1
|
Sadi S, Ghollasi M, Eskandari K, Darvishi E. Innovative approaches in invertase immobilization: Utilizing green synthesized zinc oxide nanoparticles to improve biochemical properties. Anal Biochem 2025; 696:115661. [PMID: 39251155 DOI: 10.1016/j.ab.2024.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Invertase enzyme can effectively improve the taste, color, and durability of these products. Various methods have been proposed to increase the stability and efficiency of enzymes. One of the most important is enzyme immobilization, which can be implemented on different materials. The purpose of this study was to immobilize the invertase enzyme on the surface of green synthesized zinc oxide nanoparticles and to investigate its biochemical properties. The enzyme immobilization was confirmed by SEM and Raman spectroscopy. Then, the biochemical characteristics, such as optimal pH and temperature, thermal stability, and storage stability of free and immobilized enzymes, were determined. The results of SEM showed that the diameter of synthesized nanoparticles was about 60 ± 5 nm. FTIR of immobilized invertase confirmed the immobilization process. The immobilization efficiency was determined to be 72 %. Immobilized enzyme showed higher thermal stability at 40 and 50 °C. Immobilized enzyme could be used 8 times in optimum condition. Also, an Examination of the kinetic parameters of the immobilized enzyme compared with those of the free enzyme showed a decrease in the maximum velocity of the enzyme. It seems that the immobilized invertase has improved characteristics for application in different industries.
Collapse
Affiliation(s)
- Somayeh Sadi
- Department of Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University [IAUPS], Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Khadijeh Eskandari
- Radiation Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Darvishi
- Department of Nanobiotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
2
|
Wang W, Huang WC, He Y, Zhang Y, Mao X. Chitosan-Based Charge-Controllable Supramolecular Carrier for Universal Immobilization of Enzymes with Different Isoelectric Points. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23458-23464. [PMID: 39400208 DOI: 10.1021/acs.jafc.4c07748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Electrostatic adsorption is an enzyme immobilization method that effectively maintains enzyme activity and exhibits considerable binding efficiency. However, enzymes carry different charges at their respective reaction pH levels, which prevents the use of the same carrier to immobilize enzymes with different charges. In this study, we employed a template-mediated polysaccharide-enzyme coupling self-assembly strategy to develop a charge-controllable supramolecular immobilization carrier by regulating the charge properties of carboxymethyl chitosan, enabling the universal immobilization of enzymes with different charge levels across a range of reaction pH values. By using silica nanoparticles of certain sizes as templates, the size of the carrier can be precisely controlled and the hollow network structure formed after removing the template can effectively reduce mass transfer resistance. Trypsin and papain are used as model enzymes, and the experimental results show that the supramolecular self-assembly immobilization strategy does not disrupt the secondary structure of the enzyme molecules. After 2 h of reaction, the enzyme activities of immobilized papain and immobilized trypsin are 13.2% and 7.7% higher than those of the free enzymes, respectively. After 10 consecutive reactions, the enzyme activities of immobilized papain and immobilized trypsin retained 56.3% and 64.3% of their initial values, respectively.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wen-Can Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Yaling He
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Yan Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
3
|
Vorvi S, Tsougeni K, Tserepi A, Kakabakos S, Petrou P, Gogolides E. Enhanced Immobilization of Enzymes on Plasma Micro-Nanotextured Surfaces and Microfluidics: Application to HRP. Molecules 2024; 29:4736. [PMID: 39407664 PMCID: PMC11477641 DOI: 10.3390/molecules29194736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The enhanced and direct immobilization of the enzyme horseradish peroxidase on poly(methyl methacrylate) (PMMA) microchannel surfaces to create a miniaturized enzymatic reactor for the biocatalytic oxidation of phenols is demonstrated. Enzyme immobilization occurs by physical adsorption after oxygen plasma treatment, which micro-nanotextures the PMMA surfaces. A five-fold enhancement in immobilized enzyme activity was observed, attributed to the increased surface area and, therefore, to a higher quantity of immobilized enzymes compared to an untreated PMMA surface. The enzymatic reaction yield reached 75% using a flow rate of 2.0 μL/min for the reaction mixture. Additionally, the developed microreactor was reused more than 16 times without affecting the enzymatic conversion yield. These results demonstrate the potential of microchannels with plasma micro/nanotextured surfaces for the rapid and facile fabrication of microfluidic enzymatic microreactors with enhanced catalytic activity and stability.
Collapse
Affiliation(s)
- Stefania Vorvi
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (S.V.); (K.T.); (A.T.)
| | - Katerina Tsougeni
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (S.V.); (K.T.); (A.T.)
| | - Angeliki Tserepi
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (S.V.); (K.T.); (A.T.)
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| | - Panagiota Petrou
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece;
| | - Evangelos Gogolides
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”, 15341 Aghia Paraskevi, Greece; (S.V.); (K.T.); (A.T.)
| |
Collapse
|
4
|
Sakai J, Sasaki K, Nakatani R, Das S, Negishi Y. A silver cluster-assembled material as a matrix for enzyme immobilization towards a highly efficient biocatalyst. NANOSCALE 2024. [PMID: 39329313 DOI: 10.1039/d4nr02506g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Silver cluster-assembled materials (SCAMs) epitomize well-defined extended crystalline frameworks that combine the ingenious designability at the atomic/molecular level and high structural robustness. They have captivated the interest of the scientific fraternity because of their modular construction which enables to systematically tailor their functions, and their capacity to not only inherit the characteristics of component building units but also introduce their uniqueness in endowing the final material with extraordinary properties. Herein, we demonstrate the synthesis of a novel (3,6)-connected two-dimensional (2D) SCAM [Ag12(StBu)6(CF3COO)6(THIT)6]n (described as TUS 5, THIT = 2,4,6-tri(1H-imidazol-1-yl)-1,3,5-triazine) composed of Ag12 cluster nodes and tritopic imidazolyl linkers. We have leveraged, for the first time, this precisely architected extended SCAM structure as a support matrix for enzyme immobilization. The electrostatic attraction between the negatively charged amano lipase PS and positively charged TUS 5 as well as the surface hydrophobicity of TUS 5 catered to great binding of lipase onto the TUS 5 matrix, in addition to boosting the activity of lipase via interfacial activation. Capitalizing on the cooperative benefits of organic and inorganic support matrices wherein organic supports impart with cost-efficiency, biocompatibility, and improved enzyme stability and reusability and inorganic supports confer high thermal, mechanical and microbial resistance, we have utilized the immobilized lipase on TUS 5 SCAM (lipase@TUS 5) for the kinetic resolution of (R,S)-1-phenylethanol by transesterification reaction. Importantly, lipase@TUS 5 could attain appreciably higher conversion into (R)-1-phenylethyl acetate, besides featuring superior thermal stability, solvent tolerance and recyclability, over the native lipase.
Collapse
Affiliation(s)
- Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kohki Sasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
5
|
Cruz IDA, Cruz-Magalhães V, Loguercio LL, Dos Santos LBPR, Uetanabaro APT, Costa AMD. A systematic study on the characteristics and applications of laccases produced by fungi: insights on their potential for biotechnologies. Prep Biochem Biotechnol 2024; 54:896-909. [PMID: 38170449 DOI: 10.1080/10826068.2023.2297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Laccases are polyphenol oxidase enzymes and form the enzyme complex known for their role in wood decomposition and lignin degradation. The present study aimed to systematically review the state-of-the-art trends in scientific publications on laccase enzymes of the last 10 years. The main aspects checked included the laccase-producing fungal genera, the conditions of fungal growth and laccase production, the methods of immobilization, and potential applications of laccase. After applying the systematic search method 177 articles were selected to compound the final database. Although various fungi produce laccase, most studies were Trametes and Pleurotus genera. The submerged fermentation (SmF) has been the most used, however, the use of solid-state fermentation (SSF) appeared as a promising technique to produce laccase when using agro-industrial residues as substrates. Studies on laccase immobilization showed the covalent bonding and entrapment methods were the most used, showing greater efficiency of immobilization and a high number of enzyme reuses. The main use of the laccase was in bioremediation, especially in the discoloration of dyes from the textile industry and the degradation of pharmaceutical waste. Implications and consequences of all these findings in biotechnology and environment, as well as the trends and gaps of laccase research were discussed.
Collapse
Affiliation(s)
- Ian David Araújo Cruz
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Leandro Lopes Loguercio
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Andréa Miura da Costa
- Departamento de Ciências Biológicas, UESC - Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
6
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Chen M, Li B, Wei W, Zhang Z, Zhang L, Li C, Huang Q. Ultrafast protein digestion using an immobilized enzyme reactor following high-resolution mass spectrometry analysis for rapid identification of abrin toxin. Analyst 2024; 149:3783-3792. [PMID: 38845587 DOI: 10.1039/d4an00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Abrin toxin, highly dangerous with an estimated human lethal dose of 0.1-1 μg per kg body weight, has attracted much attention regarding criminal and terroristic misuse over the past decade. Therefore, developing a rapid detection method for abrin toxin is of great significance in the field of biosecurity. In this study, based on the specific dissociation method of an immobilized enzyme reactor, the trypsin immobilized reactor Fe3O4@CTS-GA-Try was prepared to replace free trypsin, and the immobilized enzyme digestion process was systematically investigated and optimized by using bovine serum albumin as the simulant of abrin. After 5 min one-step denaturation and reduction, a satisfactory peptide number and coverage were yielded with only 15 s assisted by an ultrasound probe to identify model proteins. Subsequently, abrin was rapidly digested using the established method, resulting in a stable and highly reproducible characteristic peptide number of 39, which can be analyzed by nanoelectrospray ionization coupled with high-resolution mass spectrometry. With the acquisition mode of full MS scan coupled with PRM, not only MS spectroscopy of total abrin peptides but also the corresponding MS/MS spectroscopy of specific abrin peptides can achieve the characteristic detection of abrin toxin and its different isoforms in less than 10 minutes, with high repeatability. This assay provides a universal platform and has great potential for the development of on-site detection and rapid mass spectrometric analysis techniques for macromolecular protein toxins and can further be applied to the integrated detection of chemical and biological agents.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Baoqiang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Wenlu Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zhongyao Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Cuiping Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Qibin Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
8
|
Palanisamy R, Subramanian SK, Nivetha Sivakumar R, Kangeswaren M, Nagendra Prasad HS, Perumal V, Asiedu SK. Liposome-encapsulated cytochrome P450 and gibberellic acid biosynthesis in Priestia megaterium RP1. Int J Biol Macromol 2024; 273:132954. [PMID: 38852726 DOI: 10.1016/j.ijbiomac.2024.132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.
Collapse
Affiliation(s)
- Ravishankar Palanisamy
- Department of Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada; Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636011, India; Rayakis, Energy and Environmental Consultancy, Periyar Street, Salem, Tamil Nadu 636 001, India.
| | | | - R Nivetha Sivakumar
- Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636011, India
| | - Mario Kangeswaren
- Department of Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - H S Nagendra Prasad
- Department of Chemistry, Sri Jayachamrajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka 570 006, India
| | | | - Samuel K Asiedu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
9
|
Araújo EV, Carneiro SV, Neto DMA, Freire TM, Costa VM, Freire RM, Fechine LMUD, Clemente CS, Denardin JC, Dos Santos JCS, Santos-Oliveira R, Rocha JS, Fechine PBA. Advances in surface design and biomedical applications of magnetic nanoparticles. Adv Colloid Interface Sci 2024; 328:103166. [PMID: 38728773 DOI: 10.1016/j.cis.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Despite significant efforts by scientists in the development of advanced nanotechnology materials for smart diagnosis devices and drug delivery systems, the success of clinical trials remains largely elusive. In order to address this biomedical challenge, magnetic nanoparticles (MNPs) have gained attention as a promising candidate due to their theranostic properties, which allow the simultaneous treatment and diagnosis of a disease. Moreover, MNPs have advantageous characteristics such as a larger surface area, high surface-to-volume ratio, enhanced mobility, mass transference and, more notably, easy manipulation under external magnetic fields. Besides, certain magnetic particle types based on the magnetite (Fe3O4) phase have already been FDA-approved, demonstrating biocompatible and low toxicity. Typically, surface modification and/or functional group conjugation are required to prevent oxidation and particle aggregation. A wide range of inorganic and organic molecules have been utilized to coat the surface of MNPs, including surfactants, antibodies, synthetic and natural polymers, silica, metals, and various other substances. Furthermore, various strategies have been developed for the synthesis and surface functionalization of MNPs to enhance their colloidal stability, biocompatibility, good response to an external magnetic field, etc. Both uncoated MNPs and those coated with inorganic and organic compounds exhibit versatility, making them suitable for a range of applications such as drug delivery systems (DDS), magnetic hyperthermia, fluorescent biological labels, biodetection and magnetic resonance imaging (MRI). Thus, this review provides an update of recently published MNPs works, providing a current discussion regarding their strategies of synthesis and surface modifications, biomedical applications, and perspectives.
Collapse
Affiliation(s)
- E V Araújo
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - S V Carneiro
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - D M A Neto
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - T M Freire
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - V M Costa
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - R M Freire
- Universidad Central de Chile, Santiago 8330601, Chile.
| | - L M U D Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - C S Clemente
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE 60440-900, Brazil.
| | - J C Denardin
- Physics Department and CEDENNA, University of Santiago of Chile (USACH), Santiago 9170124, Chile.
| | - J C S Dos Santos
- Engineering and Sustainable Development Institute, International Afro-Brazilian Lusophone Integration University, Campus das Auroras, Redenção 62790970, CE, Brazil; Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil.
| | - R Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, R. Helio de Almeida, 75, Rio de Janeiro 21941906, RJ, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy, Av Manuel Caldeira de Alvarenga, 1203, Campo Grande 23070200, RJ, Brazil.
| | - Janaina S Rocha
- Industrial Technology and Quality Center of Ceará, R. Prof. Rômulo Proença, s/n - Pici, 60440-552 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Liu G, Li K, Yuan H, Zhou R, Mao L, Zhang R, Zhang G. An antifouling epoxy coated metal surface containing silica-immobilized carbonic anhydrase supraparticles for CO 2 capture through microalgae. Int J Biol Macromol 2024; 269:132075. [PMID: 38705317 DOI: 10.1016/j.ijbiomac.2024.132075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Carbonic anhydrase (CA) has a promising application as a green and efficient biocatalyst for CO2 capture, and many successful cases of immobilizing CA have been reported. However, CA antifouling coatings on metal for CO2 sequestration have rarely been reported. Herein, dimeric CA from Sulfurihydrogenibium azorense (SazCA) with a ferritin tag, which was prepared by low-speed centrifugation with high yield, was adopted as a free enzyme and encapsulated in the sol-gel silica. The silica-immobilized CAs were dispersed into the commercialized metal-antifouling epoxy resin paint to obtain CA coated nickel foams, which had excellent stability, with 90 % and 67 % residual activity after 28 days of incubation at 30 °C and 60 °C, respectively. The CA coated nickel foams remained 60 % original activity after 6 cycles of use within 28 days. Then, a CA-microalgae carbon capture device was constructed using the CA coated nickel foams and Chlorella. The growth rate of Chlorella was significantly increased and the biomass of Chlorella increased by 29 % compared with control after 7 days of incubation. Due to the simple and cost-effective preparation process, sustainable and efficient CO2 absorption, this easy-to-scale up CA coated nickel foam has great potential in CA assisted microalgae-based CO2 capture and carbon neutrality.
Collapse
Affiliation(s)
- Guanzhang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ke Li
- Shanghai Marine Diesel Engine Research Institute, Shanghai, 200090, PR China
| | - Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Rui Zhou
- Shanghai Marine Diesel Engine Research Institute, Shanghai, 200090, PR China
| | - Lei Mao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
11
|
Ghodsi S, Kamranifar M, Fatehizadeh A, Taheri E, Bina B, Hublikar LV, Ganachari SV, Nadagouda M, Aminabhavi TM. New insights on the decolorization of waste flows by Saccharomyces cerevisiae strain - A systematic review. ENVIRONMENTAL RESEARCH 2024; 249:118398. [PMID: 38331155 DOI: 10.1016/j.envres.2024.118398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
One of the common causes of water pollution is the presence of toxic dye-based effluents, which can pose a serious threat to the ecosystem and human health. The application of Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization has been widely investigated due to their efficient removal and eco-friendly treatments. This review attempts to create an awareness of different forms and methods of using Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization through a systematic approach. Overall, some suggestions on classification of dyes and related environmental/health problems, and treatment methods are discussed. Besides, the mechanisms of dye removal by S. cerevisiae including biosorption, bioaccumulation, and biodegradation and cell immobilization methods such as adsorption, covalent binding, encapsulation, entrapment, and self-aggregation are discussed. This review would help to inspire the exploration of more creative methods for applications and modification of S. cerevisiae and its further practical applications.
Collapse
Affiliation(s)
- Soudabeh Ghodsi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leena V Hublikar
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| | - Megha Nadagouda
- University of Cincinnati, 2600 Clifton Ave. Cincinnati, OH 45221, United States.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India; Korea University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Keles G, Sifa Ataman E, Taskin SB, Polatoglu İ, Kurbanoglu S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. BIOSENSORS 2024; 14:238. [PMID: 38785712 PMCID: PMC11117604 DOI: 10.3390/bios14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Nanostructured metal oxides (NMOs) provide electrical properties such as high surface-to-volume ratio, reaction activity, and good adsorption strength. Furthermore, they serve as a conductive substrate for the immobilization of biomolecules, exhibiting notable biological activity. Capitalizing on these characteristics, they find utility in the development of various electrochemical biosensing devices, elevating the sensitivity and selectivity of such diagnostic platforms. In this review, different types of NMOs, including zinc oxide (ZnO), titanium dioxide (TiO2), iron (II, III) oxide (Fe3O4), nickel oxide (NiO), and copper oxide (CuO); their synthesis methods; and how they can be integrated into biosensors used for medical diagnosis are examined. It also includes a detailed table for the last 10 years covering the morphologies, analysis techniques, analytes, and analytical performances of electrochemical biosensors developed for medical diagnosis.
Collapse
Affiliation(s)
- Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Elif Sifa Ataman
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sueda Betul Taskin
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - İlker Polatoglu
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| |
Collapse
|
13
|
Bessoni Kosctiuk J, Ribeiro Neto ME, Alcoforado Pereira G, Krieger N, Zambelli Mezalira D, Pilissão C. A Multicomponent Mannich Reaction Catalyzed by Hydrolases Immobilized on Titanate Nanotubes. Chempluschem 2024; 89:e202300698. [PMID: 38242852 DOI: 10.1002/cplu.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
This study presents an innovative method for synthesizing β-amino carbonylated compounds, specifically 2-[phenyl(phenylamino)methyl] cyclohexanone, achieving high conversions and diastereomeric ratios. Using trypsin or α-chymotrypsin in both free and immobilized forms on titanate nanotubes (NtsTi), synthesized through alkaline hydrothermal methods, successful immobilization yields were attained. Notably, α-chymotrypsin, when free, displayed a diastereoselective synthesis of the anti-isomer with 97 % conversion and 16 : 84 (syn : anti) diastereomeric ratio, which slightly decreased upon immobilization on NtsTi. Trypsin, in its free form, exhibited diastereoselective recognition of the syn-isomer, while immobilization on NtsTi (trypsin/NtsTi) led to an inversion of diastereomeric ratio. Both trypsin/NtsTi and α-chymotrypsin/NtsTi demonstrated significant catalytic efficiency over five cycles. In conclusion, NtsTi serves as an effective support for trypsin and α-chymotrypsin immobilization, presenting promising prospects for diastereoselective synthesis and potential industrial applications. Furthermore, it offers promising prospects for the diastereoselective synthesis of 2-[phenyl(phenylamino)methyl] cyclohexanone through multicomponent Mannich reaction and future industrial application.
Collapse
Affiliation(s)
- Juliane Bessoni Kosctiuk
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| | - Matheus Enrique Ribeiro Neto
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| | - Gabriela Alcoforado Pereira
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| | - Nadia Krieger
- Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil
| | | | - Cristiane Pilissão
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| |
Collapse
|
14
|
Guo S, Liu S, Liu C, Wang Y, Gu D, Tian J, Yang Y. Biomimetic immobilization of α-glucosidase inspired by antibody-antigen specific recognition for catalytic preparation of 4-methylumbelliferone. Int J Biol Macromol 2024; 268:131697. [PMID: 38688333 DOI: 10.1016/j.ijbiomac.2024.131697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Immobilization technology plays an important role in enhancing enzyme stability and environmental adaptability. Despite its rapid development, this technology still encounters many challenges such as enzyme leakage, difficulties in large-scale implementation, and limited reusability. Drawing inspiration from natural paired molecules, this study aimed to establish a method for immobilized α-glucosidase using artificial antibody-antigen interaction. The proposed method consists of three main parts: synthesis of artificial antibodies, synthesis of artificial antigens, and assembly of the artificial antibody-antigen complex. The critical step in this method involves selecting a pair of structurally similar compounds: catechol as a template for preparing artificial antibodies and protocatechualdehyde for modifying the enzyme to create the artificial antigens. By utilizing the same functional groups in these compounds, specific recognition of the antigen by the artificial antibody can be achieved, thereby immobilizing the enzymes. The results demonstrated that the immobilization amount, specific activity, and enzyme activity of the immobilized α-glucosidase were 25.09 ± 0.10 mg/g, 5.71 ± 0.17 U/mgprotein and 143.25 ± 1.71 U/gcarrier, respectively. The immobilized α-glucosidase not only exhibited excellent reusability but also demonstrated remarkable performance in catalyzing the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranoside.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuo Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chang Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Tao J, Song S, Qu C. Recent Progress on Conversion of Lignocellulosic Biomass by MOF-Immobilized Enzyme. Polymers (Basel) 2024; 16:1010. [PMID: 38611268 PMCID: PMC11013631 DOI: 10.3390/polym16071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The enzyme catalysis conversion of lignocellulosic biomass into valuable chemicals and fuels showed a bright outlook for replacing fossil resources. However, the high cost and easy deactivation of free enzymes restrict the conversion process. Immobilization of enzymes in metal-organic frameworks (MOFs) is one of the most promising strategies due to MOF materials' tunable building units, multiple pore structures, and excellent biocompatibility. Also, MOFs are ideal support materials and could enhance the stability and reusability of enzymes. In this paper, recent progress on the conversion of cellulose, hemicellulose, and lignin by MOF-immobilized enzymes is extensively reviewed. This paper focuses on the immobilized enzyme performances and enzymatic mechanism. Finally, the challenges of the conversion of lignocellulosic biomass by MOF-immobilized enzyme are discussed.
Collapse
Affiliation(s)
- Juan Tao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Shengjie Song
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Chen Qu
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 9808577, Japan
| |
Collapse
|
16
|
Galaz T, Ottone C, Rodríguez-Núñez K, Bernal C. Evaluation of the operational conditions of the glucose oxidase and catalase multienzymatic system through enzyme co-immobilization on amino hierarchical porous silica. Carbohydr Res 2024; 538:109096. [PMID: 38531187 DOI: 10.1016/j.carres.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Hexaric acids have attracted attention lately because they are platform chemicals for synthesizing pharmaceuticals. In particular, gluconic acid is one of the most studied because it is readily available in nature. In this work, operational conditions like temperature and pH were evaluated for the enzymatic production of gluconic acid. For this purpose, glucose oxidase (GOx) and catalase (CAT) were individually immobilized and co-immobilized using amino-silica as support. The catalytic performance of the enzymes both as separate biocatalysts (GOx or CAT) and as an enzymatic complex (GOx-CAT) was assessed in terms of enzymatic activity and stability at temperatures 45 °C and 50 °C and pH 6 to 8. The results show that CAT is a key enzyme for gluconic acid production as it prevents GOx from being inhibited by H2O2. However, CAT was found to be less stable than GOx. Therefore, different GOx to CAT enzymatic ratios were studied, and a ratio of 1-3 was determined to be the best. The highest glucose conversion conditions were 45 °C and pH 7.0 for 24 h. Regarding the biocatalyst reuse, GOx-CAT retained more than 70% of its activity after 6 reaction cycles. These results contribute to further knowledge and application of oxidases for hexaric acid production and shed greater light on the role of the glucose oxidase/catalase pair in better catalytic performance. Both enzymes were immobilized in one pot, which is relevant for their potential use in industry; an enzyme system was obtained in a single step.
Collapse
Affiliation(s)
- Tamara Galaz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| | - Karen Rodríguez-Núñez
- Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980, La Serena, 1720236, Chile
| | - Claudia Bernal
- Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980, La Serena, 1720236, Chile.
| |
Collapse
|
17
|
Bilal M, Degorska O, Szada D, Rybarczyk A, Zdarta A, Kaplon M, Zdarta J, Jesionowski T. Support Materials of Organic and Inorganic Origin as Platforms for Horseradish Peroxidase Immobilization: Comparison Study for High Stability and Activity Recovery. Molecules 2024; 29:710. [PMID: 38338454 PMCID: PMC10856027 DOI: 10.3390/molecules29030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained systems proved successful enzyme deposition on all the presented materials. The immobilization of horseradish peroxidase on all the tested supports occurred with an efficiency above 70%. However, for multi-walled carbon nanotubes and hybrids made of chitosan, magnetic nanoparticles, and selenium ions, it reached up to 90%. For these materials, the immobilization yield exceeded 80%, resulting in high amounts of immobilized enzymes. The produced system showed the same optimal pH and temperature conditions as free enzymes; however, over a wider range of conditions, the immobilized enzymes showed activity of over 50%. Finally, a reusability study and storage stability tests showed that horseradish peroxidase immobilized on a hybrid made of chitosan, magnetic nanoparticles, and selenium ions retained around 80% of its initial activity after 10 repeated catalytic cycles and after 20 days of storage. Of all the tested materials, the most favorable for immobilization was the above-mentioned chitosan-based hybrid material. The selenium additive present in the discussed material gives it supplementary properties that increase the immobilization yield of the enzyme and improve enzyme stability. The obtained results confirm the applicability of these nanomaterials as useful platforms for enzyme immobilization in the contemplation of the structural stability of an enzyme and the high catalytic activity of fabricated biocatalysts.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12, PL-80233 Gdansk, Poland
- Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza, PL-80233 Gdansk, Poland
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Oliwia Degorska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Daria Szada
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Michal Kaplon
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (O.D.); (D.S.); (A.Z.); (M.K.); (T.J.)
| |
Collapse
|
18
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
19
|
Fraile-Gutiérrez I, Iglesias S, Acosta N, Revuelta J. Chitosan-based oral hydrogel formulations of β-galactosidase to improve enzyme supplementation therapy for lactose intolerance. Int J Biol Macromol 2024; 255:127755. [PMID: 37935291 DOI: 10.1016/j.ijbiomac.2023.127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
β-Galactosidase supplementation plays an important role in the life of people with lactose intolerance. However, these formulations are rendered ineffective by the low pH and pepsin in the stomach and pancreatic proteases in the intestine. Therefore, it is necessary to develop oral transport systems for carrying this enzyme in the active form up to the intestine, where the lactose digestion occurs. In this research, a new hydrogel was developed that could potentially be used for enzyme supplement therapy. In this regard, the chitosan-based β-Gal formulations described in the manuscript are an alternative long-acting preparation to the so far available preparations that allow for enzyme protection and mucosal targeting. These hydrogels were prepared from chitosan and polyethylene glycol and contained a covalently immobilized β-galactosidase from Aspergillus oryzae. The β-galactosidase in the hydrogel was protected from degradation in a gastric medium at a pH of 2.5 and retained 75 % of its original activity under subsequent intestinal conditions. In the case of a simulated gastric fluid with a pH of 1.5, a copolymer containing methacrylic acid functional groups was sufficient to protect the hybrid hydrogel from the extremely acidic pH. In addition, the surface of the hydrogel was chemically modified with thiol and amidine groups, which increased the binding to intestinal mucin by 20 % compared with the unmodified hydrogel. These results represent a promising approach for oral transport as a reservoir for β-galactosidase in the small intestine to reduce the symptoms of hypolactasia.
Collapse
Affiliation(s)
- Isabel Fraile-Gutiérrez
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Susana Iglesias
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Niuris Acosta
- Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Julia Revuelta
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
20
|
Shivaram KB, Bhatt P, Verma MS, Clase K, Simsek H. Bacteriophage-based biosensors for detection of pathogenic microbes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165859. [PMID: 37516175 DOI: 10.1016/j.scitotenv.2023.165859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Mohit S Verma
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Kari Clase
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
21
|
Al-Sakkaf MK, Basfer I, Iddrisu M, Bahadi SA, Nasser MS, Abussaud B, Drmosh QA, Onaizi SA. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2152. [PMID: 37570470 PMCID: PMC10420689 DOI: 10.3390/nano13152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.
Collapse
Affiliation(s)
- Mohammed K. Al-Sakkaf
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Basfer
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustapha Iddrisu
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem A. Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Basim Abussaud
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qasem A. Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A. Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
22
|
Luo C, Hu Y, Xing S, Xie W, Li C, He L, Wang X, Zeng X. Adsorption-precipitation-cross-linking immobilization of GDSL-type esterase from Aspergillus niger GZUF36 by polydopamine-modified magnetic clarity tetroxide nanocouplings and its enzymatic characterization. Int J Biol Macromol 2023:125533. [PMID: 37355062 DOI: 10.1016/j.ijbiomac.2023.125533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Recombinant INANE1 (rINANE1), a recombinant intracellular GDSL-type esterase from Aspergillus niger GZUF36, has high acetate substrate specificity. Here, rINANE1 was successfully immobilized on polydopamine (PDA)-modified magnetic ferric oxide nanoparticles (Fe3O4NPs) by adsorption-precipitation-cross-linking to obtain cross-linked enzyme aggregate (CLEA)-rINANE1-Fe3O4@PDA. Fe3O4, Fe3O4@PDA, and CLEA-rINANE1-Fe3O4@PDA were characterized by scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometry, Fourier transform infrared (FTIR) spectroscopy, and zeta potential analysis. Upon immobilization, CLEA-rINANE1-Fe3O4@PDA, with a protein loading of 72.72 ± 1.01 mg/g, reached optimal activity recovery of 104.40 % ± 1.14 %. FTIR analysis showed that immobilization increased the relative content of β-folding in rINANE1 by 12.25 % and reduced irregular curl by 4.16 %, rendering the structure more orderly. Specifically, under an alkaline condition (pH 10), CLEA-rINANE1-Fe3O4@PDA performed over 100 % of initial activity. The optimum temperature increased by 5 °C, and over 55 % of the initial activity was observed after 12 h at 55 °C. CLEA-rINANE1-Fe3O4@PDA showed over 40 % of its relative activity, whereas free rINANE1 showed <10 % in acetonitrile. In addition, the relative activity of CLEA-rINANE1-Fe3O4@PDA was retained at about 80 % after eight cycles and maintained at 109 % after 45 days. The PDA-modified magnetic ferrite nanoparticles exhibited excellent stability and recyclability, providing a new avenue for developing industrial biocatalysts.
Collapse
Affiliation(s)
- Chaocheng Luo
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yuedan Hu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Wei Xie
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
23
|
Paul S, Gupta M, Dey K, Mahato AK, Bag S, Torris A, Gowd EB, Sajid H, Addicoat MA, Datta S, Banerjee R. Hierarchical covalent organic framework-foam for multi-enzyme tandem catalysis. Chem Sci 2023; 14:6643-6653. [PMID: 37350839 PMCID: PMC10283510 DOI: 10.1039/d3sc01367g] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Covalent organic frameworks (COFs) are ideal host matrices for biomolecule immobilization and biocatalysis due to their high porosity, various functionalities, and structural robustness. However, the porosity of COFs is limited to the micropore dimension, which restricts the immobilization of enzymes with large volumes and obstructs substrate flow during enzyme catalysis. A hierarchical 3D nanostructure possessing micro-, meso-, and macroporosity could be a beneficial host matrix for such enzyme catalysis. In this study, we employed an in situ CO2 gas effervescence technique to induce disordered macropores in the ordered 2D COF nanostructure, synthesizing hierarchical TpAzo COF-foam. The resulting TpAzo foam matrix facilitates the immobilization of multiple enzymes with higher immobilization efficiency (approximately 1.5 to 4-fold) than the COF. The immobilized cellulolytic enzymes, namely β-glucosidase (BGL), cellobiohydrolase (CBH), and endoglucanase (EG), remain active inside the TpAzo foam. The immobilized BGL exhibited activity in organic solvents and stability at room temperature (25 °C). The enzyme-immobilized TpAzo foam exhibited significant activity towards the hydrolysis of p-nitrophenyl-β-d-glucopyranoside (BGL@TpAzo-foam: Km and Vmax = 23.5 ± 3.5 mM and 497.7 ± 28.0 μM min-1) and carboxymethylcellulose (CBH@TpAzo-foam: Km and Vmax = 18.3 ± 4.0 mg mL-1 and 85.2 ± 9.6 μM min-1 and EG@TpAzo-foam: Km and Vmax = 13.2 ± 2.0 mg mL-1 and 102.2 ± 7.1 μM min-1). Subsequently, the multi-enzyme immobilized TpAzo foams were utilized to perform a one-pot tandem conversion from carboxymethylcellulose (CMC) to glucose with high recyclability (10 cycles). This work opens up the possibility of synthesizing enzymes immobilized in TpAzo foam for tandem catalysis.
Collapse
Affiliation(s)
- Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Mani Gupta
- Department of Biological Sciences, Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Saikat Bag
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune 411008 India
| | - E Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology Trivandrum 695 019 Kerala India
| | - Hasnain Sajid
- School of Science and Technology, Nottingham Trent University NG11 8NS Nottingham UK
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University NG11 8NS Nottingham UK
| | - Supratim Datta
- Department of Biological Sciences, Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Mohanpur Kolkata 741246 India
| |
Collapse
|
24
|
Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, Kamyab H, Pham CQ, Vo DVN, Chelliapan S. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J Biotechnol 2023; 369:14-34. [PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood. Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
Collapse
Affiliation(s)
- Bernard Chukwuemeka Ekeoma
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Leonard Nnamdi Ekeoma
- Department of Pharmacy, Nnamdi Azikiwe University, Agulu Campus, Anambra State, Nigeria
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Department of Chemistry, Ahmadu Bello University Zaria-Nigeria
| | | | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Climatic Chamber Stability Tests of Lipase-Catalytic Octyl-Sepharose Systems. Catalysts 2023. [DOI: 10.3390/catal13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The application of the climatic chamber presented in this paper to assess the storage stability of immobilized lipases is a new approach characterized by the potential of unifying the study conditions of biocatalysts created in various laboratories. The data achieved from storing lipases in the climatic chambers may be crucial for the chemical and pharmaceutical industry. Our paper describes the developed protocols for immobilization via interfacial activation of lipase B from Candida antarctica (CALB) and lipase OF from Candida rugosa (CRL-OF) on the Octyl-Sepharose CL-4B support. Optimization included buffers with different pH values of 4–9 and a wide range of ionic strength from 5 mM to 700 mM. It has been shown that the optimal medium for the CALB immobilization process on the tested support is a citrate buffer at pH 4 and high ionic strength of 500 mM. Implementing new optimal procedures enabled the hyperactivation of immobilized CALB (recovery activity 116.10 ± 1.70%) under the applicable reaction conditions using olive oil as a substrate. Importantly, CALB storage stability tests performed in a climatic chamber under drastic temperature and humidity conditions proved good stability of the developed biocatalyst (residual activity 218 ± 7.3% of dry form, after 7 days). At the same time, the low storage stability of CRL OF in a climatic chamber was demonstrated. It should be emphasized that the use of a climatic chamber to test the storage stability of a dry form of the studied lipases immobilized on Octyl-Sepharose CL-4B is, to our knowledge, described for the first time in the literature.
Collapse
|
26
|
Sun X, Hu J, Wang Y, Luo X, Huang H, Fu Y. One-pot encapsulation of lactate dehydrogenase and Fe 3O 4 nanoparticles into a metal-organic framework: A novel magnetic recyclable biocatalyst for the synthesis of D-phenyllactic acid. Front Bioeng Biotechnol 2023; 10:1124450. [PMID: 36698639 PMCID: PMC9868447 DOI: 10.3389/fbioe.2022.1124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The main challenges in bio-catalysis of d-phenyllactic acid (D-PLA) are poor tolerance of lactate dehydrogenase (LDH) to harsh environmental conditions and inability to recycle the catalyst. A novel magnetic framework composite was prepared as solid support for the immobilization of enzymes via one-pot encapsulation in this study. LDH/MNPs@MAF-7 was synthesized by the one-pot encapsulation of both LDH and magnetic nanoparticles (MNPs) in MAF-7. The LDH/MNPs@MAF-7 showed stable biological activity for the efficient biosynthesis of D-PLA. The structure and morphology of LDH/MNPs@MAF-7 were systematically characterized by SEM, FT-IR, XRD, VSM, XPS, TGA and N2 sorption. These indicated that LDH/MNPs@MAF-7 was successfully synthesized, exhibiting enhanced resistance to acid and alkali, temperature and organic solvents. Furthermore, the bio-catalyst could be separated easily using a magnet, and the reusability was once considerably expanded with 80% of enzyme activity last after eight rounds of recycling. Therefore, LDH/MNPs@MAF-7 could be used as a potential biocatalyst for the biosynthesis of D-PLA due to its good stability and recovery properties.
Collapse
Affiliation(s)
- Xiaolong Sun
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China,Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Jiahuan Hu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Yifeng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xi Luo
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - He Huang
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China,*Correspondence: Yongqian Fu,
| |
Collapse
|
27
|
Ishiguro T, Obata A, Nagata K, Kasuga T, Mizuno T. Core-shell fibremats comprising a poly(AM/DAAM)/ADH nanofibre core and nylon6 shell layer are an attractive immobilization platform for constructing immobilised enzymes. RSC Adv 2022; 12:34931-34940. [PMID: 36540265 PMCID: PMC9727829 DOI: 10.1039/d2ra06620c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 10/13/2023] Open
Abstract
Core-shell fibremats, comprising poly(acrylamide)-co-poly(diacetone-acrylamide)/adipic dihydrazide [poly(AM/DAAM)/ADH] core-nanofibres and hydrophobic polymer shell layers, are a new class of platforms for constructing various immobilised enzymes. In this study, to elucidate the impacts of the shell-layer material on fibremat properties and enzymatic activities, we synthesised core-shell fibremats with shell layers comprising nylon6 or acetyl cellulose (AcCel) instead of poly(ε-caprolactone) (PCL), as in our previous study. Transmission and scanning electron microscopy images revealed that the lactase-encapsulated poly(AM/DAAM)/ADH-nylon6 and -AcCel fibremats were both constructed like the poly(AM/DAAM)/ADH-PCL one. Leakage measurements of the beforehand loaded molecules inside the core-nanofibres revealed that both fibremats exhibited efficient permeability for low-molecular-weight molecules and stable retention of enzyme molecules inside the core-nanofibres. Meanwhile, the fibremats' mechanical properties considerably depended on the choice of shell-layer material. The thermal analyses of the lactase-encapsulated fibremats revealed residual water inside the core nanofibres. The core-shell fibremats fabricated with a nylon6 or PCL shell exhibited excellent enzymatic activities (102 and 114%, respectively, compared to that of free lactase), superior to that of the same amount of free enzyme in a buffer. Furthermore, both core-shell fibremats retained over 95% of their initial enzymatic activities, even after they were re-used 10 times.
Collapse
Affiliation(s)
- Taira Ishiguro
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Akiko Obata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Kenji Nagata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Toshihiro Kasuga
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho Showa-ku Nagoya Aichi 466-8555 Japan
| |
Collapse
|
28
|
Sutaoney P, Pandya S, Gajarlwar D, Joshi V, Ghosh P. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86499-86527. [PMID: 35771325 DOI: 10.1007/s11356-022-21565-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.
Collapse
Affiliation(s)
- Priya Sutaoney
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Srishti Pandya
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Devashri Gajarlwar
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Veenu Joshi
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
29
|
Azrin NAM, Ali MSM, Rahman RNZRA, Oslan SN, Noor NDM. Versatility of subtilisin: A review on structure, characteristics, and applications. Biotechnol Appl Biochem 2022; 69:2599-2616. [PMID: 35019178 DOI: 10.1002/bab.2309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.
Collapse
Affiliation(s)
- Nur Aliyah Mohd Azrin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
30
|
Lima PJM, da Silva RM, Neto CACG, Gomes E Silva NC, Souza JEDS, Nunes YL, Sousa Dos Santos JC. An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem 2022; 69:2794-2818. [PMID: 33481298 DOI: 10.1002/bab.2098] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Glycerol is a common by-product of industrial biodiesel syntheses. Due to its properties, availability, and versatility, residual glycerol can be used as a raw material in the production of high value-added industrial inputs and outputs. In particular, products like hydrogen, propylene glycol, acrolein, epichlorohydrin, dioxalane and dioxane, glycerol carbonate, n-butanol, citric acid, ethanol, butanol, propionic acid, (mono-, di-, and triacylglycerols), cynamoil esters, glycerol acetate, benzoic acid, and other applications. In this context, the present study presents a critical evaluation of the innovative technologies based on the use of residual glycerol in different industries, including the pharmaceutical, textile, food, cosmetic, and energy sectors. Chemical and biochemical catalysts in the transformation of residual glycerol are explored, along with the factors to be considered regarding the choice of catalyst route used in the conversion process, aiming at improving the production of these industrial products.
Collapse
Affiliation(s)
- Paula Jéssyca Morais Lima
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Rhonyele Maciel da Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Natan Câmara Gomes E Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| | - Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| |
Collapse
|
31
|
Budhiraja M, Chudasama B, Ali A, Tyagi V. Production of a recyclable nanobiocatalyst to synthesize quinazolinone derivatives. RSC Adv 2022; 12:31734-31746. [PMID: 36425315 PMCID: PMC9667765 DOI: 10.1039/d2ra04405f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 09/08/2024] Open
Abstract
Nanobiocatalysts (NBCs) are an emerging innovation that paves the way toward sustainable and eco-friendly endeavors. In the quest for a robust and reusable nanobiocatalyst, herein, we report a nanobiocatalyst, namely CALB@MrGO, developed via immobilizing Candida antarctica lipase B onto the surface of Fe3O4-decorated reduced graphene oxide (MrGO). Next, the enormous potential of the NBC (CALB@MrGO) was checked by employing it to synthesize clinically important quinazolinone derivatives in good to excellent yield (70-95%) using differently substituted aryl aldehydes with 2-aminobenzamide. Further, the synthetic utility and generality of this protocol was proved by setting up a gram-scale reaction, which afforded the product in 87% yield. The green chemistry metrics calculated for the gram-scale reaction those prove the greenness of this protocol.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
| | - Bhupendra Chudasama
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Amjad Ali
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
32
|
Biochemical Study of Bacillus stearothermophilus Immobilized Lipase for Oily Wastewater Treatment. Processes (Basel) 2022. [DOI: 10.3390/pr10112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Traditional wastewater treatments involve expensive mechanical and physiochemical methods, so researchers have been developing cost-effective, sustainable technologies that use enzymes to produce higher quality effluents and recover more energy and nutrients from wastewater. A thermostable, alkaline, and solvent-tolerant lipase was partially purified from thermophilic Bacillus stearothermophilus. The lipase displayed maximum activity at 50 °C and pH 11.0 and catalyzed both short- and long-chain triacylglycerols at similar rates. B. stearothermophilus lipase also exhibited high stability when incubated at 40 °C for 1 h with anionic and non-ionic surfactants. Studies show that thermostable enzymes can be improved through immobilization and modification of other reaction conditions. Therefore, B. stearothermophilus lipase was immobilized through adsorption on CaCO3, Celite 545, and silica gel with the CaCO3 support producing the best adsorption rate (89.33%). The optimal initial lipase activity was approximately 4500 U.g−1 after 60 min. Interestingly, 93% of the initial lipase activity was retained after six cycles, and almost 50% of the initial activity remained after 12 cycles. Furthermore, immobilization improved storage stability with 98.85% of the initial lipase activity retained after 60 days of storage at 4 °C. The biochemical characteristics of immobilized lipase shifted toward a slightly alkaline region, reaching maximum activity at pH 12. The optimal temperature of immobilized lipase was 60 °C. Immobilization also improved enzymatic stability by widening the pH range from 5–9 (for free lipase) to 4–11, and thermostability by reaching 65 °C. The application of immobilized lipase in wastewater treatment was observed through oil layer biodegradation. Notably, treating wastewater for 10 days with immobilized lipase almost removed the chemical oxygen demand (COD) from 1950.1 down to 4.04 mg.L−1. Similarly, lipid content was almost removed from 15,500 ± 546 mg.L−1 down to 12 mg.L−1. All results highlight the potential value of CaCO3-immobilized lipase as an effective biocatalyst for hydrolyzing wastewater.
Collapse
|
33
|
Somu P, Narayanasamy S, Gomez LA, Rajendran S, Lee YR, Balakrishnan D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. ENVIRONMENTAL RESEARCH 2022; 212:113411. [PMID: 35561819 DOI: 10.1016/j.envres.2022.113411] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.
Collapse
Affiliation(s)
- Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Saranya Narayanasamy
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Coimbatore, 641114, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
34
|
Hu R, Niu Z, Lu Y, Zhu H, Mao Z, Yan K, Hu X, Chen H. Immobilization for Lipase: Enhanced Activity and Stability by Flexible Combination and Solid Support. Appl Biochem Biotechnol 2022; 194:5963-5976. [DOI: 10.1007/s12010-022-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|
35
|
Shokri M, Mojtabavi S, Jafari-Nodoushan H, Vojdanitalab K, Golshani S, Jahandar H, Faramarzi MA. Laccase-loaded magnetic dialdehyde inulin nanoparticles as an efficient heterogeneous natural polymer-based biocatalyst for removal and detoxification of ofloxacin. Biodegradation 2022; 33:489-508. [PMID: 35809150 DOI: 10.1007/s10532-022-09994-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
An efficient heterogeneous natural polymer-based biocatalyst was fabricated through the immobilization of laccase onto dialdehyde inulin (DAI)-coated silica-caped magnetic nanoparticles (laccase@DAI@SiO2@Fe3O4⋅MNPs). The carrier was developed using SiO2@Fe3O4⋅MNPs and functionalized with DAI. The construction of immobilized laccase was confirmed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Immobilization yield and efficiency were calculated as 61.0 ± 0.3% and 93.0 ± 0.6%, respectively. The immobilized laccase maintained 50% and 85% of its relative activity after 25 repeated cycles and 20 days of storage at 4 °C, respectively. The prepared biocatalyst effectively eliminated ofloxacin, a fluoroquinolone-type antibiotic, with a 63% removal capacity. Besides, antimicrobial activity study on some soil microorganisms involved in the biodegradation of xenobiotics revealed that the laccase-treated ofloxacin resulted in less toxic metabolites. The obtained data indicated that the fabricated biocatalyst is promising for the removal of ofloxacin or other analogs of fluoroquinolones in the environment.
Collapse
Affiliation(s)
- Mahtab Shokri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran.,Pharmaceutical Sciences Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Hossein Jafari-Nodoushan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Khashayar Vojdanitalab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran.,Pharmaceutical Sciences Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Golshani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Hoda Jahandar
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran.
| |
Collapse
|
36
|
Mohammadi ZB, Zhang F, Kharazmi MS, Jafari SM. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit Rev Food Sci Nutr 2022; 63:11351-11369. [PMID: 35758266 DOI: 10.1080/10408398.2022.2092719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid progress in modern technologies and paying more attention to food safety has prompted new green technologies superior than chemical methods in the food industry. In this regard, enzymes can decrease the usage of chemical reactions but they are sensitive to environmental effects (pH and temperature). In addition, enzymes are scarcely possible to be reused. Consequently, their application as natural catalysts is restricted. Using nanotechnology and the possibility of enzyme immobilization on nanomaterials has led to nanobiocatalysts, resulting from the integration of nanotechnology and biotechnology. Nanocarriers have individual features like nanoscale size, excellent surface/volume ratio, and diversity in construction to improve the activity, efficiency, stability, and storage stability of enzymes. Nanobiocatolysts have a wide range of applications in purification, extraction, clarification, production, and packaging of various products in the food industry. Furthermore, the application of nanobiocatalysts to identify specific components of food contaminants such as microorganisms or their metabolites, heavy metals, antibiotics, and residual pesticides has been successful due to the high accuracy of detection. This review investigates the integration of nanotechnology and food enzymes, the nanomaterials used to create nanobiocatalysts and their application, along with the possible risks and legal aspects of nanomaterials in food bioprocesses.
Collapse
Affiliation(s)
- Zahra Beig Mohammadi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
37
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
38
|
Shen J, Chen A, Cai Z, Chen Z, Cao R, Liu Z, Li Y, Hao J. Exhausted local lactate accumulation via injectable nanozyme-functionalized hydrogel microsphere for inflammation relief and tissue regeneration. Bioact Mater 2022; 12:153-168. [PMID: 35310385 PMCID: PMC8897073 DOI: 10.1016/j.bioactmat.2021.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Local lactate accumulation greatly hinders tissue repair and regeneration under ischemic condition. Herein, an injectable microsphere (MS@MCL) for local lactate exhaustion was constructed by grafting manganese dioxide (MnO2) -lactate oxidase (LOX) composite nanozyme on microfluidic hyaluronic acid methacrylate (HAMA) microspheres via chemical bonds, achieving a long-term oxygen-promoted lactate exhaustion effect and a long half-life in vivo. The uniform and porous microspheres synthesized by microfluidic technology is beneficial to in situ injection therapy and improving encapsulation efficiency. Furthermore, chemical grafting into HAMA microspheres through amide reactions promoted local enzymatic concentration and activity enhancement. It was showed that the MS@MCL eliminated oxidative and inflammatory stress and promoted extracellular matrix metabolism and cell survival when co-cultured with nucleus pulposus cells (NPCs) in vitro. In the rat degenerative intervertebral disc model caused by lactate injection, MS@MCL showed a long-term therapeutic effect in reducing intervertebral height narrowing and preventing extracellular matrix (ECM) degradation as well as inflammatory damage in vivo. Altogether, this study confirms that this nanozyme-functionalized injectable MS@MCL effectively improves the regenerative and reparative effect in ischemic tissues by disposing of enriched lactate in local microenvironment. Exhausted local lactate accumulation via injectable hydrogel microsphere. Long-acting microfluidic hyaluronic acid microspheres. Manganese dioxide-lactate oxidase composited nanozyme via covalent bond. Promoted sustained release of nanozyme and maintained enzymatic activity.
Collapse
Affiliation(s)
- Jieliang Shen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
| | - Ao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, PR China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Ruichao Cao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
| | - Zongchao Liu
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, No.182 Chunhui Road, Sichuan, 646699, PR China
- Corresponding author.
| | - Yuling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Nanchong, Sichuan, 637000, PR China
- Corresponding author.
| | - Jie Hao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
- Corresponding author.
| |
Collapse
|
39
|
Nájera-Martínez EF, Melchor-Martínez EM, Sosa-Hernández JE, Levin LN, Parra-Saldívar R, Iqbal HMN. Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications. Int J Biol Macromol 2022; 208:748-759. [PMID: 35364201 DOI: 10.1016/j.ijbiomac.2022.03.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/08/2023]
Abstract
Growing demand for agricultural production means a higher quantity of residues produced. The reuse and recycling of agro-industrial wastes reduce worldwide greenhouse emissions. New opportunities are derived from this kind of residuals in the biotechnological field generating valuable products in growing sectors such as transportation, bioenergy, food, and feedstock. The use of natural macromolecules towards biocatalysts offers numerous advantages over free enzymes and friendliness with the environment. Enzyme immobilization improves enzyme properties (stability and reusability), and three types of supports are discussed: inorganic, organic, and hybrid. Several examples of agro-industrial wastes such as coconut wastes, rice husks, corn residues and brewers spent grains (BSG), their properties and potential as supports for enzyme immobilization are described in this work. Before the immobilization, biological and non-biological pretreatments could be performed to enhance the waste potential as a carrier. Additionally, immobilization methods such as covalent binding, adsorption, cross-linking and entrapment are compared to provide high efficiency. Enzymes and biocatalysts for industrial applications offer advantages over traditional chemical processes with respect to sustainability and process efficiency in food, energy, and bioremediation fields. The wastes reviewed in this work demonstrated a high affinity for lipases and laccases and might be used in biodiesel production and textile wastewater treatment, among other applications.
Collapse
Affiliation(s)
| | | | | | - Laura Noemí Levin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Biodiversidad y Biología Experimental, Laboratorio de Micología Experimental: INMIBO-CONICET, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico.
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
40
|
Liang Q, Yuan M, Xu L, Lio E, Zhang F, Mou H, Secundo F. Application of enzymes as a feed additive in aquaculture. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:208-221. [PMID: 37073222 PMCID: PMC10077164 DOI: 10.1007/s42995-022-00128-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Modern aquaculture must be sustainable in terms of energy consumption, raw materials used, and environmental impact, so alternatives are needed to replace fish feed with other raw materials. Enzyme use in the agri-food industry is based on their efficiency, safety, and protection of the environment, which aligns with the requirements of a resource-saving production system. Enzyme supplementation in fish feed can improve digestibility and absorption of both plant- and animal-derived ingredients, increasing the growth parameters of aquacultural animals. Herein we summarized the recent literature that reported the use of digestive enzymes (amylases, lipases, proteases, cellulases, and hemicellulases) and non-digestive enzymes (phytases, glucose oxidase, and lysozyme) in fish feed. In addition, we analyzed how critical steps of the pelleting process, including microencapsulation and immobilization, can interfere with enzyme activity in the final fish feed product. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00128-z.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Liping Xu
- College of Biology and Geography, Yili Normal University, Yining, 835000 China
| | - Elia Lio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR, Via Mario Bianco n. 9, 20131 Milan, Italy
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR, Via Mario Bianco n. 9, 20131 Milan, Italy
| |
Collapse
|
41
|
Yandri Y, Nurmala N, Suhartati T, Satria H, Hadi S. The stability increase of α-amylase enzyme from Aspergillus fumigatus using dimethyladipimidate. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study’s purpose is to improve the α-amylase enzyme’s stability from Aspergillus fumigatus applying dimethyladipimidate (DMA). It was conducted in different stages, including production, isolation, purification, modification, and the characterization of native and modified enzymes by the DMA addition. The enzyme activity was specified using the Fuwa and Mandels methods, while the protein level was conducted by the Lowry method. The results indicated that the native enzyme contains a specific activity of 7010.42 U/mg, with an increase of 7.8 times than the crude extract, which contains 904.38 U/mg. Meanwhile, the native enzyme contains an optimum pH of 5 at 55 °C, with residual activity of 17.17% after 60 min of incubation at 55 °C and a half-life of 25.86 min. After the DMA addition with 0.5, 1, and 1.5% concentration, the enzymes had 5.5 optimum pH and 65 °C temperature. Meanwhile, after 60 min of incubation at 65 °C, the modified enzymes had 54.17, 46.18, and 34.44% of residual activity, and 85.55 58.25 and 37.46 min of half-lives, respectively. This showed that the addition of DMA to the native α-amylase from A. fumigatus increased the stability of the modified enzymes by 1.5–3.3 times than the native enzyme.
Collapse
Affiliation(s)
- Yandri Yandri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , The University of Lampung , Bandar Lampung , Lampung 35145 , Indonesia
| | - Nurmala Nurmala
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , The University of Lampung , Bandar Lampung , Lampung 35145 , Indonesia
| | - Tati Suhartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , The University of Lampung , Bandar Lampung , Lampung 35145 , Indonesia
| | - Heri Satria
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , The University of Lampung , Bandar Lampung , Lampung 35145 , Indonesia
| | - Sutopo Hadi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , The University of Lampung , Bandar Lampung , Lampung 35145 , Indonesia
| |
Collapse
|
42
|
Lu S, Zou K, Guo B, Pei J, Wang Z, Xiao W, Zhao L. One-step purification and immobilization of thermostable β-glucosidase on Na-Y zeolite based on the linker and its application in the efficient production of baohuoside I from icariin. Bioorg Chem 2022; 121:105690. [DOI: 10.1016/j.bioorg.2022.105690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
|
43
|
Iyer M, Shreshtha I, Baradia H, Chattopadhyay S. Challenges and opportunities of using immobilized lipase as biosensor. Biotechnol Genet Eng Rev 2022; 38:87-110. [PMID: 35285414 DOI: 10.1080/02648725.2022.2050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Over the years, the science of biosensors has evolved significantly. The first or earliest generation of biosensors only detected either the decrease or increase of product or reactant-based natural mediators as the pathway for electron transfer. The subsequent second-generation biosensors were biomolecule based and used artificial redox mediators, such as organic dyes to detect and to increase the reproducibility and sensitivity of the result. However, the recent generation of biosensors work mostly on the principle of electron mobility, with different criteria, such as selectivity, precision, sensitivity, etc., can be used to quantify, efficiently. This review deals with exploring the scope and applications of Immobilized lipase biosensors. Generally, Triglycerides or TG molecules are either detected using Gas Chromatography or, using a chemical or an enzymatic assay. Immobilization of lipase on solid supports has led to increased stability and reusability of the enzyme in non-aqueous solvents. With better enzyme performance, efficient product recovery, and separation from the reaction, immobilized lipase biosensors are garnering increasing interest worldwide. Along with so many advantages including but not limiting to ones mentioned earlier, immobilized lipase-based biosensors come with their own set of challenges, such as the partitioning of the analyte with aqueous medium, slower reaction rate, etc., they have been discussed in the following review. Alongside, we also review the development of a new generation of biosensors and bioelectronic devices based on nanotechnology.
Collapse
Affiliation(s)
- Mahadevan Iyer
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Ishita Shreshtha
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Hrithik Baradia
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Soham Chattopadhyay
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
44
|
Remonatto D, Miotti Jr. RH, Monti R, Bassan JC, de Paula AV. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Electrochemically driven catalysis of the bacterial molybdenum enzyme YiiM. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148523. [PMID: 34921810 DOI: 10.1016/j.bbabio.2021.148523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
The Mo-dependent enzyme YiiM enzyme from Escherichia coli is a member of the sulfite oxidase family and shares many similarities with the well-studied human mitochondrial amidoxime reducing component (mARC). We have investigated YiiM catalysis using electrochemical and spectroscopic methods. EPR monitored redox potentiometry found the active site redox potentials to be MoVI/V -0.02 V and MoV/IV -0.12 V vs NHE at pH 7.2. In the presence of methyl viologen as an electrochemically reduced electron donor, YiiM catalysis was studied with a range of potential substrates. YiiM preferentially reduces N-hydroxylated compounds such as hydroxylamines, amidoximes, N-hydroxypurines and N-hydroxyureas but shows little or no activity against amine-oxides or sulfoxides. The pH optimum for catalysis was 7.1 and a bell-shaped pH profile was found with pKa values of 6.2 and 8.1 either side of this optimum that are associated with protonation/deprotonations that modulate activity. Simulation of the experimental voltammetry elucidated kinetic parameters associated with YiiM catalysis with the substrates 6-hydroxyaminopurine and benzamidoxime.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
46
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
48
|
Bai Y, Wu W. The Neutral Protease Immobilization: Physical Characterization of Sodium Alginate-Chitosan Gel Beads. Appl Biochem Biotechnol 2022; 194:2269-2283. [DOI: 10.1007/s12010-021-03773-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
|
49
|
Basetty S, Kumaraguru T. Preparation of enantiopure pregabalin intermediate using cross linked enzyme aggregates (CLEAs) in basket reactor. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2021.2023507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shalini Basetty
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Thenkrishnan Kumaraguru
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
50
|
Ni Y, Lv Z, Wang Z, Kang S, He D, Liu R. Immobilization and Evaluation of Penicillin G Acylase on Hydroxy and Aldehyde Functionalized Magnetic α-Fe 2O 3/Fe 3O 4 Heterostructure Nanosheets. Front Bioeng Biotechnol 2022; 9:812403. [PMID: 35155412 PMCID: PMC8831838 DOI: 10.3389/fbioe.2021.812403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Magnetic α-Fe2O3/Fe3O4 heterostructure nanosheets were fabricated via hydrothermal calcination. The activity of penicillin G acylase (PGA), which was covalently immobilized onto silica-decorated heterostructure nanosheets, achieved the highest activity of 387.03 IU/g after 18 h of incubation with 0.1 ml of PGA. In contrast, the activity of free PGA reached the highest level when the temperature was 45°C with a pH of 8.0. However, the activity of free PGA changed more dramatically than immobilized PGA as the relative conditions changed. Moreover, the Michaelis-Menten constant (Km) and reusability of immobilized PGA were also explored. The results showed that free PGA Km and maximum rate (Vmax) were 0.0274 M and 1.167 μl/min, respectively. Km and Vmax values of immobilized PGA were 0.1082 M and 1.294 μl/min, respectively. After 12 cycles of repetitive use, immobilized PGA remained approximately 66% of its initial activity, indicating that the PGA immobilized onto the heterostructure nanosheets showed better stability and reusability than free PGA.
Collapse
Affiliation(s)
- Yun Ni
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhixiang Lv
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Zhou Wang
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, China
| | - Shouyu Kang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dawei He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou, China
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|