1
|
Van Zandt M, Flanagan D, Pittenger C. Sex differences in the distribution and density of regulatory interneurons in the striatum. Front Cell Neurosci 2024; 18:1415015. [PMID: 39045533 PMCID: PMC11264243 DOI: 10.3389/fncel.2024.1415015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Dysfunction of the cortico-basal circuitry - including its primary input nucleus, the striatum - contributes to neuropsychiatric disorders, such as autism and Tourette Syndrome (TS). These conditions show marked sex differences, occurring more often in males than in females. Regulatory interneurons, such as cholinergic interneurons (CINs) and parvalbumin-expressing GABAergic fast spiking interneurons (FSIs), are implicated in human neuropsychiatric disorders such as TS, and ablation of these interneurons produces relevant behavioral pathology in male mice, but not in females. Here we investigate sex differences in the density and distribution of striatal interneurons. Methods We use stereological quantification of CINs, FSIs, and somatostatin-expressing (SOM) GABAergic interneurons in the dorsal striatum (caudate-putamen) and the ventral striatum (nucleus accumbens) in male and female mice. Results Males have a higher density of CINs than females, especially in the dorsal striatum; females have equal distribution between dorsal and ventral striatum. FSIs showed similar distributions, with a greater dorsal-ventral density gradient in males than in females. SOM interneurons were denser in the ventral than in the dorsal striatum, with no sex differences. Discussion These sex differences in the density and distribution of FSIs and CINs may contribute to sex differences in basal ganglia function, particularly in the context of psychopathology.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Deirdre Flanagan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale School of Arts and Sciences, New Haven, CT, United States
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
- Wu-Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
2
|
Van Zandt M, Flanagan D, Pittenger C. Sex differences in the distribution and density of regulatory interneurons in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582798. [PMID: 38464268 PMCID: PMC10925328 DOI: 10.1101/2024.02.29.582798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dysfunction of the cortico-basal circuitry - including its primary input nucleus, the striatum - contributes to neuropsychiatric disorders, including autism and Tourette Syndrome (TS). These conditions show marked sex differences, occurring more often in males than in females. Regulatory interneurons, including cholinergic interneurons (CINs) and parvalbumin-expressing GABAergic fast spiking interneurons (FSIs), are implicated in human neuropsychiatric disorders such as TS, and ablation of these interneurons produces relevant behavioral pathology in male mice, but not in females. Here we investigate sex differences in the density and distribution of striatal interneurons, using stereological quantification of CINs, FSIs, and somatostatin-expressing (SOM) GABAergic interneurons in the dorsal striatum (caudate-putamen) and the ventral striatum (nucleus accumbens) in male and female mice. Males have a higher density of CINs than females, especially in the dorsal striatum; females have equal distribution between dorsal and ventral striatum. FSIs showed similar effects, with a greater dorsal-ventral density gradient in males than in females. SOM interneurons were denser in the ventral than in the dorsal striatum, with no sex differences. These sex differences in the density and distribution of FSIs and CINs may contribute to sex differences in basal ganglia function, including in the context of psychopathology.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Deirdre Flanagan
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Christopher Pittenger
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale School of Arts and Sciences, New Haven, USA
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, USA
- Wu-Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Desai I, Kumar N, Goyal V. An Update on the Diagnosis and Management of Tic Disorders. Ann Indian Acad Neurol 2023; 26:858-870. [PMID: 38229610 PMCID: PMC10789408 DOI: 10.4103/aian.aian_724_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 01/18/2024] Open
Abstract
Tic disorders (TDs) are a group of common neuropsychiatric disorders of childhood and adolescence. TDs may impact the physical, emotional, and social well-being of the affected person. In this review, we present an update on the clinical manifestations, pathophysiology, diagnosis, and treatment of TDs. We searched the PubMed database for articles on tics and Tourette syndrome. More than 400 articles were reviewed, of which 141 are included in this review. TDs are more prevalent in children than in adults and in males than in females. It may result from a complex interaction between various genetic, environmental, and immunological factors. Dysregulation in the cortico-striato-pallido-thalamo-cortical network is the most plausible pathophysiology resulting in tics. TD is a clinical diagnosis based on clinical features and findings on neurological examination, especially the identification of tic phenomenology. In addition to tics, TD patients may have sensory features, including premonitory urge; enhanced and persistent sensitivity to non-noxious external or internal stimuli; and behavioral manifestations, including attention deficit hyperactivity disorders, obsessive-compulsive disorders, and autism spectrum disorders. Clinical findings of hyperkinetic movements that usually mimic tics have been compared and contrasted with those of TD. Patients with TD may not require specific treatment if tics are not distressing. Psychoeducation and supportive therapy can help reduce tics when combined with medication. Dispelling myths and promoting acceptance are important to improve patient outcomes. Using European, Canadian, and American guidelines, the treatment of TD, including behavioral therapy, medical therapy, and emerging/experimental therapy, has been discussed.
Collapse
Affiliation(s)
- Ishita Desai
- Department of Neurology, Teerthankar Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Niraj Kumar
- Department of Neurology, All India Institute of Medical Sciences, Bibinagar, Telangana, India
| | - Vinay Goyal
- Department of Neurology, Institute of Neurosciences, Medanta, Gurugram, Haryana, India
| |
Collapse
|
4
|
Ricketts EJ, Woods DW, Espil FM, McGuire JF, Stiede JT, Schild J, Yadegar M, Bennett SM, Specht MW, Chang S, Scahill L, Wilhelm S, Peterson AL, Walkup JT, Piacentini J. Childhood Predictors of Long-Term Tic Severity and Tic Impairment in Tourette's Disorder. Behav Ther 2022; 53:1250-1264. [PMID: 36229120 PMCID: PMC9872160 DOI: 10.1016/j.beth.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 01/26/2023]
Abstract
Tics peak in late childhood and decline during adolescence. Yet, for some with Tourette's disorder, tics persist into adulthood. We evaluated childhood predictors of adult tic severity and tic impairment, and change over time. Eighty adolescents/adults were evaluated 11 years following a randomized-controlled trial of behavior therapy. An independent evaluator rated tic severity and tic impairment at baseline, posttreatment, and long-term follow-up. At baseline, parents completed demographics/medical history, and youth tic, internalizing, and externalizing symptom ratings. Youth rated premonitory urge severity and family functioning. After controlling for prior tic treatment effects, female sex and higher tic severity predicted higher tic severity in adulthood; and female sex, no stimulant medication use, higher tic severity, and poorer family functioning predicted higher tic impairment. Higher tic severity and premonitory urge severity predicted smaller reductions in tic severity, whereas higher externalizing symptoms predicted greater reduction in tic severity. Female sex predicted smaller reduction in tic impairment, and externalizing symptoms predicted greater reduction in tic impairment. Female sex and childhood tic severity are important predictors of tic severity and tic impairment in adulthood. Family functioning, premonitory urge severity, and tic severity are important modifiable targets for early or targeted intervention to improve long-term outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - John T Walkup
- Ann and Robert H. Lurie Children's Hospital of Chicago; Northwestern University Feinberg School of Medicine
| | | |
Collapse
|
5
|
Yang Z, Wu H, Lee PH, Tsetsos F, Davis LK, Yu D, Lee SH, Dalsgaard S, Haavik J, Barta C, Zayats T, Eapen V, Wray NR, Devlin B, Daly M, Neale B, Børglum AD, Crowley JJ, Scharf J, Mathews CA, Faraone SV, Franke B, Mattheisen M, Smoller JW, Paschou P. Investigating Shared Genetic Basis Across Tourette Syndrome and Comorbid Neurodevelopmental Disorders Along the Impulsivity-Compulsivity Spectrum. Biol Psychiatry 2021; 90:317-327. [PMID: 33714545 PMCID: PMC9152955 DOI: 10.1016/j.biopsych.2020.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tourette syndrome (TS) is often found comorbid with other neurodevelopmental disorders across the impulsivity-compulsivity spectrum, with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) as most prevalent. This points to the possibility of a common etiological thread along an impulsivity-compulsivity continuum. METHODS Investigating the shared genetic basis across TS, ADHD, ASD, and OCD, we undertook an evaluation of cross-disorder genetic architecture and systematic meta-analysis, integrating summary statistics from the latest genome-wide association studies (93,294 individuals, 6,788,510 markers). RESULTS As previously identified, a common unifying factor connects TS, ADHD, and ASD, while TS and OCD show the highest genetic correlation in pairwise testing among these disorders. Thanks to a more homogeneous set of disorders and a targeted approach that is guided by genetic correlations, we were able to identify multiple novel hits and regions that seem to play a pleiotropic role for the specific disorders analyzed here and could not be identified through previous studies. In the TS-ADHD-ASD genome-wide association study single nucleotide polymorphism-based and gene-based meta-analysis, we uncovered 13 genome-wide significant regions that host single nucleotide polymorphisms with a high posterior probability for association with all three studied disorders (m-value > 0.9), 11 of which were not identified in previous cross-disorder analysis. In contrast, we also identified two additional pleiotropic regions in the TS-OCD meta-analysis. Through conditional analysis, we highlighted genes and genetic regions that play a specific role in a TS-ADHD-ASD genetic factor versus TS-OCD. Cross-disorder tissue specificity analysis implicated the hypothalamus-pituitary-adrenal gland axis in TS-ADHD-ASD. CONCLUSIONS Our work underlines the value of redefining the framework for research across traditional diagnostic categories.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Hanrui Wu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Sang Hong Lee
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland; Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia
| | - Søren Dalsgaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; National Centre for Register-based Research, Aarhus University, Aarhus, Denmark; Department of Child and Adolescent Psychiatry, Hospital of Telemark, Kragerø, Norway
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Valsamma Eapen
- Academic Unit of Child Psychiatry South West Sydney, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland; Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mark Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts
| | - Benjamin Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts; Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Anders D Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark; Center for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeremiah Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Carol A Mathews
- Department of Psychiatry, University of Florida, Gainesville, Florida; Department of Genetics Institute, University of Florida, Gainesville, Florida
| | - Stephen V Faraone
- Departmentof Psychiatry, SUNY Upstate Medical University, Syracuse, New York; Departmentof Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Wuerzburg, Wuerzburg, Germany; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
6
|
Garris J, Quigg M. The female Tourette patient: Sex differences in Tourette Disorder. Neurosci Biobehav Rev 2021; 129:261-268. [PMID: 34364945 DOI: 10.1016/j.neubiorev.2021.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Tourette Disorder (TD) is a male predominant neurodevelopmental disorder characterized by tics and frequent psychiatric comorbidities. Girls with TD have later peak symptoms, less remission with age, and worse impairment from tics, particularly in adulthood. Female TD patients are less likely to have Attention Deficit Hyperactivity Disorder and more likely to have anxiety and mood disorders. Hyperandrogenism is associated with TD in both sexes, and neuroanatomic sexual dimorphism is reduced in adult TD patients. Some women report catamenial tics, which may relate to estrogen withdrawal or rises in allopregnanolone. Limited data suggest that several neuroanatomic alterations present in boys with TD are not present in girls with TD. Female sex predicts better response to haloperidol. Further research into female tic pathophysiology may influence sex-specific treatment development.
Collapse
Affiliation(s)
- Jordan Garris
- Department of Neurology, University of Virginia, Box 800394, Charlottesville, VA 22908-0394, United States; Department of Pediatrics, University of Virginia, United States.
| | - Mark Quigg
- Department of Neurology, University of Virginia, Box 800394, Charlottesville, VA 22908-0394, United States
| |
Collapse
|
7
|
Benítez-Burraco A, Progovac L. Language evolution: examining the link between cross-modality and aggression through the lens of disorders. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200188. [PMID: 33745319 PMCID: PMC8059641 DOI: 10.1098/rstb.2020.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
We demonstrate how two linguistic phenomena, figurative language (implicating cross-modality) and derogatory language (implicating aggression), both demand a precise degree of (dis)inhibition in the same cortico-subcortical brain circuits, in particular cortico-striatal networks, whose connectivity has been significantly enhanced in recent evolution. We examine four cognitive disorders/conditions that exhibit abnormal patterns of (dis)inhibition in these networks: schizophrenia (SZ), autism spectrum disorder (ASD), synaesthesia and Tourette's syndrome (TS), with the goal of understanding why the two phenomena altered reactive aggression and altered cross-modality cluster together in these disorders. Our proposal is that enhanced cross-modality (necessary to support language, in particular metaphoricity) was a result, partly a side-effect, of self-domestication (SD). SD targeted the taming of reactive aggression, but reactive impulses are controlled by the same cortico-subcortical networks that are implicated in cross-modality. We further add that this biological process of SD did not act alone, but was engaged in an intense feedback loop with the cultural emergence of early forms of language/grammar, whose high degree of raw metaphoricity and verbal aggression also contributed to increased brain connectivity and cortical control. Consequently, in conjunction with linguistic expressions serving as approximations/'fossils' of the earliest stages of language, these cognitive disorders/conditions serve as confident proxies of brain changes in language evolution, helping us reconstruct certain crucial aspects of early prehistoric languages and cognition, as well as shed new light on the nature of the disorders. This article is part of the theme issue 'Reconstructing prehistoric languages'.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ljiljana Progovac
- Linguistics Program, Department of English, Wayne State University, Detroit, MI, USA
| |
Collapse
|
8
|
Li P, Cheng J, Gu Q, Wang P, Lin Z, Fan Q, Chen J, Wang Z. Intermediation of perceived stress between early trauma and plasma M/P ratio levels in obsessive-compulsive disorder patients. J Affect Disord 2021; 285:105-111. [PMID: 33640860 DOI: 10.1016/j.jad.2021.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study is to find the correlation among BDNF metabolism, early trauma, and current stress status of OCD patients. As well as to study the BDNF metabolism-stress related pathological mechanism in OCD development. METHODS A total of 140 participants were recruited in this study, including 64 drug-naïve OCD patients (OCDs) and 76 healthy controls (HCs). The clinical data of the subjects were measured using YBOCS, CTQ, and PSS. The plasma mBDNF and proBDNF values were measured by ELISA while the M/P ratio was calculated. RESULTS The mBDNF, proBDNF plasma levels, and M/P ratio of unmedicated OCD individuals decreased evidently comparing with HCs. Also, positive associations were found between PSS and CTQ and between CTQ and M/P ratio. The negative correlation included proBDNF and PSS as well as proBDNF and CTQ. Intermediary analysis generated by SPSS has showed that the perceived stress played a complete mediating role between early trauma and plasma M/P ratio levels, and the mediating effect was 0.043 in non-medication OCD patients. CONCLUSIONS Findings from this study suggested that early trauma experience and stress state work together in regulating BDNF metabolism level in OCD patients. The nucleus accumbens and reward loop are also pivotal in the pathogenesis of OCD.
Collapse
Affiliation(s)
- Puyu Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayue Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiumeng Gu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguang Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Abstract
A number of studies reported the possible differences between men and women in movement disorders. Evidence shows that estrogens may have a neuroprotective effect and may modulate the neurodevelopment of the different brain structures. Movement disorders including Parkinson's disease, dementia with Lewy body, Huntington's disease, Tourette's syndrome, and dystonia among others display significant clinical differences between sexes, with structural differences in the dopaminergic pathways between men and women. Here we summarize the most relevant clinical aspects of some of the most common movement disorders, highlighting the differences in disease onset, clinical presentation, therapy, and outcomes. Increased recognition of these differences may help physicians better understand the pathophysiology of these conditions and provide a tailored therapeutic approach.
Collapse
Affiliation(s)
- Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States.
| | - Rodolfo Savica
- Department of Neurology and Health Science Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Prenatal Risk Factors for Tourette Syndrome: a Systematic Review Update. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2020. [DOI: 10.1007/s40474-020-00217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Pagliaroli L, Vereczkei A, Padmanabhuni SS, Tarnok Z, Farkas L, Nagy P, Rizzo R, Wolanczyk T, Szymanska U, Kapisyzi M, Basha E, Koumoula A, Androutsos C, Tsironi V, Karagiannidis I, Paschou P, Barta C. Association of Genetic Variation in the 3'UTR of LHX6, IMMP2L, and AADAC With Tourette Syndrome. Front Neurol 2020; 11:803. [PMID: 32922348 PMCID: PMC7457023 DOI: 10.3389/fneur.2020.00803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Tourette Syndrome (TS) is a neurodevelopmental disorder that presents with motor and vocal tics early in childhood. The aim of this study was to investigate genetic variants in the 3' untranslated region (3'UTR) of TS candidate genes with a putative link to microRNA (miRNA) mediated regulation or gene expression. Methods: We used an in silico approach to identify 32 variants in the 3'UTR of 18 candidate genes putatively changing the binding site for miRNAs. In a sample composed of TS cases and controls (n = 290), as well as TS family trios (n = 148), we performed transmission disequilibrium test (TDT) and meta-analysis. Results: We found positive association of rs3750486 in the LIM homeobox 6 (LHX6) gene (p = 0.021) and rs7795011 in the inner mitochondrial membrane peptidase subunit 2 (IMMP2L) gene (p = 0.029) with TS in our meta-analysis. The TDT showed an over-transmission of the A allele of rs1042201 in the arylacetamide deacetylase (AADAC) gene in TS patients (p = 0.029). Conclusion: This preliminary study provides further support for the involvement of LHX6, IMMP2L, and AADAC genes, as well as epigenetic mechanisms, such as altered miRNA mediated gene expression regulation in the etiology of TS.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Andrea Vereczkei
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Zsanett Tarnok
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Luca Farkas
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Peter Nagy
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Renata Rizzo
- Materno Infantile and Radiological Science Department, University of Catania, Catania, Italy
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Szymanska
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Mira Kapisyzi
- University Hospital Center "Mother Theresa," Tirana, Albania
| | - Entela Basha
- University Hospital Center "Mother Theresa," Tirana, Albania
| | - Anastasia Koumoula
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Christos Androutsos
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Vaia Tsironi
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Iordanis Karagiannidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Cesta CE, Öberg AS, Ibrahimson A, Yusuf I, Larsson H, Almqvist C, D'Onofrio BM, Bulik CM, Fernández de la Cruz L, Mataix-Cols D, Landén M, Rosenqvist MA. Maternal polycystic ovary syndrome and risk of neuropsychiatric disorders in offspring: prenatal androgen exposure or genetic confounding? Psychol Med 2020; 50:616-624. [PMID: 30857571 PMCID: PMC7093321 DOI: 10.1017/s0033291719000424] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Maternal polycystic ovary syndrome (PCOS) has been proposed as a model for investigating the role of prenatal androgen exposure in the development of neuropsychiatric disorders. However, women with PCOS are at higher risk of developing psychiatric conditions and previous studies are likely confounded by genetic influences. METHODS A Swedish nationwide register-based cohort study was conducted to disentangle the influence of prenatal androgen exposure from familial confounding in the association between maternal PCOS and offspring attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD), and Tourette's disorder and chronic tic disorders (TD/CTD). PCOS-exposed offspring (n = 21 280) were compared with unrelated PCOS-unexposed offspring (n = 200 816) and PCOS-unexposed cousins (n = 17 295). Associations were estimated with stratified Cox regression models. RESULTS PCOS-exposed offspring had increased risk of being diagnosed with ADHD, ASD, and TD/CTD compared with unrelated PCOS-unexposed offspring. Associations were stronger in girls for ADHD and ASD but not TD/CTD [ADHD: adjusted hazard ratio (aHR) = 1.61 (95% confidence interval (CI) 1.31-1.99), ASD: aHR = 2.02 (95% CI 1.45-2.82)] than boys [ADHD: aHR = 1.37 (95% CI 1.19-1.57), ASD: aHR = 1.46 (95% CI 1.21-1.76)]. For ADHD and ASD, aHRs for girls were stronger when compared with PCOS-unexposed cousins, but slightly attenuated for boys. CONCLUSIONS Estimates were similar when accounting for familial confounding (i.e. genetics and environmental factors shared by cousins) and stronger in girls for ADHD and ASD, potentially indicating a differential influence of prenatal androgen exposure v. genetic factors. These results strengthen evidence for a potential causal influence of prenatal androgen exposure on the development of male-predominant neuropsychiatric disorders in female offspring of women with PCOS.
Collapse
Affiliation(s)
- Carolyn E. Cesta
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna S. Öberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Abraham Ibrahimson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ikram Yusuf
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Brian M. D'Onofrio
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorena Fernández de la Cruz
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mina A. Rosenqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Abstract
In a range of neurological conditions, including movement disorders, sex-related differences are emerging not only in brain anatomy and function, but also in pathogenesis, clinical features and response to treatment. In Parkinson disease (PD), for example, oestrogens can influence the severity of motor symptoms, whereas elevation of androgens can exacerbate tic disorders. Nevertheless, the real impact of sex differences in movement disorders remains under-recognized. In this article, we provide an up-to-date review of sex-related differences in PD and the most common hyperkinetic movement disorders, namely, essential tremor, dystonia, Huntington disease and other chorea syndromes, and Tourette syndrome and other chronic tic disorders. We highlight the most relevant clinical aspects of movement disorders that differ between men and women. Increased recognition of these differences and their impact on patient care could aid the development of tailored approaches to the management of movement disorders and enable the optimization of preclinical research and clinical studies.
Collapse
|
15
|
Nomani H, Mohammadpour AH, Moallem SMH, Sahebkar A. Anti-inflammatory drugs in the prevention of post-operative atrial fibrillation: a literature review. Inflammopharmacology 2019; 28:111-129. [PMID: 31673892 DOI: 10.1007/s10787-019-00653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a serious and common complication following heart surgery. Cardiac surgery triggers inflammation in the heart and makes it susceptible to the incidence of AF. Therefore, anti-inflammatory drugs may reduce the rate of AF incidence in the post-surgery conditions. Immunosuppressant agents, steroidal anti-inflammatory drugs (corticosteroids), non-aspirin non-steroid anti-inflammatory drugs (NSAIDs), colchicine and omega-3 unsaturated fatty acids (n-3 UFA) are drugs with well-known anti-inflammatory properties. The efficacy, safety and other aspects of using these drugs in the prevention of post-operative AF (POAF) have been reviewed here. Studies evaluating the efficacy of colchicine have shown that it could be effective in the prevention of POAF. However, there is a need for additional studies to find a colchicine regimen with optimal efficacy and higher tolerability. The use of corticosteroids may also be of value based on the most of meta-analyses. In the case of n-3 polyunsaturated fatty acids and NSAIDs, current data fail to support their efficacy in POAF prevention. Moreover, perioperative administration of NSAIDs may be associated with some severe safety considerations. Immunosuppressant agents have not been used for the prevention of POAF. Further studies are needed to find the most effective strategy for POAF prevention with the least safety considerations and the highest health benefits.
Collapse
Affiliation(s)
- Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Albin RL. Tourette syndrome: a disorder of the social decision-making network. Brain 2018; 141:332-347. [PMID: 29053770 PMCID: PMC5837580 DOI: 10.1093/brain/awx204] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Tourette syndrome is a common neurodevelopmental disorder defined by characteristic involuntary movements, tics, with both motor and phonic components. Tourette syndrome is usually conceptualized as a basal ganglia disorder, with an emphasis on striatal dysfunction. While considerable evidence is consistent with these concepts, imaging data suggest diffuse functional and structural abnormalities in Tourette syndrome brain. Tourette syndrome exhibits features that are difficult to explain solely based on basal ganglia circuit dysfunctions. These features include the natural history of tic expression, with typical onset of tics around ages 5 to 7 years and exacerbation during the peri-pubertal years, marked sex disparity with higher male prevalence, and the characteristic distribution of tics. The latter are usually repetitive, somewhat stereotyped involuntary eye, facial and head movements, and phonations. A major functional role of eye, face, and head movements is social signalling. Prior work in social neuroscience identified a phylogenetically conserved network of sexually dimorphic subcortical nuclei, the Social Behaviour Network, mediating many social behaviours. Social behaviour network function is modulated developmentally by gonadal steroids and social behaviour network outputs are stereotyped sex and species specific behaviours. In 2011 O'Connell and Hofmann proposed that the social behaviour network interdigitates with the basal ganglia to form a greater network, the social decision-making network. The social decision-making network may have two functionally complementary limbs: the basal ganglia component responsible for evaluation of socially relevant stimuli and actions with the social behaviour network component responsible for the performance of social acts. Social decision-making network dysfunction can explain major features of the neurobiology of Tourette syndrome. Tourette syndrome may be a disorder of social communication resulting from developmental abnormalities at several levels of the social decision-making network. The social decision-making network dysfunction hypothesis suggests new avenues for research in Tourette syndrome and new potential therapeutic targets.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, 48105, USA
- University of Michigan Morris K. Udall Parkinson’s Disease Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Li L, Kang YX, Ji XM, Li YK, Li SC, Zhang XJ, Cui HX, Shi GM. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats. CNS Neurosci Ther 2017; 24:115-125. [PMID: 29214729 DOI: 10.1111/cns.12781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. METHODS Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. RESULTS It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. CONCLUSION These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen.
Collapse
Affiliation(s)
- Li Li
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China.,Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun-Xiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Ming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Ying-Kun Li
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China.,Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Shuang-Cheng Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiang-Jian Zhang
- Department of Neurology, Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Hebei Key Laboratory of Vascular Homeostasis, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui-Xian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Ge-Ming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Leivonen S, Scharf JM, Mathews CA, Chudal R, Gyllenberg D, Sucksdorff D, Suominen A, Voutilainen A, Brown AS, Sourander A. Parental Psychopathology and Tourette Syndrome/Chronic Tic Disorder in Offspring: A Nationwide Case-Control Study. J Am Acad Child Adolesc Psychiatry 2017; 56:297-303.e4. [PMID: 28335873 DOI: 10.1016/j.jaac.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the associations between maternal and paternal psychiatric diagnoses and Tourette syndrome (TS)/chronic tic disorder (CT) in a nationwide study. METHOD This nested case-control study linked data derived from three national registers. All singletons born and diagnosed with TS/CT in Finland between January 1991 and December 2010 were identified (n = 1,120) and matched to four controls (n = 4,299). Conditional logistic regression was used to examine the associations between parental psychopathology and TS/CT. RESULTS Altogether, 24.9% of patients with TS/CT and 12.0% of controls had a mother with a psychiatric diagnosis. Similarly, 17.9% and 12.9% had a father with a psychiatric diagnosis. Any maternal and any paternal psychiatric diagnosis was associated with offspring TS/CT (odds ratio [OR] 2.3; 95% CI 1.9-2.7 and OR 1.2; 95% CI 1.01-1.5, respectively). The association between maternal psychiatric diagnosis and TS/CT was stronger than that between paternal psychiatric diagnosis and TS/CT (p < .001). Maternal personality disorders (OR 3.1, 95% CI 1.9-5.1), anxiety disorders (OR 2.6, 95% CI 1.9-3.5), affective disorders (OR 2.3, 95% CI 1.8-2.9), psychotic disorders (OR 2.0, 95% CI 1.2-3.3), and addiction disorders (OR 1.8, 95% CI 1.1-2.8) were associated with TS/CT. Paternal OCD (OR 6.5, 95% CI 1.1-39.5) and anxiety disorders (OR 1.5, 95% CI 1.1-2.3) were associated with TS/CT. CONCLUSION Parental psychiatric diagnoses (especially in the mother) are associated with diagnosed offspring TS/CT. Further studies are required before the results can be generalized to all children with TS/CT. The associations between maternal psychiatric disorders and TS may reflect both maternal specific environmental and/or genetic influences.
Collapse
Affiliation(s)
- Susanna Leivonen
- University of Turku and Turku University Hospital, Turku, Finland; Child Neurology, Helsinki University Hospital and University of Helsinki, Finland
| | - Jeremiah M Scharf
- Center for Human Genetics Research, Massachusetts General Hospital, and Harvard Medical School, Boston
| | | | - Roshan Chudal
- University of Turku and Turku University Hospital, Turku, Finland
| | - David Gyllenberg
- University of Turku and Turku University Hospital, Turku, Finland
| | - Dan Sucksdorff
- University of Turku and Turku University Hospital, Turku, Finland
| | - Auli Suominen
- University of Turku and Turku University Hospital, Turku, Finland
| | - Arja Voutilainen
- Child Neurology, Helsinki University Hospital and University of Helsinki, Finland
| | - Alan S Brown
- Columbia University Medical Center and New York State Psychiatric Institute, New York City
| | - Andre Sourander
- University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
19
|
Crider A, Pillai A. Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders. J Pharmacol Exp Ther 2016; 360:48-58. [PMID: 27789681 DOI: 10.1124/jpet.116.237412] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Estrogens, the primary female sex hormones, were originally characterized through their important role in sexual maturation and reproduction. However, recent studies have shown that estrogens play critical roles in a number of brain functions, including cognition, learning and memory, neurodevelopment, and adult neuroplasticity. A number of studies from both clinical as well as preclinical research suggest a protective role of estrogen in neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. Alterations in the levels of estrogen receptors have been found in subjects with ASD or schizophrenia, and adjunctive estrogen therapy has been shown to be effective in enhancing the treatment of schizophrenia. This review summarizes the findings on the role of estrogen in the pathophysiology of neurodevelopmental disorders with a focus on ASD and schizophrenia. We also discuss the potential of estrogen as a therapeutic target in the above disorders.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
20
|
Kious BM, Jimenez-Shahed J, Shprecher DR. Treatment-refractory Tourette Syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:227-36. [PMID: 26875502 DOI: 10.1016/j.pnpbp.2016.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Tourette Syndrome (TS) is a complex neurodevelopmental condition marked by tics and frequently associated with psychiatric comorbidities. While most cases are mild and improve with age, some are treatment-refractory. Here, we review strategies for the management of this population. We begin by examining the diagnosis of TS and routine management strategies. We then consider emerging treatments for refractory cases, including deep brain stimulation (DBS), electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and novel pharmacological approaches such as new vesicular monoamine transporter type 2 inhibitors, cannabinoids, and anti-glutamatergic drugs.
Collapse
Affiliation(s)
- Brent M Kious
- University of Utah, Department of Psychiatry, 501 Chipeta Way, Salt Lake City, UT 84108, United States.
| | - Joohi Jimenez-Shahed
- Baylor College of Medicine, Department of Neurology, 7200 Cambridge, Suite 9a/MS: BCM 609, Houston, TX 77030, United States
| | - David R Shprecher
- University of Utah, Department of Neurology, 729 Arapeen Drive, Salt Lake City, UT 84108, United States; Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, United States
| |
Collapse
|
21
|
Nespoli E, Rizzo F, Boeckers TM, Hengerer B, Ludolph AG. Addressing the Complexity of Tourette's Syndrome through the Use of Animal Models. Front Neurosci 2016; 10:133. [PMID: 27092043 PMCID: PMC4824761 DOI: 10.3389/fnins.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/16/2016] [Indexed: 01/06/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by fluctuating motor and vocal tics, usually preceded by sensory premonitions, called premonitory urges. Besides tics, the vast majority—up to 90%—of TS patients suffer from psychiatric comorbidities, mainly attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). The etiology of TS remains elusive. Genetics is believed to play an important role, but it is clear that other factors contribute to TS, possibly altering brain functioning and architecture during a sensitive phase of neural development. Clinical brain imaging and genetic studies have contributed to elucidate TS pathophysiology and disease mechanisms; however, TS disease etiology still is poorly understood. Findings from genetic studies led to the development of genetic animal models, but they poorly reflect the pathophysiology of TS. Addressing the role of neurotransmission, brain regions, and brain circuits in TS disease pathomechanisms is another focus area for preclinical TS model development. We are now in an interesting moment in time when numerous innovative animal models are continuously brought to the attention of the public. Due to the diverse and largely unknown etiology of TS, there is no single preclinical model featuring all different aspects of TS symptomatology. TS has been dissected into its key symptomst hat have been investigated separately, in line with the Research Domain Criteria concept. The different rationales used to develop the respective animal models are critically reviewed, to discuss the potential of the contribution of animal models to elucidate TS disease mechanisms.
Collapse
Affiliation(s)
- Ester Nespoli
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Germany; Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany
| | - Francesca Rizzo
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany; Institute of Anatomy and Cell Biology, University of UlmUlm, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm Ulm, Germany
| | - Bastian Hengerer
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss, Germany
| | - Andrea G Ludolph
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of Ulm Ulm, Germany
| |
Collapse
|
22
|
Obstetric and Neonatal Adversities, Parity, and Tourette Syndrome: A Nationwide Registry. J Pediatr 2016; 171:213-9. [PMID: 26608088 DOI: 10.1016/j.jpeds.2015.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/06/2015] [Accepted: 10/20/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine the relationships between parity, obstetric adversities, neonatal factors, and Tourette syndrome in a large nationwide cohort. STUDY DESIGN This nationwide, register-based, nested case-control study identified all children diagnosed with Tourette syndrome born between 1991 and 2010 from the Finnish Hospital Discharge Register (n = 767). Each case was matched to 4 controls. Information on parity, obstetric, and neonatal factors was obtained from the Finnish Medical Birth Register. Conditional logistic regression was used to determine the relationship between parity, obstetric, and neonatal factors, and Tourette syndrome. RESULTS Nulliparity was associated with increased odds for Tourette syndrome (OR 1.7, 95% CI 1.4-2.2), and 3 or more previous births was associated with decreased odds for Tourette syndrome (OR 0.5, 95% CI 0.3-0.9) compared with parity 1-2. Birth weight 4000-4499 g was associated with decreased odds for Tourette syndrome (OR 0.7, 95% CI 0.5-0.9). Low birth weight, gestational age, weight for gestational age, Apgar score at 1 minute, induced labor, birth type or presentation, neonatal treatment, or maternal blood pressure were not associated with Tourette syndrome. CONCLUSIONS Increasing parity and high birth weight are associated with decreased odds for Tourette syndrome.
Collapse
|
23
|
Hawksley J, Cavanna AE, Nagai Y. The role of the autonomic nervous system in Tourette Syndrome. Front Neurosci 2015; 9:117. [PMID: 26074752 PMCID: PMC4444819 DOI: 10.3389/fnins.2015.00117] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/23/2015] [Indexed: 11/13/2022] Open
Abstract
Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device that gives pulsatile electrical stimulation to the vagus nerve, directly modulates afferent interoceptive signals. The potential efficacy of biofeedback/VNS in TS and the implications for understanding the underlying neural mechanisms of tics will be discussed.
Collapse
Affiliation(s)
- Jack Hawksley
- North Essex Partnership University NHS Foundation Trust Colchester, UK
| | - Andrea E Cavanna
- Department of Neuropsychiatry, Birmingham and Solihull Mental Health NHS Trust and School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | - Yoko Nagai
- Department of Clinical Medicine, Clinical Imaging Sciences Center, Brighton and Sussex Medical School, University of Sussex Brighton, UK ; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London London, UK
| |
Collapse
|
24
|
Selçuk EB, Erbay LG, Özcan ÖÖ, Kartalci Ş, Batcioğlu K. Testosterone levels of children with a diagnosis of developmental stuttering. Ther Clin Risk Manag 2015; 11:793-8. [PMID: 25999727 PMCID: PMC4437599 DOI: 10.2147/tcrm.s83129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Stuttering is defined as a disruption in the rhythm of speech and language articulation, where the subject knows what he/she wants to say, but is unable to utter the intended word or phrase fluently. The effect of sex on development and chronicity of stuttering is well known; it is more common and chronic in males. We aimed to investigate the relationship between developmental stuttering and serum testosterone levels in this study. MATERIALS AND METHODS In this study, we evaluated a total of 50 children (7-12 years of age); eight (16%) were female and 42 (84%) were male. Twenty-five children who stutter and 25 typically fluent peers with the same demographic properties (ages between 7 years and 12 years) were included in this study. The testosterone levels of the two groups were determined in terms of nanogram per milliliter (ng/mL) by enzyme-linked immunosorbent assay. The difference between the means of the two groups was analyzed. RESULTS The medians of the testosterone levels of the stutterer and control groups were determined as 20 ng/mL (range =12-184 ng/mL) and 5 ng/mL (range =2-30 ng/mL), respectively. Testosterone levels of the stutterer group were significantly higher than in the control group (P=0.001). Besides, there was a significant correlation between the severity of the stuttering and testosterone levels in the stutterer group (P=0.0001). CONCLUSION The findings of this study show that testosterone may have an effect on the severity of developmental stuttering and on the clinical differences between sexes. However, further investigations are needed to show that testosterone may play a role in the etiology of developmental stuttering.
Collapse
Affiliation(s)
- Engin Burak Selçuk
- Department of Family Medicine, Inonu University Medical Faculty, Malatya, Turkey
| | - Lale Gönenir Erbay
- Department of Psychiatry, Inonu University Medical Faculty, Malatya, Turkey
| | - Özlem Özel Özcan
- Department of Child and Adolescent Psychiatry, Inonu University Medical Faculty, Malatya, Turkey
| | - Şükrü Kartalci
- Department of Psychiatry, Inonu University Medical Faculty, Malatya, Turkey
| | | |
Collapse
|
25
|
Robertson MM. A personal 35 year perspective on Gilles de la Tourette syndrome: assessment, investigations, and management. Lancet Psychiatry 2015; 2:88-104. [PMID: 26359615 DOI: 10.1016/s2215-0366(14)00133-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/09/2014] [Indexed: 01/17/2023]
Abstract
After having examined the definition, clinical phenomenology, comorbidity, psychopathology, and phenotypes in the first paper of this Series, here I discuss the assessment, including neuropsychology, and the effects of Gilles de la Tourette syndrome with studies showing that the quality of life of patients with Tourette's syndrome is reduced and that there is a substantial burden on the family. In this paper, I review my local and collaborative studies investigating causal factors (including genetic vulnerability, prenatal and perinatal difficulties, and neuro-immunological factors). I also present my studies on neuro-imaging, electro-encephalograms, and other special investigations, which are helpful in their own right or to exclude other conditions. Finally, I also review our studies on treatment including medications, transcranial magnetic stimulation, biofeedback, target-specific botulinum toxin injections, biofeedback and, in severe refractory adults, psychosurgery and deep brain stimulation. This Review summarises and highlights selected main findings from my clinic (initially The National Hospital for Neurology and Neurosurgery Queen Square and University College London, UK, and, subsequently, at St George's Hospital, London, UK), and several collaborations since 1980. As in Part 1 of this Series, I address the main controversies in the fields and the research of other groups, and I make suggestions for future research.
Collapse
Affiliation(s)
- Mary M Robertson
- Department of Neurology, Tourette Clinic, Atkinson Morley Wing, St Georges Hospital, London University College London, London; Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK; Department of Psychiatry, University of Cape Town, South Africa.
| |
Collapse
|
26
|
Cubo E, Hortigüela M, Jorge-Roldan S, Ciciliani SE, Lopez P, Velasco L, Sastre E, Ausin V, Delgado V, Saez S, Gabriel-Galán JT, Macarrón J. Prenatal and Perinatal Morbidity in Children with Tic Disorders: A Mainstream School-based Population Study in Central Spain. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:272. [PMID: 25562036 PMCID: PMC4268040 DOI: 10.7916/d8fn14w9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/11/2014] [Indexed: 01/22/2023]
Abstract
Background While current research suggests that genetic factors confer the greatest risk for the development of tic disorders, studies of environmental factors are relatively few, with a lack of consistent risk factors across studies. Our aim is to analyze the association of tic disorders with exposure to prenatal and perinatal morbidity. Methods This was a nested case–control study design. Cases and controls were selected and identified from a mainstream, school-based sample. The diagnosis of tic disorders was assigned by a movement disorder neurologist using ‘Diagnostic and statistical manual of mental disorders, 4th edition, text revision’ criteria, and neuropsychiatric comorbidities were screened using the Spanish computerized version of the Diagnostic Interview Schedule for Children Predictive Scale. Information regarding the exposure to pre-perinatal risk factors was collected by a retrospective review of the birth certificates. Logistic regression analyses were then performed to test the association of tic disorders with pre-perinatal risk factors. Results Out of 407 participants, complete pre-perinatal data were available in 153 children (64 with tics and 89 without tics). After adjusting for family history of tics, neonatal respiratory distress syndrome, body mass index, prenatal infection, and coexisting comorbid neuropsychiatric disturbances, tic disorders were associated with prenatal exposure to tobacco (odds ratio [OR] = 3.07, 95% confidence interval [CI] 1.24–7.60, p = 0.007), and cesarean section (OR = 5.78, 95% CI 1.60–20.91, p = 0.01). Discussion This nested case–control study of children with tic disorders demonstrates higher adjusted odds for tics in children with exposure to cesarean delivery and maternal smoking. Longitudinal, population-based samples are required to confirm these results.
Collapse
Affiliation(s)
- Esther Cubo
- Neurology Department, Hospital Universitario Burgos, Burgos, Spain
| | | | | | | | - Patricia Lopez
- Neurology Department, Hospital Universitario Burgos, Burgos, Spain
| | - Leticia Velasco
- Neurology Department, Hospital Universitario Burgos, Burgos, Spain
| | - Emilio Sastre
- Pediatrics Department; Hospital Universitario Burgos, Burgos, Spain
| | - Vanesa Ausin
- Research Unit, Hospital Universitario Burgos, Spain
| | | | - Sara Saez
- Research Unit, Hospital Universitario Burgos, Spain
| | | | - Jesús Macarrón
- Neurology Department, Hospital Universitario Burgos, Burgos, Spain
| |
Collapse
|
27
|
Baiardi S, Antelmi E, Filardi M, Pizza F, Vandi S, Veggiotti P, Liguori R, Plazzi G. Remitting Tics and Narcolepsy Overlap Associated with Streptococcal Infection: A Case Report. Mov Disord Clin Pract 2014; 1:374-376. [DOI: 10.1002/mdc3.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/23/2014] [Accepted: 06/29/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- Simone Baiardi
- DIBINEM-Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
| | - Elena Antelmi
- DIBINEM-Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
| | - Marco Filardi
- Department of Psychology; Alma Mater Studiorum; University of Bologna; Bologna Italy
| | - Fabio Pizza
- DIBINEM-Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- IRCSS-Istituto delle Scienze Neurologiche; Bologna Italy
| | - Stefano Vandi
- DIBINEM-Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- IRCSS-Istituto delle Scienze Neurologiche; Bologna Italy
| | - Pierangelo Veggiotti
- Department of Child Neurology and Psychiatry; C. Mondino National Neurological Institute; Pavia Italy
| | - Rocco Liguori
- DIBINEM-Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- IRCSS-Istituto delle Scienze Neurologiche; Bologna Italy
| | - Giuseppe Plazzi
- DIBINEM-Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; University of Bologna; Bologna Italy
- IRCSS-Istituto delle Scienze Neurologiche; Bologna Italy
| |
Collapse
|
28
|
Godar SC, Mosher LJ, Di Giovanni G, Bortolato M. Animal models of tic disorders: a translational perspective. J Neurosci Methods 2014; 238:54-69. [PMID: 25244952 DOI: 10.1016/j.jneumeth.2014.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta; School of Biosciences, Cardiff University, Cardiff, UK
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|