2015] [Indexed: 11/06/2022] Open
Abstract
Members of the Zrt and Irt protein (ZIP) family are a central participant in transition metal homeostasis as they function to increase the cytosolic concentration of zinc and/or iron. However, the lack of a crystal structure hinders elucidation of the molecular mechanism of ZIP proteins. Here, we employed GREMLIN, a co-evolution-based contact prediction approach in conjunction with the Rosetta structure prediction program to construct a structural model of the human (h) ZIP4 transporter. The predicted contact data are best fit by modeling hZIP4 as a dimer. Mutagenesis of residues that comprise a central putative hZIP4 transmembrane transition metal coordination site in the structural model alter the kinetics and specificity of hZIP4. Comparison of the hZIP4 dimer model to all known membrane protein structures identifies the 12-transmembrane monomeric Piriformospora indica phosphate transporter (PiPT), a member of the major facilitator superfamily (MFS), as a likely structural homolog.
Collapse
Affiliation(s)
- Sagar Antala
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Sergey Ovchinnikov
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195; Department of Biochemistry, University of Washington, Seattle, Washington 98195; Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Hetunandan Kamisetty
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195; Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - David Baker
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195; Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609.
| |
Collapse
|
28
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
McGinnis LA, Lee HJ, Robinson DN, Evans JP. MAPK3/1 (ERK1/2) and Myosin Light Chain Kinase in Mammalian Eggs Affect Myosin-II Function and Regulate the Metaphase II State in a Calcium- and Zinc-Dependent Manner. Biol Reprod 2015; 92:146. [PMID: 25904014 DOI: 10.1095/biolreprod.114.127027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
Vertebrate eggs are arrested at metaphase of meiosis II, a state classically known as cytostatic factor arrest. Maintenance of this arrest until the time of fertilization and then fertilization-induced exit from metaphase II are crucial for reproductive success. Another key aspect of this meiotic arrest and exit is regulation of the metaphase II spindle, which must be appropriately localized adjacent to the egg cortex during metaphase II and then progress into successful asymmetric cytokinesis to produce the second polar body. This study examined the mitogen-activated protein kinases MAPK3 and MAPK1 (also known as ERK1/2) as regulators of these two related aspects of mammalian egg biology, specifically testing whether this MAPK pathway affected myosin-II function and whether myosin-II perturbation would produce some of the same effects as MAPK pathway perturbation. Inhibition of the MEK1/2-MAPK pathway with U0126 leads to reduced levels of phosphorylated myosin-regulatory light chain (pMRLC) and causes a reduction in cortical tension, effects that are mimicked by treatment with the myosin light chain kinase (MLCK) inhibitor ML-7. These data indicate that one mechanism by which the MAPK pathway acts in eggs is by affecting myosin-II function. We further show that MAPK or MLCK inhibition induces loss of normal cortical spindle localization or parthenogenetic egg activation. This parthenogenesis is dependent on cytosolic and extracellular calcium and can be rescued by hyperloading eggs with zinc, suggesting that these effects of inhibition of MLCK or the MAPK pathway are linked with dysregulation of ion homeostasis.
Collapse
Affiliation(s)
- Lauren A McGinnis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Hyo J Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
30
|
Guo J, Green BR, Maldonado MT. Sequence Analysis and Gene Expression of Potential Components of Copper Transport and Homeostasis in Thalassiosira pseudonana. Protist 2015; 166:58-77. [DOI: 10.1016/j.protis.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/03/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022]
|
31
|
Abstract
The primary role of the ZIP13 metal transporter in flies is to move iron ions out of cells, rather than moving zinc ions into cells, as is the case in human cells.
Collapse
Affiliation(s)
- Caroline C Philpott
- Caroline C Philpott is in the National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
32
|
Grubman A, James SA, James J, Duncan C, Volitakis I, Hickey JL, Crouch PJ, Donnelly PS, Kanninen KM, Liddell JR, Cotman SL, de Jonge, White AR. X-ray fluorescence imaging reveals subcellular biometal disturbances in a childhood neurodegenerative disorder. Chem Sci 2014; 5:2503-2516. [PMID: 24976945 PMCID: PMC4070600 DOI: 10.1039/c4sc00316k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biometals such as zinc, iron, copper and calcium play key roles in diverse physiological processes in the brain, but can be toxic in excess. A hallmark of neurodegeneration is a failure of homeostatic mechanisms controlling the concentration and distribution of these elements, resulting in overload, deficiency or mislocalization. A major roadblock to understanding the impact of altered biometal homeostasis in neurodegenerative disease is the lack of rapid, specific and sensitive techniques capable of providing quantitative subcellular information on biometal homeostasis in situ. Recent advances in X-ray fluorescence detectors have provided an opportunity to rapidly measure biometal content at subcellular resolution in cell populations using X-ray Fluorescence Microscopy (XFM). We applied this approach to investigate subcellular biometal homeostasis in a cerebellar cell line isolated from a natural mouse model of a childhood neurodegenerative disorder, the CLN6 form of neuronal ceroid lipofuscinosis, commonly known as Batten disease. Despite no global changes to whole cell concentrations of zinc or calcium, XFM revealed significant subcellular mislocalization of these important biological second messengers in cerebellar Cln6nclf (CbCln6nclf ) cells. XFM revealed that nuclear-to-cytoplasmic trafficking of zinc was severely perturbed in diseased cells and the subcellular distribution of calcium was drastically altered in CbCln6nclf cells. Subtle differences in the zinc K-edge X-ray Absorption Near Edge Structure (XANES) spectra of control and CbCln6nclf cells suggested that impaired zinc homeostasis may be associated with an altered ligand set in CbCln6nclf cells. Importantly, a zinc-complex, ZnII(atsm), restored the nuclear-to-cytoplasmic zinc ratios in CbCln6nclf cells via nuclear zinc delivery, and restored the relationship between subcellular zinc and calcium levels to that observed in healthy control cells. ZnII(atsm) treatment also resulted in a reduction in the number of calcium-rich puncta observed in CbCln6nclf cells. This study highlights the complementarities of bulk and single cell analysis of metal content for understanding disease states. We demonstrate the utility and broad applicability of XFM for subcellular analysis of perturbed biometal metabolism and mechanism of action studies for novel therapeutics to target neurodegeneration.
Collapse
Affiliation(s)
- A Grubman
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - S A James
- Australian Synchrotron, Clayton 3168, Australia ; Materials Science and Engineering and the Preventative Health Flagship, CSIRO, Clayton 3168, Australia
| | - J James
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - C Duncan
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - I Volitakis
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - J L Hickey
- School of Chemistry and Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville 3010, Australia
| | - P J Crouch
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - P S Donnelly
- School of Chemistry and Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville 3010, Australia
| | - K M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - J R Liddell
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | - S L Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - de Jonge
- Australian Synchrotron, Clayton 3168, Australia
| | - A R White
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
33
|
Grubman A, Lidgerwood GE, Duncan C, Bica L, Tan JL, Parker SJ, Caragounis A, Meyerowitz J, Volitakis I, Moujalled D, Liddell JR, Hickey JL, Horne M, Longmuir S, Koistinaho J, Donnelly PS, Crouch PJ, Tammen I, White AR, Kanninen KM. Deregulation of subcellular biometal homeostasis through loss of the metal transporter, Zip7, in a childhood neurodegenerative disorder. Acta Neuropathol Commun 2014; 2:25. [PMID: 24581221 PMCID: PMC4029264 DOI: 10.1186/2051-5960-2-25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background Aberrant biometal metabolism is a key feature of neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases. Metal modulating compounds are promising therapeutics for neurodegeneration, but their mechanism of action remains poorly understood. Neuronal ceroid lipofuscinoses (NCLs), caused by mutations in CLN genes, are fatal childhood neurodegenerative lysosomal storage diseases without a cure. We previously showed biometal accumulation in ovine and murine models of the CLN6 variant NCL, but the mechanism is unknown. This study extended the concept that alteration of biometal functions is involved in pathology in these disorders, and investigated molecular mechanisms underlying impaired biometal trafficking in CLN6 disease. Results We observed significant region-specific biometal accumulation and deregulation of metal trafficking pathways prior to disease onset in CLN6 affected sheep. Substantial progressive loss of the ER/Golgi-resident Zn transporter, Zip7, which colocalized with the disease-associated protein, CLN6, may contribute to the subcellular deregulation of biometal homeostasis in NCLs. Importantly, the metal-complex, ZnII(atsm), induced Zip7 upregulation, promoted Zn redistribution and restored Zn-dependent functions in primary mouse Cln6 deficient neurons and astrocytes. Conclusions This study demonstrates the central role of the metal transporter, Zip7, in the aberrant biometal metabolism of CLN6 variants of NCL and further highlights the key contribution of deregulated biometal trafficking to the pathology of neurodegenerative diseases. Importantly, our results suggest that ZnII(atsm) may be a candidate for therapeutic trials for NCLs.
Collapse
|
34
|
Dostál L, Kohler WM, Penner-Hahn JE, Miller RA, Fierke CA. Fibroblasts from long-lived rodent species exclude cadmium. J Gerontol A Biol Sci Med Sci 2014; 70:10-9. [PMID: 24522391 DOI: 10.1093/gerona/glu001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resistance to the lethal effects of cellular stressors, including the toxic heavy metal cadmium (Cd), is characteristic of fibroblast cell lines derived from long-lived bird and rodent species, as well as cell lines from several varieties of long-lived mutant mice. To explore the mechanism of resistance to Cd, we used inductively coupled plasma mass spectroscopy to measure the rate of Cd uptake into primary fibroblasts of 15 rodent species. These data indicate that fibroblasts from long-lived rodent species have slower rates of Cd uptake from the extracellular medium than those from short-lived species. In addition, fibroblasts from short-lived species export more zinc after exposure to extracellular Cd than cells from long-lived species. Lastly, fibroblasts from long-lived rodent species have lower baseline concentrations of two redox-active metals, iron and copper. Our results suggest that evolution of longevity among rodents required adjustment of cellular properties to alter metal homeostasis and to reduce the toxic effects of heavy metals that accumulate over the course of a longer life span.
Collapse
Affiliation(s)
- Lubomír Dostál
- Department of Chemistry, University of Michigan, Ann Arbor. Department of Pathology, University of Michigan, Ann Arbor
| | | | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, Ann Arbor. Department of Biophysics, University of Michigan, Ann Arbor
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor. Geriatrics Center, University of Michigan, Ann Arbor
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor. Department of Biological Chemistry, University of Michigan, Ann Arbor.
| |
Collapse
|
35
|
The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc toxicity. PLoS One 2013; 8:e82149. [PMID: 24303081 PMCID: PMC3841122 DOI: 10.1371/journal.pone.0082149] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022] Open
Abstract
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy.
Collapse
|
36
|
Kanninen KM, Grubman A, Caragounis A, Duncan C, Parker SJ, Lidgerwood GE, Volitakis I, Ganio G, Crouch PJ, White AR. Altered biometal homeostasis is associated with CLN6 mRNA loss in mouse neuronal ceroid lipofuscinosis. Biol Open 2013; 2:635-46. [PMID: 23789114 PMCID: PMC3683166 DOI: 10.1242/bio.20134804] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 12/21/2022] Open
Abstract
Neuronal ceroid lipofuscinoses, the most common fatal childhood neurodegenerative illnesses, share many features with more prevalent neurodegenerative diseases. Neuronal ceroid lipofuscinoses are caused by mutations in CLN genes. CLN6 encodes a transmembrane endoplasmic reticulum protein with no known function. We characterized the behavioural phenotype of spontaneous mutant mice modeling CLN6 disease, and demonstrate progressive motor and visual decline and reduced lifespan in these mice, consistent with symptoms observed in neuronal ceroid lipofuscinosis patients. Alterations to biometal homeostasis are known to play a critical role in pathology in Alzheimer's, Parkinson's, Huntington's and motor neuron diseases. We have previously shown accumulation of the biometals, zinc, copper, manganese and cobalt, in CLN6 Merino and South Hampshire sheep at the age of symptom onset. Here we determine the physiological and disease-associated expression of CLN6, demonstrating regional CLN6 transcript loss, and concurrent accumulation of the same biometals in the CNS and the heart of presymptomatic CLN6 mice. Furthermore, increased expression of the ER/Golgi-localized cation transporter protein, Zip7, was detected in cerebellar Purkinje cells and whole brain fractions. Purkinje cells not only control motor function, an early symptomatic change in the CLN6 mice, but also display prominent neuropathological changes in mouse models and patients with different forms of neuronal ceroid lipofuscinoses. Whole brain fractionation analysis revealed biometal accumulation in fractions expressing markers for ER, Golgi, endosomes and lysosomes of CLN6 brains. These data are consistent with a link between CLN6 expression and biometal homeostasis in CLN6 disease, and provide further support for altered cation transporter regulation as a key factor in neurodegeneration.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Pathology, The University of Melbourne , Parkville, Victoria 3010 , Australia ; Present address: AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kambe T. [Overview of and update on the physiological functions of mammalian zinc transporters]. Nihon Eiseigaku Zasshi 2013; 68:92-102. [PMID: 23718971 DOI: 10.1265/jjh.68.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In recent years, a number of mammalian zinc transporters have been molecularly characterized. This has brought about major advances in our understanding of the tight regulation of cellular zinc homeostasis and the pivotal roles zinc transporters play in a variety of biological events. Mammalian zinc transporters are classified into two families: the ZRT, IRT-like protein (ZIP) family and the Zn transporter (ZnT) family. The ZIP family consists of 14 members and facilitates zinc influx into the cytosol from the extracellular and intracellular compartments. The ZnT family consists of 9 members and facilitates zinc efflux from the cytosol to the extracellular and intracellular compartments. Coordinated zinc mobilization across the cellular membrane by both transporter families is indispensable for diverse physiological functions. In this review, the features of the ZIP and ZnT families are briefly reviewed from the perspective of zinc physiology, with emphasis on recent progress.
Collapse
Affiliation(s)
- Taiho Kambe
- Graduate School of Biostudies, Kyoto University
| |
Collapse
|