1
|
Michel-Flutot P, Cheng L, Thomas SJ, Lisi B, Schwartz H, Lam S, Lyttle M, Jaffe DA, Smith G, Li S, Wright MC, Lepore AC. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury. Exp Neurol 2024; 378:114816. [PMID: 38789023 PMCID: PMC11200215 DOI: 10.1016/j.expneurol.2024.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region. We therefore employed a rat model of chronic cervical hemicontusion to test therapeutic manipulations aimed at reconstructing damaged rVRG-PhMN-diaphragm circuitry to achieve recovery of respiratory function. At a chronic time point post-injury, we systemically administered: an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential; an antagonist peptide directed against receptor-type protein tyrosine phosphatase sigma (PTPσ), another important negative regulator of axon growth capacity; or a combination of these two peptides. PTEN antagonist peptide (PAP4) promoted partial recovery of diaphragm motor activity out to nine months post-injury (though this effect depended on the anesthetic regimen used during recording), while PTPσ peptide did not impact diaphragm function after cervical SCI. Furthermore, PAP4 promoted robust growth of descending bulbospinal rVRG axons caudal to the injury within the denervated portion of the PhMN pool, while PTPσ peptide did not affect rVRG axon growth at this location that is critical to control of diaphragmatic respiratory function. In conclusion, we find that, when PTEN inhibition is targeted at a chronic time point following cervical contusion, our non-invasive PAP4 strategy can successfully promote significant regrowth of damaged respiratory neural circuitry and also partial recovery of diaphragm motor function.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samantha J Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brianna Lisi
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harrison Schwartz
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sandy Lam
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megan Lyttle
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Jaffe
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - George Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 191405104, USA
| | - Shuxin Li
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 191405104, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, PA 19038, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
2
|
Sun L, Cen Y, Liu X, Wei J, Ke X, Wang Y, Liao Q, Chang M, Zhou M, Wu W. Systemic whole transcriptome analysis identified underlying molecular characteristics and regulatory networks implicated in the retina following optic nerve injury. Exp Eye Res 2024; 244:109929. [PMID: 38750783 DOI: 10.1016/j.exer.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
Optic nerve injuries are severely disrupt the structural and functional integrity of the retina, often leading to visual impairment or blindness. Despite the profound impact of these injuries, the molecular mechanisms involved remain poorly understood. In this study, we performed a comprehensive whole-transcriptome analysis of mouse retina samples after optic nerve crush (ONC) to elucidate changes in gene expression and regulatory networks. Transcriptome analysis revealed a variety of molecular alterations, including 256 mRNAs, 530 lncRNAs, and 37 miRNAs, associated with metabolic, inflammatory, signaling, and biosynthetic pathways in the injured retina. The integrated analysis of co-expression and protein-protein interactions identified an active interconnected module comprising 5 co-expressed proteins (Fga, Serpina1a, Hpd, Slc38a4, and Ahsg) associated with the complement and coagulation cascades. Finally, 5 mRNAs (Fga, Serpinala, Hpd, Slc38a4, and Ahsg), 2 miRNAs (miR-671-5p and miR-3057-5p), and 6 lncRNAs (MSTRG. 1830.1, Gm10814, A530013C23Rik, Gm40634, MSTRG.9514.1, A330023F24Rik) were identified by qPCR in the injured retina, and some of them were validated as critical components of a ceRNA network active in 661W and HEK293T cells through dual-luciferase reporter assays. In conclusion, our study provides comprehensive insight into the complex and dynamic biological mechanisms involved in retinal injury responses and highlights promising potential targets to enhance neuroprotection and restore vision.
Collapse
Affiliation(s)
- Lanfang Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yixin Cen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojiang Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Ke
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianling Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengchun Chang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Michel-Flutot P, Cheng L, Thomas SJ, Lisi B, Schwartz H, Lam S, Lyttle M, Jaffe DA, Smith G, Li S, Wright MC, Lepore AC. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575021. [PMID: 38260313 PMCID: PMC10802567 DOI: 10.1101/2024.01.10.575021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region. We therefore employed a clinically-relevant rat model of chronic cervical hemicontusion to test therapeutic manipulations aimed at reconstructing damaged rVRG-PhMN-diaphragm circuitry to achieve recovery of respiratory function. At a chronic time point post-injury, we systemically administered: an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential; an antagonist peptide directed against receptor-type protein tyrosine phosphatase sigma (PTPσ), another important negative regulator of axon growth capacity; or a combination of these two peptides. PTEN antagonist peptide (PAP4) promoted partial recovery of diaphragm motor activity out to nine months post-injury, while PTPσ peptide did not impact diaphragm function after cervical SCI. Furthermore, PAP4 promoted robust growth of descending bulbospinal rVRG axons caudal to the injury within the denervated portion of the PhMN pool, while PTPσ peptide did not affect rVRG axon growth at this location that is critical to control of diaphragmatic respiratory function. In conclusion, we find that, when PTEN inhibition is targeted at a chronic time point following cervical contusion that is most relevant to the SCI clinical population, our non-invasive PAP4 strategy can successfully promote significant regrowth of damaged respiratory neural circuitry and also partial recovery of diaphragm motor function. HIGHLIGHTS PTEN antagonist peptide promotes partial diaphragm function recovery in chronic cervical contusion SCI.PTPσ inhibitory peptide does not impact diaphragm function recovery in chronic cervical contusion SCI.PTEN antagonist peptide promotes growth of bulbospinal rVRG axons in chronic cervical contusion SCI.PTPσ peptide does not affect rVRG axon growth in chronic cervical contusion SCI.
Collapse
|
4
|
Xing J, Theune WC, Lukomska A, Frost MP, Damania A, Trakhtenberg EF. Experimental upregulation of developmentally downregulated ribosomal protein large subunits 7 and 7A promotes axon regeneration after injury in vivo. Exp Neurol 2023; 368:114510. [PMID: 37633482 PMCID: PMC10529763 DOI: 10.1016/j.expneurol.2023.114510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Ribosomal proteins are involved in neurodevelopment and central nervous system (CNS) disease and injury. However, the roles of specific ribosomal protein subunits in developmental axon growth, and their potential as therapeutic targets for treating CNS injuries, are still poorly understood. Here, we show that ribosomal protein large (Rpl) and small (Rps) subunit genes are substantially (56-fold) enriched amongst the genes, which are downregulated during maturation of retinal ganglion cell (RGC) CNS projection neurons. We also show that Rpl and Rps subunits are highly co-regulated in RGCs, and partially re-upregulated after optic nerve crush (ONC). Because developmental downregulation of ribosomal proteins coincides with developmental decline in neuronal intrinsic axon growth capacity, we hypothesized that Rpl/Rps incomplete re-upregulation after injury may be a part of the cellular response which attempts to reactivate intrinsic axon growth mechanisms. We found that experimentally upregulating Rpl7 and Rpl7A promoted axon regeneration after ONC in vivo. Finally, we characterized gene networks associated with Rpl/Rps, and showed that Rpl7 and Rpl7A belong to the cluster of genes, which are shared between translational and neurodevelopmental biological processes (based on gene-ontology) that are co-downregulated in maturing RGCs during the decline in intrinsic axon growth capacity.
Collapse
Affiliation(s)
- Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|
5
|
Moreira NCDS, Tamarozzi ER, Lima JEBDF, Piassi LDO, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel Dual AChE and ROCK2 Inhibitor Induces Neurogenesis via PTEN/AKT Pathway in Alzheimer's Disease Model. Int J Mol Sci 2022; 23:ijms232314788. [PMID: 36499116 PMCID: PMC9737254 DOI: 10.3390/ijms232314788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease. Acetylcholinesterase inhibitors (AChEIs) are a major class of drugs used in AD therapy. ROCK2, another promising target for AD, has been associated with the induction of neurogenesis via PTEN/AKT. This study aimed to characterize the therapeutic potential of a novel donepezil-tacrine hybrid compound (TA8Amino) to inhibit AChE and ROCK2 protein, leading to the induction of neurogenesis in SH-SY5Y cells. Experiments were carried out with undifferentiated and neuron-differentiated SH-SY5Y cells submitted to treatments with AChEIs (TA8Amino, donepezil, and tacrine) for 24 h or 7 days. TA8Amino was capable of inhibiting AChE at non-cytotoxic concentrations after 24 h. Following neuronal differentiation for 7 days, TA8Amino and donepezil increased the percentage of neurodifferentiated cells and the length of neurites, as confirmed by β-III-tubulin and MAP2 protein expression. TA8Amino was found to participate in the activation of PTEN/AKT signaling. In silico analysis showed that TA8Amino can stably bind to the active site of ROCK2, and in vitro experiments in SH-SY5Y cells demonstrate that TA8Amino significantly reduced the expression of ROCK2 protein, contrasting with donepezil and tacrine. Therefore, these results provide important information on the mechanism underlying the action of TA8Amino with regard to multi-target activities.
Collapse
Affiliation(s)
| | - Elvira Regina Tamarozzi
- Department of Biotechnology, School of Arts, Sciences and Humanities—USP, São Paulo 03828-000, Brazil
| | | | - Larissa de Oliveira Piassi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-900, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-901, Brazil
- Correspondence: ; Tel.: +55-16-3315-3827
| |
Collapse
|
6
|
Ribeiro M, Ayupe AC, Beckedorff FC, Levay K, Rodriguez S, Tsoulfas P, Lee JK, Nascimento-Dos-Santos G, Park KK. Retinal ganglion cell expression of cytokine enhances occupancy of NG2 cell-derived astrocytes at the nerve injury site: Implication for axon regeneration. Exp Neurol 2022; 355:114147. [PMID: 35738417 PMCID: PMC10648309 DOI: 10.1016/j.expneurol.2022.114147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.
Collapse
Affiliation(s)
- Marcio Ribeiro
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Felipe C Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Room 715, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Sara Rodriguez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Jae K Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| |
Collapse
|
7
|
Jacobi A, Tran NM, Yan W, Benhar I, Tian F, Schaffer R, He Z, Sanes JR. Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 2022; 110:2625-2645.e7. [PMID: 35767994 PMCID: PMC9391321 DOI: 10.1016/j.neuron.2022.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022]
Abstract
Injured neurons in the adult mammalian central nervous system often die and seldom regenerate axons. To uncover transcriptional pathways that could ameliorate these disappointing responses, we analyzed three interventions that increase survival and regeneration of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC) injury, albeit not to a clinically useful extent. We assessed gene expression in each of 46 RGC types by single-cell transcriptomics following ONC and treatment. We also compared RGCs that regenerated with those that survived but did not regenerate. Each intervention enhanced survival of most RGC types, but type-independent axon regeneration required manipulation of multiple pathways. Distinct computational methods converged on separate sets of genes selectively expressed by RGCs likely to be dying, surviving, or regenerating. Overexpression of genes associated with the regeneration program enhanced both survival and axon regeneration in vivo, indicating that mechanistic analysis can be used to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Nicholas M Tran
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Inbal Benhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rebecca Schaffer
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Cheng L, Sami A, Ghosh B, Goudsward HJ, Smith GM, Wright MC, Li S, Lepore AC. Respiratory axon regeneration in the chronically injured spinal cord. Neurobiol Dis 2021; 155:105389. [PMID: 33975016 DOI: 10.1016/j.nbd.2021.105389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Promoting the combination of robust regeneration of damaged axons and synaptic reconnection of these growing axon populations with appropriate neuronal targets represents a major therapeutic goal following spinal cord injury (SCI). A key impediment to achieving this important aim includes an intrinsic inability of neurons to extend axons in adult CNS, particularly in the context of the chronically-injured spinal cord. We tested whether an inhibitory peptide directed against phosphatase and tensin homolog (PTEN: a central inhibitor of neuron-intrinsic axon growth potential) could restore inspiratory diaphragm function by reconnecting critical respiratory neural circuitry in a rat model of chronic cervical level 2 (C2) hemisection SCI. We found that systemic delivery of PTEN antagonist peptide 4 (PAP4) starting at 8 weeks after C2 hemisection promoted substantial, long-distance regeneration of injured bulbospinal rostral Ventral Respiratory Group (rVRG) axons into and through the lesion and back toward phrenic motor neurons (PhMNs) located in intact caudal C3-C5 spinal cord. Despite this robust rVRG axon regeneration, PAP4 stimulated only minimal recovery of diaphragm function. Furthermore, re-lesion through the hemisection site completely removed PAP4-induced functional improvement, demonstrating that axon regeneration through the lesion was responsible for this partial functional recovery. Interestingly, there was minimal formation of putative excitatory monosynaptic connections between regrowing rVRG axons and PhMN targets, suggesting that (1) limited rVRG-PhMN synaptic reconnectivity was responsible at least in part for the lack of a significant functional effect, (2) chronically-injured spinal cord presents an obstacle to achieving synaptogenesis between regenerating axons and post-synaptic targets, and (3) addressing this challenge is a potentially-powerful strategy to enhance therapeutic efficacy in the chronic SCI setting. In conclusion, our study demonstrates a non-invasive and transient pharmacological approach in chronic SCI to repair the critically-important neural circuitry controlling diaphragmatic respiratory function, but also sheds light on obstacles to circuit plasticity presented by the chronically-injured spinal cord.
Collapse
Affiliation(s)
- Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Armin Sami
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hannah J Goudsward
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - Shuxin Li
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
9
|
Li P, Jia Y, Tang W, Cui Q, Liu M, Jiang J. Roles of Non-coding RNAs in Central Nervous System Axon Regeneration. Front Neurosci 2021; 15:630633. [PMID: 33597844 PMCID: PMC7882506 DOI: 10.3389/fnins.2021.630633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axons in the central nervous system often fail to regenerate after injury due to the limited intrinsic regeneration ability of the central nervous system (CNS) and complex extracellular inhibitory factors. Therefore, it is of vital importance to have a better understanding of potential methods to promote the regeneration capability of injured nerves. Evidence has shown that non-coding RNAs play an essential role in nerve regeneration, especially long non-coding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). In this review, we profile their separate roles in axon regeneration after CNS injuries, such as spinal cord injury (SCI) and optic nerve injury. In addition, we also reveal the interactive networks among non-coding RNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ji XC, Shi YJ, Zhang Y, Chang MZ, Zhao G. Reducing Suppressors of Cytokine Signaling-3 (SOCS3) Expression Promotes M2 Macrophage Polarization and Functional Recovery After Intracerebral Hemorrhage. Front Neurol 2020; 11:586905. [PMID: 33281724 PMCID: PMC7688919 DOI: 10.3389/fneur.2020.586905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a fatal subtype of stroke, and effective interventions to improve the functional outcomes are still lacking. Suppressor of cytokine signaling 3 (SOCS3) plays critical roles in the inflammatory response by negatively regulating cytokine-Jak-Stat signaling. However, the role of SOCS3 in the regulation of macrophage polarization is highly controversial and the fine regulation exerted by SOCS3 needs further understanding. In this study, rat ICH models were established by infusion of collagenase into the caudate nucleus. To decrease SOCS3 expression into microglia/macrophages in the hemorrhagic lesion area, we injected lentiviral short hairpin RNA (shSOCS3) (Lenti-shSOCS3) into the hematoma cavity at 24 h following ICH. We found that the number of iNOS-positive cells (M1 phenotype) was significantly reduced, whereas arginase-1-positive cells (M2 phenotype) were markedly elevated in animals that received Lenti-shSOCS3 injections compared with those in the Lenti-EGFP and saline groups. The increase in arginase-1-positive cells was associated with a significantly lower pro-inflammatory microenvironment, which included the downregulation of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, and TNF-α] and concurrent upregulation of anti-inflammatory (IL-10) mediators. In addition, this marked shift toward the M2 phenotype was associated with suppressed NF-κB activation. Furthermore, these changes notably enhanced the neuroprotective effects and functional recovery in Lenti-shSOCS3-injected animals. Our findings indicated that reduction in SOCS3 expression caused a marked bias toward the M2 phenotype and ameliorated the inflammatory microenvironment, which enhanced neuroprotective effects and resulted in notable improvement in functional recovery after ICH.
Collapse
Affiliation(s)
- Xin-Chao Ji
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ya-Jun Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Ze Chang
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Peng XQ, Dai SK, Li CP, Liu PP, Wang ZM, Du HZ, Teng ZQ, Yang SG, Liu CM. Loss of Arid1a Promotes Neuronal Survival Following Optic Nerve Injury. Front Cell Neurosci 2020; 14:131. [PMID: 32670021 PMCID: PMC7326083 DOI: 10.3389/fncel.2020.00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Trauma or neurodegenerative diseases trigger the retrograde death of retinal ganglion cells (RGCs), causing an irreversible functional loss. AT-rich interaction domain 1A (ARID1A), a subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, has been shown to play crucial roles in cell homeostasis and tissue regeneration. However, its function in adult RGC regeneration remains elusive. Here, we show that optic nerve injury induces dynamic changes of Arid1a expression. Importantly, deleting Arid1a in mice dramatically promotes RGC survival, but insignificantly impacts axon regeneration after optic nerve injury. Next, joint profiling of transcripts and accessible chromatin in mature RGCs reveals that Arid1a regulates several genes involved in apoptosis and JAK/STAT signaling pathway. Thus, our findings suggest modulation of Arid1a as a potential therapeutic strategy to promote RGC neuroprotection after damage.
Collapse
Affiliation(s)
- Xue-Qi Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chang-Ping Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Meng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Shu-Guang Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Charsar BA, Brinton MA, Locke K, Chen AY, Ghosh B, Urban MW, Komaravolu S, Krishnamurthy K, Smit R, Pasinelli P, Wright MC, Smith GM, Lepore AC. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury. FASEB J 2019; 33:13775-13793. [PMID: 31577916 DOI: 10.1096/fj.201901730r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than half of spinal cord injury (SCI) cases occur in the cervical region, leading to respiratory dysfunction due to damaged neural circuitry that controls critically important muscles such as the diaphragm. The C3-C5 spinal cord is the location of phrenic motor neurons (PhMNs) that are responsible for diaphragm activation; PhMNs receive bulbospinal excitatory drive predominately from supraspinal neurons of the rostral ventral respiratory group (rVRG). Cervical SCI results in rVRG axon damage, PhMN denervation, and consequent partial-to-complete paralysis of hemidiaphragm. In a rat model of C2 hemisection SCI, we expressed the axon guidance molecule, brain-derived neurotrophic factor (BDNF), selectively at the location of PhMNs (ipsilateral to lesion) to promote directed growth of rVRG axons toward PhMN targets by performing intraspinal injections of adeno-associated virus serotype 2 (AAV2)-BDNF vector. AAV2-BDNF promoted significant functional diaphragm recovery, as assessed by in vivo electromyography. Within the PhMN pool ipsilateral to injury, AAV2-BDNF robustly increased sprouting of both spared contralateral-originating rVRG axons and serotonergic fibers. Furthermore, AAV2-BDNF significantly increased numbers of putative monosynaptic connections between PhMNs and these sprouting rVRG and serotonergic axons. These findings show that targeting circuit plasticity mechanisms involving the enhancement of synaptic inputs from spared axon populations is a powerful strategy for restoring respiratory function post-SCI.-Charsar, B. A., Brinton, M. A., Locke, K., Chen, A. Y., Ghosh, B., Urban, M. W., Komaravolu, S., Krishnamurthy, K., Smit, R., Pasinelli, P., Wright, M. C., Smith, G. M., Lepore, A. C. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury.
Collapse
Affiliation(s)
- Brittany A Charsar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael A Brinton
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katherine Locke
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anna Y Chen
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sreeya Komaravolu
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Karthik Krishnamurthy
- Department of Neuroscience, Jefferson Weinberg Amyotrophic Lateral Sclerosis (ALS) Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rupert Smit
- Department of Anatomy and Cell Biology, Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Piera Pasinelli
- Department of Neuroscience, Jefferson Weinberg Amyotrophic Lateral Sclerosis (ALS) Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Philadelphia, Pennsylvania, USA
| | - George M Smith
- Department of Anatomy and Cell Biology, Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Long-Distance Axon Regeneration Promotes Recovery of Diaphragmatic Respiratory Function after Spinal Cord Injury. eNeuro 2019; 6:ENEURO.0096-19.2019. [PMID: 31427403 PMCID: PMC6794082 DOI: 10.1523/eneuro.0096-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Compromise in inspiratory breathing following cervical spinal cord injury (SCI) is caused by damage to descending bulbospinal axons originating in the rostral ventral respiratory group (rVRG) and consequent denervation and silencing of phrenic motor neurons (PhMNs) that directly control diaphragm activation. In a rat model of high-cervical hemisection SCI, we performed systemic administration of an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential. PTEN antagonist peptide (PAP4) robustly restored diaphragm function, as determined with electromyography (EMG) recordings in living SCI animals. PAP4 promoted substantial, long-distance regeneration of injured rVRG axons through the lesion and back toward PhMNs located throughout the C3–C5 spinal cord. These regrowing rVRG axons also formed putative excitatory synaptic connections with PhMNs, demonstrating reconnection of rVRG-PhMN-diaphragm circuitry. Lastly, re-lesion through the hemisection site completely ablated functional recovery induced by PAP4. Collectively, our findings demonstrate that axon regeneration in response to systemic PAP4 administration promoted recovery of diaphragmatic respiratory function after cervical SCI.
Collapse
|
14
|
Chen M, Huang RC, Yang LQ, Ren DL, Hu B. In vivo
imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish. FASEB J 2019; 33:7721-7733. [DOI: 10.1096/fj.201802649r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Rong-Chen Huang
- Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Lei-Qing Yang
- Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Da-Long Ren
- Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseUniversity of Science and Technology of ChinaHefeiChina
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
15
|
Goulão M, Ghosh B, Urban MW, Sahu M, Mercogliano C, Charsar BA, Komaravolu S, Block CG, Smith GM, Wright MC, Lepore AC. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury. Glia 2018; 67:452-466. [PMID: 30548313 DOI: 10.1002/glia.23555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/10/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Stem/progenitor cell transplantation delivery of astrocytes is a potentially powerful strategy for spinal cord injury (SCI). Axon extension into SCI lesions that occur spontaneously or in response to experimental manipulations is often observed along endogenous astrocyte "bridges," suggesting that augmenting this response via astrocyte lineage transplantation can enhance axon regrowth. Given the importance of respiratory dysfunction post-SCI, we transplanted glial-restricted precursors (GRPs)-a class of lineage-restricted astrocyte progenitors-into the C2 hemisection model and evaluated effects on diaphragm function and the growth response of descending rostral ventral respiratory group (rVRG) axons that innervate phrenic motor neurons (PhMNs). GRPs survived long term and efficiently differentiated into astrocytes in injured spinal cord. GRPs promoted significant recovery of diaphragm electromyography amplitudes and stimulated robust regeneration of injured rVRG axons. Although rVRG fibers extended across the lesion, no regrowing axons re-entered caudal spinal cord to reinnervate PhMNs, suggesting that this regeneration response-although impressive-was not responsible for recovery. Within ipsilateral C3-5 ventral horn (PhMN location), GRPs induced substantial sprouting of spared fibers originating in contralateral rVRG and 5-HT axons that are important for regulating PhMN excitability; this sprouting was likely involved in functional effects of GRPs. Finally, GRPs reduced the macrophage response (which plays a key role in inducing axon retraction and limiting regrowth) both within the hemisection and at intact caudal spinal cord surrounding PhMNs. These findings demonstrate that astrocyte progenitor transplantation promotes significant plasticity of rVRG-PhMN circuitry and restoration of diaphragm function and suggest that these effects may be in part through immunomodulation.
Collapse
Affiliation(s)
- Miguel Goulão
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania.,Life and Health Sciences Research Institute (ICVS), School of Medicine, ICVS/3B's - PT Government Associate Laborator, University of Minho, Braga, Portugal
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Malya Sahu
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christina Mercogliano
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brittany A Charsar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sreeya Komaravolu
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cole G Block
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, Pennsylvania
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Optic nerve regeneration in mammals: Regenerated or spared axons? Exp Neurol 2017; 296:83-88. [PMID: 28716559 DOI: 10.1016/j.expneurol.2017.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
Abstract
Intraorbital optic nerve crush in rodents is widely used as a model to study axon regeneration in the adult mammalian central nervous system. Recent studies using appropriate genetic manipulations have revealed remarkable abilities of mature retinal ganglion cell (RGC) axons to regenerate after optic nerve injury, with some studies demonstrating that axons can then go on to re-innervate a number of central visual targets with partial functional restoration. However, one confounding factor inherent to optic nerve crush injury is the potential incompleteness of the initial lesion, leaving spared axons that later on could erroneously be interpreted as regenerating distal to the injury site. Careful examination of axonal projection pattern and morphology may facilitate separating spared from regenerating RGC axons. Here we discuss morphological criteria and strategies that may be used to differentiate spared versus regenerated axons in the injured mammalian optic nerve.
Collapse
|
17
|
Charsar BA, Urban MW, Lepore AC. Harnessing the power of cell transplantation to target respiratory dysfunction following spinal cord injury. Exp Neurol 2016; 287:268-275. [PMID: 27531634 DOI: 10.1016/j.expneurol.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022]
Abstract
The therapeutic benefit of cell transplantation has been assessed in a host of central nervous system (CNS) diseases, including disorders of the spinal cord such as traumatic spinal cord injury (SCI). The promise of cell transplantation to preserve and/or restore normal function can be aimed at a variety of therapeutic mechanisms, including replacement of lost or damaged CNS cell types, promotion of axonal regeneration or sprouting, neuroprotection, immune response modulation, and delivery of gene products such as neurotrophic factors, amongst other possibilities. Despite significant work in the field of transplantation in models of SCI, limited attention has been directed at harnessing the therapeutic potential of cell grafting for preserving respiratory function after SCI, despite the critical role pulmonary compromise plays in patient outcome in this devastating disease. Here, we will review the limited number of studies that have demonstrated the therapeutic potential of intraspinal transplantation of a variety of cell types for addressing respiratory dysfunction in SCI.
Collapse
Affiliation(s)
- Brittany A Charsar
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Mark W Urban
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States.
| |
Collapse
|
18
|
Park KW, Lin CY, Benveniste EN, Lee YS. Mitochondrial STAT3 is negatively regulated by SOCS3 and upregulated after spinal cord injury. Exp Neurol 2016; 284:98-105. [PMID: 27502766 DOI: 10.1016/j.expneurol.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
Abstract
Suppressor of cytokine signaling-3 (SOCS3) expression is induced by the Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. SOCS3 then acts as a feedback inhibitor of JAK-STAT signaling. Previous studies have shown that knocking down SOCS3 in spinal cord neurons with Lentiviral delivery of SOCS3-targeting shRNA (shSOCS3) increased spinal cord injury (SCI)-induced tyrosine phosphorylation of STAT3 (P-STAT3 Tyr), which in part contributed to decreased neuronal death and demyelination as well as enhanced dendritic regeneration and protection of neuronal morphology after SCI. However, the role of serine phosphorylation of STAT3 (P-STAT3 Ser) is in large part undetermined. Our purposes of this study were to evaluate the expression patterns of P-STAT3 Ser and to explore the possible role of SOCS3 in the regulation of P-STAT3 Ser expression. Immunoblot analyses demonstrated that Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, induced both P-STAT3 Tyr and P-STAT3 Ser in SH-SY5Y cells. Subcellular fractionation further revealed that P-STAT3 Ser was localized in mitochondria. Overexpression of SOCS3 with a Lentivirus-mediated approach in SH-SY5Y cells inhibited OSM-induced P-STAT3 Ser in both cytosol and mitochondria fractions. In contrast, OSM-induced P-STAT3 Ser was further upregulated in both cytosol and mitochondria when SOCS3 was knocked down by Lentivirus-delivered shSOCS3. Using a rat T8 spinal cord complete transection model, we found that SCI induced upregulation of P-STAT3 Ser in the mitochondria of macrophages/microglia and neurons both rostral and caudal to the injury site of spinal cord. Collectively, these results suggest that SOCS3 regulation of STAT3 signaling plays critical roles in stress conditions.
Collapse
Affiliation(s)
- Keun Woo Park
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
19
|
A recessive form of extreme macrocephaly and mild intellectual disability complements the spectrum of PTEN hamartoma tumour syndrome. Eur J Hum Genet 2015; 24:889-94. [PMID: 26443266 DOI: 10.1038/ejhg.2015.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022] Open
Abstract
PTEN hamartoma tumour syndrome (PHTS) is caused by heterozygous variants in PTEN and is characterised by tumour predisposition, macrocephaly, and cognition impairment. Bi-allelic loss of PTEN activity has not been reported so far and animal models suggest that bi-allelic loss of PTEN activity is embryonically lethal. Here, we report the identification of a novel homozygous variant in PTEN, NM_000314.4; c.545T>C; p.Leu182Ser, in two adolescent siblings with severe macrocephaly and mild intellectual disability. The variant is predicted to be damaging and is associated with significantly increased phospho-S6 downstream of PTEN. The absence of tumours in the two homozygous siblings as well as lack of symptoms of PHTS in the heterozygous carriers of the family suggest that this particular variant is functionally hypomorphic rather than deleterious.
Collapse
|
20
|
Zhou Q, Jackson-Cook C, Lyon D, Perera R, Archer KJ. Identifying molecular features associated with psychoneurological symptoms in women with breast cancer using multivariate mixed models. Cancer Inform 2015; 14:139-45. [PMID: 25983548 PMCID: PMC4426955 DOI: 10.4137/cin.s17276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer among women. Research shows many women with BC experience anxiety, depression, and stress (ADS). Epigenetics has recently emerged as a potential mechanism for the development of depression.1 Although there are growing numbers of research studies indicating that epigenetic changes are associated with ADS, there is currently no evidence that this association is present in women with BC. The goal of this study was to identify high-throughput methylation sites (CpG sites) that are associated with three psychoneurological symptoms (ADS) in women with BC. Traditionally, univariate models have been used to examine the relationship between methylation sites and each psychoneurological symptom; nevertheless, ADS can be treated as a cluster of related symptoms and included together in a multivariate linear model. Hence, an overarching goal of this study is to compare and contrast univariate and multivariate models when identifying methylation sites associated with ADS in women with BC. When fitting separate linear regression models for each ADS scale, 3 among 285,173 CpG sites tested were significantly associated with depression. Two significant CpG sites are located on their respective genes FAM101A and FOXJ1, and the third site cannot be mapped to any known gene at this time. In contrast, the multivariate models identified 8,535 ADS-related CpG sites. In conclusion, when analyzing correlated psychoneurological symptom outcomes, multivariate models are more powerful and thus are recommended.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Debra Lyon
- College of Nursing, University of Florida, Gainesville, FL, USA
| | - Robert Perera
- Departments of Biostatistics & Social and Behavioral Health, Virginia Commonwealth University, Richmond, VA, USA
| | - Kellie J Archer
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Kang Y, Jia P, Zhao H, Hu C, Yang X. MicroRNA-26a overexpression protects RGC-5 cells against H2O2-induced apoptosis. Biochem Biophys Res Commun 2015; 460:164-9. [PMID: 25757910 DOI: 10.1016/j.bbrc.2015.02.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND We intended to examine the functional role of microRNA 26 (miR-26a) in regulating H2O2-induced cytotoxicity and apoptosis in RGC-5 cells in vitro. METHOD Various concentrations of H2O2 (0-1000 μM) were added in RGC-5 culture. Cell cytotoxicity was monitored by viability assay and gene expression level of miR-26a examined by qRT-PCR. MicroRNA-26a mimic was then applied in the RGC-5 culture to examine its effect on upregulating endogenous miR-26a and rescuing H2O2-induced cytotoxicity. TUNEL immunostaining assay was used to further assess the protective effect of upregulating miR-26a on H2O2-induced apoptosis in RGC-5 cells. Direct targeting of miR-26a on Phosphatase and tensin homolog (PTEN) signaling pathway was assessed by luciferase assay and western blotting. PTEN was then ectopically over-expressed in RGC-5. And its effects on miR-26a mediated apoptosis protection in RGC-5 were investigated by western blot and TUNEL assay. RESULTS H2O2 induced cytotoxicity and down-regulated miR-26a in dose-dependent manner in RGC-5 cells. MiR-26a-mimic upregulated endogenous miR-26a gene levels, and then reduced H2O2-induced cytotoxicity, as well as H2O2-induced apoptosis in RGC-5 cells. PTEN was directly targeted by miR-26a. PTEN protein was upregulated, and phosphorylated AKT protein down-regulated while miR-26a was upregulated to reduce H2O2-induced apoptosis. Finally, overexpressing PTEN reversed the protective effect of miR-26a upregulation on RGC-5 apoptosis. CONCLUSION Upregulating miR-26a protects RGC-5 cell against cytotoxicity and apoptosis, probably through down-regulation of PTEN.
Collapse
Affiliation(s)
- Ye Kang
- Department of Ophthalmology, Yantaishan Hospital, 91 Jiefang Road, Yantai, 264000, Shandong, China
| | - Ping Jia
- Department of Ophthalmology, Yantai Development Area Hospital, Yantai, 264006, Shandong, China
| | - Huaqi Zhao
- Department of Ophthalmology, People's Hospital of Cao County, Heze, 274400, Shandong, China
| | - Chunyan Hu
- Department of Ophthalmology, People's Hospital of Cao County, Heze, 274400, Shandong, China
| | - Xiangze Yang
- Department of Ophthalmology, Weihai Municipal Hospital, 70 Heping Road, Weihai, 264200, Shandong, China.
| |
Collapse
|
22
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
23
|
Kreis P, Leondaritis G, Lieberam I, Eickholt BJ. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders. Front Mol Neurosci 2014; 7:23. [PMID: 24744697 PMCID: PMC3978343 DOI: 10.3389/fnmol.2014.00023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023] Open
Abstract
PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.
Collapse
Affiliation(s)
- Patricia Kreis
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - George Leondaritis
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Ivo Lieberam
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - Britta J Eickholt
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
24
|
Ohtake Y, Park D, Abdul-Muneer PM, Li H, Xu B, Sharma K, Smith GM, Selzer ME, Li S. The effect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury. Biomaterials 2014; 35:4610-26. [PMID: 24630093 DOI: 10.1016/j.biomaterials.2014.02.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Knockout studies suggest that PTEN limits the regenerative capacities of CNS axons as a dominant antagonist of PI3 kinase, but the transgenic approach is not feasible for treating patients. Although application of bisperoxovanadium may block PTEN function, it is a general inhibitor of phosphotyrosine phosphatases and may target enzymes other than PTEN, causing side effects and preventing firm conclusions about PTEN inhibition on regulating neuronal growth. A pharmacological method to selectively suppress PTEN post-injury could be a valuable strategy for promoting CNS axon regeneration. We identified PTEN antagonist peptides (PAPs) by targeting PTEN critical functional domains and evaluated their efficacy for promoting axon growth. Four PAPs (PAP 1-4) bound to PTEN protein expressed in COS7 cells and blocked PTEN signaling in vivo. Subcutaneous administration of PAPs initiated two days after dorsal over-hemisection injury significantly stimulated growth of descending serotonergic fibers in the caudal spinal cord of adult mice. Systemic PAPs induce significant sprouting of corticospinal fibers in the rostral spinal cord and limited growth of corticospinal axons in the caudal spinal cord. More importantly, PAP treatment enhanced recovery of locomotor function in adult rodents with spinal cord injury. This study may facilitate development of effective therapeutic agents for CNS injuries.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dongsun Park
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - P M Abdul-Muneer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hui Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Bin Xu
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Kartavya Sharma
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390-8813, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
25
|
Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Exp Neurol 2013; 250:31-42. [PMID: 24041988 DOI: 10.1016/j.expneurol.2013.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/10/2023]
Abstract
Axon regeneration after spinal cord injury in mammals is inadequate to restore function, illustrating the need to design better strategies for improving outcomes. Increasing the levels of the second messenger cyclic adenosine monophosphate (cAMP) after spinal cord injury enhances axon regeneration across a wide variety of species, making it an excellent candidate molecule that has therapeutic potential. However, several important aspects of the cellular and molecular mechanisms by which cAMP enhances axon regeneration are still unclear, such as how cAMP affects axon growth patterns, the molecular components within growing axon tips, the lesion scar, and neuronal survival. To address these points, we took advantage of the large, identified reticulospinal (RS) neurons in lamprey, a vertebrate that exhibits robust axon regeneration after a complete spinal cord transection. Application of a cAMP analog, db-cAMP, at the time of spinal cord transection increased the number of axons that regenerated across the lesion site. Db-cAMP also promoted axons to regenerate in straighter paths, prevented abnormal axonal growth patterns, increased the levels of synaptotagmin within axon tips, and increased the number of axotomized neurons that survived after spinal cord injury, thereby increasing the pool of neurons available for regeneration. There was also a transient increase in the number of microglia/macrophages and improved repair of the lesion site. Taken together, these data reveal several new features of the cellular and molecular mechanisms underlying cAMP-mediated enhancement of axon regeneration, further emphasizing the positive roles for this conserved pathway.
Collapse
|
26
|
The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNeurons of the central nervous system (CNS) form a magnificent network destined to control bodily functions and human behavior for a lifetime. During development of the CNS, neurons extend axons that establish connections to other neurons. Axon growth is guided by extrinsic cues and guidance molecules. In addition to environmental signals, intrinsic programs including transcription and the ubiquitin proteasome system (UPS) have been implicated in axon growth regulation. Over the past few years it has become evident that the E3 ubiquitin ligase Cdh1-APC together with its associated pathway plays a central role in axon growth suppression. By elucidating the intricate interplay of extrinsic and intrinsic mechanisms, we can enhance our understanding of why axonal regeneration in the CNS fails and obtain further insight into how to stimulate successful regeneration after injury.
Collapse
|