1
|
Valík Ľ, Minarovičová J, Kaclíková E, Véghová A, Kuchta T. Modelling growth of two Listeria monocytogenes strains, persistent and non-persistent: Effect of temperature. Heliyon 2024; 10:e40936. [PMID: 39759359 PMCID: PMC11699068 DOI: 10.1016/j.heliyon.2024.e40936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Better growth is a phenotypic trait that can contribute to persistence of Listeria monocytogenes in food processing environments. To test the hypothesis objectively, persistent and non-persistent strains were selected and grown in different media to gain reliable quantitative growth characteristics. In this study, the effect of temperature in the range from 6 °C to 43 °C on the planktonic growth of genotypically and phenotypically different strains LM9611-19 (LM-P, persistent) and LM120/5 (LM-S, sporadic - potentially non-persistent) in Tryptone Soy Broth (TSB) and in semi-synthetic cheese medium (SCM) was investigated. Two steps of growth modelling were applied to primary growth data and growth parameters using Baranyi and cardinal temperature models (CM), respectively. No statistically significant differences were found between the growth rates of the strains within the temperature range of 6 °C-37 °C in both media. However, the average growth rates were significantly higher (p < 0.05) for LM-P than for LM-S at 40 °C and 43 °C in both media. Regardless of whether calculated on μ max or λ basis, in TSB or SCM, T min for LM-P strain ranged from -1.2 to 0.7 °C with an average of 0.0 ± 0.9 °C (mean ± SD). Other averages of cardinal values were in TSB (aw = 0.995; pH 7) T opt = 37.8 ± 2.0 °C, T max = 43.6 ± 0.5 °C and μ opt = 1.27 ± 0.2 h-1. In SCM (aw = 0.970, pH 7), the averages of T opt, T max, and μ opt were 38.0 ± 1.2 °C, 45.2 ± 2.9 °C and 0.92 ± 0.04 h-1, respectively. Generally, the parameters of the CM model for the growth rate of sporadic strain in cheese medium were lower than for the persistent strain. This includes also μ opt, which reflects lower experimental growth rates in the range from T opt to T max. However, based on the results found in the suboptimal temperature range, it seems that the growth rate did not play an important role in the persistency characteristics. It should be noted that the study was accompanied not only by low errors in model parameters but also by acceptable external validation indices for μ max values in SCM. To consider the ComBase Predictor data (n = 8), the bias factors (B f) of 1.08 and 1.05 and accuracy factor (A f) of 1.09 and 1.07 were calculated for the LM-P strain and LM-S strain, respectively. The approach used in this study revealed different growth responses in the range of temperatures higher than T opt. It can be extended also for mild inactivation temperature range as similar differences in behaviour between persistent and non-persistent strains might also be expected.
Collapse
Affiliation(s)
- Ľubomír Valík
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Jana Minarovičová
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia
| | - Eva Kaclíková
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia
| | - Adriana Véghová
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia
| | - Tomáš Kuchta
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia
| |
Collapse
|
2
|
Xu DZ, Tan QH. Infection with Listeria monocytogenes meningoencephalitis: A case report. World J Clin Cases 2024; 12:6629-6634. [PMID: 39600479 PMCID: PMC11514345 DOI: 10.12998/wjcc.v12.i33.6629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Listeria meningitis is an infectious disease of the central nervous system caused by Listeria monocytogenes. This bacterium is widely present in the natural environment and can be transmitted through channels such as food and water. Patients usually show symptoms such as fever, headache, and neck stiffness. In severe cases, coma, convulsions, or even death may occur. Traditional diagnostic methods, such as cerebrospinal fluid (CSF) culture and serological tests, have certain limitations. Although CSF culture is the "gold standard" for diagnosis, it is time-consuming and has a relatively low positivity rate. Serological detection may also result in false positive or false negative results. The emergence of metagenomic sequencing (mNGS) technology has led to a significant breakthrough in diagnosing Listeria meningitis, allowing quick and accurate detection of various pathogens in samples. CASE SUMMARY Here, we present the case of a previously healthy 64-year-old woman diagnosed with Listeria meningitis using mNGS. She was successfully treated with intravenous ampicillin and meropenem, without any complications. CONCLUSION Listeria meningitis must be considered, especially in patients who fail to show improvement with first-line antibiotic treatments. mNGS significantly reduces the diagnosis time, supporting timely treatment of patients.
Collapse
Affiliation(s)
- Da-Zhen Xu
- Department of Nursing, Shanghai Sixth People’s Hospital, Shanghai 200233, China
| | - Quan-Hui Tan
- Department of Infectious Disease, Shanghai Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
3
|
Vasileiadi N, Tsironi T, Mandilara GD. Assessing Listeria monocytogenes Growth in Artificially Inoculated Sea-Farmed Product-Raw Sea Bass ( Dicentrarchus labrax) Fillet, Produced in Greece. Microorganisms 2024; 12:1970. [PMID: 39458279 PMCID: PMC11509366 DOI: 10.3390/microorganisms12101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Listeria monocytogenes (Lm) is responsible for listeriosis, a serious foodborne disease, with high hospitalization and mortality rates worldwide. The main cause of listeriosis in humans is the consumption of ready-to-eat (RTE) foods; Commission Regulation (EC) No 2073/2005 establishes microbiological criteria for Lm in RTE foods. Raw fish products are widely consumed, e.g., in sushi and various seafood recipes (e.g., carpaccio, sashimi, maki, nigiri, tartare, etc.), but are not subjected to RTE food safety criteria. The aim of our study was to assess the growth potential of Lm in raw sea bass fillets obtained from a leading aquaculture company in Greece. In order to assess the growth of Lm in raw sea bass fillets, we applied the "challenge test", a scientific experiment designed to assess the growth of Lm within a specific food product under controlled conditions. According to our results, and taking into consideration the health risk for the listeriosis-vulnerable population, raw fish products utilized in the preparation of RTE foods, including sushi and an array of seafood dishes, should be incorporated in the Category of Safety Criteria of Regulation (EC) No 2073/2005 "Ready-to-eat food able to support the growth of Listeria monocytogenes".
Collapse
Affiliation(s)
- Ntina Vasileiadi
- Unit of Environmental Microbiology, Laboratory of Infectious Disease Surveillance, Faculty of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece;
| | - Theofania Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Georgia D. Mandilara
- Unit of Environmental Microbiology, Laboratory of Infectious Disease Surveillance, Faculty of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece;
| |
Collapse
|
4
|
Kawacka I, Olejnik-Schmidt A. Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. Antibiotics (Basel) 2024; 13:749. [PMID: 39200049 PMCID: PMC11350778 DOI: 10.3390/antibiotics13080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance.
Collapse
Affiliation(s)
- Iwona Kawacka
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| |
Collapse
|
5
|
Wei J, Zhang X, Ismael M, Zhong Q. Anti-Biofilm Effects of Z102-E of Lactiplantibacillus plantarum against Listeria monocytogenes and the Mechanism Revealed by Transcriptomic Analysis. Foods 2024; 13:2495. [PMID: 39200422 PMCID: PMC11354177 DOI: 10.3390/foods13162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Lactic acid bacteria (LAB) are the most common probiotics, and they present excellent inhibitory effects on pathogenic bacteria. This study aimed to explore the anti-biofilm potential of the purified active substance of Lactiplantibacillus plantarum, named Z102-E. The effects of Z102-E on Listeria monocytogenes were investigated in detail, and a transcriptomic analysis was conducted to reveal the anti-biofilm mechanism. The results indicated that the sub-MIC of Z102-E (3.2, 1.6, and 0.8 mg/mL) decreased the bacterial growth and effectively reduced the self-aggregation, surface hydrophobicity, sugar utilization, motility, biofilm formation, AI-2 signal molecule, contents of extracellular polysaccharides, and extracellular protein of L. monocytogenes. Moreover, the inverted fluorescence microscopy observation confirmed the anti-biofilm effect of Z102-E. The transcriptomic analysis indicated that 117 genes were up-regulated and 214 were down-regulated. Z102-E regulated the expressions of genes related to L. monocytogenes quorum sensing, biofilm formation, etc. These findings suggested that Z102-E has great application potential as a natural bacteriostatic agent.
Collapse
Affiliation(s)
| | | | | | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.); (M.I.)
| |
Collapse
|
6
|
Bayramoglu G, Ozalp VC, Arica MY. Aptamer-based magnetic isolation and specific detection system for Listeria monocytogenes from food samples. Microchem J 2024; 203:110892. [DOI: 10.1016/j.microc.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Zawadzki R, Rogalska W, Pałdyna M, Głuszczuk D, Zajkowska J, Kubas B. Imaging modalities in neurolisteriosis: a literature review. Pol J Radiol 2024; 89:e345-e357. [PMID: 39139260 PMCID: PMC11321029 DOI: 10.5114/pjr/189214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 08/15/2024] Open
Abstract
Listeriosis caused by Listeria monocytogenes due to its ability to withstand harsh conditions and form biofilms on post-processed food poses a serious public health issue. It typically manifests itself with fever and gastrointestinal symptoms, but it can escalate with life-threatening conditions, especially in immunocompromised patients, the elderly, oncologically sick, and even pregnant women. The diagnosis is based on blood and cerebrospinal fluid culture growth, but it presents significant challenges due to deceptive findings and low positivity rates, the golden standard includes molecular diagnostic tests such as real-time PCR and metagenomic next-generation sequencing, which offer higher sensitivity and rapid detection. Radiological imaging, particularly magnetic resonance imaging, can play a crucial role in diagnosis of central nervous system (CNS) invasion by L. monocytogenes, enabling the detection of characteristic CNS lesions. The aim of the paper was to sum up the imaging features of L. monocytogenes CNS invasions in conventional imaging techniques, which can potentially speed up the diagnostic workflow for patients presenting with neurological symptoms associated with L. monocytogenes infection, particularly when conventional tests yield inconclusive results.
Collapse
Affiliation(s)
- Radosław Zawadzki
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Weronika Rogalska
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Marianna Pałdyna
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Dominika Głuszczuk
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | - Bożena Kubas
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
8
|
Sotohy SA, Elnaker YF, Omar AM, Alm Eldin NK, Diab MS. Prevalence, antibiogram and molecular characterization of Listeria monocytogenes from ruminants and humans in New Valley and Beheira Governorates, Egypt. BMC Vet Res 2024; 20:297. [PMID: 38971767 PMCID: PMC11227151 DOI: 10.1186/s12917-024-04138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Listeriosis is a global health threat to both animals and humans, especially in developing countries. This study was designed to isolate Listeria monocytogenes from faeces; environmental samples; and cow, sheep and goat milk, as well as human stool, to study its molecular characteristics and antibiotic sensitivity in the New Valley and Beheira Governorates, Egypt. The isolation and identification of L. monocytogenes were carried out using traditional culture and biochemical methods, followed by antibiography, genus confirmation of some isolates and detection and sequencing of InlB genes via PCR. RESULTS Out of 2097 examined samples, the prevalence of L. monocytogenes was 13.4% in animals; the prevalence was 9.2%, 2.4%, 25.4%, 4%, 42.4%, and 6.4% in cattle faeces, cattle milk, sheep faeces, sheep milk, goat faeces, and goat milk, respectively. However, the prevalence of L. monocytogenes was 8.3% in human samples. Both animal and human isolates showed 100% resistance to trimethoprim-sulfamethoxazole, and the isolates showed the highest sensitivity to flumequine (100%), amikacin (99.2%), gentamicin (97.6%), and levofloxacin (94.6%). Multidrug resistance (MDR) was detected in 86.9% of the tested isolates. The 16 S rRNA and inlB genes were detected in 100% of the randomly selected L. monocytogenes isolates. Phylogenetic analysis of three isolates based on the inlB gene showed 100% identity between faecal, milk and human stool isolates. CONCLUSIONS Faeces and milk are major sources of listeriosis, and the high degree of genetic similarity between animal and human isolates suggests the possibility of zoonotic circulation. The high prevalence of MDR L. monocytogenes in both animal and human samples could negatively impact the success of prevention and treatments for animal and human diseases, thereby imposing serious risks to public health.
Collapse
Affiliation(s)
- Sotohy A Sotohy
- Department of Animal, Poultry and Environmental Hygiene, Faculty of Veterinary Medicine, Assiut University, Asyut, 71515, Egypt
| | - Yasser F Elnaker
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, 1062001, New Valley, Egypt
| | - Aya M Omar
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, 1062001, New Valley, Egypt
| | - Nehal K Alm Eldin
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, Kharga Oasis, 1062001, New Valley, Egypt
| | - Mohamed Said Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, Kharga Oasis, 1062001, New Valley, Egypt.
| |
Collapse
|
9
|
Bouchali R, Mandon C, Danty-Berger E, Géloën A, Marjolet L, Youenou B, Pozzi ACM, Vareilles S, Galia W, Kouyi GL, Toussaint JY, Cournoyer B. Runoff microbiome quality assessment of a city center rainwater harvesting zone shows a differentiation of pathogen loads according to human mobility patterns. Int J Hyg Environ Health 2024; 260:114391. [PMID: 38781750 DOI: 10.1016/j.ijheh.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.
Collapse
Affiliation(s)
- Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Claire Mandon
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Emmanuelle Danty-Berger
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Alain Géloën
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Adrien C M Pozzi
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Sophie Vareilles
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Wessam Galia
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | | | - Jean-Yves Toussaint
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France.
| |
Collapse
|
10
|
Zhang B, Ren H, Wang X, Han C, Jin Y, Hu X, Shi R, Li C, Wang Y, Li Y, Lu S, Liu Z, Hu P. Comparative genomics analysis to explore the biodiversity and mining novel target genes of Listeria monocytogenes strains from different regions. Front Microbiol 2024; 15:1424868. [PMID: 38962128 PMCID: PMC11220162 DOI: 10.3389/fmicb.2024.1424868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
As a common foodborne pathogen, infection with L. monocytogenes poses a significant threat to human life and health. The objective of this study was to employ comparative genomics to unveil the biodiversity and evolutionary characteristics of L. monocytogenes strains from different regions, screening for potential target genes and mining novel target genes, thus providing significant reference value for the specific molecular detection and therapeutic targets of L. monocytogenes strains. Pan-genomic analysis revealed that L. monocytogenes from different regions have open genomes, providing a solid genetic basis for adaptation to different environments. These strains contain numerous virulence genes that contribute to their high pathogenicity. They also exhibit relatively high resistance to phosphonic acid, glycopeptide, lincosamide, and peptide antibiotics. The results of mobile genetic elements indicate that, despite being located in different geographical locations, there is a certain degree of similarity in bacterial genome evolution and adaptation to specific environmental pressures. The potential target genes identified through pan-genomics are primarily associated with the fundamental life activities and infection invasion of L. monocytogenes, including known targets such as inlB, which can be utilized for molecular detection and therapeutic purposes. After screening a large number of potential target genes, we further screened them using hub gene selection methods to mining novel target genes. The present study employed eight different hub gene screening methods, ultimately identifying ten highly connected hub genes (bglF_1, davD, menE_1, tilS, dapX, iolC, gshAB, cysG, trpA, and hisC), which play crucial roles in the pathogenesis of L. monocytogenes. The results of pan-genomic analysis showed that L. monocytogenes from different regions exhibit high similarity in bacterial genome evolution. The PCR results demonstrated the excellent specificity of the bglF_1 and davD genes for L. monocytogenes. Therefore, the bglF_1 and davD genes hold promise as specific molecular detection and therapeutic targets for L. monocytogenes strains from different regions.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cheng Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chengwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuzhu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
11
|
Azari R, Yousefi MH, Fallah AA, Alimohammadi A, Nikjoo N, Wagemans J, Berizi E, Hosseinzadeh S, Ghasemi M, Mousavi Khaneghah A. Controlling of foodborne pathogen biofilms on stainless steel by bacteriophages: A systematic review and meta-analysis. Biofilm 2024; 7:100170. [PMID: 38234712 PMCID: PMC10793095 DOI: 10.1016/j.bioflm.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigates the potential of using bacteriophages to control foodborne pathogen biofilms on stainless steel surfaces in the food industry. Biofilm-forming bacteria can attach to stainless steel surfaces, rendering them difficult to eradicate even after a thorough cleaning and sanitizing procedures. Bacteriophages have been proposed as a possible solution, as they can penetrate biofilms and destroy bacterial cells within, reducing the number of viable bacteria and preventing the growth and spread of biofilms. This systematic review and meta-analysis evaluates the potential of bacteriophages against different biofilm-forming foodborne bacteria, including Cronobacter sakazakii, Escherichia coli, Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa and Listeria monocytogenes. Bacteriophage treatment generally causes a significant average reduction of 38 % in biofilm formation of foodborne pathogens on stainless steel. Subgroup analyses revealed that phages are more efficient in long-duration treatment. Also, applying a cocktail of phages is 1.26-fold more effective than applying individual phages. Phages at concentrations exceeding 107 PFU/ml are significantly more efficacious in eradicating bacteria within a biofilm. The antibacterial phage activity decreases substantially by 3.54-fold when applied at 4 °C compared to temperatures above 25 °C. This analysis suggests that bacteriophages can be a promising solution for controlling biofilms in the food industry.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Aziz A. Fallah
- Department of Food Hygiene and Quality Control, School of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Arezoo Alimohammadi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Nikjoo
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
12
|
Yong SS, Lee JI, Kang DH. Airborne survival and stress response in Listeria monocytogenes across different growth temperatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133706. [PMID: 38364578 DOI: 10.1016/j.jhazmat.2024.133706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
In the food industry, ensuring food safety during transportation and storage is vital, with temperature regulation preventing spoilage. However, airborne contamination through foodborne pathogens remains a concern. Listeria monocytogenes, a psychrotolerant foodborne pathogen, has been linked to various foodborne outbreaks. Therefore, understanding how its airborne characteristics depend on the growth temperature is imperative. As a result, when the L. monocytogenes was floated in air for 30 and 60 min, the surviving population of 15 °C-grown L. monocytogenes that was suspended in air and attached on the surface was significantly higher than L. monocytogenes grown at 25°C and 37 °C. The fatty acid analysis revealed a significantly higher proportion of shorter chain fatty acids in L. monocytogenes grown at 15 °C compared to those grown at 37 °C. Under aerosolization, L. monocytogenes encountered osmotic and cold stresses regardless of their growth temperature. Transcriptomic analysis showed that stress response related genes, such as oxidative and cold stress response, as well as PTS system related genes were upregulated at 15 °C, resulting in the enhanced resistance to various stresses during aerosolization. These results provide insights into the different responses of aerosolized L. monocytogenes according to the different growth temperatures, highlighting a critical factor in preventing airborne cross-contamination.
Collapse
Affiliation(s)
- So-Seum Yong
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
13
|
Alejandro-Navarreto X, Freitag NE. Revisiting old friends: updates on the role of two-component signaling systems in Listeria monocytogenes survival and pathogenesis. Infect Immun 2024; 92:e0034523. [PMID: 38591895 PMCID: PMC11003226 DOI: 10.1128/iai.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Listeria monocytogenes is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. L. monocytogenes has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of L. monocytogenes TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.
Collapse
Affiliation(s)
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Beyazit F, Arica MY, Acikgoz-Erkaya I, Ozalp C, Bayramoglu G. Quartz crystal microbalance-based aptasensor integrated with magnetic pre-concentration system for detection of Listeria monocytogenes in food samples. Mikrochim Acta 2024; 191:235. [PMID: 38570380 PMCID: PMC10990998 DOI: 10.1007/s00604-024-06307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
A fast and accurate identification of Listeria monocytogenes. A new quartz crystal microbalance (QCM) aptasensor was designed for the specific and rapid detection of L. monocytogenes. Before detection of the target bacterium from samples in the QCM aptasensor, a magnetic pre-enrichment system was used to eliminate any contaminant in the samples. The prepared magnetic system was characterized using ATR-FTIR, SEM, VSM, BET, and analytical methods. The saturation magnetization values of the Fe3O4, Fe3O4@PDA, and Fe3O4@PDA@DAPEG particles were 57.2, 40.8, and 36.4 emu/g, respectively. The same aptamer was also immobilized on the QCM crystal integrated into QCM flow cell and utilized to quantitatively detect L. monocytogenes cells from the samples. It was found that a specific aptamer-magnetic pre-concentration system efficiently captured L. monocytogenes cells in a short time (approximately 10 min). The Fe3O4@PDA@DA-PEG-Apt particles provided selective isolation of L. monocytogenes from the bacteria-spiked media up to 91.8%. The immobilized aptamer content of the magnetic particles was 5834 µg/g using 500 ng Apt/mL. The QCM aptasensor showed a very high range of analytical performance to the target bacterium from 1.0 × 102 and 1.0 × 107 CFU/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were 148 and 448 CFU/mL, respectively, from the feeding of the QCM aptasensor flow cell with the eluent of the magnetic pre-concentration system. The reproducibility of the aptasensor was more than 95%. The aptasensor was very specific to L. monocytogenes compared to the other Listeria species (i.e., L. ivanovii, L. innocua, and L. seeligeri) or other tested bacteria such as Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The QCM aptasensor was regenerated with NaOH solution, and the system was reused many times.
Collapse
Affiliation(s)
- Fatma Beyazit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - Ilkay Acikgoz-Erkaya
- Department of Environmental Science, Faculty of Engineering and Architecture, Ahi Evran University, Kırsehir, Turkey
| | - Cengiz Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| |
Collapse
|
15
|
Mejía L, Espinosa-Mata E, Freire AL, Zapata S, González-Candelas F. Listeria monocytogenes, a silent foodborne pathogen in Ecuador. Front Microbiol 2023; 14:1278860. [PMID: 38179446 PMCID: PMC10764610 DOI: 10.3389/fmicb.2023.1278860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can produce serious, even fatal, infections. Among other foods, it can be found in unpasteurized dairy and ready-to-eat products. Surveillance of L. monocytogenes is of great interest since sources of infection are difficult to determine due to the long incubation period, and because the symptoms of listeriosis are similar to other diseases. We performed a genomic study of L. monocytogenes isolated from fresh cheeses and clinical samples from Ecuador. Sixty-five isolates were evaluated and sequenced, 14 isolates from cheese samples and 20 from clinical listeriosis cases from the National Institute of National Institute of Public Health Research, and 31 isolates from artisanal cheese samples from 8 provinces. All isolates exhibited heterogeneous patterns of the presence of pathogenicity islands. All isolates exhibited at least 4 genes from LIPI-1, but all references (26 L. monocytogenes closed genomes available in the NCBI database) showed the complete island, which encompasses 5 genes but is present in only two Ecuadorian isolates. Most isolates lacked gene actA. Genes from LIPI-2 were absent in all isolates. LIPI-3 and LIPI-4 were present in only a few references and isolates. With respect to the stress survival islets, our samples either presented SSI-1 or SSI-F2365, except for one isolate that presented SSI-F2365 and also one gene from SSI-1. None of the samples presented SSI-2. The predominant ST (sequence type) was ST2 (84.62% 55/65), and the only ST found in food (93.33% 42/45) and clinical samples (65% 13/20). Isolates were not grouped according to their sampling origin, date, or place in a phylogenetic tree obtained from the core alignment. The presence of ST2 in food and clinical samples, with high genomic similarity, suggests a foodborne infection risk linked to the consumption of fresh cheeses in Ecuador.
Collapse
Affiliation(s)
- Lorena Mejía
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
| | - Estefanía Espinosa-Mata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Lucía Freire
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
- CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
16
|
Fajardo-Lubian A, Venturini C. Use of Bacteriophages to Target Intracellular Pathogens. Clin Infect Dis 2023; 77:S423-S432. [PMID: 37932114 DOI: 10.1093/cid/ciad515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages (phages) have shown great potential as natural antimicrobials against extracellular pathogens (eg, Escherichia coli or Klebsiella pneumoniae), but little is known about how they interact with intracellular targets (eg, Shigella spp., Salmonella spp., Mycobacterium spp.) in the mammalian host. Recent research has demonstrated that phages can enter human cells. However, for the design of successful clinical applications, further investigation is required to define their subcellular behavior and to understand the complex biological processes that underlie the interaction with their bacterial targets. In this review, we summarize the molecular evidence of phage internalization in eucaryotic cells, with specific focus on proof of phage activity against their bacterial targets within the eucaryotic host, and the current proposed strategies to overcome poor penetrance issues that may impact therapeutic use against the most clinically relevant intracellular pathogens.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubian
- Faculty of Medicine and Health, Sydney ID Institute, University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
18
|
Gunjan, Himanshu, Mukherjee R, Vidic J, Manzano M, Leal E, Raj VS, Pandey RP, Chang CM. Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in the Egypt and UK. BMC Microbiol 2023; 23:291. [PMID: 37845637 PMCID: PMC10578024 DOI: 10.1186/s12866-023-03030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/24/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK). METHODS Data for this study were obtained from published reports spanning the period from 2013 to 2022. In Egypt and the UK, a total of 9,751 and 10,602 food samples were analyzed, respectively. Among these samples, 3,205 (32.87%) in Egypt and 4,447 (41.94%) in the UK were found to contain AMR bacteria. RESULTS In Egypt, the predominant resistance was observed against β-lactam and aminoglycosides, while in the United Kingdom, most isolates exhibited resistance to tetracycline and β-lactam. The findings from the analysis underscore the increasing prevalence of AMR in certain microorganisms, raising concerns about the development of multidrug resistance. CONCLUSION This meta-analysis sheds light on the escalating AMR problem associated with certain microorganisms that pose a higher risk of multidrug resistance development. The significance of implementing One Health AMR surveillance is emphasized to bridge knowledge gaps and facilitate accurate AMR risk assessments, ensuring consumer safety. Urgent actions are needed on a global scale to combat AMR and preserve the effectiveness of antimicrobial treatments for the well-being of all living beings.
Collapse
Affiliation(s)
- Gunjan
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belem, Pará, 66075-000, Brazil
| | - V Samuel Raj
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun, 248007, Uttarakhand, India
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun, 248007, Uttarakhand, India.
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan.
- Laboratory Animal Center, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan.
| |
Collapse
|
19
|
Kocsis T, Molnár B, Ribiczey P, Kovács M. [A case of community-acquired Listeria monocytogenes meningitis]. Orv Hetil 2023; 164:1437-1441. [PMID: 37695717 DOI: 10.1556/650.2023.32809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 09/13/2023]
Abstract
Meningitis caused by Listeria monocytogenes is a rare disease in immunocompetent individuals, however, in the presence of certain risk factors with clinical signs indicating infection of the central nervous system it should not be ignored. In this case report, we present the medical history of a 72-year-old man, suffering from hypertension and liver cirrhosis, who was diagnosed with meningitis caused by L. monocytogenes. The patient was admitted to our Department with the symptoms of weakness, dizziness, high fever and urinary incontinence. Laboratory tests showed elevated inflammatory and liver enzyme values as well as low white blood cell and platelet counts were confirmed. Imaging tests did not prove any abnormalities. Due to septic parameters, after microbiological samples were collected, empiric ceftriaxon and metronidazol treatment was started. Despite our therapeutic efforts, the condition of the patient had not improved significantly. The patient still suffered from high fever; increasing agitation and tremor, coordination disorder appeared, raising the possibility of a bacterial infection of the central nervous system. Examination of the cerebrospinal fluid confirmed the diagnosis of bacterial meningitis. In the meantime, findings of microbiological cultures verified the infection of L. monocytogenes, however, cerebrospinal fluid culture did not detect any pathogen. Following that, the therapy continued with targeted ampicillin which resulted in rapid improvement of the patient's condition; fevers and neurological symptoms have ceased to exist. We considered the case worthy of presentation because of the pitfalls of the diagnosis, the emerging differential diagnostic difficulties and the favorable outcome due to the effectiveness of targeted antibiotic treatment. Orv Hetil. 2023; 164(36): 1437-1441.
Collapse
Affiliation(s)
- Tícia Kocsis
- 1 Zala Vármegyei Szent Rafael Kórház, I. Belgyógyászati és Infektológiai Osztály Zalaegerszeg, Zrínyi M. u. 1., 8900 Magyarország
| | - Bálint Molnár
- 2 Zala Vármegyei Szent Rafael Kórház, Neurológiai Osztály Zalaegerszeg Magyarország
| | - Pál Ribiczey
- 1 Zala Vármegyei Szent Rafael Kórház, I. Belgyógyászati és Infektológiai Osztály Zalaegerszeg, Zrínyi M. u. 1., 8900 Magyarország
| | - Mónika Kovács
- 1 Zala Vármegyei Szent Rafael Kórház, I. Belgyógyászati és Infektológiai Osztály Zalaegerszeg, Zrínyi M. u. 1., 8900 Magyarország
| |
Collapse
|
20
|
Gómez-Galindo M, Truchado P, Allende A, Gil MI. Optimization of the Use of a Commercial Phage-Based Product as a Control Strategy of Listeria monocytogenes in the Fresh-Cut Industry. Foods 2023; 12:3171. [PMID: 37685104 PMCID: PMC10487045 DOI: 10.3390/foods12173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A commercial phage biocontrol for reducing Listeria monocytogenes has been described as an effective tool for improving fresh produce safety. Critical challenges in the phage application must be overcome for the industrial application. The validation studies were performed in two processing lines of two industry collaborators in Spain and Denmark, using shredded iceberg lettuce as the ready-to-eat (RTE), high process volume product. The biocontrol treatment optimized in lab-scale trials for the application of PhageGuard ListexTM was confirmed in industrial settings by four tests, two in Spain and two in Denmark. Results showed that the method of application that included the device and the processing operation step was appropriate for the proper application. The proper dose of Phage Guard ListexTM was reached in shredded iceberg lettuce and the surface was adequately covered for the successful application of phages. There was no impact on the headspace gas composition (CO2 and O2 levels), nor on the color when untreated and treated samples were compared. The post-process treatment with PhageGuard ListexTM did not cause any detrimental impact on the sensory quality, including flavor, texture, browning, spoilage, and visual appearance over the shelf-life as the phage solution was applied as a fine, mist solution.
Collapse
Affiliation(s)
| | | | | | - Maria I. Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables, Food Science & Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (M.G.-G.); (P.T.); (A.A.)
| |
Collapse
|
21
|
Liao S, Tian L, Qi Q, Hu L, Wang M, Gao C, Cui H, Gai Z, Gong G. Transcriptome Analysis of Protocatechualdehyde against Listeria monocytogenes and Its Effect on Chicken Quality Characteristics. Foods 2023; 12:2625. [PMID: 37444363 DOI: 10.3390/foods12132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The development of natural antimicrobial agents offers new strategies for food preservation due to the health hazards associated with the spoilage of meat products caused by microbial contamination. In this paper, the inhibitory mechanism of protocatechualdehyde (PCA) on Listeria monocytogenes was described, and its effect on the preservation of cooked chicken breast was evaluated. The results showed that the minimal inhibitory concentration (MIC) of PCA on L. monocytogenes was 0.625 mg/mL. Secondly, PCA destroyed the integrity of the L. monocytogenes cell membrane, which was manifested as a decrease in membrane hyperpolarization, intracellular ATP level, and intracellular pH value. Field emission gun scanning electron microscopy (FEG-SEM) observed a cell membrane rupture. Transcriptome analysis showed that PCA may inhibit cell growth by affecting amino acid, nucleotide metabolism, energy metabolism, and the cell membrane of L. monocytogenes. Additionally, it was discovered that PCA enhanced the color and texture of cooked chicken breast meat while decreasing the level of thiobarbituric acid active substance (TBARS). In conclusion, PCA as a natural antibacterial agent has a certain reference value in extending the shelf life of cooked chicken breast.
Collapse
Affiliation(s)
- Sichen Liao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lu Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Qi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lemei Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minmin Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chang Gao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyue Cui
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhongchao Gai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoli Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
22
|
Vaval Taylor DM, Xayarath B, Freitag NE. Two Permeases Associated with the Multifunctional CtaP Cysteine Transport System in Listeria monocytogenes Play Distinct Roles in Pathogenesis. Microbiol Spectr 2023; 11:e0331722. [PMID: 37199604 PMCID: PMC10269559 DOI: 10.1128/spectrum.03317-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/05/2023] [Indexed: 05/19/2023] Open
Abstract
The soil-dwelling bacterium Listeria monocytogenes survives a multitude of conditions when residing in the outside environment and as a pathogen within host cells. Key to survival within the infected mammalian host is the expression of bacterial gene products necessary for nutrient acquisition. Similar to many bacteria, L. monocytogenes uses peptide import to acquire amino acids. Peptide transport systems play an important role in nutrient uptake as well as in additional functions that include bacterial quorum sensing and signal transduction, recycling of peptidoglycan fragments, adherence to eukaryotic cells, and alterations in antibiotic susceptibility. It has been previously described that CtaP, encoded by lmo0135, is a multifunctional protein associated with activities that include cysteine transport, resistance to acid, membrane integrity, and bacterial adherence to host cells. ctaP is located next to two genes predicted to encode membrane-bound permeases lmo0136 and lmo0137, termed CtpP1 and CtpP2, respectively. Here, we show that CtpP1 and CtpP2 are required for bacterial growth in the presence of low concentrations of cysteine and for virulence in mouse infection models. Taken together, the data identify distinct nonoverlapping roles for two related permeases that are important for the growth and survival of L. monocytogenes within host cells. IMPORTANCE Bacterial peptide transport systems are important for nutrient uptake and may additionally function in a variety of other roles, including bacterial communication, signal transduction, and bacterial adherence to eukaryotic cells. Peptide transport systems often consist of a substrate-binding protein associated with a membrane-spanning permease. The environmental bacterial pathogen Listeria monocytogenes uses the substrate-binding protein CtaP not only for cysteine transport but also for resistance to acid, maintenance of membrane integrity, and bacterial adherence to host cells. In this study, we demonstrate complementary yet distinct functional roles for two membrane permeases, CtpP1 and CtpP2, that are encoded by genes linked to ctaP and that contribute to bacterial growth, invasion, and pathogenicity.
Collapse
Affiliation(s)
- Diandra M. Vaval Taylor
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bobbi Xayarath
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nancy E. Freitag
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Bai X, Huang J, Li W, Song Y, Xiao F, Xu Q, Xu H. Portable dual-mode biosensor based on smartphone and glucometer for on-site sensitive detection of Listeria monocytogenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162450. [PMID: 36863591 DOI: 10.1016/j.scitotenv.2023.162450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Contamination of Listeria monocytogenes (L. monocytogenes) in the environment and food can pose a serious threat to human health, and there is an urgent need to establish sensitive on-situ detection methods to mitigate its hazards. In this study, we have developed a field assay that combines magnetic separation technology with antibody-labeled ZIF-8 encapsulating glucose oxidase (GOD@ZIF-8@Ab) to capture and specifically identify L. monocytogenes while GOD catalyzes glucose catabolism to produce signal changes in glucometers. On the other side, horseradish peroxidase (HRP) and 3,3',5,5'-tetramethylbenzidine (TMB) were added to recombined with the H2O2 generated by the catalyst to form a colorimetric reaction system that changes from colorless to blue. The smartphone software was used for RGB analysis to complete the on-site colorimetric detection of L. monocytogenes. This dual-mode biosensor showed good detection performance for the on-site application of L. monocytogenes in lake water and juice samples, both with a limit of detection up to 101 CFU/mL and a good linear range of 101-106 CFU/mL. Therefore, this dual-mode on-site detection biosensor has a promising application for the early screening of L. monocytogenes in environmental and food samples.
Collapse
Affiliation(s)
- Xuekun Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
24
|
Kawacka I, Pietrzak B, Schmidt M, Olejnik-Schmidt A. Listeria monocytogenes Isolates from Meat Products and Processing Environment in Poland Are Sensitive to Commonly Used Antibiotics, with Rare Cases of Reduced Sensitivity to Ciprofloxacin. Life (Basel) 2023; 13:821. [PMID: 36983976 PMCID: PMC10051045 DOI: 10.3390/life13030821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Antibiotic resistance is a global health problem, causing not only an increased mortality rate of bacterial infections but also economic losses due to, among other reasons, the need for longer hospital stays. Listeria monocytogenes is one of the foodborne pathogens with the ability to induce a serious illness called listeriosis, with approximately 20-30% fatal outcomes. The treatment regimen of listeriosis in humans includes the administration of antibiotics (in most cases, ampicillin or trimethoprim with sulfamethoxazole in case of allergies to β-lactams), so the resistance of this pathogen to antibiotics can potentially lead to increased mortality. The antibiotic sensitivity status of n = 153 L. monocytogenes isolates originating from meat food samples (raw and processed) and meat-processing environment (both contacting and non-contacting with food) collected between October 2020 and November 2021 in Poland was examined in this study. Susceptibility to antibiotics was determined using the disc diffusion method on Mueller-Hinton agar plates. All collected samples were susceptible to 9 antibiotics: ampicillin (10 µg), chloramphenicol (30 µg), erythromycin (15 µg), gentamicin (10 µg), penicillin (10 IU), streptomycin (10 µg), sulfamethoxazole/trimethoprim (1.25/23.75 µg), tetracycline (30 µg) and vancomycin (30 µg). Some of the isolates (n = 10; 6.5%) showed reduced susceptibility to ciprofloxacin (5 µg), which was classified as an intermediate response. All these ten isolates were collected from surfaces contacting with food in food-processing facilities.
Collapse
Affiliation(s)
- Iwona Kawacka
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | | | | | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| |
Collapse
|
25
|
Santativongchai P, Tulayakul P, Jeon B. Enhancement of the Antibiofilm Activity of Nisin against Listeria monocytogenes Using Food Plant Extracts. Pathogens 2023; 12:pathogens12030444. [PMID: 36986366 PMCID: PMC10056046 DOI: 10.3390/pathogens12030444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen exhibiting a high mortality rate. In addition to the robust tolerance to environmental stress, the ability of L. monocytogenes to develop biofilms increases the risk of contaminating food processing facilities and ultimately foods. This study aims to develop a synergistic approach to better control Listeria biofilms using nisin, the only bacteriocin approved as a food preservative, in combination with gallic-acid-rich food plant extracts. Biofilm assays in the presence of nisin and gallic acid or its derivatives revealed that gallic acid significantly decreased the level of biofilm formation in L. monocytogenes, whereas ethyl gallate, propyl gallate, and lauryl gallate enhanced biofilm production. As gallic acid is widely distributed in plants, we examined whether extracts from gallic-acid-rich food plants, such as clove, chestnut, oregano, and sage, may generate similar antibiofilm effects. Remarkably, sage extracts enhanced the antibiofilm activity of nisin against L. monocytogenes; however, the other tested extracts increased biofilm formation, particularly at high concentrations. Moreover, sage extracts and nisin combinations significantly reduced the biofilm formation of L. monocytogenes on stainless steel. Sage is a common food spice and has various beneficial health effects, including antioxidation and anti-cancer properties. The findings in this study demonstrate that sage extracts can be potentially combined with nisin to prevent biofilm production in L. monocytogenes.
Collapse
Affiliation(s)
- Pitchaya Santativongchai
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN 55108, USA
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
26
|
Borges A, Baptista E, Aymerich T, Alves S, Gama L, Fraqueza M. Inactivation of Listeria monocytogenes by pulsed light in packaged and sliced salpicão, a ready-to-eat traditional cured smoked meat sausage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
27
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
28
|
He Y, Wang J, Zhang R, Chen L, Zhang H, Qi X, Chen J. Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021. Front Public Health 2023; 11:1127925. [PMID: 36817893 PMCID: PMC9929456 DOI: 10.3389/fpubh.2023.1127925] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Objective Salmonella infection is a common cause of bacterial foodborne diseases (FBDs) globally. In this study, we aimed to explore the epidemiological and etiological characteristics of Salmonella infection from 2012-2021 in Zhejiang Province, China. Methods Descriptive statistical methods were used to analyze the data reported by the Centers for Disease Control and Prevention at all levels in Zhejiang Province through the China National Foodborne Diseases Surveillance Network from 2012-2021. Results A total of 11,269 Salmonella cases were reported, with an average positive rate of 3.65%, including 1,614 hospitalizations. A significant seasonal trend was observed for Salmonella cases, with the highest rate over the summer period, peaking from May to October, accounting for 77.96%. The results indicated a higher positive rate among respondents aged 0-4 years, especially for the scattered children (P < 0.05). The highest number of Salmonella infections were caused due to contaminated fruit and fruit products. Households (54.69%) had the most common exposure settings. Serotypes analysis revealed that Salmonella typhimurium (36.07%), Salmonella enteritidis (15.17%), and Salmonella london (6.05%) were the dominant strains among the 173 serotypes. Diarrhea, abdominal pain, fever, nausea, and vomiting were the main symptoms of these serotypes. Conclusions FBDs caused by Salmonella are important issues for public health in Zhejiang Province, and there is a need to focus on the epidemiological and etiological characteristics to control Salmonella infections.
Collapse
Affiliation(s)
| | | | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lili Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hexiang Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | | |
Collapse
|
29
|
Schoder D, Pelz A, Paulsen P. Transmission Scenarios of Listeria monocytogenes on Small Ruminant On-Farm Dairies. Foods 2023; 12:foods12020265. [PMID: 36673359 PMCID: PMC9858201 DOI: 10.3390/foods12020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Listeria monocytogenes can cause severe foodborne infections in humans and invasive diseases in different animal species, especially in small ruminants. Infection of sheep and goats can occur via contaminated feed or through the teat canal. Both infection pathways result in direct (e.g., raw milk from an infected udder or fresh cheese produced from such milk) or indirect exposure of consumers. The majority of dairy farmers produces a high-risk product, namely fresh cheese made from raw ewe's and goat's milk. This, and the fact that L. monocytogenes has an extraordinary viability, poses a significant challenge to on-farm dairies. Yet, surprisingly, almost no scientific studies have been conducted dealing with the hygiene and food safety aspects of directly marketed dairy products. L. monocytogenes prevalence studies on small ruminant on-farm dairies are especially limited. Therefore, it was our aim to focus on three main transmission scenarios of this important major foodborne pathogen: (i) the impact of caprine and ovine listerial mastitis; (ii) the significance of clinical listeriosis and outbreak scenarios; and (iii) the impact of farm management and feeding practices.
Collapse
Affiliation(s)
- Dagmar Schoder
- Institute of Food Safety, Food Technology and Veterinary Public Health, Unit of Food Microbiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Vétérinaires sans Frontières Austria, Veterinaerplatz 1, 1210 Vienna, Austria
- Correspondence: ; Tel.: +43-1-25077-3520
| | - Alexandra Pelz
- Vétérinaires sans Frontières Austria, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Peter Paulsen
- Institute of Food Safety, Food Technology and Veterinary Public Health, Unit of Food Hygiene and Technology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
30
|
Ramalho R, de Souza NAA, Moreira TFM, De Oliveira A, Perini HF, Furlaneto MC, Leimann FV, Furlaneto-Maia L. Antibacterial efficacy of Enterococcus microencapsulated bacteriocin on Listeria monocytogenes, Listeria innocua and Listeria ivanovi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:262-271. [PMID: 36618045 PMCID: PMC9813327 DOI: 10.1007/s13197-022-05611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
This study focused on the microencapsulation of enterocin from Enterococcus durans (E. durans MF5) in whey powder (WP) using a spray-drying technique followed by the evaluation of how complexation can preserve the enterocin structure and antimicrobial activity against food-borne pathogens. Crude enterocin samples (1 and 5%) were microencapsulated in 10% WP. The antimicrobial activity of unencapsulated (crude) enterocin and microencapsulated enterocin was tested against the target bacteria Salmonella Typhimurium, Escherichia coli, Listeria monocytogenes, Listeria innocua, and Listeria ivanovi. The microencapsulation yields were 31.66% and 34.16% for concentrations of 1 and 5% enterocin, respectively. There was no significant difference between these concentrations. Microencapsulated enterocin was efficient for up to 12 h of cocultivation with Listeria sp., and the concentration required to inhibit the growth of target bacteria presented values of 6400 AU/mL (arbitrary unit). Microencapsulated enterocin demonstrated enhanced efficacy against Listeria species and E. coli when compared with crude enterocin (p < 0.05). Fourier transform-infrared spectroscopy and differential scanning calorimetry results confirmed the presence of enterocin in the microparticles. Scanning electron microscopy showed cell damage of the target bacteria. The results showed that complexation with WP preserved enterocin antimicrobial activity during spray-drying, indicating its potential use as a food preservative.
Collapse
Affiliation(s)
- Regiane Ramalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | | | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Anielle De Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Hugo Felix Perini
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Márcia Cristina Furlaneto
- Department of Microbiology, State University of Londrina, C.P. 6001, Londrina, Paraná 86051990 Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Luciana Furlaneto-Maia
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Londrina (UTFPR-LD), Av Dos Pioneiros 3131, Londrina, Paraná CEP 86036-370 Brazil
| |
Collapse
|
31
|
Preparation and physicochemical effects of zein nanofiber membrane encapsulated with citral/HP-β-CD inclusion complex and its application on cheese. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Poly (lactic acid) and whey protein/pullulan composite bilayer film containing phage A511 as an anti-Listerial packaging for chicken breast at refrigerated temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Bisson G, Comuzzi C, Giordani E, Poletti D, Boaro M, Marino M. An exopolysaccharide from Leuconostoc mesenteroides showing interesting bioactivities versus foodborne microbial targets. Carbohydr Polym 2022; 301:120363. [DOI: 10.1016/j.carbpol.2022.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
34
|
Sugar Modification of Wall Teichoic Acids Determines Serotype-Dependent Strong Biofilm Production in Listeria monocytogenes. Microbiol Spectr 2022; 10:e0276922. [PMID: 36190419 PMCID: PMC9603678 DOI: 10.1128/spectrum.02769-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Biofilm production is responsible for persistent food contamination by Listeria monocytogenes, threatening food safety and public health. Human infection and food contamination with L. monocytogenes are caused primarily by serotypes 1/2a, 1/2b, and 4b. However, the association of biofilm production with phylogenic lineage and serotype has not yet been fully understood. In this study, we measured the levels of biofilm production in 98 clinical strains of L. monocytogenes at 37°C, 25°C, and 4°C. The phylogenetic clusters grouped by core genome multilocus sequence typing (cgMLST) exhibited association between biofilm production and phylogenetic lineage and serotype. Whereas clusters 1 and 3 consisting of serotype 4b strains exhibited weak biofilm production, clusters 2 (serotype 1/2b) and 4 (serotype 1/2a) were composed of strong biofilm formers. Particularly, cluster 2 (serotype 1/2b) strains exhibited the highest levels of biofilm production at 37°C, and the levels of biofilm production of cluster 4 (serotype 1/2a) strains were significantly elevated at all tested temperatures. Pan-genome analysis identified 22 genes unique to strong biofilm producers, most of which are related to the synthesis and modification of teichoic acids. Notably, a knockout mutation of the rml genes related to the modification of wall teichoic acids with l-rhamnose, which is specific to serogroup 1/2, significantly reduced the level of biofilm production by preventing biofilm maturation. Here, the results of our study show that biofilm production in L. monocytogenes is related to phylogeny and serotype and that the modification of wall teichoic acids with l-rhamnose is responsible for serotype-specific strong biofilm formation in L. monocytogenes. IMPORTANCE Biofilm formation on the surface of foods or food-processing facilities by L. monocytogenes is a serious food safety concern. Here, our data demonstrate that the level of biofilm production differs among serotypes 1/2a, 1/2b, and 4b depending on the temperature. Furthermore, sugar decoration of bacterial cell walls with l-rhamnose is responsible for strong biofilm production in serotypes 1/2a and 1/2b, commonly isolated from foods and listeriosis cases. The findings in this study improve our understanding of the association of biofilm production with phylogenetic lineage and serotype in L. monocytogenes.
Collapse
|
35
|
Zhang Y, Zhou C, Bassey A, Bai L, Wang Y, Ye K. Quantitative exposure assessment of Listeria monocytogenes cross-contamination from raw to ready-to-eat meat under different food-handling scenarios. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Dissecting Listeria monocytogenes Persistent Contamination in a Retail Market Using Whole-Genome Sequencing. Microbiol Spectr 2022; 10:e0018522. [PMID: 35579473 PMCID: PMC9241689 DOI: 10.1128/spectrum.00185-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause invasive disease with high mortality in immunocompromised individuals and can survive in a variety of food-associated environments for a long time. L. monocytogenes clonal complex (CC) 87 is composed of ST87 and three other STs and has been identified as the most common subgroup associated with both foods and human clinical infections in China. Therefore, the persistence of CC87 L. monocytogenes in food-associated environments poses a significant concern for food safety. In this study, 83 draft genomes of CC87 L. monocytogenes, including 60 newly sequenced genomes, were analyzed with all isolates from our previous surveillance in Zigong, Sichuang, China. Sixty-eight of the studied isolates were isolated from one retail market (M1 market), while the others were from seven other markets (M2–M8 markets) in the same city. Whole-genome multilocus sequence typing (wg-MLST) and the whole-genome single nucleotide polymorphism (wg-SNP) analysis were performed. Three persistent contamination routes were identified in the M1 market, caused by 2 clusters (A and B) and a wgST31 type. Cluster A isolates were associated with the persistent contamination in a raw meat stall (M1-S77), while Cluster B isolates caused a persistent contamination in aquatic foods stalls. Five wgST31 isolates caused persistent contamination in a single aquatic stall (M1-S65). A pLM1686-like plasmid was found in all Cluster A isolates. A novel plasmid, pLM1692, a truncated pLM1686 plasmid without the cadmium, and other heavy metal resistance genes were conserved in all wgST31 isolates. By comparing persistent and putative non-persistent isolates, four genes that were all located in the prophage comK might be associated with persistence. These findings enhanced our understanding of the underlying mechanisms of contamination and assist in formulating targeted strategies for the prevention and control of L. monocytogenes transmission from the food processing chain to humans. IMPORTANCE Contamination of food by Listeria monocytogenes at retail level leads to potential consumption of contaminated food with high risk of human infection. Our previous study found persistent contamination of CC87 L. monocytogenes from a retail market in China through pulsed-field gel electrophoresis and multilocus sequence typing. In this study, whole-genome sequencing was used to obtain the highest resolution inference of the source and reasons for persistent contamination; meat grinders and minced meat were the major reservoir of persistent contamination in meat stalls, whereas fishponds were the major reservoir in seafood stalls, with different L. monocytogenes isolates involved. These isolates carried different properties such as plasmids and prophages, which may have contributed to their ability to survive or adapt to the different environments. Our findings suggest that whole-genome sequencing will be an effective surveillance tool to detect persistent L. monocytogenes contamination in retail food markets and to design new control strategies to improve food safety.
Collapse
|
37
|
Cai G, Zhong F, Cao Q, Bai Y, Zou H, Gu J, Yuan Y, Zhu G, Liu Z, Bian J. ZEA and DON inhibited inflammation after L. monocytogenes infection and induced ribosomal hyperfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113470. [PMID: 35395601 DOI: 10.1016/j.ecoenv.2022.113470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The complex microbial community in food environment is a major problem of human or animal health and safety. Mycotoxins and food-borne bacteria can both induce inflammation in the body and cause a series of changes in biological functions. In this study, mice were gavaged with low doses of ZEA, DON, or ZEA + DON, and then infected with L. monocytogenes. A cytokine microarray, including 40 inflammation-related serum cytokines, and proteomics were used to verify the effects of ZEA, DON, and ZEA + DON on the host inflammation and biological function after L. monocytogenes infection. The results showed that mononucleosis after bacterial infection was inhibited by ZEA, DON, and ZEA + DON, while the balance of macrophage differentiation was shifted toward M2-type. ZEA, DON, and ZEA + DON decreased the levels of serum proinflammatory cytokines IL-1β and IL-12 after infection. In addition, the signal of the NF-κB pathway was inhibited. Proteomic results showed that ZEA, DON, and ZEA + DON led to biological dysfunction in ribosomal and metabolic cells, primarily leading to abnormal ribosomal hyperfunction. This study showed that ZEA, DON, and ZEA + DON can aggravate disease progression by inhibiting the inflammatory response following foodborne bacterial infection. These metabolites may also disrupt normal biological functions, which may lead to ribosomal hyperfunction, making bacterial clearance more difficult.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Qianying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yuni Bai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
38
|
Nonhemolytic Listeria monocytogenes-Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms 2022; 10:microorganisms10020483. [PMID: 35208937 PMCID: PMC8874635 DOI: 10.3390/microorganisms10020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that typically presents β-hemolytic activity. However, there are literature reports indicating that L. monocytogenes strains are sometimes nonhemolytic or their zones of hemolysis are perceivable only after removal of the colonies from the agar plate. Nonhemolytic L. monocytogenes are most commonly encountered in food products, but some have also been detected in clinical samples. Usually, atypical bacteria of this species belong to serotype 1/2a. Mutations of the prfA gene sequence are the most common reason for changed phenotype, and mutations of the hly gene are the second most common cause. There are also reports that the methodology used for detecting hemolysis may influence the results. Sheep or horse blood, although most commonly used in modern studies, may not allow for the production of clear hemolytic zones on blood agar, whereas other types of blood (guinea pig, rabbit, piglet, and human) are more suitable according to some studies. Furthermore, the standard blood agar plate technique is less sensitive than its modifications such as bilayer or top-layer (overlay) techniques. The microplate technique (employing erythrocyte suspensions) is probably the most informative when assessing listerial hemolysis and is the least susceptible to subjective interpretation.
Collapse
|
39
|
Cavalcanti AAC, Limeira CH, Siqueira IND, Lima ACD, Medeiros FJPD, Souza JGD, Medeiros NGDA, Oliveira Filho AAD, Melo MAD. The prevalence of Listeria monocytogenes in meat products in Brazil: A systematic literature review and meta-analysis. Res Vet Sci 2022; 145:169-176. [PMID: 35217271 DOI: 10.1016/j.rvsc.2022.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Listeria monocytogenes, a foodborne pathogen that causes human listeriosis, is commonly found in meat products. This study aimed to estimate the prevalence of L. monocytogenes in a variety of Brazilian meat products, using a meta-analysis of data from the literature. A total of 29 publications from five databases, published between January 1, 2009, and December 31, 2019, were included in the study. Estimated by the random-effects model, the combined prevalence of L. monocytogenes was 13%, ranging from 0 to 59%. The combined prevalence of L. monocytogenes was 14% and 11% for raw meat and ready-to-eat (RTE) meat, respectively. The prevalence of L. monocytogenes was higher in the swine species' meat products and the Southeast region of Brazil. Regarding the type of establishment, it was the retail market that presented the highest combined prevalence rate (19%). The most prevalent serotypes of L. monocytogenes were 4b, 1/2a, 1/2b, and 1/2c. The knowledge of differences in the prevalence levels of L. monocytogenes in different meat products can guide in its efficient control by the competent authorities and by industry.
Collapse
Affiliation(s)
| | - Clécio Henrique Limeira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | - Iara Nunes de Siqueira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Joyce Galvão de Souza
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Marcia Almeida de Melo
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil.
| |
Collapse
|
40
|
Kim G, Xu Y, Zhang J, Sui Z, Corke H. Antibacterial Activity and Multi-Targeting Mechanism of Dehydrocorydaline From Corydalis turtschaninovii Bess. Against Listeria monocytogenes. Front Microbiol 2022; 12:799094. [PMID: 35087499 PMCID: PMC8787222 DOI: 10.3389/fmicb.2021.799094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, with relatively low incidence but high case-fatality. Phytochemicals have been recognized as a promising antimicrobial agent as an alternative to synthetic chemicals due to their safety and high efficacy with multi-target sites. This study identified and characterized a novel antibacterial agent, dehydrocorydaline, in the Corydalis turschaninovii rhizome using HPLC-LTQ-Orbitrap-HRMS, and its antibacterial effect with lowest MIC (1 mg/mL) and MBC (2 mg/mL) values. In addition, an in vitro growth kinetic assay, cytoplasmic nucleic acid and protein leakage assay, and observation of morphological changes in bacterial cells supported the strong antibacterial activity. Dehydrocorydaline also displayed effective inhibitory effects on biofilm formation and bacterial motility. In order to investigate the potential antibacterial mechanism of action of dehydrocorydaline against L. monocytogenes, label-free quantitative proteomics was used, demonstrating that dehydrocorydaline has multiple targets for combating L. monocytogenes including dysregulation of carbohydrate metabolism, suppression of cell wall synthesis, and inhibition of bacterial motility. Overall, this study demonstrated that dehydrocorydaline has potential as a natural and effective antibacterial agent with multi-target sites in pathogenic bacteria, and provides the basis for development of a new class of antibacterial agent.
Collapse
Affiliation(s)
- Gowoon Kim
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijuan Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarong Zhang
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| | - Zhongquan Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
41
|
Wu L, Bao H, Yang Z, He T, Tian Y, Zhou Y, Pang M, Wang R, Zhang H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiol 2021; 21:327. [PMID: 34823476 PMCID: PMC8613961 DOI: 10.1186/s12866-021-02335-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Background Listeria monocytogenes is one of the deadliest foodborne pathogens. The bacterium can tolerate severe environments through biofilm formation and antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility, resistance genes, virulence, and molecular epidemiology about Listeria from meat processing environments. Methods This study evaluated the antibiotic resistance and virulence of Listeria isolates from slaughtering and processing plants. All isolates were subjected to antimicrobial susceptibility testing using a standard microbroth dilution method. The harboring of resistant genes was identified by polymerase chain reaction. The multilocus sequence typing was used to determine the subtyping of the isolates and characterize possible routes of contamination from meat processing environments. The virulence of different STs of L. monocytogenes isolates was evaluated using a Caco-2 cell invasion assay. Results A total of 59 Listeria isolates were identified from 320 samples, including 37 L. monocytogenes isolates (62.71%). This study evaluated the virulence of L. monocytogenes and the antibiotic resistance of Listeria isolates from slaughtering and processing plants. The susceptibility of these 59 isolates against 8 antibiotics was analyzed, and the resistance levels to ceftazidime, ciprofloxacin, and lincomycin were as high as 98.31% (L. m 37; L. innocua 7; L. welshimeri 14), 96.61% (L. m 36; L. innocua 7; L. welshimeri 14), and 93.22% (L. m 35; L. innocua 7; L. welshimeri 13), respectively. More than 90% of the isolates were resistant to three to six antibiotics, indicating that Listeria isolated from meat processing environments had high antimicrobial resistance. Up to 60% of the isolates harbored the tetracycline-resistance genes tetA and tetM. The frequency of ermA, ermB, ermC, and aac(6′)-Ib was 16.95, 13.56, 15.25, and 6.78%, respectively. Notably, the resistant phenotype and genotype did not match exactly, suggesting that the mechanisms of antibiotic resistance of these isolates were likely related to the processing environment. Multilocus sequence typing (MLST) revealed that 59 Listeria isolates were grouped into 10 sequence types (STs). The dominant L. monocytogenes STs were ST5, ST9, and ST121 in the slaughtering and processing plant of Jiangsu province. Moreover, ST5 subtypes exhibited high invasion in Caco-2 cells compared with ST9 and ST121 cells. Conclusion The dominant L. monocytogenes ST5 persisted in the slaughtering and processing plant and had high antimicrobial resistance and invasion characteristics, illustrating a potential risk in food safety and human health.
Collapse
Affiliation(s)
- Liting Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hongduo Bao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhengquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yuan Tian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University - School of Food and Biological Engineering, Zhenjiang, 212013, China
| | - Yan Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Maoda Pang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
42
|
Tarazi Y, El-Sukhon S, Al-Rahbi A, Ismail ZB. Molecular characterization and in vivo pathogenicity study of Listeria monocytogenes isolated from fresh and frozen local and imported fish in Jordan. Open Vet J 2021; 11:517-524. [PMID: 34722217 PMCID: PMC8541712 DOI: 10.5455/ovj.2021.v11.i3.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Listeria monocytogenes (L. monocytogenes) is a serious zoonotic and food transmitted human pathogen causing meningitis and abortions. Several outbreaks of listeriosis have been associated with the consumption of ready-to-eat food products; dairy, meat, fish, and contaminated fruits and vegetables worldwide. Aim: This study was designed to detect and characterize L. monocytogenes isolated from local and imported fish in Jordan. Methods: A total of 170 fish (70 local and 100 imported), of which 140 fresh and 30 frozen samples were used in this study. Listeria monocytogenes was cultured and initially identified using conventional microbiological methods. For confirmation and serotyping of the L. monocytogenes isolates, PCR techniques were used. Using oral and intraperitoneal administration, mice were used to determine the pathogenicity and LD50 of the isolated L. monocytogenes. Results: A total of 72 Listeria spp. isolates were cultured from fish. Of those, 24 were positively identified as L. monocytogenes. Other strains of Listeria spp. were L. ivanovii (21), L. innocua (11), and L. grayi (16). Serotyping of the L. monocytogenes indicated that 14 isolates belonged to the 1/2b, 3b serotypes whereas 10 isolates belonged to the 4a and 4c serotypes. All isolates were virulent to mice with an LD50 dose ranging from 3 × 1010 CFU/ml to 3 × 107.5 CFU/ml. All the virulent isolates belonged to the serotype 1/2b. Histopathologically, dead mice showed multiple necrotic lesions in the liver and spleen. Conclusion: Results of this study showed the presence of potentially pathogenic L. monocytogenes in fresh and frozen, local, and imported fish in Jordan. Strict monitoring and quality control regulatory measures must be adopted to prevent future outbreaks of food poisoning associated with fish consumption.
Collapse
Affiliation(s)
- Yaser Tarazi
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saeb El-Sukhon
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Adil Al-Rahbi
- Ministry of Agriculture, Fisheries and Water Resources, Mascat, Oman
| | - Zuhair Bani Ismail
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
43
|
Genome Typing and Epidemiology of Human Listeriosis in New Zealand, 1999 to 2018. J Clin Microbiol 2021; 59:e0084921. [PMID: 34406797 DOI: 10.1128/jcm.00849-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study describes the epidemiology of listeriosis in New Zealand between 1999 and 2018 as well as the retrospective whole-genome sequencing (WGS) of 453 Listeria monocytogenes isolates corresponding to 95% of the human cases within this period. The average notified rate of listeriosis was 0.5 cases per 100,000 population, and non-pregnancy-associated cases were more prevalent than pregnancy-associated cases (averages of 19 and 5 cases per annum, respectively). WGS data was assessed using multilocus sequencing typing (MLST), including core-genome and whole-genome MLST (cgMLST and wgMLST, respectively) and single-nucleotide polymorphism (SNP) analysis. Thirty-nine sequence types (STs) were identified, with the most common being ST1 (21.9%), ST4 (13.2%), ST2 (11.3%), ST120 (6.1%), and ST155 (6.4%). A total of 291 different cgMLST types were identified, with the majority (n = 243) of types observed as a single isolate, consistent with the observation that listeriosis is predominately sporadic. Among the 49 cgMLST types containing two or more isolates, 18 cgMLST types were found with 2 to 4 isolates each (50 isolates in total, including three outbreak-associated isolates) that shared low genetic diversity (0 to 2 whole-genome alleles), some of which were dispersed in time or geographical regions. SNP analysis also produced results comparable to those from wgMLST. The low genetic diversity within these clusters suggests a potential common source, but incomplete epidemiological data impaired retrospective epidemiological investigations. Prospective use of WGS analysis together with thorough exposure information from cases could potentially identify future outbreaks more rapidly, including those that may have been undetected for some time over different geographical regions.
Collapse
|
44
|
Kelliher JL, Grunenwald CM, Abrahams RR, Daanen ME, Lew CI, Rose WE, Sauer JD. PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall stress responses, cytosolic survival, and virulence in Listeria monocytogenes. PLoS Pathog 2021; 17:e1009881. [PMID: 34624065 PMCID: PMC8528326 DOI: 10.1371/journal.ppat.1009881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a β-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence. Many antibiotics target bacterial cell wall biosynthesis, justifying continued study of this process and the ways bacteria respond to cell wall insults during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are master regulators of cell wall stress responses in bacteria and are conserved in several major pathogens, including Listeria monocytogenes, Staphylococcus aureus, and Mycobacterium tuberculosis. We previously showed that the PASTA kinase in L. monocytogenes, PrkA, is essential for the response to cell wall stress and for virulence. In this work, we combined proteomic and genetic approaches to identify PrkA substrates in L. monocytogenes. We show that regulation of one candidate from both screens, ReoM, increases synthesis of the cell wall component peptidoglycan and that this regulation is required for pathogenesis. We also demonstrate that the PASTA kinase-ReoM pathway regulates cell wall stress responses in another significant pathogen, methicillin-resistant S. aureus. Additionally, we uncover a PrkA-independent role for ReoM in vivo in L. monocytogenes, suggesting a need for nuanced modulation of peptidoglycan synthesis during infection. Cumulatively, this study provides new insight into how bacterial pathogens control cell wall synthesis during infection.
Collapse
Affiliation(s)
- Jessica L. Kelliher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caroline M. Grunenwald
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rhiannon R. Abrahams
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - McKenzie E. Daanen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassandra I. Lew
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kokkoni EA, Andritsos N, Sakarikou C, Michailidou S, Argiriou A, Giaouris E. Investigating Transcriptomic Induction of Resistance and/or Virulence in Listeria monocytogenes Cells Surviving Sublethal Antimicrobial Exposure. Foods 2021; 10:foods10102382. [PMID: 34681431 PMCID: PMC8535302 DOI: 10.3390/foods10102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
The potential transcriptomic induction of resistance and/or virulence in two L. monocytogenes strains belonging to the most frequent listeriosis-associated serovars (i.e., 1/2a and 4b), following their sublethal antimicrobial exposure, was studied through qPCR determination of the relative expression of 10 selected related genes (i.e., groEL, hly, iap, inlA, inlB, lisK, mdrD, mdrL, prfA, and sigB). To induce sublethal stress, three common antimicrobials (i.e., benzalkonium chloride, thymol, and ampicillin) were individually applied for 2 h at 37 °C against stationary phase cells of each strain, each at a sublethal concentration. In general, the expression of most of the studied genes remained either stable or was significantly downregulated following the antimicrobial exposure, with some strain-specific differences to be yet recorded. Thymol provoked downregulation of most of the studied genes, significantly limiting the expression of 6/10 and 4/10 genes in the strains of ser. 1/2a and ser. 4b, respectively, including those coding for the master regulators of stress response and virulence (SigB and PrfA, respectively), in both strains. At the same time, the two genes coding for the invasion internalin proteins (InlA and InlB), with crucial role in the onset of L. monocytogenes pathogenesis, were both importantly upregulated in ser. 4b strain. The results obtained increase our knowledge of the stress physiology of L. monocytogenes under certain sublethal antimicrobial conditions that could be encountered within the food chain and in clinical settings, and may assist in better and more effective mitigation strategies.
Collapse
Affiliation(s)
- Eleni-Anna Kokkoni
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Nikolaos Andritsos
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Athens Analysis Laboratories S.A., Microbiology Laboratory, Nafpliou 29, 14452 Metamorfosi, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Sofia Michailidou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Correspondence: ; Tel.: +30-22540-83115
| |
Collapse
|
46
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
47
|
Mpundu P, Mbewe AR, Muma JB, Mwasinga W, Mukumbuta N, Munyeme M. A global perspective of antibiotic-resistant Listeria monocytogenes prevalence in assorted ready to eat foods: A systematic review. Vet World 2021; 14:2219-2229. [PMID: 34566342 PMCID: PMC8448623 DOI: 10.14202/vetworld.2021.2219-2229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIM Listeria monocytogenes in ready-to-eat (RTE) foods remains consistently under-reported globally. Nevertheless, several independent studies conducted to investigate have elucidated the prevalence and antibiotic resistance profiles of L. monocytogenes in RTE-associated foods and their antibiotic resistance profiles. Given the rapid increase in consumption of RTE foods of both animal and plant origin, it is imperative to know the prevalence deductive data focusing on how much of L. monocytogenes is present in RTE foods, which is critical for food safety managers and retailers to assess the possible risk posed to end-users. In addition, valuable insight and another angle to the depth of the problem, we conducted a systematic review and meta-analysis to synthesize available data regarding the prevalence of L. monocytogenes in RTE foods and antibiotic resistance profiles. MATERIALS AND METHODS We conducted a meta-analysis study of L. monocytogenes and antibiotic resistance to clinically relevant antibiotics to determine the extent of L. monocytogenes contamination in RTE foods and antibiotic resistance profiles. The primary search terms, also known as keywords used, were restricted to peer-reviewed and review articles, and databases, including Google Scholars, Science-Direct, and Scopus, were searched. The inclusion of articles meeting eligibility criteria published between 2010 and 2020 after title, abstract, and full article screening. Data analysis was performed at multiple stages using quantitative meta-analysis reviews. RESULTS L. monocytogenes pooled proportion/prevalence was highest in chicken products determined at (22%) followed by various but uncategorized RTE foods at 21%. Regarding antibiotic resistance, profiling's highest pooled prevalence resistance was observed in penicillin at 80% resistance, followed by cephalosporin at 47%. CONCLUSION Within its limitations, this study has attempted to provide insight into the pooled proportion/prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile at the global level. Determining the proportion/prevalence of L. monocytogenes in RTE foods across the globe and antibiotic resistance profile is essential for providing quality food and reducing public health problems due to unsuccessful treatment of foodborne illness. This study provides insight into the pooled prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile. The results of this study partly endeavored to help appropriate authorities strengthen their preventive measures on specific RTE foods that are most likely to be contaminated with L. monocytogenes and antibiotic resistance profiles.
Collapse
Affiliation(s)
- Prudence Mpundu
- Ministry of Health, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Allan Rabson Mbewe
- Department of Environmental Health, School of Public Health, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Wizaso Mwasinga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Nawa Mukumbuta
- Ministry of Health, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
- Department of Epidemiology and Biostatics, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
48
|
Granata G, Stracquadanio S, Leonardi M, Napoli E, Malandrino G, Cafiso V, Stefani S, Geraci C. Oregano and Thyme Essential Oils Encapsulated in Chitosan Nanoparticles as Effective Antimicrobial Agents against Foodborne Pathogens. Molecules 2021; 26:4055. [PMID: 34279395 PMCID: PMC8271874 DOI: 10.3390/molecules26134055] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The use of natural compounds with biocidal activity to fight the growth of bacteria responsible for foodborne illness is one of the main research challenges in the food sector. This study reports the preparation and physicochemical characterization of chitosan nanoparticles loaded with Thymus capitatus (Th-CNPs) and Origanum vulgare (Or-CNPs) essential oils. The nanosystems were obtained by ionotropic gelation technique with high encapsulation efficiency (80-83%) and loading capacity (26-27%). Nanoparticles showed a spherical shape, bimodal particle size distribution, and good stability (zeta potential values > 40 mV). The treatment of the nanosuspensions at different temperatures (4 and 40 °C) and storage times (7, 15, 21, and 30 days) did not affect their physicochemical parameters and highlights their reservoir ability for essential oils also under stressful conditions. Both Or-CNPs and Th-CNPs exhibited an enhanced bactericidal activity against foodborne pathogens (S. aureus, E. coli, L. monocytogenes) than pure essential oils. These ecofriendly nanosystems could represent a valid alternative to synthetic preservatives and be of interest for health and food safety.
Collapse
Affiliation(s)
- Giuseppe Granata
- Istituto di Chimica Biomolecolare-C.N.R., Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Marco Leonardi
- Istituto di Chimica Biomolecolare-C.N.R., Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare-C.N.R., Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Graziella Malandrino
- Department of Chemistry, University off Catania, Via A. Doria 6, 95125 Catania, Italy
| | - Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Corrada Geraci
- Istituto di Chimica Biomolecolare-C.N.R., Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
49
|
Wine Pomace Product Inhibit Listeria monocytogenes Invasion of Intestinal Cell Lines Caco-2 and SW-480. Foods 2021; 10:foods10071485. [PMID: 34206875 PMCID: PMC8304679 DOI: 10.3390/foods10071485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Red wine pomace products (WPP) have antimicrobial activities against human pathogens, and it was suggested that they have a probable anti-Listeria effect. This manuscript evaluates the intestinal cell monolayer invasive capacity of Listeria monocytogenes strains obtained from human, salmon, cheese, and L. innocua treated with two WPP (WPP-N and WPP-C) of different polyphenol contents using Caco-2 and SW480 cells. The invasion was dependent of the cell line, being higher in the SW480 than in the Caco-2 cell line. Human and salmon L. monocytogenes strains caused cell invasion in both cell lines, while cheese and L. innocua did not cause an invasion. The phenolic contents of WPP-N are characterized by high levels of anthocyanin and stilbenes and WPP-C by a high content of phenolic acids. The inhibitory effect of the WPPs was dependent of the strain and of the degree of differentiation of the intestinal cells line. The inhibition of Listeria invasion by WPPs in the SW480 cell line, especially with WPP-C, were higher than the Caco-2 cell line inhibited mainly by WPP-N. This effect is associated with the WPPs’ ability to protect the integrity of the intestinal barrier by modification of the cell–cell junction protein expression. The gene expression of E-cadherin and occludin are involved in the L. monocytogenes invasion of both the Caco-2 and SW480 cell lines, while the gene expression of claudin is only involved in the invasion of SW480. These findings suggest that WPPs have an inhibitory L. monocytogenes invasion effect in gastrointestinal cells lines.
Collapse
|
50
|
Edlind T, Liu Y. Listeria environmental sampling tests are compatible with polymorphic locus sequence typing. J Food Sci 2021; 86:3188-3194. [PMID: 34146420 DOI: 10.1111/1750-3841.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 12/01/2022]
Abstract
Food processors invest significant resources into environmental sampling to detect contamination with potential pathogens, particularly Listeria monocytogenes. To facilitate these efforts, multiple environmental sampling tests (ESTs) have been developed and commercialized that minimize workload, turnaround time, and cost while providing convenient colorimetric detection. For presumptive-positive ESTs, we hypothesized that a relatively minor additional investment could provide, in addition to species confirmation, valuable strain typing data for tracking pathogen spread through a facility, identifying harborage sites, and distinguishing sporadic from persistent or resident contaminants. This hypothesis is based on the demonstrated compatibility of polymorphic locus sequence typing (PLST) with crude samples including food enrichments. Five Listeria ESTs were tested here: broth-based InSite (Hygiena), Path-Chek (Mericon), and Pathfinder (Hardy Diagnositics); and gel-based Petrifilm (3M) and HardyChrom (Hardy Diagnostics). ESTs were inoculated with strains representing two common L. monocytogenes serotypes and nonpathogenic Listeria innocua. Following incubation, broths or suspended colonies were heat treated to inactivate bacteria. Lysates or purified DNAs were prepared and used as templates in PCRs targeting the previously described PLST loci LmiMT1 and LisMT2. Single clear products were obtained from all inoculated ESTs; uninoculated controls were negative. PCR products were subjected to Sanger sequencing, yielding high-quality chromatograms. Phylogenetic analysis confirmed identities to previously determined sequences and revealed relatedness to serotype-matched strains represented in GenBank databases. PRACTICAL APPLICATION: Multiple environmental sampling tests have been commercialized in recent years to facilitate the proactive detection of pathogens, particularly Listeria monocytogenes, within food processing facilities. Coupling a positive detection test with strain typing would enhance its value by providing data that can be used to track pathogen spread through a facility, identify harborage sites, and distinguish sporadic from resident contamination.
Collapse
Affiliation(s)
- Tom Edlind
- MicrobiType LLC, Plymouth Meeting, Pennsylvania, USA
| | - Yanhong Liu
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| |
Collapse
|