1
|
Liu X, Yu H, Yan G, Xu B, Sun M, Feng M. Causal relationships between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers: univariable and multivariable Mendelian randomization. Eur J Nutr 2024; 63:469-483. [PMID: 38040849 DOI: 10.1007/s00394-023-03281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Coffee intake and apolipoprotein B levels have been linked to gastric, colorectal, and esophageal cancers in numerous recent studies. However, whether these associations are all causal remains unestablished. This study aimed to assess the potential causal associations of apolipoprotein B and coffee intake with the risk of gastric, colorectal, and esophageal cancers using Mendelian randomization analysis. METHODS In this study, we utilized a two-sample Mendelian randomization analysis to access the causal effects of coffee intake and apolipoprotein B on gastric, colorectal, and esophageal cancers. The summary statistics of coffee intake (n = 428,860) and apolipoprotein B (n = 439,214) were obtained from the UK Biobank. In addition, the summary statistics of gastric cancer, colorectal cancer, and esophageal cancer were obtained from the FinnGen biobank (n = 218,792). Inverse variance weighted, MR-Egger, weighted median, and weighted mode were applied to examine the causal relationship between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers. MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were performed to evaluate possible heterogeneity and pleiotropy. Steiger filtering and bidirectional mendelian randomization analysis were performed to evaluate the possible reverse causality. RESULTS The result of the inverse variance weighted method indicated that apolipoprotein B levels were significantly associated with a higher risk of gastric cancer (OR = 1.392, 95% CI 1.027-1.889, P = 0.0333) and colorectal cancer (OR = 1.188, 95% CI 1.001-1.411, P = 0.0491). Furthermore, multivariable Mendelian randomization analysis also revealed a positive association between apolipoprotein B levels and colorectal cancer risk, but the effect of apolipoprotein B on gastric cancer risk disappeared after adjustment of coffee intake, body mass index or lipid-related traits. However, we did not discover any conclusive evidence linking coffee intake to gastric, colorectal, or esophageal cancers. CONCLUSIONS This study suggested a causal association between genetically increased apolipoprotein B levels and higher risk of colorectal cancer. No causal relationship was observed between coffee intake and gastric, colorectal, or esophageal cancers.
Collapse
Affiliation(s)
- Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Han Yu
- School of Health Management, China Medical University, Shenyang, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Boyang Xu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingliang Feng
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Fourati S, Hamon A, Daclat R, Salem JE, Peoc’h K, Le Beyec J, Joly F, Lacorte JM. Circulating Apolipoprotein B-48 as a Biomarker of Parenteral Nutrition Dependence in Adult Patients with Short Bowel Syndrome. Nutrients 2023; 15:3982. [PMID: 37764766 PMCID: PMC10536633 DOI: 10.3390/nu15183982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Short bowel syndrome (SBS) is a rare but serious condition that may lead to chronic intestinal failure. Citrulline concentrations are currently used to reflect the residual intestinal mass in patients with SBS, although this method has several limitations. In a cohort of patients with SBS, we quantified apolipoprotein B-48 (ApoB-48), which is exclusively synthesized by enterocytes and secreted associated with dietary lipids and investigated the relationship between ApoB-48 and clinical and biological data as well as PN dependence. A total of 51 adult patients were included, 36 of whom were PN-dependent. We found a robust positive correlation between circulating ApoB-48 and residual small bowel length, which was also found in the subgroup of patients with jejunocolic anastomosis. Fasting ApoB-48 levels were significantly lower in PN-dependent patients than in PN-weaned patients and negatively correlated with parenteral nutrition dependence. Our results suggest that ApoB-48 could be proposed as a marker of intestinal absorptive function and could be an interesting follow-up marker in patients with SBS.
Collapse
Affiliation(s)
- Salma Fourati
- Service de Biochimie Endocrinienne et Oncologique, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, UMR-S 1149 Centre de Recherche sur l’Inflammation Inserm, Paris Cité University, 75013 Paris, France
| | - Annick Hamon
- Department of Gastroenterology, IBD and Nutrition Support, CRMR MarDi, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, 92110 Clichy, France
| | - Rita Daclat
- UMR_S1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition Inserm, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
| | - Joe-Elie Salem
- Department of Pharmacology and Clinical Investigation Centre (CIC-1901), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, INSERM, 75013 Paris, France
| | - Katell Peoc’h
- Department of Biochemistry, CRI INSERM UMR1149, HUPNVS, Assistance Publique-Hôpitaux de Paris, Paris Cité University, 75018 Paris, France
| | - Johanne Le Beyec
- Service de Biochimie Endocrinienne et Oncologique, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, UMR-S 1149 Centre de Recherche sur l’Inflammation Inserm, Sorbonne University, 75013 Paris, France;
| | - Francisca Joly
- Department of Gastroenterology, IBD and Nutrition Support, CRMR MarDi, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, 92110 Clichy, UMR-S 1149 Centre de Recherche sur l’Inflammation Inserm, Université Paris Cité, 75018 Paris, France;
| | - Jean-Marc Lacorte
- Service de Biochimie Endocrinienne et Oncologique, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Research Unit on Cardiovascular and Metabolic Disease, UMR ICAN, Sorbonne University, Inserm, 75013 Paris, France;
| |
Collapse
|
3
|
Heidemann BE, Marais AD, Mulder MT, Visseren FLJ, Roeters van Lennep JE, Stroes ESG, Riksen NP, van Vark-van der Zee LC, Blackhurst DM, Koopal C. Composition and distribution of lipoproteins after evolocumab in familial dysbetalipoproteinemia: A randomized controlled trial. J Clin Lipidol 2023; 17:666-676. [PMID: 37517914 DOI: 10.1016/j.jacl.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Proprotein convertase subtilisin kexin type 9 (PCSK9) monoclonal antibodies (mAbs) reduce fasting and post fat load cholesterol in non-HDL and intermediate density lipoprotein (IDL) in familial dysbetalipoproteinemia (FD). However, the effect of PCSK9 mAbs on the distribution and composition of atherogenic lipoproteins in patients with FD is unknown. OBJECTIVE To evaluate the effect of the PCSK9 mAb evolocumab added to standard lipid-lowering therapy in patients with FD on fasting and post fat load lipoprotein distribution and composition. METHODS Randomized placebo-controlled double-blind crossover trial comparing evolocumab (140 mg subcutaneous every 2 weeks) with placebo during two 12-week treatment periods. Patients received an oral fat load at the start and end of each treatment period. Apolipoproteins (apo) were measured with ultracentrifugation, gradient gel electrophoresis, retinyl palmitate and SDS-PAGE. RESULTS PCSK9 mAbs significantly reduced particle number of all atherogenic lipoproteins, with a stronger effect on smaller lipoproteins than on larger lipoproteins (e.g. IDL-apoB 49%, 95%confidence interval (CI) 41-59 and very low-density lipoprotein (VLDL)-apoB 33%, 95%CI 16-50). Furthermore, PCSK9 mAbs lowered cholesterol more than triglyceride (TG) in VLDL, IDL and low-density lipoprotein (LDL) (e.g. VLDL-C 48%, 95%CI 29-63%; and VLDL-TG 20%, 95%CI 6.3-41%). PCSK9 mAbs did not affect the post fat load response of chylomicrons. CONCLUSION PCSK9 mAbs added to standard lipid-lowering therapy in FD patients significantly reduced lipoprotein particle number, in particular the smaller and more cholesterol-rich lipoproteins (i.e. IDL and LDL). PCSK9 mAbs did not affect chylomicron metabolism. It seems likely that the observed effects are achieved by increased hepatic lipoprotein clearance, but the specific working mechanism of PCSK9 mAbs in FD patients remains to be elucidated.
Collapse
Affiliation(s)
- Britt E Heidemann
- Department of Vascular Medicine (Drs Heidemann, Visseren, Koopal), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - A David Marais
- Division of Chemical Pathology (Drs Marais, Blackhurst), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Monique T Mulder
- Department of Internal Medicine (Drs Mulder, van Lennep, van Vark - van der Zee), Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank L J Visseren
- Department of Vascular Medicine (Drs Heidemann, Visseren, Koopal), University Medical Center Utrecht, Utrecht University, The Netherlands.
| | - Jeanine E Roeters van Lennep
- Department of Internal Medicine (Drs Mulder, van Lennep, van Vark - van der Zee), Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine (Dr van Lennep), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine (Dr Stroes), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (Dr Riksen), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leonie C van Vark-van der Zee
- Department of Internal Medicine (Drs Mulder, van Lennep, van Vark - van der Zee), Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dee M Blackhurst
- Division of Chemical Pathology (Drs Marais, Blackhurst), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Charlotte Koopal
- Department of Vascular Medicine (Drs Heidemann, Visseren, Koopal), University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
4
|
Lefrère B, Sakka M, Fourati S, Levasseur A, Curis E, Cherfils C, Grès P, Guilbert Z, Lacorte JM, Chenevière C, Bittar R, Bonnefont-Rousselot D. Could the chylomicron marker apoB48 be of value in the diagnosis of chylous effusions? Clin Chim Acta 2023; 539:184-190. [PMID: 36463939 DOI: 10.1016/j.cca.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Chylous effusions such as chylothorax, chylopericardium and chylous ascites are marked by the abnormal presence of chylomicrons in serous membranes. These relatively rare situations are associated with high morbidity and mortality rates. Given that a macroscopic assessment of the fluid is insufficient, the current gold standard method for chylous effusion is the electrophoretic separation of lipoproteins. Serous effusions are most frequently assayed for triglycerides, with a diagnostic threshold varying between studies. The present study is the first to assess the value of the apolipoprotein B48, specific of the chylomicron, in the diagnosis of chylous effusions. METHODS A chemiluminescent sandwich enzyme immunoassay was used to measure levels of apoB48 in remnant samples of effusion fluid sent to our laboratory for chylomicron detection and lipid assays. The diagnostic values of apoB48 and triglyceride assays were compared with that of the gold standard method. RESULTS The triglyceride and apoB48 levels and the triglyceride/cholesterol ratio in the effusion fluid were significantly higher in patients with chylous effusion. The threshold values for apoB48 were respectively 2.45, 0.25 and 19.00 µg/mL for a maximal Youden index, a sensitivity > 95 %, and a specificity > 95 %. The apoB48 assay's diagnostic value might be at least as high as that of a triglyceride assay (area under the receiver operating characteristic curve [95 % confidence interval]: 0.84 [0.72, 0.96]) and 0.80 [0.67, 0.94], respectively). CONCLUSION ApoB48 appears to be a promising marker for the diagnosis of chylous effusions; the putative diagnostic improvement must be confirmed in larger studies.
Collapse
Affiliation(s)
- Bertrand Lefrère
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France.
| | - Mehdi Sakka
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Salma Fourati
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie endocrinienne et oncologique, Paris, France
| | - Antoine Levasseur
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Emmanuel Curis
- Université de Paris, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris F-75006, France; EA 7537 BioSTM, Faculté de Pharmacie, Université Paris Descartes, USPC, Paris 75006, France
| | - Corinne Cherfils
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Pierre Grès
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Zoé Guilbert
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Jean-Marc Lacorte
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie endocrinienne et oncologique, Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Unité de recherche sur les maladies cardiovasculaires et métaboliques, UMR 1166 ICAN, Sorbonne Université, Inserm, Paris, France
| | - Cristina Chenevière
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie endocrinienne et oncologique, Paris, France
| | - Randa Bittar
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Unité de recherche sur les maladies cardiovasculaires et métaboliques, UMR 1166 ICAN, Sorbonne Université, Inserm, Paris, France
| | - Dominique Bonnefont-Rousselot
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France; UFR de Pharmacie, Université Paris Cité; CNRS, Inserm, UTCBS, Paris, France
| |
Collapse
|
5
|
Hou Y, An Z, Hou X, Guan Y, Song G. A bibliometric analysis and visualization of literature on non-fasting lipid research from 2012 to 2022. Front Endocrinol (Lausanne) 2023; 14:1136048. [PMID: 37152935 PMCID: PMC10154597 DOI: 10.3389/fendo.2023.1136048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Background Non-fasting lipid assessment can help predict cardiovascular disease risks and is linked to multiple diseases, particularly diabetes. The significance of non-fasting lipid levels in routine screening and postprandial lipid tests for potential dyslipidemia has not been conclusively determined. Various new lipid-lowering strategies have been developed to improve non-fasting dyslipidemia. Therefore, analysis of scientific outputs over the past decade is essential to reveal trends, hotspots, and frontier areas for future research in this field. Methods The Science Citation Index Expanded in the Web of Science Core Collection database was searched for publications related to non-fasting lipid research from 2012 to 2022. The regional distributions, authors, disciplines, journals, references, and keywords of the studies were analyzed using the bibliometric software VOSviewer and CiteSpace. Results A total of 4160 articles and reviews that met the inclusion criteria were included in this study. The output trend was established to be stable and the number of citation indices has been persistently increasing. A total of 104 countries/regions, 4668 organizations, and 20782 authors were involved in this research area. In terms of country, the United States had the largest number of publications (979). The University of Copenhagen was the most productive institution, publishing 148 papers. Professor Børge G Nordestgaard has made the most significant contribution to this field. Nutrients was the most productive journal while the American Journal of Clinical Nutrition was the highest co-cited journal. Analysis of co-cited references indicated that lipid-lowering strategies, statin therapy, high-fat meals, insulin resistance, physical exercise, and fructose were hotspots. Analysis of co-cited keywords revealed that apolipoprotein B, especially apolipoprotein B48, is becoming a key research focus. The keywords "gut microbiota" and "meal timing" were the most extensively studied. Conclusion The causal relationship between non-fasting dyslipidemia and diseases is currently being explored and the standards for non-fasting or postprandial lipid assessment are continuously being updated. Among the hotspots, lipid-lowering strategies are a potential research direction. Apolipoprotein B48, gut microbiota, and chrononutrition are the research frontiers. This initial bibliometric analysis of non-fasting lipids will enable researchers to monitor swift transformations and recognize novel concepts for upcoming research.
Collapse
Affiliation(s)
- Yilin Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zehua An
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyu Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunpeng Guan
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Guangyao Song,
| |
Collapse
|
6
|
Chen Z, Sun Y, Chen L, Zhang Y, Wang J, Li H, Yan X, Xia L, Yao G. Differences in meat quality between Angus cattle and Xinjiang brown cattle in association with gut microbiota and its lipid metabolism. Front Microbiol 2022; 13:988984. [PMID: 36560955 PMCID: PMC9763702 DOI: 10.3389/fmicb.2022.988984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays important roles in mediating fat metabolic events in humans and animals. However, the differences of meat quality traits related to the lipid metabolism (MQT-LM) in association with gut microbiota involving in lipid metabolism have not been well explored between Angus cattle (AG) and Xinjiang brown cattle (BC). Ten heads of 18-month-old uncastrated male AG and BC (5 in each group) raised under the identical conditions were selected to test MQT-LM, i.e., the backfat thickness (BFT), the intramuscular fat (IMF) content, the intramuscular adipocyte areas (IAA), the eye muscle area (EMA), the muscle fiber sectional area (MFSA) and the muscle shear force after sacrifice. The gut microbiota composition and structure with its metabolic function were analyzed by means of metagenomics and metabolomics with rectal feces. The correlation of MQT-LM with the gut microbiota and its metabolites was analyzed. In comparison with AG, BC had significant lower EMA, IMF content and IAA but higher BFT and MFSA. Chao1 and ACE indexes of α-diversity were lower. β-diversity between AG and BC were significantly different. The relative abundance of Bacteroidetes, Prevotella and Blautia and Prevotella copri, Blautia wexlerae, and Ruminococcus gnavus was lower. The lipid metabolism related metabolites, i.e., succinate, oxoglutaric acid, L-aspartic acid and L-glutamic acid were lower, while GABA, L-asparagine and fumaric acid were higher. IMF was positively correlated with Prevotella copri, Blautia wexlerae and Ruminococcus gnavus, and the metabolites succinate, oxoglutaric acid, L-aspartic acid and L-glutamic acid, while negatively with GABA, L-asparagine and fumaric acid. BFT was negatively correlated with Blautia wexlerae and the metabolites succinate, L-aspartic acid and L-glutamic acid, while positively with GABA, L-asparagine and fumaric acid. Prevotella Copri, Blautia wexlerae, and Ruminococcus gnavus was all positively correlated with succinate, oxoglutaric acid, while negatively with L-asparagine and fumaric acid. In conclusion, Prevotella copri, Prevotella intermedia, Blautia wexlerae, and Ruminococcus gnavus may serve as the potential differentiated bacterial species in association with MQT-LM via their metabolites of oxoglutaric acid, succinate, fumaric acid, L-aspartic acid, L-asparagine, L-glutamic acid and GABA between BC and AG.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yawei Sun
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Lijing Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yang Zhang
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Hongbo Li
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Xiangming Yan
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China,Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJKLNDSCHA), Xinjiang Agricultural University, Urumqi, China,*Correspondence: Lining Xia,
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China,Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJKLNDSCHA), Xinjiang Agricultural University, Urumqi, China,Gang Yao,
| |
Collapse
|
7
|
Ghosh S, Rihan M, Ahmed S, Pande AH, Sharma SS. Immunomodulatory potential of apolipoproteins and their mimetic peptides in asthma: Current perspective. Respir Med 2022; 204:107007. [DOI: 10.1016/j.rmed.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
|
8
|
Wieczorek E, Ćwiklińska A, Jankowski M. Hypertriglyceridemia, a causal risk factor for atherosclerosis, and its laboratory assessment. Clin Chem Lab Med 2022; 60:1145-1159. [PMID: 35687325 DOI: 10.1515/cclm-2022-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022]
Abstract
Epidemiological and clinical studies show a causal association between serum triglyceride (TG) level, the number of triglyceride-rich lipoproteins (TRLs) and their remnants, and the increased risk of atherosclerosis and cardiovascular disease (CVD) development. In light of current guidelines for dyslipidemia management, the laboratory parameters reflecting TRL content are recommended as part of the routine lipid analysis process and used for CVD risk assessment, especially in people with hypertriglyceridemia (HTG), diabetes mellitus, obesity and low levels of low-density lipoprotein cholesterol (LDL-C), in which high residual CVD risk is observed. The basic routinely available laboratory parameters related with TRL are serum TG and non-high-density lipoprotein cholesterol (non-HDL-C) levels, but there are also other biomarkers related to TRL metabolism, the determination of which can be helpful in identifying the basis of HTG development or assessing CVD risk or can be the target of pharmacological intervention. In this review, we present the currently available laboratory parameters related to HTG. We summarise their link with TRL metabolism and HTG development, the determination methods as well as their clinical significance, the target values and interpretation of the results in relation to the current dyslipidemia guidelines.
Collapse
Affiliation(s)
- Ewa Wieczorek
- Department of Clinical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Ćwiklińska
- Department of Clinical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Bein A, Fadel CW, Swenor B, Cao W, Powers RK, Camacho DM, Naziripour A, Parsons A, LoGrande N, Sharma S, Kim S, Jalili-Firoozinezhad S, Grant J, Breault DT, Iqbal J, Ali A, Denson LA, Moore SR, Prantil-Baun R, Goyal G, Ingber DE. Nutritional deficiency in an intestine-on-a-chip recapitulates injury hallmarks associated with environmental enteric dysfunction. Nat Biomed Eng 2022; 6:1236-1247. [PMID: 35739419 DOI: 10.1038/s41551-022-00899-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 01/03/2023]
Abstract
Environmental enteric dysfunction (EED)-a chronic inflammatory condition of the intestine-is characterized by villus blunting, compromised intestinal barrier function and reduced nutrient absorption. Here we show that essential genotypic and phenotypic features of EED-associated intestinal injury can be reconstituted in a human intestine-on-a-chip lined by organoid-derived intestinal epithelial cells from patients with EED and cultured in nutrient-deficient medium lacking niacinamide and tryptophan. Exposure of the organ chip to such nutritional deficiencies resulted in congruent changes in six of the top ten upregulated genes that were comparable to changes seen in samples from patients with EED. Chips lined with healthy epithelium or with EED epithelium exposed to nutritional deficiencies resulted in severe villus blunting and barrier dysfunction, and in the impairment of fatty acid uptake and amino acid transport; and the chips with EED epithelium exhibited heightened secretion of inflammatory cytokines. The organ-chip model of EED-associated intestinal injury may facilitate the analysis of the molecular, genetic and nutritional bases of the disease and the testing of candidate therapeutics for it.
Collapse
Affiliation(s)
- Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Quris Technologies, Boston, MA, USA
| | - Cicely W Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ben Swenor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wuji Cao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Rani K Powers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Pluto Biosciences, Inc., Golden, CO, USA
| | - Diogo M Camacho
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Rheos Medicines, Cambridge, MA, USA
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Andrew Parsons
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nina LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sanjay Sharma
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sasan Jalili-Firoozinezhad
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Jennifer Grant
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Asad Ali
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sean R Moore
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia, Charlottesville, VA, USA
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. .,Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Mango G, Osti N, Udali S, Vareschi A, Malerba G, Giorgetti A, Pizzolo F, Friso S, Girelli D, Olivieri O, Castagna A, Martinelli N. Novel protein-truncating variant in the APOB gene may protect from coronary artery disease and adverse cardiovascular events. ATHEROSCLEROSIS PLUS 2022; 49:42-46. [PMID: 36644201 PMCID: PMC9833228 DOI: 10.1016/j.athplu.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Genetic testing is still rarely used for the diagnosis of dyslipidemia, even though gene variants determining plasma lipids levels are not uncommon. Methods Starting from a a pilot-analysis of targeted Next Generation Sequencing (NGS) of 5 genes related to familial hypercholesterolemia (LDLR, APOB, PCSK9, HMGCR, APOE) within a cardiovascular cohort in subjects with extreme plasma concentrations of low-density lipoprotein (LDL) cholesterol, we discovered and characterized a novel point mutation in the APOB gene, which was associated with very low levels of apolipoprotein B (ApoB) and LDL cholesterol. Results APOB c.6943 G > T induces a premature stop codon at the level of exon 26 in the APOB gene and generates a protein which has the 51% of the mass of the wild type ApoB-100 (ApoB-51), with a truncation at the level of residue 2315. The premature stop codon occurs after the one needed for the synthesis of ApoB-48, allowing chylomicron production at intestinal level and thus avoiding potential nutritional impairments. The heterozygous carrier of APOB c.6943G > T, despite a very high-risk profile encompassing all the traditional risk factors except for dyslipidemia, had normal coronary arteries by angiography and did not report any major adverse cardiovascular event during a 20-years follow-up, thereby obtaining advantage from the gene variant as regards protection against atherosclerosis, apparently without any metabolic retaliation. Conclusions Our data support the use of targeted NGS in well-characterized clinical settings, as well as they indicate that.a partial block of ApoB production may be well tolerated and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Mango
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Nicola Osti
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Silvia Udali
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Anna Vareschi
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Giovanni Malerba
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | | | - Francesca Pizzolo
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Simonetta Friso
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Italy,Corresponding author. Department of Medicine, University of Verona Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
11
|
Yang L, Ball A, Liu J, Jain T, Li YM, Akhter F, Zhu D, Wang J. Cyclic microchip assay for measurement of hundreds of functional proteins in single neurons. Nat Commun 2022; 13:3548. [PMID: 35729174 PMCID: PMC9213506 DOI: 10.1038/s41467-022-31336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the fact that proteins carry out nearly all cellular functions and mark the differences of cells, the existing single-cell tools can only analyze dozens of proteins, a scale far from full characterization of cells and tissue yet. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology that affords the comprehensive functional proteome profiling of single cells. We demonstrate the technology by detecting 182 proteins that include surface markers, neuron function proteins, neurodegeneration markers, signaling pathway proteins, and transcription factors. Further studies on cells derived from the 5XFAD mice, an Alzheimer's Disease (AD) model, validate the utility of our technology and reveal the deep heterogeneity of brain cells. Through comparison with control mouse cells, we have identified differentially expressed proteins in AD pathology. Our technology could offer new insights into cell machinery and thus may advance many fields including drug discovery, molecular diagnostics, and clinical studies.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Avery Ball
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jesse Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tanya Jain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
12
|
Chen Y, Kong Y, Juhasz A, Li H, Zhang R, Cui X. Influence of Dietary Lipid Type on the Bioavailability of DDT and Its Metabolites in Soil: Mechanisms and Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5102-5110. [PMID: 35384671 DOI: 10.1021/acs.est.2c00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The impact of dietary lipid type on DDTr (DDT and its metabolites) relative bioavailability (RBA) in soil was investigated using an in vivo mouse model and in vitro assays. Three different lipids were long chain triglycerides (LCT), medium chain triglycerides (MCT), and short chain triglycerides (SCT). DDTr-RBA markedly (p < 0.05) increased from 51.3 ± 10.8% (control) to 94.6 ± 15.9% (10% w/w LCT) and 112 ± 20.8% (20% LCT) in LCT amended treatments. A significant increase in DDTr-RBA (92.2 ± 9.84%, p < 0.05) was also observed when mice were administered diets containing 20% MCT; however, no influence on DDTr-RBA was observed for SCT amended diets. Mechanism exploration showed that LCT and MCT enhanced DDTr solubilization by a factor of 7.31-9.59 compared to controls as a consequence of micelle formation which promoted DDTr mobilization from soil. LCT significantly enhanced DDTr intestinal absorption via increasing synthesis and secretion of apolipoprotein B 48 (32.2 ± 2.08 mg/L), compared to MCT (22.1 ± 1.32 mg/L) and SCT (15.5 ± 2.03 mg/L) treated Caco-2 cells. Mouse gut microflora analysis highlighted that LCT and MCT may increase intestinal permeability by regulating abundance of Lactobacillus, which may influence the absorption of DDTr.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Northrop‐Albrecht EJ, Taylor WR, Huang BQ, Kisiel JB, Lucien F. Assessment of extracellular vesicle isolation methods from human stool supernatant. J Extracell Vesicles 2022; 11:e12208. [PMID: 35383410 PMCID: PMC8980777 DOI: 10.1002/jev2.12208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are of growing interest due to their potential diagnostic, disease surveillance, and therapeutic applications. While several studies have evaluated EV isolation methods in various biofluids, there are few if any data on these techniques when applied to stool. The latter is an ideal biospecimen for studying EVs and colorectal cancer (CRC) because the release of tumour markers by luminal exfoliation into stool occurs earlier than vascular invasion. Since EV release is a conserved mechanism, bacteria in stool contribute to the overall EV population. In this study, we assessed five EV separation methods (ultracentrifugation [UC], precipitation [EQ-O, EQ-TC], size exclusion chromatography [SEC], and ultrafiltration [UF]) for total recovery, reproducibility, purity, RNA composition, and protein expression in stool supernatant. CD63, TSG101, and ompA proteins were present in EV fractions from all methods except UC. Human (18s) and bacterial (16s) rRNA was detected in stool EV preparations. Enzymatic treatment prior to extraction is necessary to avoid non-vesicular RNA contamination. Ultrafiltration had the highest recovery, RNA, and protein yield. After assessing purity further, SEC was the isolation method of choice. These findings serve as the groundwork for future studies that use high throughput omics technologies to investigate the potential of stool-derived EVs as a source for novel biomarkers for early CRC detection.
Collapse
Affiliation(s)
| | - William R. Taylor
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMinnesotaUSA
| | - Bing Q. Huang
- Microscopy and Cell Analysis CoreMayo ClinicRochesterMinnesotaUSA
| | - John B. Kisiel
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
14
|
Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Collapse
|
15
|
Shilova ON, Tsyba DL, Shilov ES. Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Mol Biol 2022; 56:46-58. [PMID: 35194245 PMCID: PMC8852905 DOI: 10.1134/s002689332201006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
Proteins of the AID/APOBEC family are capable of cytidine deamination in nucleic acids forming uracil. These enzymes are involved in mRNA editing, protection against viruses, the introduction of point mutations into DNA during somatic hypermutation, and antibody isotype switching. Since these deaminases, especially AID, are potent mutagens, their expression, activity, and specificity are regulated by several intracellular mechanisms. In this review, we discuss the mechanisms of impaired expression and activation of AID/APOBEC proteins in human tumors and their role in carcinogenesis and tumor progression. Also, the diagnostic and potential therapeutic value of increased expression of AID/APOBEC in different types of tumors is analyzed. We assume that in the case of solid tumors, increased expression of endogenous deaminases can serve as a marker of response to immunotherapy since multiple point mutations in host DNA could lead to amino acid substitutions in tumor proteins and thereby increase the frequency of neoepitopes.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D. L. Tsyba
- Pavlov First State Medical University, 197022 St. Petersburg, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - E. S. Shilov
- Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
16
|
Cao J, Lv P, Shu Y, Wang J. Aptamer/AuNPs encoders endow precise identification and discrimination of lipoprotein subclasses. Biosens Bioelectron 2022; 196:113743. [PMID: 34740115 DOI: 10.1016/j.bios.2021.113743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
Lipoproteins are composed of lipid and apolipoproteins in conjunction with noncovalent bonds. Different lipoprotein categories, particularly Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL) and Very Low-Density Lipoprotein (VLDL) disagree in roles for the occurrence and development of cardiovascular disease, and their exact discrimination are critically required. Herein, a multiplexed sensor platform combined with an encoder system is introduced for accurate analysis of multiple lipoproteins in complex matrix. Three encoders, i.e., bare AuNPs, AuNPs-anti-LDL aptamer (AuNPs-apt) and AuNPs-non-aptamer DNA (AuNPs-n), facilitate precise discrimination for lipoprotein subclasses at a fairly low level of 0.490 nM. The binding of single-stranded DNA (ssDNA) with AuNPs prevents them from gathering in a relatively higher level of salt. In targets stimuli, the weaker binding between ssDNA and AuNPs is destroyed to certain degrees depending on the differential affinities among DNA, AuNPs, and multifarious proteins. It results in distinct aggregation states of encoders to cause diverse ultraviolet absorption, which may be statistically characterized to achieve highly facile and precise identification for lipoprotein subclasses. Remarkably, LDL at 0.05-37.5 μg/mL could be identified by the encoder system. 11 typical proteins including three lipoprotein subclasses in human serum were also precisely discriminated. Furthermore, the accurate identification of lipoprotein subclasses with different molar ratios from real clinical serum samples were obtained.
Collapse
Affiliation(s)
- Jianfang Cao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Peiying Lv
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
17
|
Zhang X, Nie Y, Gong Z, Zhu M, Qiu B, Wang Q. Plasma Apolipoproteins Predicting the Occurrence and Severity of Diabetic Retinopathy in Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:915575. [PMID: 35937834 PMCID: PMC9353260 DOI: 10.3389/fendo.2022.915575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Apolipoproteins are amphipathic molecules and the major components of plasma lipoproteins. This study aims to investigate the effects of dysregulated apolipoprotein (apo) profiles and their ratios on type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR) further to test the hypothesis that altered serum level of apolipoproteins is strong biomarkers for DR. RESEARCH DESIGN AND METHODS This case-control study consists of 157 patients with T2DM including DM without DR, non-proliferative DR (NPDR), and proliferative DR (PDR). Fifty-eight age- and sex-matched healthy subjects were enrolled as normal controls. Blood biochemistry profile including serum levels of glucose, glycated hemoglobin (HbA1c), lipid profile [total cholesterol (TC), Triglycerides (TG), high and low-density lipoprotein (HDL-C and LDL-C)] was estimated. Apolipoproteins (apos, A-I, A-II, B, C-II, C-III, and E) was evaluated by protein chips (Luminex technology). Apolipoprotein ratios and arteriosclerosis-associated plasma indices were calculated. The Kruskal-Wallis test, independent sample t-test or Mann-Whitney U test, and multivariate regression analysis were performed to investigate the association of serum lipid biomarkers and the DR severity. RESULTS Serum level of apoA-I was negatively correlated with TC-(HDL-C)/HDL-C (p < 0.001), fasting glucose (p < 0.001), HbA1c (p < 0.001), and (p<0.001), while apoE, apoC-II/apoC-III, apoA-II/apoA-I were positively correlated with above traditional biomarkers (p < 0.001). Single variable logistic analysis results showed that body mass index (BMI) (p = 0.023), DM duration (p < 0.001), apoE (p < 0.001), apoC-II/apo C-III (p < 0.001), apoE/apoC-II (p < 0.001), atherogenic index (p = 0.013), fasting glucose (p < 0.001), HbA1c (p < 0.001), LPA (p = 0.001), and LDL-C/HDL-C (p = 0.031) were risk factors for the occurrence and severity of DR. Multivariate logistic regression mode showed that apoC-II/apoC-III and apoB/non-HDL-C (p < 0.001) as well as apoE/apoC-II (p = 0.001) were the independent risk factors for the occurrence and severity of DR-apopA-I and apoA-II are protective factors for DR-after controlling for the duration of DM, HbA1c, fasting glucose, and LPA. CONCLUSIONS apoE, apoC-II/apoC-III, apoE/apoC-II, and apoB/non-HDL-C could be used as novel biomarkers for occurrence and severity of DR, whereas apoA-I and apoA-II resulted as protective factors for DR.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
- *Correspondence: Xinyuan Zhang,
| | - Yao Nie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
| | - Zhizhong Gong
- Division of Medical Affairs, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Meidong Zhu
- New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, NSW, Australia
- Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, NSW, Australia
| | - Bingjie Qiu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
| | - Qiyun Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Retinal and Choroidal Vascular Disorders Study Group, Beijing, China
| |
Collapse
|
18
|
Paola Gutiérrez Castro K, Patricia González A, Caccavello R, Garay-Sevilla ME, Gugliucci A. Lean adolescents with insulin resistance display higher angiopoietin like protein 3, ApoC-III and chylomicron remnant dyslipidemia. Clin Chim Acta 2021; 526:43-48. [PMID: 34971570 DOI: 10.1016/j.cca.2021.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Triglyceride-rich lipoproteins (TRL: chylomicrons and VLDL) are a key component of diabetes dyslipoproteinemia and cardiovascular risk. We have shown that it is already prevalent in obese adolescents in association with lipoprotein lipase (LPL) dysregulation. Insulin resistance (IR) suffices to produce TRL dyslipoproteinemia and LPL dysfunction even in the absence of obesity. METHODS This cross-sectional study included euglycemic adolescents between 15 and 19 y, classified in 4 groups according to BMI, HOMA-IR and fasting lipid as: metabolically healthy lean (MHL, n = 30), metabolically unhealthy lean (MUL, n = 25), metabolically healthy obese (MHO, = 30), and metabolically unhealthy obese (MUO, n = 42). RESULTS As compared to MHL, MUL participants showed 73% higher concentrations of ApoB-48; 84% of ApoC-III; 24% ANGPTL-3; 200% of TG; 218% of VLDL-C and 238% of TG/HDL-C c, No changes were found in LPL mass. Interestingly, the differences in these parameters between MUL and MHO were not significant. CONCLUSION Euglycemic lean adolescents with IR display TRL dyslipoproteinemia with increased inhibition of LPL as highlighted by higher concentrations of ANGPTL-3, ApoC-III and fasting chylomicron remnants (ApoB-48).
Collapse
Affiliation(s)
| | - Alma Patricia González
- Department of Medical Science. Division of Health Science. University of Guanajuato. Campus León, Mexico; High Specialty Medical Unit. Hospital of Gynecology and Pediatrics # 48. Mexican Institute of Social Security, Mexico
| | - Russell Caccavello
- Glycation, Oxidation and Disease Laboratory, Dept. of Research, College of Osteopathic Medicine, Touro University California, United States
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science. Division of Health Science. University of Guanajuato. Campus León, Mexico
| | - Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Dept. of Research, College of Osteopathic Medicine, Touro University California, United States.
| |
Collapse
|
19
|
Lim S, Kim YJ, Khang AR, Eckel RH. Postprandial dyslipidemia after a standardized high-fat meal in BMI-matched healthy individuals, and in subjects with prediabetes or type 2 diabetes. Clin Nutr 2021; 40:5538-5546. [PMID: 34656950 DOI: 10.1016/j.clnu.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND & AIMS A relationship between postprandial hyperlipidemia and glucose homeostasis/cardiovascular diseases has been suggested. We investigated postprandial plasma lipid patterns after a standardized high-fat meal and their association with glucose homeostasis and subclinical atherosclerosis. METHODS Using matching by BMI, 32 healthy individuals with normal glucose tolerance (NGT), 21 subjects with impaired glucose tolerance (IGT), and 20 subjects with drug-naïve type 2 diabetes (T2D) were enrolled. Plasma concentrations of triglycerides (TGs), apolipoprotein-B (ApoB), ApoB48, ApoB100, glucose, and insulin at baseline and 1, 2, 3, 4, 5, 6, and 8 h after a standardized meal (1041.03 kcal with 70.99 g of fat) were measured. Body composition, abdominal visceral fat area, and resting energy expenditure (REE) were measured using dual energy X-ray absorptiometry, computed tomography, and indirect calorimetry, respectively. The intima-media thickness (IMT) of the carotid artery and the ankle-brachial index (ABI) were used to detect subclinical atherosclerosis. RESULTS Baseline data and area under the curve (AUC) of plasma concentrations of TGs, ApoB, and ApoB48 in the IGT and T2D groups were higher than in the NGT group. The peak TG concentrations after the meal was observed at 5 h in subjects with IGT and T2D, while healthy subjects showed the highest concentrations at 4 h. In multivariable analysis, high abdominal visceral fat area and low HDL-cholesterol concentrations were independently associated with the AUCTG and AUCApoB after adjusting for confounders including baseline TG and the REE. High LDL-cholesterol and high HbA1c concentrations were also associated with the AUCApoB. Furthermore, high AUCTG and AUCApoB values were independent factors for an increased carotid IMT and a low ABI after adjusting for relevant variables. CONCLUSIONS Abdominal visceral obesity and low HDL-cholesterol concentrations were associated with increased post load excursions of TGs and ApoB in this series. These elevated concentrations of TGs and ApoB were linked with subclinical atherosclerosis.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Yoon Ji Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Mediplex Sejong Hospital, Incheon, South Korea
| | - Ah Reum Khang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University College of Medicine, Yangsan, South Korea
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, Division of Cardiology, Emeritus University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
20
|
Bristow CL, Winston R. Alphataxin, an Orally Available Small Molecule, Decreases LDL Levels in Mice as a Surrogate for the LDL-Lowering Activity of Alpha-1 Antitrypsin in Humans. Front Pharmacol 2021; 12:695971. [PMID: 34177602 PMCID: PMC8220083 DOI: 10.3389/fphar.2021.695971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The abundant blood protein α1-proteinase inhibitor (α1PI, Αlpha-1, α1-antitrypsin, SerpinA1) is known to bind to the active site of granule-associated human leukocyte elastase (HLE-G). Less well known is that binding of α1PI to cell surface HLE (HLE-CS) induces lymphocyte locomotion mediated by members of the low density lipoprotein receptor family (LDL-RFMs) thereby facilitating low density lipoprotein (LDL) clearance. LDL and α1PI were previously shown to be in negative feedback regulation during transport and clearance of lipoproteins. Further examination herein of the influence of α1PI in lipoprotein regulation using data from a small randomized, double-blind clinical trial shows that treatment of HIV-1-infected individuals with α1PI plasma products lowered apolipoprotein and lipoprotein levels including LDL. Although promising, plasma-purified α1PI is limited in quantity and not a feasible treatment for the vast number of people who need treatment for lowering LDL levels. We sought to develop orally available small molecules to act as surrogates for α1PI. Small molecule β-lactams are highly characterized for their binding to the active site of HLE-G including crystallographic studies at 1.84 Å. Using high throughput screening (HLE-G inhibition, HLE-CS-induced cellular locomotion), we show here that a panel of β-lactams, including the LDL-lowering drug ezetimibe, have the capacity to act as surrogates for α1PI by binding to HLE-G and HLE-CS. Because β-lactams are antibiotics that also have the capacity to promote evolution of antibiotic resistant bacteria, we modified the β-lactam Alphataxin to prevent antibiotic activity. We demonstrate using the diet-induced obesity (DIO) mouse model that Alphataxin, a penam, is as effective in lowering LDL levels as FDA-approved ezetimibe, a monobactam. Non-antibiotic β-lactams provide a promising new therapeutic class of small molecules for lowering LDL levels.
Collapse
Affiliation(s)
- Cynthia L Bristow
- Alpha-1 Biologics, Long Island High Technology Incubator, Stony Brook University, Stony Brook, NY, United States.,Institute for Human Genetics and Biochemistry, Vesenaz, Switzerland
| | - Ronald Winston
- Alpha-1 Biologics, Long Island High Technology Incubator, Stony Brook University, Stony Brook, NY, United States.,Institute for Human Genetics and Biochemistry, Vesenaz, Switzerland
| |
Collapse
|
21
|
Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2021; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
|
22
|
Caponio GR, Wang DQH, Di Ciaula A, De Angelis M, Portincasa P. Regulation of Cholesterol Metabolism by Bioactive Components of Soy Proteins: Novel Translational Evidence. Int J Mol Sci 2020; 22:ijms22010227. [PMID: 33379362 PMCID: PMC7794713 DOI: 10.3390/ijms22010227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hypercholesterolemia represents one key pathophysiological factor predisposing to increasing risk of developing cardiovascular disease worldwide. Controlling plasma cholesterol levels and other metabolic risk factors is of paramount importance to prevent the overall burden of disease emerging from cardiovascular-disease-related morbidity and mortality. Dietary cholesterol undergoes micellization and absorption in the small intestine, transport via blood, and uptake in the liver. An important amount of cholesterol originates from hepatic synthesis, and is secreted by the liver into bile together with bile acids (BA) and phospholipids, with all forming micelles and vesicles. In clinical medicine, dietary recommendations play a key role together with pharmacological interventions to counteract the adverse effects of chronic hypercholesterolemia. Bioactive compounds may also be part of initial dietary plans. Specifically, soybean contains proteins and peptides with biological activity on plasma cholesterol levels and this property makes soy proteins a functional food. Here, we discuss how soy proteins modulate lipid metabolism and reduce plasma cholesterol concentrations in humans, with potential outcomes in improving metabolic- and dyslipidemia-related conditions.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy;
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Agostino Di Ciaula
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy;
- Correspondence: (M.D.A.); (P.P.); Tel.: +39-080-5442949 (M.D.A.); +39-080-5478893 (P.P.)
| | - Piero Portincasa
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
- Correspondence: (M.D.A.); (P.P.); Tel.: +39-080-5442949 (M.D.A.); +39-080-5478893 (P.P.)
| |
Collapse
|
23
|
Chen Y, Juhasz A, Li H, Li C, Ma LQ, Cui X. The Influence of Food on the In Vivo Bioavailability of DDT and Its Metabolites in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5003-5010. [PMID: 32200627 DOI: 10.1021/acs.est.9b06697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Incidental soil ingestion is considered to be an important route of exposure to hydrophobic organic contaminants (HOCs), such as dichlorodiphenyl-trichloroethane (DDT). Contaminant ingestion often occurs during food consumption; however, knowledge on the influence of food on DDT bioavailability remains limited. In this study, the relative bioavailability (RBA) of soil DDTr (i.e., DDT and metabolites) was determined using an in vivo mouse model in the presence of eight kinds of food including rice, egg, pork, pear, soybean, bread, spinach, and milk powder. The values of DDTr-RBA ranged from 19.8 ± 10.9 to 114 ± 25.1%. DDTr-RBA was positively correlated with fat (r = 0.71) and negatively correlated with fiber (r = 0.63) content in food. A mechanistic study showed that fat enhanced micellarization and promoted the formation of chylomicron, which facilitated the dissolution and transport of DDTr in the intestinal tract. Bioaccessibility of DDTr was determined using a physiologically based in vitro method. The addition of lipase significantly improved the ability of the method to predict DDTr-RBA, indicating that the "fasted state" in vitro method required optimization for food scenarios. To the best of our knowledge, this is the first study to explore the mechanistic influence of food on DDTr-RBA and provide important knowledge on dietary approaches for reducing exposure to HOCs.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ, Bornfeldt KE. Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes 2020; 69:508-516. [PMID: 32198194 PMCID: PMC7085249 DOI: 10.2337/dbi19-0007] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
Abstract
Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders.
Collapse
Affiliation(s)
- Alan Chait
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Henry N Ginsberg
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY
| | - Tomas Vaisar
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jay W Heinecke
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, New York, NY
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
25
|
Li D, Zhang K, Pan Z, Yu M, Lu Y, Wang G, Wu J, Zhang J, Zhang K, Du W. Antibiotics promote abdominal fat accumulation in broilers. Anim Sci J 2020; 91:e13326. [PMID: 32219924 DOI: 10.1111/asj.13326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics stimulate the growth of animals but result in drug residues and bacterial resistance. In this study, the negative effect of antibiotics on abdominal fat deposition was evaluated in broilers. The results showed that adding both chlortetracycline (50 g/1,000 kg) and tylosin (50 g/1,000 kg) significantly increased abdominal fat weight, abdominal fat percentage (p < .05), and triglyceride and cholesterol levels (p < .05) in blood. Also, both products synchronously stimulated intestinal absorption and synthesis of liver fat. The expression levels of the peroxisome proliferator-activated receptor γ (PPARγ), diacylgycerol acyltransferase 2 (DGAT2), lipoprotein lipase (LPL), and fatty acid-binding protein (FABP4) genes in abdominal fat tissue significantly increased (p < .05 or 0.01) when antibiotics were added to the feed. However, no significant difference was found in expression of the fatty acid synthesis (FAS) or acetyl CoA carboxylase (ACC) genes. Further in vitro study results revealed that antibiotics had no effect on fat content or the related gene expression levels in preadipocytes. In summary, the antibiotics induced fat deposition in adipose tissues by activating extracellular absorption of fatty acids from intestinal absorption and synthesis of liver fat. However, it shows no direct regulation by adipose tissue.
Collapse
Affiliation(s)
- Dongfeng Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Zaixu Pan
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Minli Yu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinglin Lu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Guiying Wang
- Animal Husbandry Research Institute, Beijing Sanyuan Breeding Technology Co, Ltd, China
| | - Junfeng Wu
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Jin Zhang
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Kangning Zhang
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Wenxing Du
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Acute whole apple consumption did not influence postprandial lipaemia: a randomised crossover trial. Br J Nutr 2020; 123:807-817. [DOI: 10.1017/s0007114519003441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWhole apples are a source of pectin and polyphenols, both of which show potential to modulate postprandial lipaemia (PPL). The present study aimed to explore the effects of whole apple consumption on PPL, as a risk factor for CVD, in generally healthy but overweight and obese adults. A randomised, crossover acute meal trial was conducted with seventeen women and nine men (mean BMI of 34·1 (sem0·2) kg/m2). Blood samples were collected for 6 h after participants consumed an oral fat tolerance test meal that provided 1 g fat/kg body weight and 1500 mg acetaminophen per meal for estimating gastric emptying, with and without three whole raw Gala apples (approximately 200 g). Plasma TAG (with peak postprandial concentration as the primary outcome), apoB48, chylomicron-rich fraction particle size and fatty acid composition, glucose, insulin and acetaminophen were analysed. Differences between with and without apples were identified by ANCOVA. Apple consumption did not alter postprandial TAG response, chylomicron properties, glucose or acetaminophen (P> 0·05), but did lead to a higher apoB48 peak concentration and exaggerated insulin between 20 and 180 min (P< 0·05). Overall, as a complex food matrix, apples did not modulate postprandial TAG when consumed with a high-fat meal in overweight and obese adults, but did stimulate insulin secretion, potentially contributing to an increased TAG-rich lipoprotein production.
Collapse
|
27
|
Rakvaag E, Fuglsang-Nielsen R, Bach Knudsen KE, Landberg R, Johannesson Hjelholt A, Søndergaard E, Hermansen K, Gregersen S. Whey Protein Combined with Low Dietary Fiber Improves Lipid Profile in Subjects with Abdominal Obesity: A Randomized, Controlled Trial. Nutrients 2019; 11:nu11092091. [PMID: 31487806 PMCID: PMC6770182 DOI: 10.3390/nu11092091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
Abdominal obesity is associated with elevated postprandial triglycerides (TG), an independent risk factor for cardiovascular diseases. Previous studies show that whey protein (WP) and dietary fiber may separately reduce postprandial TG. However, few studies have investigated the long-term effects of WP and dietary fiber on postprandial TG. We aimed to investigate the separate and combined long-term effects of WP and dietary fiber from wheat bran on postprandial TG and markers of lipid metabolism in subjects with abdominal obesity. We conducted a 12-week, double-blind, randomized, controlled, parallel intervention study. In a 2 × 2 factorial design, 73 adults were randomized to receive 60 g/day of either WP hydrolysate or maltodextrin (MD) combined with high-fiber wheat bran products (HiFi; 30 g dietary fiber/day) or low-fiber refined wheat products (LoFi; 10 g dietary fiber/day). A high-fat meal test was conducted before and after the intervention. Sixty-five subjects were included in the final analyses. There were no differences between intervention groups in postprandial TG assessed as incremental area under the curve (iAUC). WP-LoFi had reduced postprandial TG assessed as total area under the curve (tAUC) and reduced fasting TG compared with all other groups, and reduced fasting apolipoprotein B-48 compared with MD-LoFi. There were no changes in lipoprotein lipase activity. Total cholesterol and apolipoprotein B-100 were reduced after WP intake compared with MD. Total cholesterol was increased after HiFi intake compared with LoFi. In conclusion, intake of WP in combination with low-fiber cereal products for 12 weeks had beneficial effects on postprandial TG tAUC and fasting TG, but not on postprandial TG iAUC in subjects with abdominal obesity. Combining WP with high-fiber wheat bran products did not improve lipid profile.
Collapse
Affiliation(s)
- Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Esben Søndergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, 8200 Aarhus, Denmark
| |
Collapse
|
28
|
Öörni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-Rich Lipoproteins as a Source of Proinflammatory Lipids in the Arterial Wall. Curr Med Chem 2019; 26:1701-1710. [DOI: 10.2174/0929867325666180530094819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins
(chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and
cholesterol-rich low-density lipoprotein particles. Of these, lipoproteins having sizes below
70-80 nm may enter the arterial wall, where they accumulate and induce the formation of
atherosclerotic lesions. The processes that lead to accumulation of lipoprotein-derived lipids
in the arterial wall have been largely studied with a focus on the low-density lipoprotein particles.
However, recent observational and genetic studies have discovered that the triglyceriderich
lipoproteins and their remnants are linked with cardiovascular disease risk. In this review,
we describe the potential mechanisms by which the triglyceride-rich remnant lipoproteins can
contribute to the development of atherosclerotic lesions, and highlight the differences in the
atherogenicity between low-density lipoproteins and the remnant lipoproteins.
Collapse
Affiliation(s)
| | - Satu Lehti
- Wihuri Research Institute, Helsinki, Finland
| | | | | |
Collapse
|
29
|
Sandesara PB, Virani SS, Fazio S, Shapiro MD. The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr Rev 2019; 40:537-557. [PMID: 30312399 PMCID: PMC6416708 DOI: 10.1210/er.2018-00184] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death worldwide. Low-density lipoprotein cholesterol (LDL-C) is a well-established mediator of atherosclerosis and a key target for intervention for the primary and secondary prevention of ASCVD. However, despite substantial reduction in LDL-C, patients continue to have recurrent ASCVD events. Hypertriglyceridemia may be an important contributor of this residual risk. Observational and genetic epidemiological data strongly support a causal role of triglycerides (TGs) and the cholesterol content within triglyceride-rich lipoproteins (TGRLs) and/or remnant cholesterol (RC) in the development of ASCVD. TGRLs are composed of hepatically derived very low-density lipoprotein and intestinally derived chylomicrons. RC is the cholesterol content of all TGRLs and plasma TGs serve as a surrogate measure of TGRLs and RC. Although lifestyle modification remains the cornerstone for management of hypertriglyceridemia, many novel drugs are in development and have shown impressive efficacy in lowering TG levels. Several ongoing, randomized controlled trials are underway to examine the impact of these novel agents on ASCVD outcomes. In this comprehensive review, we provide an overview of the biology, epidemiology, and genetics of TGs and ASCVD; we discuss current and novel TG-lowering therapies under development.
Collapse
Affiliation(s)
- Pratik B Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Salim S Virani
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas.,Baylor College of Medicine, Houston, Texas
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Michael D Shapiro
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
30
|
Panth N, Dias CB, Wynne K, Singh H, Garg ML. Medium-chain fatty acids lower postprandial lipemia: A randomized crossover trial. Clin Nutr 2019; 39:90-96. [PMID: 30824268 DOI: 10.1016/j.clnu.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022]
Abstract
Epidemiological and interventional studies have linked saturated fatty acids (SFA) with elevated levels of low-density lipoprotein cholesterol (LDL-C) and increased CVD risk. However, the effects of the SFA chain length on postprandial lipemia in humans are not well elucidated. The aim of this study was to investigate the impact of short, medium and long-chain SFA on postprandial blood lipids in healthy volunteers. Sixteen healthy volunteers consumed test biscuits containing 40 g of either butter (BB), coconut oil (CB) or lard (LB) in a single-blinded, randomized crossover design. Blood samples were collected fasting and 2, 3, 4, and 6 hours postprandially and assessed for blood lipids (total cholesterol, TC; high-density lipoprotein cholesterol, HDL-C; LDL-C and triglyceride, TG). The postprandial TG response following CB was 59.8% lower than following BB (p < 0.01) and 58.8% lower than LB (p < 0.01), although no difference was observed between the BB and the LB responses. The net area under the LDL-C concentration curve was significantly larger after consumption of the CB compared to the BB, despite no significant differences in postprandial net area under the TC and HDL-C concentration curves. Consumption of medium-chain SFA as CB resulted in lower postprandial TG excursions compared to short-chain SFA as BB and long-chain SFA as LB, despite their identical fat and caloric content. These results suggest that SFA differ in their potential to elevate postprandial lipid levels, and that coconut oil, a rich source of medium-chain SFA may not be as hyperlipidemic as animal fats rich in long chain SFA. ANZCTR IDENTIFIER: 12617000903381. CLINICAL TRIAL REGISTRY NUMBER: The study was registered with the Australia New Zealand Trial registry as ACTRN12617000903381.
Collapse
Affiliation(s)
- Nisha Panth
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, 305C Medical Science Building, Callaghan, NSW 2308, Australia.
| | - Cintia B Dias
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, 305C Medical Science Building, Callaghan, NSW 2308, Australia; Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Katie Wynne
- Department of Diabetes & Endocrinology, School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW 2310, Australia.
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, 305C Medical Science Building, Callaghan, NSW 2308, Australia; Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
31
|
Disentangling Host-Microbiota Regulation of Lipid Secretion by Enterocytes: Insights from Commensals Lactobacillus paracasei and Escherichia coli. mBio 2018; 9:mBio.01493-18. [PMID: 30181250 PMCID: PMC6123438 DOI: 10.1128/mbio.01493-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota contributes to nutrients absorption and metabolism by enterocytes, but the molecular mechanisms involved remain poorly understood, and most conclusions are inferred from studies comparing germfree and conventional animals colonized with diverse bacterial species. We selected two model commensal microorganisms, Escherichia coli and Lactobacillus paracasei, to assess the role of the small-intestinal microbiota in modulating lipid absorption and metabolism by the epithelium. Using an integrated approach encompassing cellular and murine models and combining metabolic parameters measurement, lipid droplet imaging, and gene expression analysis, we demonstrated that under homeostatic conditions, L. paracasei promotes fat storage in enterocytes, whereas E. coli enhances lipid catabolism and reduces chylomicron circulating levels. The Akt/mammalian target of sirolimus (mTOR) pathway is inhibited by both bacterial species in vitro, indicating that several regulatory pathways are involved in the distinct intracellular lipid outcomes associated with each bacterial species. Moreover, soluble bacterial factors partially reproduce the effects observed with live microorganisms. However, reduction of chylomicron circulating levels in E. coli-colonized animals is lost under high-fat-diet conditions, whereas it is potentiated by L. paracasei colonization accompanied by resistance to hypercholesterolemia and excess body weight gain.IMPORTANCE The specific contribution of each bacterial species within a complex microbiota to the regulation of host lipid metabolism remains largely unknown. Using two model commensal microorganisms, L. paracasei and E. coli, we demonstrated that both bacterial species impacted host lipid metabolism in a diet-dependent manner and, notably, that L. paracasei-colonized mice but not E. coli-colonized mice resisted high-fat-diet-induced body weight gain. In addition, we set up cellular models of fatty acid absorption and secretion by enterocytes cocultured with bacteria and showed that, in vitro, both L. paracasei and E. coli inhibited lipid secretion, through increased intracellular fat storage and enhanced lipid catabolism, respectively.
Collapse
|
32
|
Abstract
Increased understanding of fructose metabolism, which begins with uptake via the intestine, is important because fructose now constitutes a physiologically significant portion of human diets and is associated with increased incidence of certain cancers and metabolic diseases. New insights in our knowledge of intestinal fructose absorption mediated by the facilitative glucose transporter GLUT5 in the apical membrane and by GLUT2 in the basolateral membrane are reviewed. We begin with studies related to structure as well as ligand binding, then revisit the controversial proposition that apical GLUT2 is the main mediator of intestinal fructose absorption. The review then describes how dietary fructose may be sensed by intestinal cells to affect the expression and activity of transporters and fructolytic enzymes, to interact with the transport of certain minerals and electrolytes, and to regulate portal and peripheral fructosemia and glycemia. Finally, it discusses the potential contributions of dietary fructose to gastrointestinal diseases and to the gut microbiome.
Collapse
Affiliation(s)
- Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07946, USA;
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA;
| | - Chirag R Patel
- Independent Drug Safety Consulting, Wilmington, Delaware 19803, USA;
| |
Collapse
|
33
|
Benes LB, Brandt EJ, Davidson MH. Advances in diagnosis and potential therapeutic options for familial chylomicronemia syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1419863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lane B. Benes
- Section of Cardiology, The University of Chicago Medicine, Chicago, IL, USA
| | - Eric J. Brandt
- Section of Cardiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
34
|
Tran TT, Bollineni RC, Koehler CJ, Thiede B. Absolute two-point quantification of proteins using dimethylated proteotypic peptides. Analyst 2018; 143:4359-4365. [DOI: 10.1039/c8an01081a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For absolute quantification of target proteins by LC-MS, adding two versions of spike-in peptides can be used as a quality control against each other.
Collapse
Affiliation(s)
| | | | | | - Bernd Thiede
- Department of Biosciences
- University of Oslo
- Norway
| |
Collapse
|
35
|
Muraba Y, Koga T, Shimomura Y, Ito Y, Hirao Y, Kobayashi J, Kimura T, Nakajima K, Murakami M. The role of plasma lipoprotein lipase, hepatic lipase and GPIHBP1 in the metabolism of remnant lipoproteins and small dense LDL in patients with coronary artery disease. Clin Chim Acta 2017; 476:146-153. [PMID: 29174344 DOI: 10.1016/j.cca.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND The relationship between plasma lipoprotein lipase (LPL), hepatic triglyceride lipase (HTGL), glycosylphosphatidylinositol anchored HDL binding protein1 (GPIHBP1) concentration and the metabolism of remnant lipoproteins (RLP) and small dense LDL (sdLDL) in patients with coronary artery disease (CAD) is not fully elucidated. METHODS One hundred patients who underwent coronary angiography were enrolled. The plasma LPL, HTGL and GPIHBP1 concentrations were determined by ELISA. The time dependent changes in those lipases, lipids and lipoproteins were studied at a time-point just before, and 15min, 4h and 24h after heparin administration. RESULTS The LPL concentration exhibited a significant positive correlation with HDL-C, and inversely correlated with TG and RLP-C. The HTGL concentration was positively correlated with RLP-C and sdLDL-C. The HTGL ratio of the pre-heparin/post-heparin plasma concentration and sdLDL-C/LDL-C ratio were significantly greater in CAD patients than in non-CAD patients. GPIHBP1 was positively correlated with LPL and inversely correlated with RLP-C and sdLDL-C. CONCLUSION The HTGL concentration was positively correlated with RLP-C and sdLDL-C, while LPL and GPIHBP1 were inversely correlated with RLP-C and sdLDL-C. These results suggest that elevated HTGL is associated with increased CAD risk, while elevated LPL is associated with a reduction of CAD risk.
Collapse
Affiliation(s)
- Yuji Muraba
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Hidaka Hospital, Takasaki, Gunma, Japan.
| | | | | | | | | | - Junji Kobayashi
- Department of General Internal Medicine, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Hidaka Hospital, Takasaki, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
36
|
Mika M, Wikiera A, Antończyk A, Grabacka M. Food Stabilizing Antioxidants Increase Nutrient Bioavailability in the in Vitro Model. J Am Coll Nutr 2017; 36:579-585. [PMID: 28895793 DOI: 10.1080/07315724.2017.1333930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We investigated whether antioxidants may enhance bioavailability of lipids and carbohydrates and therefore increase the risk of obesity development. METHODS We tested how supplementation with antioxidants (0.01% butylated hydroxytoluene [BHT], α-tocopherol, and green tea catechins) of a diet containing butter and wheat bread affects bioavailability of fats and carbohydrates. The absorption of the in vitro digested diet was estimated in the intestinal epithelia model of the Caco-2 cells cultured in Transwell chambers. RESULTS In the case of the antioxidant-supplemented diets, we observed increased bioavailability of glucose, cholesterol, and lipids, as well as elevated secretion of the main chylomicron protein apoB-48 to the basal compartment. Importantly, we did not detect any rise in the concentrations of lipid peroxidation products (malondialdehyde, MDA) in the control samples prepared without antioxidants. CONCLUSIONS Addition of antioxidants (in particular BHT) to the diet increases bioavailability of lipids and carbohydrates, which consequently may increase the risk of obesity development. The dose of antioxidants is a factor of fundamental importance, particularly for catechins: low doses increase absorption of lipids, whereas high doses exert the opposite effect.
Collapse
Affiliation(s)
- Magdalena Mika
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - Agnieszka Wikiera
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - Anna Antończyk
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - Maja Grabacka
- a Department of Food Biotechnology, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| |
Collapse
|
37
|
Santos AJM, Nogueira C, Ortega-Bellido M, Malhotra V. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 2016; 213:343-54. [PMID: 27138255 PMCID: PMC4862334 DOI: 10.1083/jcb.201603072] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Santos et al. show that TANGO1 and a TANGO1-like protein, TALI, bind each other and function together as receptors to export bulky ApoB-containing lipid particles from the endoplasmic reticulum. However, TANGO1-mediated export of bulky collagens by the same cells is TALI independent. Procollagens, pre-chylomicrons, and pre–very low-density lipoproteins (pre-VLDLs) are too big to fit into conventional COPII-coated vesicles, so how are these bulky cargoes exported from the endoplasmic reticulum (ER)? We have shown that TANGO1 located at the ER exit site is necessary for procollagen export. We report a role for TANGO1 and TANGO1-like (TALI), a chimeric protein resulting from fusion of MIA2 and cTAGE5 gene products, in the export of pre-chylomicrons and pre-VLDLs from the ER. TANGO1 binds TALI, and both interact with apolipoprotein B (ApoB) and are necessary for the recruitment of ApoB-containing lipid particles to ER exit sites for their subsequent export. Although export of ApoB requires the function of both TANGO1 and TALI, the export of procollagen XII by the same cells requires only TANGO1. These findings reveal a general role for TANGO1 in the export of bulky cargoes from the ER and identify a specific requirement for TALI in assisting TANGO1 to export bulky lipid particles.
Collapse
Affiliation(s)
- António J M Santos
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Cristina Nogueira
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Maria Ortega-Bellido
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08002 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
38
|
Gui Y, Chu N, Qiu X, Tang W, Gober HJ, Li D, Wang L. 17-β-estradiol up-regulates apolipoprotein genes expression during osteoblast differentiation in vitro. Biosci Trends 2016; 10:140-51. [PMID: 27074899 DOI: 10.5582/bst.2016.01007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Apolipoproteins are of great physiological importance and are associated with different diseases. Many independent studies of patterns of gene expression during osteoblast differentiation have been described, and some apolipoproteins have been induced during this process. 17-β-estradiol (E2) may enhance osteoblast physiological function. However, no studies have indicated whether E2 can modulate the expression of apolipoproteins during osteoblast differentiation in vitro. The aim of the current study was to observe the regulation of apolipoprotein mRNA expression by E2 during this process. Primary osteoblasts were collected from the calvaria of newborn mice and were subjected to osteoblast differentiation in vitro with serial concentrations of E2. RNA was isolated on days 0, 5, and 25 of differentiation. Real-time PCR was performed to analyze the levels of apolipoprotein mRNA. Results showed that during osteoblast differentiation all of the apolipoprotein genes were up-regulated by E2 in a dose-dependent manner. Moreover, only ApoE was strongly induced during the mineralization of cultured osteoblasts. This result suggests that ApoE might be involved in osteoblast differentiation. The hypothesis is that E2 promotes osteoblast differentiation by up-regulating ApoE gene expression, though further study is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| | | | | | | | | | | | | |
Collapse
|
39
|
Julve J, Martín-Campos JM, Escolà-Gil JC, Blanco-Vaca F. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics. Clin Chim Acta 2016; 455:134-48. [PMID: 26868089 DOI: 10.1016/j.cca.2016.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 01/17/2023]
Abstract
The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs.
Collapse
Affiliation(s)
- Josep Julve
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Jesús M Martín-Campos
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica, Barcelona, Spain
| |
Collapse
|
40
|
Hamza MS, Kumar C, Chia SM, Anandalakshmi V, Boo N, Strapps W, Robinson M, Caguyong M, Bartz S, Tadin-Strapps M, van Gool A, Shih SJ. Alterations in the hepatic transcriptional landscape after RNAi mediated ApoB silencing in cynomolgus monkeys. Atherosclerosis 2015; 242:383-95. [DOI: 10.1016/j.atherosclerosis.2015.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/09/2015] [Accepted: 07/18/2015] [Indexed: 12/25/2022]
|
41
|
Bohl M, Bjørnshave A, Rasmussen KV, Schioldan AG, Amer B, Larsen MK, Dalsgaard TK, Holst JJ, Herrmann A, O'Neill S, O'Driscoll L, Afman L, Jensen E, Christensen MM, Gregersen S, Hermansen K. Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): a 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study. Am J Clin Nutr 2015; 101:870-8. [PMID: 25833983 DOI: 10.3945/ajcn.114.097923] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Abdominal obesity and exaggerated postprandial lipemia are independent risk factors for cardiovascular disease (CVD) and mortality, and both are affected by dietary behavior. OBJECTIVE We investigated whether dietary supplementation with whey protein and medium-chain saturated fatty acids (MC-SFAs) improved postprandial lipid metabolism in humans with abdominal obesity. DESIGN We conducted a 12-wk, randomized, double-blinded, diet intervention study. Sixty-three adults were randomly allocated to one of 4 diets in a 2 × 2 factorial design. Participants consumed 60 g milk protein (whey or casein) and 63 g milk fat (with high or low MC-SFA content) daily. Before and after the intervention, a high-fat meal test was performed. We measured changes from baseline in fasting and postprandial triacylglycerol, apolipoprotein B-48 (apoB-48; reflecting chylomicrons of intestinal origin), free fatty acids (FFAs), insulin, glucose, glucagon, glucagon-like peptide 1 (GLP-1), and gastric inhibitory polypeptide (GIP). Furthermore, changes in the expression of adipose tissue genes involved in lipid metabolism were investigated. Two-factor ANOVA was used to examine the difference between protein types and fatty acid compositions, as well as any interaction between the two. RESULTS Fifty-two participants completed the study. We found that the postprandial apoB-48 response decreased significantly after whey compared with casein (P = 0.025) independently of fatty acid composition. Furthermore, supplementation with casein resulted in a significant increase in the postprandial GLP-1 response compared with whey (P = 0.003). We found no difference in postprandial triacylglycerol, FFA, insulin, glucose, glucagon, or GIP related to protein type or MC-SFA content. We observed no interaction between milk protein and milk fat on postprandial lipemia. CONCLUSION We found that a whey protein supplement decreased the postprandial chylomicron response compared with casein in persons with abdominal obesity, thereby indicating a beneficial impact on CVD risk. This trial was registered at clinicaltrials.gov as NCT01472666.
Collapse
Affiliation(s)
- Mette Bohl
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Ann Bjørnshave
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Kia V Rasmussen
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Anne Grethe Schioldan
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Bashar Amer
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Mette K Larsen
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Trine K Dalsgaard
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Jens J Holst
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Annkatrin Herrmann
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Sadhbh O'Neill
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Lorraine O'Driscoll
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Lydia Afman
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Erik Jensen
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Merete M Christensen
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Søren Gregersen
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| | - Kjeld Hermansen
- From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC)
| |
Collapse
|
42
|
Comparison of the effect of post-heparin and pre-heparin lipoprotein lipase and hepatic triglyceride lipase on remnant lipoprotein metabolism. Clin Chim Acta 2015; 440:193-200. [DOI: 10.1016/j.cca.2014.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
|
43
|
Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:175-211. [PMID: 26149931 DOI: 10.1007/978-3-319-17344-3_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
Collapse
|