1
|
Schwenger KJP, Copeland JK, Ghorbani Y, Chen L, Comelli EM, Guttman DS, Fischer SE, Jackson TD, Okrainec A, Allard JP. Characterization of liver, adipose, and fecal microbiome in obese patients with MASLD: links with disease severity and metabolic dysfunction parameters. MICROBIOME 2025; 13:9. [PMID: 39810228 PMCID: PMC11730849 DOI: 10.1186/s40168-024-02004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of histological findings from the generally benign simple steatosis to steatohepatitis (MASH) which can progress to fibrosis and cirrhosis. Several factors, including the microbiome, may contribute to disease progression. RESULTS Here, we demonstrate links between the presence and abundance of specific bacteria in the adipose and liver tissues, inflammatory genes, immune cell responses, and disease severity. Overall, in MASLD patients, we observed a generalized obesity-induced translocation of gut bacteria to hepatic and adipose tissues. We identified microbial patterns unique to more severely diseased tissues. Specifically, Enterococcus, Granulicatella, and Morganellaceae abundance is positively correlated with immune cell counts and inflammatory gene expression levels, and both genera are significantly enriched in MASH patients. Brevibacterium is enriched in adipose tissues of patients with liver fibrosis. CONCLUSION Together, these results provide further insight into the microbial factors that may be driving disease severity. Video Abstract.
Collapse
Affiliation(s)
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada
| | - Lina Chen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of General Surgery, University of Toronto, Toronto, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Allan Okrainec
- Division of General Surgery, University of Toronto, Toronto, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada.
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
- Division of Gastroenterology, Department of Medicine, Toronto General Hospital, 585 University Avenue, 9N-973, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
2
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
3
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
4
|
Oral microbiota in cancer: could the bad guy turn good with application of polyphenols? Expert Rev Mol Med 2022; 25:e1. [PMID: 36511134 DOI: 10.1017/erm.2022.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human oral cavity is comprised of dynamic and polynomial microbes which uniquely reside in the microenvironments of oral cavities. The cumulative functions of the symbiotic microbial communities maintain normal homeostasis; however, a shifted microbiota yields a dysbiosis state, which produces local and systemic diseases including dental caries, periodontitis, cancer, obesity and diabetes. Recent research reports claim that an association occurs between oral dysbiosis and the progression of different types of cancers including oral, gastric and pancreatic ones. Different mechanisms are proposed for the development of cancer, such as induction of inflammatory reactions, production of carcinogenic materials and alteration of the immune system. Medications are available to treat these associated diseases; however, the current strategies may further worsen the disease by unwanted side effects. Natural-derived polyphenol molecules significantly inhibit a wide range of systemic diseases with fewer side effects. In this review, we have displayed the functions of the oral microbes and we have extended the report regarding the role of polyphenols in oral microbiota to maintain healthy conditions and prevention of diseases with emphasis on the treatment of oral microbiota-associated cancer.
Collapse
|
5
|
Herrera-Martínez AD, Herrero-Aguayo V, Pérez-Gómez JM, Gahete MD, Luque RM. Inflammasomes: Cause or consequence of obesity-associated comorbidities in humans. Obesity (Silver Spring) 2022; 30:2351-2362. [PMID: 36415999 DOI: 10.1002/oby.23581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Inflammasomes are multiprotein intracellular complexes composed of innate immune system receptors and sensors; they activate the inflammatory cascade in response to infectious microbes and/or molecules derived from host proteins. Because of cytokine secretion, inflammasomes can induce amplified systemic responses, its dysregulation can exacerbate symptoms in infectious diseases, and it has been related to the development of autoimmune diseases, inflammatory disorders, and even cancer. Obesity is associated with a chronic low-grade inflammation, in which circulating proinflammatory cytokines are elevated. Some publications describe changes in inflammation markers as a consequence of obesity, but others suggest that chronic inflammation might cause obesity (e.g., C-reactive protein): these assumptions reflect the difficulty of identifying the appropriate role of inflammation as cause or consequence of obesity and its related complications. Obesity is recognized as a clinical risk factor for developing cardiovascular diseases including atherosclerosis, metabolic syndrome, insulin resistance, and diabetes mellitus. Changes in the expression of inflammasomes are described in some of these obesity-related complications, and moreover, its modulation might exert a beneficial effect in some cases. Despite some contradictory results, most publications suggest a promising clinical effect based on in vitro and in vivo experiments. In this review, we summarized recent publications about inflammasome dysregulation in humans and its relationship with obesity-related comorbidities.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| |
Collapse
|
6
|
Cote B, Elbarbry F, Bui F, Su JW, Seo K, Nguyen A, Lee M, Rao DA. Mechanistic Basis for the Role of Phytochemicals in Inflammation-Associated Chronic Diseases. Molecules 2022; 27:molecules27030781. [PMID: 35164043 PMCID: PMC8838908 DOI: 10.3390/molecules27030781] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases occur in a large portion of the population and are associated with a poor diet. Key natural products found in fruits and vegetables may assist in lowering inflammation associated with chronic diseases such as obesity, diabetes, cardiovascular diseases, and cancer. This review seeks to examine the roles of several natural products, resveratrol (RES), quercetin (QUE), curcumin (CUR), piperine (PIP), epigallocatechin gallate (EGCG), and gingerol (GIN), in their ability to attenuate inflammatory markers in specific diseases states. Additionally, we will discuss findings in past and ongoing clinical trials, detail possible phytochemical–drug interactions, and provide a brief resource for researchers and healthcare professionals on natural product and supplement regulation as well as names of databases with information on efficacy, indications, and natural product–drug interactions. As diet and over-the-counter supplement use are modifiable factors and patients are interested in using complementary and alternative therapies, understanding the mechanisms by which natural products have demonstrated efficacy and the types of drugs they interact with and knowing where to find information on herbs and supplements is important for practicing healthcare providers and researchers interested in this field.
Collapse
Affiliation(s)
- Brianna Cote
- College of Pharmacy, Oregon State University, Portland, OR 97201, USA;
| | - Fawzy Elbarbry
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Fiona Bui
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Joe W. Su
- School of Pharmacy, West Coast University, Los Angeles, CA 90004, USA;
| | - Karen Seo
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Arthur Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Max Lee
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
- Correspondence:
| |
Collapse
|
7
|
Herrero-Aguayo V, Sáez-Martínez P, López-Cánovas JL, Prados-Carmona JJ, Alcántara-Laguna MD, López FL, Molina-Puerta MJ, Calañas-Continente A, Membrives A, Castilla J, Ruiz-Ravelo J, Alonso-Echague R, Yubero-Serrano EM, Castaño JP, Gahete MD, Gálvez-Moreno MA, Luque RM, Herrera-Martínez AD. Dysregulation of Components of the Inflammasome Machinery After Bariatric Surgery: Novel Targets for a Chronic Disease. J Clin Endocrinol Metab 2021; 106:e4917-e4934. [PMID: 34363480 DOI: 10.1210/clinem/dgab586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity is a metabolic chronic disease with important associated morbidities and mortality. Bariatric surgery is the most effective treatment for maintaining long-term weight loss in severe obesity and, consequently, for decreasing obesity-related complications, including chronic inflammation. AIM To explore changes in components of the inflammasome machinery after bariatric surgery and their relation with clinical/biochemical parameters at baseline and 6 months after bariatric surgery. PATIENTS AND METHODS Twenty-two patients with morbid-obesity that underwent bariatric surgery (sleeve gastrectomy and Roux-en-Y gastric bypass) were included. Epidemiological/clinical/anthropometric/biochemical evaluation was performed at baseline and 6 months after bariatric surgery. Inflammasome components and inflammatory-associated factors [nucleotide-binding oligomerization domain-like receptors (NLRs), inflammasome activation components, cytokines and inflammation/apoptosis-related components, and cell-cycle and DNA-damage regulators) were evaluated in peripheral blood mononuclear cells (PBMCs) at baseline and 6 months after bariatric surgery. Clinical molecular correlations/associations were analyzed. Functional parameters (lipid accumulation/viability/apoptosis) were analyzed in response to specific inflammasome components silencing in liver HepG2 cells). RESULTS A profound dysregulation of inflammasome components after bariatric surgery was found, especially in NLRs and cell-cycle and DNA damage regulators. Several components were associated with baseline metabolic comorbidities including type 2 diabetes (C-C motif chemokine ligand 2/C-X-C motif chemokine receptor 1/sirtuin 1), hypertension (absent in melanoma 2/ASC/purinergic receptor P2X 7), and dyslipidemia [C-X-C motif chemokine ligand 3 (CXCL3)/NLR family pyrin domain containing (NLRP) 7) and displayed changes in their molecular profile 6 months after bariatric surgery. The gene expression fingerprint of certain factors NLR family CARD domain containing 4 (NLRC4)/NLRP12/CXCL3)/C-C motif chemokine ligand 8/toll-like receptor 4) accurately differentiated pre- and postoperative PBMCs. Most changes were independent of the performed surgical technique. Silencing of NLRC4/NLRP12 resulted in altered lipid accumulation, apoptosis rate, and cell viability in HepG2 cells. CONCLUSION Bariatric surgery induces a profound alteration in the gene expression pattern of components of the inflammasome machinery in PBMCs. Expression and changes of certain inflammasome components are associated to baseline metabolic comorbidities, including type 2 diabetes, and may be related to the improvement and reversion of some obesity-related comorbidities after bariatric surgery.
Collapse
Affiliation(s)
- Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba; Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Juan L López-Cánovas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba; Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
| | - Juan J Prados-Carmona
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital; Córdoba, Spain
| | - María D Alcántara-Laguna
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Fernando L López
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba; Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
| | - María J Molina-Puerta
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Alfonso Calañas-Continente
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Antonio Membrives
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- General Surgery Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Juan Castilla
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- General Surgery Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Juan Ruiz-Ravelo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- General Surgery Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Rosario Alonso-Echague
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- General Surgery Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Elena M Yubero-Serrano
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba; Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba; Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital; Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba; Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Córdoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital; Córdoba, Spain
| |
Collapse
|
8
|
The Gut Microbiota-Derived Immune Response in Chronic Liver Disease. Int J Mol Sci 2021; 22:ijms22158309. [PMID: 34361075 PMCID: PMC8347749 DOI: 10.3390/ijms22158309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
In chronic liver disease, the causative factor is important; however, recently, the intestinal microbiome has been associated with the progression of chronic liver disease and the occurrence of side effects. The immune system is affected by the metabolites of the microbiome, and diet is the primary regulator of the microbiota composition and function in the gut–liver axis. These metabolites can be used as therapeutic material, and postbiotics, in the future, can increase or decrease human immunity by modulating inflammation and immune reactions. Therefore, the excessive intake of nutrients and the lack of nutrition have important effects on immunity and inflammation. Evidence has been published indicating that microbiome-induced chronic inflammation and the consequent immune dysregulation affect the development of chronic liver disease. In this research paper, we discuss the overall trend of microbiome-derived substances related to immunity and the future research directions.
Collapse
|
9
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Raman T, Sundaram J, Arumugam M, Ramar M. An insight on 7- ketocholesterol mediated inflammation in atherosclerosis and potential therapeutics. Steroids 2021; 172:108854. [PMID: 33930389 DOI: 10.1016/j.steroids.2021.108854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022]
Abstract
7-ketocholesterol, a toxic oxidative product of oxysterol is a causative agent of several diseases and disabilities concomitant to aging including cardiovascular diseases like atherosclerosis. Auto-oxidation of cholesterol esters present in low-density lipoprotein (LDL) deposits lead to the formation of oxidized LDL (Ox-LDL) along with its byproducts, namely 7KCh. It is predominantly found in atherosclerotic plaque and also found to be more atherogenic than cholesterol by being cytotoxic, interfering with cellular homeostasis. This makes it a serious threat by being the foremost cause of morbidity and mortality worldwide and is likely to become more serious during forth coming years. It involves in mediating inflammatory mechanisms characterized by the advancement of fibroatheroma plaques. The atherosclerotic lesion is composed of Ox-LDL along with fibrotic mass consisting of immune cells and molecules. Macrophages being the specialized phagocytic cells, contribute to removal of detrimental contents of the lesion along with accumulated lipids leading to alteration of its biology and functionality due to its plasticity. Here, we have explored the known as well as proposed mechanisms involved with 7KCh associated atherogenesis along with potential therapeutic strategies for targeting 7KCh as a diagnostic and target in medicine.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Livya C Martin
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilakanni's College for Women, Chennai 600015, India
| | - Thiagarajan Raman
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai 600004, India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Munusamy Arumugam
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
10
|
Korlepara V, Kumar N, Banerjee S. Gut Microbiota And Inflammatory Disorders. Curr Drug Targets 2021; 23:156-169. [PMID: 34165407 DOI: 10.2174/1389450122666210623125603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
The gut has been colonized with bacteria, fungi, viruses, archaea, eukarya. The human and bacterial cells are found in a 1:1 ratio, while the variance in the diversity of gut microbiota may result in Dysbiosis. Gut dysbiosis may result in various pathological manifestations. Beneficial gut microbiota may synthesize short-chain fatty acids like acetate, butyrate, propionate, while -gram-negative organisms are the primary source of LPS, a potent pro-inflammatory mediator. Both gut microbiota and microbial products may be involved in immunomodulation as well as inflammation. Prebiotics and probiotics are being explored as therapeutic agents against various inflammatory and autoimmune disorders. Here we discuss the molecular mechanisms involved in gut bacteria-mediated modulation of various inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Vamsi Korlepara
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Naveen Kumar
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
11
|
Yadav S, Verma V, Dhanda RS, Khurana S, Yadav M. Latent Upregulation of Nlrp3, Nlrc4 and Aim2 Differentiates between Asymptomatic and Symptomatic Trichomonas vaginalis Infection. Immunol Invest 2021; 51:1127-1148. [PMID: 33866944 DOI: 10.1080/08820139.2021.1909062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Trichomonas vaginalis is a parasitic protozoan that causes trichomoniasis. The involvement of NLRP3 inflammasome in trichomoniasis has been discussed in recent studies. The present study aimed to find out the involvement of Nlrp3, Nlrc4, and Aim2 in the BALB/c mouse model infected with symptomatic and asymptomatic isolates of T. vaginalis by quantitative real-time PCR and immunohistochemistry. Our results showed a significantly increased expression of Nlrp3 in the vaginal tissue of the symptomatic group on the 2nd dpi and 14th dpi in the asymptomatic group, respectively. The cervical tissue of asymptomatic groups expressed higher Nlrp3 on 14th dpi than the symptomatic group. The Nlrc4 was expressed on 14th dpi in the vaginal and cervical tissues of mice infected with asymptomatic group as compared to the symptomatic group. Aim2 expression in vaginal tissue was highest at early time points in both the infected groups as compared to controls. However, in cervical tissues, a significant increase of Aim2 expression was observed on 14th dpi in asymptomatic as compared to the symptomatic group. The significantly higher expression of caspase-1 and caspase-4 was observed in cervical tissues of the asymptomatic group on 14th dpi as compared to the symptomatic group, respectively. All NLRs together resulted in higher IL-1β expression in the vaginal tissues of the symptomatic and asymptomatic groups. We conclude from this study that early expression of Nlrp3, Nlrc4, and Aim2 was seen in the symptomatic group as compared to the late-onset asymptomatic in the vaginal and cervical tissues.
Collapse
Affiliation(s)
- Sonal Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | | | - Sumeeta Khurana
- Department of Medical Parasitology, PGIMER, Chandigarh, India
| | - Manisha Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| |
Collapse
|
12
|
Jiang L, Wang J, Liu Z, Jiang A, Li S, Wu D, Zhang Y, Zhu X, Zhou E, Wei Z, Yang Z. Sodium Butyrate Alleviates Lipopolysaccharide-Induced Inflammatory Responses by Down-Regulation of NF-κB, NLRP3 Signaling Pathway, and Activating Histone Acetylation in Bovine Macrophages. Front Vet Sci 2020; 7:579674. [PMID: 33251265 PMCID: PMC7674777 DOI: 10.3389/fvets.2020.579674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Sodium butyrate is the sodium salt of butyric acid, which possesses many biological functions including immune system regulation, anti-oxidant and anti-inflammatory ability. The present study was designed to elucidate the anti-inflammatory effects and mechanisms of sodium butyrate on lipopolysaccharide (LPS)-stimulated bovine macrophages. The effect of sodium butyrate on the cell viability of bovine macrophages was assayed by using the CCK-8 kit. Quantitative real-time PCR (qRT-PCR) was used to detect the gene expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and inducible Nitric Oxide Synthase (iNOS). NF-κB, NLRP3 signaling pathway, and histone deacetylase were detected by western blotting. The results showed that sodium butyrate had no significant effect on cell viability at 0-1 mM, and inhibited LPS-induced IL-6, IL-1β, COX-2, and iNOS expression. Moreover, sodium butyrate suppressed LPS (5 μg/ml)-stimulated the phosphorylation of IκB and p65, inhibited the deacetylation of histone H3K9, and has also been found to inhibit protein expression in NLRP3 inflammasomes. Thus, our finding suggested that sodium butyrate relieved LPS-induced inflammatory responses in bovine macrophage by inhibiting the canonical NF-κB, NLRP3 signaling pathway, and histone decetylation, which might be helpful to prevent cow mastitis.
Collapse
Affiliation(s)
- Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyi Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Aimin Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
13
|
Lensu S, Pariyani R, Mäkinen E, Yang B, Saleem W, Munukka E, Lehti M, Driuchina A, Lindén J, Tiirola M, Lahti L, Pekkala S. Prebiotic Xylo-Oligosaccharides Ameliorate High-Fat-Diet-Induced Hepatic Steatosis in Rats. Nutrients 2020; 12:nu12113225. [PMID: 33105554 PMCID: PMC7690286 DOI: 10.3390/nu12113225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the importance of the gut microbiota (GM) in non-alcoholic fatty liver disease (NAFLD) has raised the hope for therapeutic microbes. We have shown that high hepatic fat content associated with low abundance of Faecalibacterium prausnitzii in humans and, further, the administration of F. prausnitzii prevented NAFLD in mice. Here, we aimed at targeting F. prausnitzii by prebiotic xylo-oligosaccharides (XOS) to treat NAFLD. First, the effect of XOS on F. prausnitzii growth was assessed in vitro. Then, XOS was supplemented or not with high (HFD, 60% of energy from fat) or low (LFD) fat diet for 12 weeks in Wistar rats (n = 10/group). XOS increased F. prausnitzii growth, having only a minor impact on the GM composition. When supplemented with HFD, XOS ameliorated hepatic steatosis. The underlying mechanisms involved enhanced hepatic β-oxidation and mitochondrial respiration. Nuclear magnetic resonance (1H-NMR) analysis of cecal metabolites showed that, compared to the HFD, the LFD group had a healthier cecal short-chain fatty acid profile and on the HFD, XOS reduced cecal isovalerate and tyrosine, metabolites previously linked to NAFLD. Cecal branched-chain fatty acids associated positively and butyrate negatively with hepatic triglycerides. In conclusion, XOS supplementation can ameliorate NAFLD by improving hepatic oxidative metabolism and affecting GM.
Collapse
Affiliation(s)
- Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Raghunath Pariyani
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (R.P.); (B.Y.)
| | - Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (R.P.); (B.Y.)
| | - Wisam Saleem
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland; (W.S.); (L.L.)
| | - Eveliina Munukka
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland;
- Department of Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Anastasiia Driuchina
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
| | - Jere Lindén
- Veterinary Pathology and Parasitology, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland;
| | - Leo Lahti
- Department of Future Technologies, University of Turku, FI-20014 Turku, Finland; (W.S.); (L.L.)
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland; (S.L.); (E.M.); (M.L.); (A.D.)
- Department of Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland
- Correspondence: ; Tel.: +358-45-358-28-98
| |
Collapse
|
14
|
Yin X, Liao W, Li Q, Zhang H, Liu Z, Zheng X, Zheng L, Feng X. Interactions between resveratrol and gut microbiota affect the development of hepatic steatosis: A fecal microbiota transplantation study in high-fat diet mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
15
|
Rubio C, Puerto M, García-Rodríquez JJ, Lu VB, García-Martínez I, Alén R, Sanmartín-Salinas P, Toledo-Lobo MV, Saiz J, Ruperez J, Barbas C, Menchén L, Gribble FM, Reimann F, Guijarro LG, Carrascosa JM, Valverde ÁM. Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Mol Metab 2020; 35:100954. [PMID: 32244182 PMCID: PMC7082558 DOI: 10.1016/j.molmet.2020.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Non-alcoholic steatohepatitis (NASH) is characterized by a robust pro-inflammatory component at both hepatic and systemic levels together with a disease-specific gut microbiome signature. Protein tyrosine phosphatase 1 B (PTP1B) plays distinct roles in non-immune and immune cells, in the latter inhibiting pro-inflammatory signaling cascades. In this study, we have explored the role of PTP1B in the composition of gut microbiota and gut barrier dynamics in methionine and choline-deficient (MCD) diet-induced NASH in mice. METHODS Gut features and barrier permeability were characterized in wild-type (PTP1B WT) and PTP1B-deficient knockout (PTP1B KO) mice fed a chow or methionine/choline-deficient (MCD) diet for 4 weeks. The impact of inflammation was studied in intestinal epithelial and enteroendocrine cells. The secretion of GLP-1 was evaluated in primary colonic cultures and plasma of mice. RESULTS We found that a shift in the gut microbiota shape, disruption of gut barrier function, higher levels of serum bile acids, and decreased circulating glucagon-like peptide (GLP)-1 are features during NASH. Surprisingly, despite the pro-inflammatory phenotype of global PTP1B-deficient mice, they were partly protected against the alterations in gut microbiota composition during NASH and presented better gut barrier integrity and less permeability under this pathological condition. These effects concurred with higher colonic mucosal inflammation, decreased serum bile acids, and protection against the decrease in circulating GLP-1 levels during NASH compared with their WT counterparts together with increased expression of GLP-2-sensitive genes in the gut. At the molecular level, stimulation of enteroendocrine STC-1 cells with a pro-inflammatory conditioned medium (CM) from lipopolysaccharide (LPS)-stimulated macrophages triggered pro-inflammatory signaling cascades that were further exacerbated by a PTP1B inhibitor. Likewise, the pro-inflammatory CM induced GLP-1 secretion in primary colonic cultures, an effect augmented by PTP1B inhibition. CONCLUSION Altogether our results have unraveled a potential role of PTP1B in the gut-liver axis during NASH, likely mediated by increased sensitivity to GLPs, with potential therapeutic value.
Collapse
Affiliation(s)
- Carmen Rubio
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Marta Puerto
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain
| | - Juan J García-Rodríquez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Van B Lu
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Irma García-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Rosa Alén
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | | | - M Val Toledo-Lobo
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jorge Saiz
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coral Barbas
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | - Luis Menchén
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Luis G Guijarro
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jose M Carrascosa
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
16
|
Real-Sandoval SA, Gutiérrez-López GF, Domínguez-López A, Paniagua-Castro N, Michicotl-Meneses MM, Jaramillo-Flores ME. Downregulation of proinflammatory liver gene expression by Justicia spicigera and kaempferitrin in a murine model of obesity-induced by a high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Chen D, Le TH, Shahidipour H, Read SA, Ahlenstiel G. The Role of Gut-Derived Microbial Antigens on Liver Fibrosis Initiation and Progression. Cells 2019; 8:E1324. [PMID: 31717860 PMCID: PMC6912265 DOI: 10.3390/cells8111324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis has recently become known as an important driver of gastrointestinal and liver disease. It remains poorly understood, however, how gastrointestinal microbes bypass the intestinal mucosa and enter systemic circulation to enact an inflammatory immune response. In the context of chronic liver disease (CLD), insults that drive hepatic inflammation and fibrogenesis (alcohol, fat) can drastically increase intestinal permeability, hence flooding the liver with gut-derived microbiota. Consequently, this may result in exacerbated liver inflammation and fibrosis through activation of liver-resident Kupffer and stellate cells by bacterial, viral, and fungal antigens transported to the liver via the portal vein. This review summarizes the current understanding of microbial translocation in CLD, the cell-specific hepatic response to intestinal antigens, and how this drives the development and progression of hepatic inflammation and fibrosis. Further, we reviewed current and future therapies targeting intestinal permeability and the associated, potentially harmful anti-microbial immune response with respect to their potential in terms of limiting the development and progression of liver fibrosis and end-stage cirrhosis.
Collapse
Affiliation(s)
- Dishen Chen
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
| | - Thanh H. Le
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- School of Medicine, Western Sydney University, Campbelltown 2560, NSW, Australia
| | - Haleh Shahidipour
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
| |
Collapse
|
18
|
Schwenger KJ, Clermont-Dejean N, Allard JP. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep 2019; 1:214-226. [PMID: 32039372 PMCID: PMC7001555 DOI: 10.1016/j.jhepr.2019.04.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested a role for the intestinal microbiota in the pathogenesis and potential treatment of a wide range of liver diseases. The intestinal microbiota and bacterial products may contribute to the development of liver diseases through multiple mechanisms including increased intestinal permeability, chronic systemic inflammation, production of short-chain fatty acids and changes in metabolism. This suggests a potential role for pre-, pro- and synbiotic products in the prevention or treatment of some liver diseases. In addition, there is emerging evidence on the effects of faecal microbial transplant. Herein, we discuss the relationship between the intestinal microbiota and liver diseases, as well as reviewing intestinal microbiota-based treatment options that are currently being investigated.
Collapse
Affiliation(s)
- Katherine Jp Schwenger
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther 2019; 50:144-158. [PMID: 31149745 PMCID: PMC6771496 DOI: 10.1111/apt.15314] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent disorder associated with obesity and diabetes. Few treatment options are effective for patients with NAFLD, but connections between the gut microbiome and NAFLD and NAFLD-associated conditions suggest that modulation of the gut microbiota could be a novel therapeutic option. AIM To examine the effect of the gut microbiota on pathophysiologic causes of NAFLD and assess the potential of microbiota-targeting therapies for NAFLD. METHODS A PubMed search of the literature was performed; relevant articles were included. RESULTS The composition of bacteria in the gastrointestinal tract can enhance fat deposition, modulate energy metabolism and alter inflammatory processes. Emerging evidence suggests a role for the gut microbiome in obesity and metabolic syndrome. NAFLD is often considered the hepatic manifestation of metabolic syndrome, and there has been tremendous progress in understanding the association of gut microbiome composition with NAFLD disease severity. We discuss the role of the gut microbiome in NAFLD pathophysiology and whether the microbiome composition can differentiate the two categories of NAFLD: nonalcoholic fatty liver (NAFL, the non-progressive form) vs nonalcoholic steatohepatitis (NASH, the progressive form). The association between gut microbiome and fibrosis progression in NAFLD is also discussed. Finally, we review whether modulation of the gut microbiome plays a role in improving treatment outcomes for patients with NAFLD. CONCLUSIONS Multiple pathophysiologic pathways connect the gut microbiome with the pathophysiology of NAFLD. Therefore, therapeutics that effectively target the gut microbiome may be beneficial for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Saumya Jayakumar
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia,Division of Epidemiology, Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCalifornia
| |
Collapse
|
20
|
Abstract
Liver cancer is the sixth most common cancer worldwide, and the third most common cause of cancer-related death. Hepatocellular carcinoma (HCC), which accounts for more than 90% of primary liver cancers, is an important public health problem. In addition to cirrhosis caused by hepatitis B viral (HBV) or hepatitis C viral (HCV) infection, non-alcoholic fatty liver disease (NAFLD) is becoming a major risk factor for liver cancer because of the prevalence of obesity. Non-alcoholic steatohepatitis (NASH) will likely become the leading indication for liver transplantation in the future. It is well recognized that gut microbiota is a key environmental factor in the pathogenesis of liver disease and cancer. The interplay between gut microbiota and liver disease has been investigated in animal and clinical studies. In this article, we summarize the roles of gut microbiota in the development of liver disease as well as gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,The College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,Corresponding author. Department of medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
21
|
Keith JW, Pamer EG. Enlisting commensal microbes to resist antibiotic-resistant pathogens. J Exp Med 2019; 216:10-19. [PMID: 30309968 PMCID: PMC6314519 DOI: 10.1084/jem.20180399] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic-resistant bacterial pathogens is an all-too-common consequence of antibiotic use. Although antibiotic resistance among virulent bacterial pathogens is a growing concern, the highest levels of antibiotic resistance occur among less pathogenic but more common bacteria that are prevalent in healthcare settings. Patient-to-patient transmission of these antibiotic-resistant bacteria is a perpetual concern in hospitals. Many of these resistant microbes, such as vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae, emerge from the intestinal lumen and invade the bloodstream of vulnerable patients, causing disseminated infection. These infections are associated with preceding antibiotic administration, which changes the intestinal microbiota and compromises resistance to colonization by antibiotic-resistant bacteria. Recent and ongoing studies are increasingly defining commensal bacterial species and the inhibitory mechanisms they use to prevent infection. The use of next-generation probiotics derived from the intestinal microbiota represents an alternative approach to prevention of infection by enriching colonization with protective commensal species, thereby reducing the density of antibiotic-resistant bacteria and also reducing patient-to-patient transmission of infection in healthcare settings.
Collapse
Affiliation(s)
- James W Keith
- Immunology Program, Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY
| | - Eric G Pamer
- Immunology Program, Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY
- Sloan Kettering Institute, New York, NY
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
22
|
Schwenger KJP, Bolzon CM, Li C, Allard JP. Non-alcoholic fatty liver disease and obesity: the role of the gut bacteria. Eur J Nutr 2018; 58:1771-1784. [PMID: 30306296 DOI: 10.1007/s00394-018-1844-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty-liver disease (NAFLD) is now considered one of the leading causes of liver disease worldwide and is associated with metabolic syndrome and obesity. There are several factors contributing to the disease state. Recent research suggests that the intestinal microbiota (IM) and bacterial products may play a role through several mechanisms which include increased energy uptake, intestinal permeability and chronic inflammation. In addition to diet and exercise, treatment options targeting the IM are being investigated and include the use of pre-, pro- and synbiotics as well as the possibility of fecal microbial transfers. This literature review explores the relationship between NAFLD and the IM as well as highlight new IM treatment options that may become available in the near future.
Collapse
Affiliation(s)
- Katherine J P Schwenger
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada
| | - Colin M Bolzon
- Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada
| | - Carrie Li
- Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, 585 University Avenue, 9-973, Toronto, ON, M5G 2C4, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
23
|
Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018; 68:280-295. [PMID: 29154964 DOI: 10.1016/j.jhep.2017.11.014] [Citation(s) in RCA: 568] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
The pathogenesis of non-alcoholic fatty liver disease, particularly the mechanisms whereby a minority of patients develop a more severe phenotype characterised by hepatocellular damage, inflammation, and fibrosis is still incompletely understood. Herein, we discuss two pivotal aspects of the pathogenesis of NASH. We first analyse the initial mechanisms responsible for hepatocellular damage and inflammation, which derive from the toxic effects of excess lipids. Accumulating data indicate that the total amount of triglycerides stored in hepatocytes is not the major determinant of lipotoxicity, and that specific lipid classes act as damaging agents on liver cells. In particular, the role of free fatty acids such as palmitic acid, cholesterol, lysophosphatidylcholine and ceramides has recently emerged. These lipotoxic agents affect the cell behaviour via multiple mechanisms, including activation of signalling cascades and death receptors, endoplasmic reticulum stress, modification of mitochondrial function, and oxidative stress. In the second part of this review, the cellular and molecular players involved in the cross-talk between the gut and the liver are considered. These include modifications to the microbiota, which provide signals through the intestine and bacterial products, as well as hormones produced in the bowel that affect metabolism at different levels including the liver. Finally, the activation of nuclear receptors by bile acids is analysed.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica and Centro di Ricerca Denothe, Università di Firenze, Italy.
| | - Gianluca Svegliati-Baroni
- Dipartimento Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy; Centro Interdipartimentale Obesità, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease and leading cause of cirrhosis in the United States and developed countries. NAFLD is closely associated with obesity, insulin resistance and metabolic syndrome, significantly contributing to the exacerbation of the latter. Although NAFLD represents the hepatic component of metabolic syndrome, it can also be found in patients prior to their presentation with other manifestations of the syndrome. The pathogenesis of NAFLD is complex and closely intertwined with insulin resistance and obesity. Several mechanisms are undoubtedly involved in its pathogenesis and progression. In this review, we bring together the current understanding of the pathogenesis that makes NAFLD a systemic disease.
Collapse
Affiliation(s)
- Isabella Reccia
- Department of Surgery and Cancer Faculty of Medicine, Hammersmith Hospital, Imperial College London, UK.
| | - Jayant Kumar
- Department of Surgery and Cancer Faculty of Medicine, Hammersmith Hospital, Imperial College London, UK.
| | - Cherif Akladios
- Department of Surgery and Cancer Faculty of Medicine, Hammersmith Hospital, Imperial College London, UK.
| | - Francesco Virdis
- Department of Surgery and Cancer Faculty of Medicine, Hammersmith Hospital, Imperial College London, UK.
| | - Madhava Pai
- Department of Surgery and Cancer Faculty of Medicine, Hammersmith Hospital, Imperial College London, UK.
| | - Nagy Habib
- Department of Surgery and Cancer Faculty of Medicine, Hammersmith Hospital, Imperial College London, UK.
| | - Duncan Spalding
- Department of Surgery and Cancer Faculty of Medicine, Hammersmith Hospital, Imperial College London, UK.
| |
Collapse
|
25
|
Tagliari E, Campos AC, Costa-Casagrande TA, Salvalaggio PR. THE IMPACT OF THE USE OF SYMBIOTICS IN THE PROGRESSION OF NONALCOHOLIC FATTY LIVER DISEASE IN A RAT MODEL. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2017; 30:211-215. [PMID: 29019564 PMCID: PMC5630216 DOI: 10.1590/0102-6720201700030011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by accumulation of intrahepatic lipid. The use of live microorganisms promotes beneficial effects; however, the use of symbiotic and its role in NAFLD is not yet fully understood. AIM Verify if the symbiotic administration influences the occurrence and progression of NAFLD in rats, after induction of hepatic steatosis by high calorie diet. METHOD Forty-five rats were divided into four groups: G1 (control); G2 (control+symbiotic); G3 (high calorie+symbiotic) and G4 (high calorie), and euthanized after 60 days of diet. Liver disease was evaluated by biochemical analysis, IL6 measurement and histological assessment. RESULTS Symbiotic had influence neither on weight gain, nor on coefficient dietary intake in G3 and G4. G2 had the greatest weight gain, while G1 had the highest coefficient dietary intake between groups. G1 showed higher expression of aspartate aminotransferase than those from G2 (150±35 mg/dl, and 75±5 mg/dl) while G4 showed higher expression of the enzyme compared to G3 (141±9.7 mg/dl to 78±4 mg/dl). Liver histology showed different stages of NAFLD between groups. G4 animals showed increased serum interleukin-6 when compared to G3 (240.58±53.68 mg/dl and 104.0±15.31 mg/dl). CONCLUSION Symbiotic can reduce hepatic aminotransferases and interleukin-6 expression. However, the histology showed that the symbiotic was not able to prevent the severity of NAFLD in rats.
Collapse
Affiliation(s)
- Eliane Tagliari
- Department of Industrial Biotechnology Graduate, Positivo University, Curitiba, PR
| | | | | | | |
Collapse
|
26
|
Janssen AWF, Houben T, Katiraei S, Dijk W, Boutens L, van der Bolt N, Wang Z, Brown JM, Hazen SL, Mandard S, Shiri-Sverdlov R, Kuipers F, Willems van Dijk K, Vervoort J, Stienstra R, Hooiveld GJEJ, Kersten S. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids. J Lipid Res 2017; 58:1399-1416. [PMID: 28533304 DOI: 10.1194/jlr.m075713] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, yet the pathogenesis of NAFLD is only partially understood. Here, we investigated the role of the gut bacteria in NAFLD by stimulating the gut bacteria via feeding mice the fermentable dietary fiber, guar gum (GG), and suppressing the gut bacteria via chronic oral administration of antibiotics. GG feeding profoundly altered the gut microbiota composition, in parallel with reduced diet-induced obesity and improved glucose tolerance. Strikingly, despite reducing adipose tissue mass and inflammation, GG enhanced hepatic inflammation and fibrosis, concurrent with markedly elevated plasma and hepatic bile acid levels. Consistent with a role of elevated bile acids in the liver phenotype, treatment of mice with taurocholic acid stimulated hepatic inflammation and fibrosis. In contrast to GG, chronic oral administration of antibiotics effectively suppressed the gut bacteria, decreased portal secondary bile acid levels, and attenuated hepatic inflammation and fibrosis. Neither GG nor antibiotics influenced plasma lipopolysaccharide levels. In conclusion, our data indicate a causal link between changes in gut microbiota and hepatic inflammation and fibrosis in a mouse model of NAFLD, possibly via alterations in bile acids.
Collapse
Affiliation(s)
- Aafke W F Janssen
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Saeed Katiraei
- Departments of Human Genetics Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Wieneke Dijk
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Lily Boutens
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands; Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nieke van der Bolt
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Stéphane Mandard
- Lipness Team-INSERM Research Center UMR1231 and LabEx LipSTIC, Faculté de Médecine, Université de Bourgogne-Franche Comté, 21079 Dijon CEDEX, France
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Folkert Kuipers
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics and Laboratory Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ko Willems van Dijk
- Departments of Human Genetics Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Departments of Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands; Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition Wageningen University, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
27
|
Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, Gaudin F, Noordine ML, Robert V, Berrebi D, Thomas M, Naveau S, Perlemuter G, Cassard AM. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017; 66:806-815. [PMID: 27890791 DOI: 10.1016/j.jhep.2016.11.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. METHODS Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. RESULTS Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. CONCLUSIONS Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. LAY SUMMARY Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation.
Collapse
Affiliation(s)
- Gladys Ferrere
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Laura Wrzosek
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédéric Cailleux
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Williams Turpin
- Division of Gastroenterology, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Medicine, University of Toronto, ON M5S 1A8, Canada
| | - Virginie Puchois
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Madeleine Spatz
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dragos Ciocan
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dominique Rainteau
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France; Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Lydie Humbert
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France
| | - Cindy Hugot
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Françoise Gaudin
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | - Dominique Berrebi
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; AP-HP, Anatomie et de Cytologie Pathologiques, Hôpital Robert Debré, Paris, France
| | - Muriel Thomas
- INRA, UMR 1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Sylvie Naveau
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Gabriel Perlemuter
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Anne-Marie Cassard
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
28
|
Busch CJL, Hendrikx T, Weismann D, Jäckel S, Walenbergh SMA, Rendeiro AF, Weißer J, Puhm F, Hladik A, Göderle L, Papac-Milicevic N, Haas G, Millischer V, Subramaniam S, Knapp S, Bennett KL, Bock C, Reinhardt C, Shiri-Sverdlov R, Binder CJ. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology 2017; 65:1181-1195. [PMID: 27981604 PMCID: PMC5892702 DOI: 10.1002/hep.28970] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/31/2016] [Accepted: 11/26/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Diet-related health issues such as nonalcoholic fatty liver disease and cardiovascular disorders are known to have a major inflammatory component. However, the exact pathways linking diet-induced changes (e.g., hyperlipidemia) and the ensuing inflammation have remained elusive so far. We identified biological processes related to innate immunity and oxidative stress as prime response pathways in livers of low-density lipoprotein receptor-deficient mice on a Western-type diet using RNA sequencing and in silico functional analyses of transcriptome data. The observed changes were independent of the presence of microbiota and thus indicative of a role for sterile triggers. We further show that malondialdehyde (MDA) epitopes, products of lipid peroxidation and markers for enhanced oxidative stress, are detectable in hepatic inflammation predominantly on dying cells and stimulate cytokine secretion as well as leukocyte recruitment in vitro and in vivo. MDA-induced cytokine secretion in vitro was dependent on the presence of the scavenger receptors CD36 and MSR1. Moreover, in vivo neutralization of endogenously generated MDA epitopes by intravenous injection of a specific MDA antibody results in decreased hepatic inflammation in low-density lipoprotein receptor-deficient mice on a Western-type diet. CONCLUSION Accumulation of MDA epitopes plays a major role during diet-induced hepatic inflammation and can be ameliorated by administration of an anti-MDA antibody. (Hepatology 2017;65:1181-1195).
Collapse
Affiliation(s)
- Clara Jana-Lui Busch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - David Weismann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sven Jäckel
- Center for Thrombosis and Haemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Mainz, Germany
| | - Sofie M. A. Walenbergh
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Juliane Weißer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Puhm
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Laboratory of Infection Biology, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Laura Göderle
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gerald Haas
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vincent Millischer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Saravanan Subramaniam
- Center for Thrombosis and Haemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Laboratory of Infection Biology, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Haemostasis (CTH), University Medical Center Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Mainz, Germany
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
29
|
Zhang M, Yang XJ. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J Gastroenterol 2016; 22:8905-8909. [PMID: 27833381 PMCID: PMC5083795 DOI: 10.3748/wjg.v22.i40.8905] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Along with the rapid development of society, lifestyles and diets have gradually changed. Due to overwhelming material abundance, high fat, high sugar and high protein diets are common. Numerous studies have determined that diet and its impact on gut microbiota are closely related to obesity and metabolic diseases. Different dietary components affect gut microbiota, thus impacting gastrointestinal disease occurrence and development. A large number of related studies are progressing rapidly. Gut microbiota may be an important intermediate link, causing gastrointestinal diseases under the influence of changes in diet and genetic predisposition. To promote healthy gut microbiota and to prevent and cure gastrointestinal diseases, diets should be improved and supplemented with probiotics.
Collapse
|
30
|
Qu BG. Inflammatory and immune changes and treatment in patients with fatty liver disease. Shijie Huaren Xiaohua Zazhi 2016; 24:2931-2942. [DOI: 10.11569/wcjd.v24.i19.2931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty liver disease (FLD) is a common chronic inflammatory and immune disease. Current research suggests that it is associated with a variety of clinical metabolic diseases, however, its etiology is very complex, and its exact mechanism is not fully clear. Enormous studies have found that inflammation and immunity play roles in the pathogenesis of FLD, via mechanisms involving inflammatory mediators or inflammatory factors, neutrophil infiltration, inflammasomes, peroxisome proliferator-activated receptors (PPARs), gut microbes-related inflammation, immune cells, Toll-like receptors (TLRs) and its downstream signal transduction pathways, gut microbe-related immune response, immunocytes, oxidative stress, other new markers of immune response and so on. In order to provide a reliable basis for accurate diagnosis and treatment of FLD, studies on the prevention, early diagnosis and prospective intervention of FLD should be strengthened. In addition, according to different pathogenesis, corresponding measures should be taken to reduce the risk of FLD and its related diseases.
Collapse
|
31
|
Betrapally NS, Gillevet PM, Bajaj JS. Changes in the Intestinal Microbiome and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects? Gastroenterology 2016; 150:1745-1755.e3. [PMID: 26948887 PMCID: PMC5026236 DOI: 10.1053/j.gastro.2016.02.073] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of fatty liver diseases is increasing rapidly worldwide; after treatment of hepatitis C virus infection becomes more widespread, fatty liver diseases are likely to become the most prevalent liver disorders. Although fatty liver diseases are associated with alcohol, obesity, and the metabolic syndrome, their mechanisms of pathogenesis are not clear. The development and progression of fatty liver, alcoholic, and nonalcoholic liver disease (NAFLD) all appear to be influenced by the composition of the microbiota. The intestinal microbiota have been shown to affect precirrhotic and cirrhotic stages of liver diseases, which could lead to new strategies for their diagnosis, treatment, and study. We review differences and similarities in the cirrhotic and precirrhotic stages of NAFLD and alcoholic liver disease. Differences have been observed in these stages of alcohol-associated disease in patients who continue to drink compared with those who stop, with respect to the composition and function of the intestinal microbiota and intestinal integrity. NAFLD and the intestinal microbiota also differ between patients with and without diabetes. We also discuss the potential of microbial therapy for patients with NAFLD and ALD.
Collapse
Affiliation(s)
- Naga S Betrapally
- Microbiome Analysis Center, George Mason University, Manassas, Virginia
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia.
| |
Collapse
|
32
|
Abstract
MicroRNAs (miRNAs) are highly conserved, small, 18-25 nucleotide, non-coding RNAs that regulate gene expression at the post-transcriptional level. Each miRNA can regulate hundreds of target genes, and vice versa each target gene can be regulated by numerous miRNAs, suggesting a very complex network and explaining how miRNAs play pivotal roles in fine-tuning essentially all biological processes in all cell types in the liver. Here, we summarize the current knowledge on the role of miRNAs in the pathogenesis and diagnosis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) with an outlook to the broader aspects of metabolic syndrome. Furthermore, we discuss the role of miRNAs as potential biomarkers and therapeutic targets in NAFLD/NASH.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB215, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, LRB215, 364 Plantation Street, Worcester, MA, 01605, USA
- Brookdale University Hospital and Medical Center, 1 Brookdale Plaza, Brooklyn, NY, 11212, USA
| |
Collapse
|
33
|
Pevsner-Fischer M, Tuganbaev T, Meijer M, Zhang SH, Zeng ZR, Chen MH, Elinav E. Role of the microbiome in non-gastrointestinal cancers. World J Clin Oncol 2016; 7:200-213. [PMID: 27081642 PMCID: PMC4826965 DOI: 10.5306/wjco.v7.i2.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/15/2015] [Accepted: 02/24/2016] [Indexed: 02/06/2023] Open
Abstract
“The forgotten organ”, the human microbiome, comprises a community of microorganisms that colonizes various sites of the human body. Through coevolution of bacteria, archaea and fungi with the human host over thousands of years, a complex host-microbiome relationship emerged in which many functions, including metabolism and immune responses, became codependent. This coupling becomes evident when disruption in the microbiome composition, termed dysbiosis, is mirrored by the development of pathologies in the host. Among the most serious consequences of dysbiosis, is the development of cancer. As many as 20% of total cancers worldwide are caused by a microbial agent. To date, a vast majority of microbiome-cancer studies focus solely on the microbiome of the large intestine and the development of gastrointestinal cancers. Here, we will review the available evidence implicating microbiome involvement in the development and progression of non-gastrointestinal cancers, while distinguishing between viral and bacterial drivers of cancer, as well as “local” and “systemic”, “cancer-stimulating” and “cancer-suppressing” effects of the microbiome. Developing a system-wide approach to cancer-microbiome studies will be crucial in understanding how microbiome influences carcinogenesis, and may enable to employ microbiome-targeting approaches as part of cancer treatment.
Collapse
|
34
|
Bigorgne AE, John B, Ebrahimkhani MR, Shimizu-Albergine M, Campbell JS, Crispe IN. TLR4-Dependent Secretion by Hepatic Stellate Cells of the Neutrophil-Chemoattractant CXCL1 Mediates Liver Response to Gut Microbiota. PLoS One 2016; 11:e0151063. [PMID: 27002851 PMCID: PMC4803332 DOI: 10.1371/journal.pone.0151063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota. Methods Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation. Results TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1. Conclusions Showing the specific activation of TLR4 and the secretion of one major functional chemokine—CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state.
Collapse
Affiliation(s)
- Amélie E. Bigorgne
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- * E-mail:
| | - Beena John
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Mohammad R. Ebrahimkhani
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Masami Shimizu-Albergine
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Jean S. Campbell
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Ian N. Crispe
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| |
Collapse
|
35
|
Arasaradnam RP, McFarlane M, Ling K, Wurie S, O'Connell N, Nwokolo CU, Bardhan KD, Skinner J, Savage RS, Covington JA. Breathomics--exhaled volatile organic compound analysis to detect hepatic encephalopathy: a pilot study. J Breath Res 2016; 10:016012. [PMID: 26866470 DOI: 10.1088/1752-7155/10/1/016012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current diagnostic challenge with diagnosing hepatic encephalopathy (HE) is identifying those with minimal HE as opposed to the more clinically apparent covert/overt HE. Rifaximin, is an effective therapy but earlier identification and treatment of HE could prevent liver disease progression and hospitalization. Our pilot study aimed to analyse breath samples of patients with different HE grades, and controls, using a portable electronic (e) nose. 42 patients were enrolled; 22 with HE and 20 controls. Bedside breath samples were captured and analysed using an uvFAIMS machine (portable e-nose). West Haven criteria applied and MELD scores calculated. We classify HE patients from controls with a sensitivity and specificity of 0.88 (0.73-0.95) and 0.68 (0.51-0.81) respectively, AUROC 0.84 (0.75-0.93). Minimal HE was distinguishable from covert/overt HE with sensitivity of 0.79 and specificity of 0.5, AUROC 0.71 (0.57-0.84). This pilot study has highlighted the potential of breathomics to identify VOCs signatures in HE patients for diagnostic purposes. Importantly this was performed utilizing a non-invasive, portable bedside device and holds potential for future early HE diagnosis.
Collapse
Affiliation(s)
- R P Arasaradnam
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK. Clinical Sciences Research Institute, University of Warwick, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Portela-Cidade JP, Borges-Canha M, Leite-Moreira AF, Pimentel-Nunes P. Systematic Review of the Relation Between Intestinal Microbiota and Toll-Like Receptors in the Metabolic Syndrome: What Do We Know So Far? GE-PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2015; 22:240-258. [PMID: 28868416 PMCID: PMC5580162 DOI: 10.1016/j.jpge.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/17/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Metabolic syndrome is an emerging problem in developed countries and presents itself as a potential threat worldwide. The role of diabetes, dyslipidaemia and hepatic steatosis as pivotal components of the metabolic syndrome is well known. However, their common persistent chronic inflammation and its potential cause still elude. This systematic review aims to present evidence of the mechanisms that link the intestinal microbioma, innate immunity and metabolic syndrome. METHODS A comprehensive research was made using PubMed database and 35 articles were selected. RESULTS We found that metabolic syndrome is associated to increased levels of innate immunity receptors, namely, Toll-like receptors, both in intestine and systemically and its polymorphisms may change the risk of metabolic syndrome development. Microbioma dysbiosis is also present in metabolic syndrome, with lower prevalence of Bacteroidetes and increased prevalence of Firmicutes populations. The data suggest that the link between intestinal microbiota and Toll-like receptors can negatively endanger the metabolic homeostasis. CONCLUSION Current evidence suggests that innate immunity and intestinal microbiota may be the hidden link in the metabolic syndrome development mechanisms. In the near future, this can be the key in the development of new prophylactic and therapeutic strategies to treat metabolic syndrome patients.
Collapse
Affiliation(s)
- José Pedro Portela-Cidade
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Borges-Canha
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Ferreira Leite-Moreira
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Pimentel-Nunes
- Physiology and Cardiothoracic Surgery Department, Cardiovascular Research & Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Gastroenterology Department, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal.,CINTESIS/Biostatistics and Medical Informatics Department, Porto Faculty of Medicine, Porto, Portugal
| |
Collapse
|
37
|
Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015; 161:84-92. [PMID: 25815987 DOI: 10.1016/j.cell.2015.03.015] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 12/31/2022]
Abstract
The circadian clock, a highly specialized, hierarchical network of biological pacemakers, directs and maintains proper rhythms in endocrine and metabolic pathways required for organism homeostasis. The clock adapts to environmental changes, specifically daily light-dark cycles, as well as rhythmic food intake. Nutritional challenges reprogram the clock, while time-specific food intake has been shown to have profound consequences on physiology. Importantly, a critical role in the clock-nutrition interplay appears to be played by the microbiota. The circadian clock appears to operate as a critical interface between nutrition and homeostasis, calling for more attention on the beneficial effects of chrono-nutrition.
Collapse
Affiliation(s)
- Gad Asher
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Inflammasomes and the microbiota--partners in the preservation of mucosal homeostasis. Semin Immunopathol 2014; 37:39-46. [PMID: 25315349 DOI: 10.1007/s00281-014-0451-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
Inflammasomes are multiprotein complexes that serve as signaling platforms initiating innate immune responses. These structures are assembled upon a large array of stimuli, sensing both microbial products and endogenous signals indicating loss of cellular homeostasis. As such, inflammasomes are regarded as sensors of cellular integrity and tissue health, which, upon disruption of homeostasis, provoke an inflammatory response by the release of potent cytokines. Recent evidence suggests that in addition to sensing cellular integrity, inflammasomes are involved in the homeostatic mutualism between the host and its indigenous microbiota. Here, we summarize the involvement of various inflammasomes in host-microbiota interactions and focus on the role of commensal as well as pathogenic bacteria in inflammasome signaling.
Collapse
|
39
|
Brockman DA, Chen X, Gallaher DD. High-viscosity dietary fibers reduce adiposity and decrease hepatic steatosis in rats fed a high-fat diet. J Nutr 2014; 144:1415-22. [PMID: 24991042 DOI: 10.3945/jn.114.191577] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viscous dietary fiber consumption lowers the postprandial glucose curve and may decrease obesity and associated comorbidities such as insulin resistance and fatty liver. We determined the effect of 2 viscous fibers, one fermentable and one not, on the development of adiposity, fatty liver, and metabolic flexibility in a model of diet-induced obesity. Rats were fed a normal-fat (NF) diet (26% energy from fat), a high-fat diet (60% energy from fat), each containing 5% fiber as cellulose (CL; nonviscous and nonfermentable), or 5% of 1 of 2 highly viscous fibers-hydroxypropyl methylcellulose (HPMC; nonfermentable) or guar gum (GG; fermentable). After 10 wk, fat mass percentage in the NF (18.0%; P = 0.03) and GG groups (17.0%; P < 0.01) was lower than the CL group (20.7%). The epididymal fat pad weight of the NF (3.9 g; P = 0.04), HPMC (3.9 g; P = 0.03), and GG groups (3.6 g; P < 0.01) was also lower than the CL group (5.0 g). The HPMC (0.11 g/g liver) and GG (0.092 g/g liver) groups had lower liver lipid concentrations compared with the CL group (0.14 g/g liver). Fat mass percentage, epididymal fat pad weight, and liver lipid concentration were not different among the NF, HPMC, and GG groups. The respiratory quotient was higher during the transition from the diet-deprived to fed state in the GG group (P = 0.002) and tended to be higher in the HPMC group (P = 0.06) compared with the CL group, suggesting a quicker shift from fatty acid (FA) to carbohydrate oxidation. The HPMC group [15.1 nmol/(mg ⋅ h)] had higher ex vivo palmitate oxidation in muscle compared with the GG [11.7 nmol/(mg ⋅ h); P = 0.04] and CL groups [10.8 nmol/(mg ⋅ h); P < 0.01], implying a higher capacity to oxidize FAs. Viscous fibers can reduce the adiposity and hepatic steatosis that accompany a high-fat diet, and increase metabolic flexibility, regardless of fermentability.
Collapse
Affiliation(s)
- David A Brockman
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
40
|
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156:1045-59. [PMID: 24581500 PMCID: PMC4017640 DOI: 10.1016/j.cell.2014.01.026] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/12/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023]
Abstract
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:
Collapse
|
41
|
Gut microbiota and bile acids: an old story revisited (again). Clin Res Hepatol Gastroenterol 2014; 38:129-31. [PMID: 23916556 DOI: 10.1016/j.clinre.2013.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 02/04/2023]
|
42
|
Tsuneyama K, Baba H, Kikuchi K, Nishida T, Nomoto K, Hayashi S, Miwa S, Nakajima T, Nakanishi Y, Masuda S, Terada M, Imura J, Selmi C. Autoimmune features in metabolic liver disease: a single-center experience and review of the literature. Clin Rev Allergy Immunol 2014; 45:143-8. [PMID: 23842720 DOI: 10.1007/s12016-013-8383-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive phenotype of non-alcoholic fatty liver disease associated with the metabolic syndrome. The existence of autoimmune features in NASH has been reported, but its significance remains unclear. We herein report the autoantibody profile of 54 patients with histologically proven NASH and further determined the development of autoimmunity in three different murine NASH models (monosodium glutamate, CDAA (choline-deficient L-amino acid-defined), and TSOD (Tsumura Suzuki, Obese Diabetes)) at 48 weeks of age. Forty-eight percent (26/54) of NASH cases were positive for antinuclear (ANA) or antimitochondrial antibody and manifested histological signs of overlap with autoimmune hepatitis and primary biliary cirrhosis, respectively. These patients were significantly older (60 ± 10 versus 50 ± 16 years), more frequently women (81 % versus 43 %), and with more severe portal inflammatory infiltrate compared with patients without autoimmunity. In one third of mice, regardless of the model, we observed a marked lymphoid infiltrate with non-suppurative cholangitis, and several cases were ANA-positive, but none AMA-positive. Our data suggest that autoimmunity may share some pathogenetic traits with the chronic inflammation of NASH, possibly related to advanced age.
Collapse
Affiliation(s)
- Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Finelli C, Tarantino G. Non-alcoholic fatty liver disease, diet and gut microbiota. EXCLI JOURNAL 2014; 13:461-90. [PMID: 26417275 PMCID: PMC4464355 DOI: pmid/26417275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a severe liver disease that is increasing in prevalence with the worldwide epidemic of obesity and its related insulin-resistance state. Evidence for the role of the gut microbiota in energy storage and the subsequent development of obesity and some of its related diseases is now well established. More recently, a new role of gut microbiota has emerged in NAFLD. The gut microbiota is involved in gut permeability, low-grade inflammation and immune balance, it modulates dietary choline metabolism, regulates bile acid metabolism and produces endogenous ethanol. All of these factors are molecular mechanisms by which the microbiota can induce NAFLD or its progression toward overt non-alcoholic steatohepatitis. Modification of the gut microbiota composition and/or its biochemical capacity by specific dietary or pharmacological interventions may advantageously affect host metabolism. Large-scale intervention trials, investigating the potential benefit of prebiotics and probiotics in improving cardiometabolic health in high-risk populations, are fervently awaited.
Collapse
Affiliation(s)
- Carmine Finelli
- Center of Obesity and Eating Disorders, Stella Maris Mediterraneum Foundation, Potenza, Italy
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Italy
- National Cancer Institute "Foundation G. Pascale" -IRCS- 83013 Mercogliano (Av), Italy
- *To whom correspondence should be addressed: Giovanni Tarantino, Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Via Sergio Pansini, 5, 80131 Naples, Italy, E-mail:
| |
Collapse
|
44
|
Abstract
Innate immune response pathways and metabolic pathways are evolutionarily conserved throughout species and are fundamental to survival. As such, the regulation of whole-body and cellular metabolism is intimately integrated with immune responses. However, the introduction of new variables to this delicate evolutionarily conserved physiological interaction can lead to deleterious consequences for organisms as a result of inappropriate immune responses. In recent decades, the prevalence and incidence of metabolic diseases associated with obesity have dramatically increased worldwide. As a recently acquired human characteristic, obesity has exposed the critical role of innate immune pathways in multiple metabolic pathophysiological processes. Here, we review recent evidence that highlights inflammasomes as critical sensors of metabolic perturbations in multiple tissues and their role in the progression of highly prevalent metabolic diseases.
Collapse
Affiliation(s)
- Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520;
| | | | | | | |
Collapse
|
45
|
Rajpal DK, Brown JR. The Microbiome as a Therapeutic Target for Metabolic Diseases. Drug Dev Res 2013. [DOI: 10.1002/ddr.21088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepak K. Rajpal
- Computational Biology; GlaxoSmithKline; Research Triangle Park; NC; 27709; USA
| | - James R. Brown
- Computational Biology; GlaxoSmithKline; Collegeville; PA; 19426-0989; USA
| |
Collapse
|