1
|
Boyarchuk O, Kostyuchenko L, Akopyan H, Bondarenko A, Volokha A, Hilfanova A, Savchak I, Nazarenko L, Yarema N, Urbas O, Hrabovska I, Lysytsia O, Budzyn A, Tykholaz O, Ivanchuk M, Bastanohova O, Patskun E, Vasylenko N, Stepanovskyy Y, Chernyshova L, Makukh H. Nijmegen breakage syndrome: 25-year experience of diagnosis and treatment in Ukraine. Front Immunol 2024; 15:1428724. [PMID: 39007137 PMCID: PMC11239363 DOI: 10.3389/fimmu.2024.1428724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder, characterized by microcephaly, immunodeficiency, and impaired DNA repair. NBS is most prevalent among Slavic populations, including Ukraine. Our study aimed to comprehensively assess the prevalence, diagnosis, clinical data, immunological parameters, and treatment of NBS patients in Ukraine. Methods We conducted a retrospective review that included 84 NBS patients from different regions of Ukraine who were diagnosed in 1999-2023. Data from the Ukrainian Registry of NBS and information from treating physicians, obtained using a developed questionnaire, were utilized for analysis. Results Among 84 NBS patients, 55 (65.5%) were alive, 25 (29.8%) deceased, and 4 were lost to follow-up. The median age of patients was 11 years, ranging from 1 to 34 years. Most patients originate from western regions of Ukraine (57.8%), although in recent years, there has been an increase in diagnoses from central and southeastern regions, expanding our knowledge of NBS prevalence. The number of diagnosed patients per year averaged 3.4 and increased from 2.7 to 4.8 in recent years. The median age of NBS diagnosis was 4.0 years (range 0.1-16) in 1999-2007 and decreased to 2.7 in the past 6 years. Delayed physical development was observed in the majority of children up to the age of ten years. All children experienced infections, and 41.3% of them had recurrent infections. Severe infections were the cause of death in 12%. The second most common clinical manifestation of NBS was malignancies (37.5%), with the prevalence of lymphomas (63.3%). Malignancies have been the most common cause of death in NBS patients (72% of cases). Decreased levels of CD4+ and CD19+ were observed in 89.6%, followed by a reduction of CD3+ (81.8%) and CD8+ (62.5%). The level of NK cells was elevated at 62.5%. IgG concentration was decreased in 72.9%, and IgA - in 56.3%. Immunoglobulin replacement therapy was administered to 58.7% of patients. Regular immunoglobulin replacement therapy has helped reduce the frequency and severity of severe respiratory tract infections. Conclusion Improvements in diagnosis, including prenatal screening, newborn screening, monitoring, and expanding treatment options, will lead to better outcomes for NBS patients.
Collapse
Affiliation(s)
- Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Larysa Kostyuchenko
- Clinic of Pediatric Immunology and Rheumatology, Western Ukrainian Specialized Children’s Medical Centre, Lviv, Ukraine
| | - Hayane Akopyan
- Department of Diagnostic of Hereditary Pathology, Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
| | - Anastasiia Bondarenko
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical School, International European University, Kyiv, Ukraine
| | - Alla Volokha
- Department of Pediatrics, Pediatric Infectious Diseases, Immunology and Allergology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Anna Hilfanova
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical School, International European University, Kyiv, Ukraine
| | - Ihor Savchak
- Clinic of Pediatric Immunology and Rheumatology, Western Ukrainian Specialized Children’s Medical Centre, Lviv, Ukraine
| | - Liliia Nazarenko
- Department of Pediatrics, Cherkasy Regional Children’s Hospital, Cherkasy, Ukraine
| | - Nataliia Yarema
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Olha Urbas
- Department of Pediatrics, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Iryna Hrabovska
- Department of Pediatrics Oncohematology, Volyn Regional Territorial Mother and Child Health Care Center, Lutsk, Ukraine
| | - Oleksandr Lysytsia
- Department of Bone Marrow Transplantation and Intensive Megadose Chemotherapy and Immunotherapy, National Specialized Children’s Hospital “OHMATDYT”, Kyiv, Ukraine
| | - Andrii Budzyn
- Department of Bone Marrow Transplantation and Intensive Megadose Chemotherapy and Immunotherapy, National Specialized Children’s Hospital “OHMATDYT”, Kyiv, Ukraine
| | - Oksana Tykholaz
- Department of Propedeutics of Pediatric Diseases with Patient Care, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Mariana Ivanchuk
- Department of Pediatrics Oncohematology, Volyn Regional Territorial Mother and Child Health Care Center, Lutsk, Ukraine
| | - Olha Bastanohova
- Center of Specialized Pediatric Care, Poltava Regional Clinical Hospital named after M. V. Sklifosovsky, Poltava, Ukraine
| | - Erika Patskun
- Department of Faculty Therapy, Uzhhorod National University, Uzhhorod, Ukraine
| | - Nataliia Vasylenko
- Outpatient Department, Kherson Regional Children’s Hospital, Kherson, Ukraine
| | - Yuriy Stepanovskyy
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical School, International European University, Kyiv, Ukraine
| | - Liudmyla Chernyshova
- Department of Pediatrics, Pediatric Infectious Diseases, Immunology and Allergology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Halyna Makukh
- Department of the Research and Biotechnology, Scientific Medical Genetic Center LeoGENE, Lviv, Ukraine
| |
Collapse
|
2
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Kabrani E, Saha T, Di Virgilio M. DNA repair and antibody diversification: the 53BP1 paradigm. Trends Immunol 2023; 44:782-791. [PMID: 37640588 DOI: 10.1016/j.it.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Freie Universität Berlin, Berlin 14195, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
4
|
Dai R, Zhu Y, Li Z, Qin L, Liu N, Liao S, Hao B. Three-way contact analysis characterizes the higher order organization of the Tcra locus. Nucleic Acids Res 2023; 51:8987-9000. [PMID: 37534534 PMCID: PMC10516640 DOI: 10.1093/nar/gkad641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
The generation of highly diverse antigen receptors in T and B lymphocytes relies on V(D)J recombination. The enhancer Eα has been implicated in regulating the accessibility of Vα and Jα genes through long-range interactions during rearrangements of the T-cell antigen receptor gene Tcra. However, direct evidence for Eα physically mediating the interaction of Vα and Jα genes is still lacking. In this study, we utilized the 3C-HTGTS assay, a chromatin interaction technique based on 3C, to analyze the higher order chromatin structure of the Tcra locus. Our analysis revealed the presence of sufficient information in the 3C-HTGTS data to detect multiway contacts. Three-way contact analysis of the Tcra locus demonstrated the co-occurrence of the proximal Jα genes, Vα genes and Eα in CD4+CD8+ double-positive thymocytes. Notably, the INT2-TEAp loop emerged as a prominent structure likely to be responsible for bringing the proximal Jα genes and the Vα genes into proximity. Moreover, the enhancer Eα utilizes this loop to establish physical proximity with the proximal Vα gene region. This study provides insights into the higher order chromatin structure of the Tcra locus, shedding light on the spatial organization of chromatin and its impact on V(D)J recombination.
Collapse
Affiliation(s)
- Ranran Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yongchang Zhu
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou 450001, China
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province 450003, China
| | - Zhaoqiang Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Litao Qin
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province 450003, China
| | - Nan Liu
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province 450003, China
| | - Bingtao Hao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Liang Z, Zhao L, Ye AY, Lin SG, Zhang Y, Guo C, Dai HQ, Ba Z, Alt FW. Contribution of the IGCR1 regulatory element and the 3' Igh CTCF-binding elements to regulation of Igh V(D)J recombination. Proc Natl Acad Sci U S A 2023; 120:e2306564120. [PMID: 37339228 PMCID: PMC10293834 DOI: 10.1073/pnas.2306564120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023] Open
Abstract
Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.
Collapse
Affiliation(s)
- Zhuoyi Liang
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Lijuan Zhao
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Adam Yongxin Ye
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Sherry G. Lin
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Yiwen Zhang
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Chunguang Guo
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Hai-Qiang Dai
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Zhaoqing Ba
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Frederick W. Alt
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
6
|
Salataj E, Spilianakis CG, Chaumeil J. Single-cell detection of primary transcripts, their genomic loci and nuclear factors by 3D immuno-RNA/DNA FISH in T cells. Front Immunol 2023; 14:1156077. [PMID: 37215121 PMCID: PMC10193148 DOI: 10.3389/fimmu.2023.1156077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over the past decades, it has become increasingly clear that higher order chromatin folding and organization within the nucleus is involved in the regulation of genome activity and serves as an additional epigenetic mechanism that modulates cellular functions and gene expression programs in diverse biological processes. In particular, dynamic allelic interactions and nuclear locations can be of functional importance during the process of lymphoid differentiation and the regulation of immune responses. Analyses of the proximity between chromatin and/or nuclear regions can be performed on populations of cells with high-throughput sequencing approaches such as chromatin conformation capture ("3C"-based) or DNA adenine methyltransferase identification (DamID) methods, or, in individual cells, by the simultaneous visualization of genomic loci, their primary transcripts and nuclear compartments within the 3-dimensional nuclear space using Fluorescence In Situ Hybridization (FISH) and immunostaining. Here, we present a detailed protocol to simultaneously detect nascent RNA transcripts (3D RNA FISH), their genomic loci (3D DNA FISH) and/or their chromosome territories (CT paint DNA FISH) combined with the antibody-based detection of various nuclear factors (immunofluorescence). We delineate the application and effectiveness of this robust and reproducible protocol in several murine T lymphocyte subtypes (from differentiating thymic T cells, to activated splenic and peripheral T cells) as well as other murine cells, including embryonic stem cells, B cells, megakaryocytes and macrophages.
Collapse
Affiliation(s)
- Eralda Salataj
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Charalampos G. Spilianakis
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Julie Chaumeil
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
7
|
Liang Z, Zhao L, Yongxin Ye A, Lin SG, Zhang Y, Guo C, Dai HQ, Ba Z, Alt FW. Contribution of the IGCR1 regulatory element and the 3 'Igh CBEs to Regulation of Igh V(D)J Recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537836. [PMID: 37163018 PMCID: PMC10168220 DOI: 10.1101/2023.04.21.537836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from V H , D, and J H gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a J H -based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to J H s to form a DJ H -RC. Igh has a provocative number and organization of CTCF-binding-elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the V H and D/J H domains, over 100 CBEs across the V H domain convergent to CBE1, and 10 clustered 3' Igh -CBEs convergent to CBE2 and V H CBEs. IGCR1 CBEs segregate D/J H and V H domains by impeding loop extrusion-mediated RAG-scanning. Down-regulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJ H -RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3' Igh -CBEs in regulating RAG-scanning and elucidate the mechanism of the "ordered" transition from D-to-J H to V H -to-DJ H recombination, we tested effects of deleting or inverting IGCR1 or 3' Igh -CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3' Igh -CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL down-regulation mechanism in progenitor B cells as opposed to a strict developmental switch. SIGNIFICANCE STATEMENT To counteract diverse pathogens, vertebrates evolved adaptive immunity to generate diverse antibody repertoires through a B lymphocyte-specific somatic gene rearrangement process termed V(D)J recombination. Tight regulation of the V(D)J recombination process is vital to generating antibody diversity and preventing off-target activities that can predispose the oncogenic translocations. Recent studies have demonstrated V(D)J rearrangement is driven by cohesin-mediated chromatin loop extrusion, a process that establishes genomic loop domains by extruding chromatin, predominantly, between convergently-oriented CTCF looping factor-binding elements (CBEs). By deleting and inverting CBEs within a critical antibody heavy chain gene locus developmental control region and a loop extrusion chromatin-anchor at the downstream end of this locus, we reveal how these elements developmentally contribute to generation of diverse antibody repertoires.
Collapse
|
8
|
Hill L, Wutz G, Jaritz M, Tagoh H, Calderón L, Peters JM, Goloborodko A, Busslinger M. Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells. Nat Commun 2023; 14:2316. [PMID: 37085514 PMCID: PMC10121685 DOI: 10.1038/s41467-023-37994-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Extended loop extrusion across the immunoglobulin heavy-chain (Igh) locus facilitates VH-DJH recombination following downregulation of the cohesin-release factor Wapl by Pax5, resulting in global changes in the chromosomal architecture of pro-B cells. Here, we demonstrate that chromatin looping and VK-JK recombination at the Igk locus were insensitive to Wapl upregulation in pre-B cells. Notably, the Wapl protein was expressed at a 2.2-fold higher level in pre-B cells compared with pro-B cells, which resulted in a distinct chromosomal architecture with normal loop sizes in pre-B cells. High-resolution chromosomal contact analysis of the Igk locus identified multiple internal loops, which likely juxtapose VK and JK elements to facilitate VK-JK recombination. The higher Wapl expression in Igμ-transgenic pre-B cells prevented extended loop extrusion at the Igh locus, leading to recombination of only the 6 most 3' proximal VH genes and likely to allelic exclusion of all other VH genes in pre-B cells. These results suggest that pro-B and pre-B cells with their distinct chromosomal architectures use different chromatin folding principles for V gene recombination, thereby enabling allelic exclusion at the Igh locus, when the Igk locus is recombined.
Collapse
Affiliation(s)
- Louisa Hill
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Lesly Calderón
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Anton Goloborodko
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, A-1030, Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria.
| |
Collapse
|
9
|
Bhat KH, Priyadarshi S, Naiyer S, Qu X, Farooq H, Kleiman E, Xu J, Lei X, Cantillo JF, Wuerffel R, Baumgarth N, Liang J, Feeney AJ, Kenter AL. An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation. Nat Commun 2023; 14:1225. [PMID: 36869028 PMCID: PMC9984487 DOI: 10.1038/s41467-023-36414-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
The mouse Igh locus is organized into a developmentally regulated topologically associated domain (TAD) that is divided into subTADs. Here we identify a series of distal VH enhancers (EVHs) that collaborate to configure the locus. EVHs engage in a network of long-range interactions that interconnect the subTADs and the recombination center at the DHJH gene cluster. Deletion of EVH1 reduces V gene rearrangement in its vicinity and alters discrete chromatin loops and higher order locus conformation. Reduction in the rearrangement of the VH11 gene used in anti-PtC responses is a likely cause of the observed reduced splenic B1 B cell compartment. EVH1 appears to block long-range loop extrusion that in turn contributes to locus contraction and determines the proximity of distant VH genes to the recombination center. EVH1 is a critical architectural and regulatory element that coordinates chromatin conformational states that favor V(D)J rearrangement.
Collapse
Affiliation(s)
- Khalid H Bhat
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore-193201, Wadoora, India
| | - Saurabh Priyadarshi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Xinyan Qu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Medpace, Cincinnati, Ohio, 45227, USA
| | - Hammad Farooq
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Eden Kleiman
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Crown Bioscience, San Diego, CA, 92127, USA
| | - Jeffery Xu
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Brookwood Baptist Health General Surgery Residency, Birmingham, AL, 35211, USA
| | - Xue Lei
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jose F Cantillo
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Immunotek, S.L. Alcala de Henares, Spain
| | - Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- 10441 Circle Dr. Apt 47C, Oak Lawn, IL, 60453, USA
| | - Nicole Baumgarth
- W. Harry Feinstone Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
| | - Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA.
| |
Collapse
|
10
|
Dutta B, Osato M. The RUNX Family, a Novel Multifaceted Guardian of the Genome. Cells 2023; 12:255. [PMID: 36672189 PMCID: PMC9856552 DOI: 10.3390/cells12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The DNA repair machinery exists to protect cells from daily genetic insults by orchestrating multiple intrinsic and extrinsic factors. One such factor recently identified is the Runt-related transcription factor (RUNX) family, a group of proteins that act as a master transcriptional regulator for multiple biological functions such as embryonic development, stem cell behaviors, and oncogenesis. A significant number of studies in the past decades have delineated the involvement of RUNX proteins in DNA repair. Alterations in RUNX genes cause organ failure and predisposition to cancers, as seen in patients carrying mutations in the other well-established DNA repair genes. Herein, we review the currently existing findings and provide new insights into transcriptional and non-transcriptional multifaceted regulation of DNA repair by RUNX family proteins.
Collapse
Affiliation(s)
- Bibek Dutta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
11
|
Chromatin organizer SATB1 controls the cell identity of CD4 + CD8 + double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun 2022; 13:5554. [PMID: 36138028 PMCID: PMC9500044 DOI: 10.1038/s41467-022-33333-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
CD4+ and CD8+ double-positive (DP) thymocytes play a crucial role in T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, regulatory T cells, or invariant nature kill T cells (iNKT) in response to TCR signaling. Chromatin organizer SATB1 is highly expressed in DP cells and is essential in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing shows that Satb1 deletion changes the cell identity of DP thymocytes and down-regulates genes specifically and highly expressed in DP cells. Super-enhancers regulate the expressions of DP-specific genes, and our Hi-C data show that SATB1 deficiency in thymocytes reduces super-enhancer activity by specifically decreasing interactions among super-enhancers and between super-enhancers and promoters. Our results reveal that SATB1 plays a critical role in thymocyte development to promote the establishment of DP cell identity by globally regulating super-enhancers of DP cells at the chromatin architectural level.
Collapse
|
12
|
Cuartero S, Stik G, Stadhouders R. Three-dimensional genome organization in immune cell fate and function. Nat Rev Immunol 2022; 23:206-221. [PMID: 36127477 DOI: 10.1038/s41577-022-00774-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Collapse
Affiliation(s)
- Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - Grégoire Stik
- Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
The role of chromatin loop extrusion in antibody diversification. Nat Rev Immunol 2022; 22:550-566. [PMID: 35169260 PMCID: PMC9376198 DOI: 10.1038/s41577-022-00679-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Cohesin mediates chromatin loop formation across the genome by extruding chromatin between convergently oriented CTCF-binding elements. Recent studies indicate that cohesin-mediated loop extrusion in developing B cells presents immunoglobulin heavy chain (Igh) variable (V), diversity (D) and joining (J) gene segments to RAG endonuclease through a process referred to as RAG chromatin scanning. RAG initiates V(D)J recombinational joining of these gene segments to generate the large number of different Igh variable region exons that are required for immune responses to diverse pathogens. Antigen-activated mature B cells also use chromatin loop extrusion to mediate the synapsis, breakage and end joining of switch regions flanking Igh constant region exons during class-switch recombination, which allows for the expression of different antibody constant region isotypes that optimize the functions of antigen-specific antibodies to eliminate pathogens. Here, we review recent advances in our understanding of chromatin loop extrusion during V(D)J recombination and class-switch recombination at the Igh locus.
Collapse
|
14
|
Lacroix M, Beauchemin H, Fraszczak J, Ross J, Shooshtarizadeh P, Chen R, Moroy T. The X-linked helicase DDX3X is required for lymphoid differentiation and MYC-driven lymphomagenesis. Cancer Res 2022; 82:3172-3186. [PMID: 35815807 DOI: 10.1158/0008-5472.can-21-2454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
The X-linked gene DDX3X encodes an RNA helicase that is mutated at high frequencies in several types of human B-cell lymphoma. Females have two active DDX3X alleles and males carry a DDX3Y homolog on the Y chromosome. We show here that pan-hematopoietic, homozygous deletion of Ddx3x in female mice perturbs erythropoiesis, causing early developmental arrest. However, both hemizygous male and heterozygous female embryos develop normally, suggesting that one Ddx3x allele is sufficient for fetal hematopoietic development in females and that the Ddx3y allele can compensate for the loss of Ddx3x in males. In adult mice, DDX3X deficiency altered hematopoietic progenitors, early lymphoid development, marginal zone and germinal center B-cells, and lymphomagenesis in a sex-dependent manner. Loss of both Ddx3x alleles abrogated MYC-driven lymphomagenesis in females, while Ddx3x-deletion in males did not affect the formation of B-cell lymphoma in both mouse models. Moreover, tumors that appeared in male mice lacking DDX3X showed upregulated expression of DDX3Y, indicating a critical requirement for DDX3 activity for lymphomagenesis. These data reveal sex-specific roles of DDX3X in erythro- and lymphopoiesis as well as in MYC-driven lymphomagenesis.
Collapse
Affiliation(s)
- Marion Lacroix
- IRCM (Institut de Recherches Cliniques de Montr�al), Montreal, Quebec, Canada
| | | | | | - Julie Ross
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | | | | | - Tarik Moroy
- Institut de recherches cliniques de Montr�al, Montreal, Canada
| |
Collapse
|
15
|
Peng A, Peng W, Wang R, Zhao H, Yu X, Sun Y. Regulation of 3D Organization and Its Role in Cancer Biology. Front Cell Dev Biol 2022; 10:879465. [PMID: 35757006 PMCID: PMC9213882 DOI: 10.3389/fcell.2022.879465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) genomics is the frontier field in the post-genomics era, its foremost content is the relationship between chromatin spatial conformation and regulation of gene transcription. Cancer biology is a complex system resulting from genetic alterations in key tumor oncogenes and suppressor genes for cell proliferation, DNA replication, cell differentiation, and homeostatic functions. Although scientific research in recent decades has revealed how the genome sequence is mutated in many cancers, high-order chromosomal structures involved in the development and fate of cancer cells represent a crucial but rarely explored aspect of cancer genomics. Hence, dissection of the 3D genome conformation of cancer helps understand the unique epigenetic patterns and gene regulation processes that distinguish cancer biology from normal physiological states. In recent years, research in tumor 3D genomics has grown quickly. With the rapid progress of 3D genomics technology, we can now better determine the relationship between cancer pathogenesis and the chromatin structure of cancer cells. It is becoming increasingly explicit that changes in 3D chromatin structure play a vital role in controlling oncogene transcription. This review focuses on the relationships between tumor gene expression regulation, tumor 3D chromatin structure, and cancer phenotypic plasticity. Furthermore, based on the functional consequences of spatial disorganization in the cancer genome, we look forward to the clinical application prospects of 3D genomic biomarkers.
Collapse
Affiliation(s)
- Anghui Peng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Wang Peng
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Hao Zhao
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xinyang Yu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yihao Sun
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| |
Collapse
|
16
|
Johanson TM, Keenan CR, Allan RS. Shedding Structured Light on Molecular Immunity: The Past, Present and Future of Immune Cell Super Resolution Microscopy. Front Immunol 2021; 12:754200. [PMID: 34975842 PMCID: PMC8715013 DOI: 10.3389/fimmu.2021.754200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
In the two decades since the invention of laser-based super resolution microscopy this family of technologies has revolutionised the way life is viewed and understood. Its unparalleled resolution, speed, and accessibility makes super resolution imaging particularly useful in examining the highly complex and dynamic immune system. Here we introduce the super resolution technologies and studies that have already fundamentally changed our understanding of a number of central immunological processes and highlight other immunological puzzles only addressable in super resolution.
Collapse
Affiliation(s)
- Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Dauba A, Khamlichi AA. Long-Range Control of Class Switch Recombination by Transcriptional Regulatory Elements. Front Immunol 2021; 12:738216. [PMID: 34594340 PMCID: PMC8477019 DOI: 10.3389/fimmu.2021.738216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) plays a crucial role in adaptive immune responses through a change of the effector functions of antibodies and is triggered by T-cell-dependent as well as T-cell-independent antigens. Signals generated following encounter with each type of antigen direct CSR to different isotypes. At the genomic level, CSR occurs between highly repetitive switch sequences located upstream of the constant gene exons of the immunoglobulin heavy chain locus. Transcription of switch sequences is mandatory for CSR and is induced in a stimulation-dependent manner. Switch transcription takes place within dynamic chromatin domains and is regulated by long-range regulatory elements which promote alignment of partner switch regions in CSR centers. Here, we review recent work and models that account for the function of long-range transcriptional regulatory elements and the chromatin-based mechanisms involved in the control of CSR.
Collapse
Affiliation(s)
- Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
18
|
Yarema NM, Boyarchuk OR, Chornomydz IB, Panasiuk YV. Numerical and Structural Chromosomal Abnormalities Associated with Immunodeficiency. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721040137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Peters JM. How DNA loop extrusion mediated by cohesin enables V(D)J recombination. Curr Opin Cell Biol 2021; 70:75-83. [PMID: 33422934 DOI: 10.1016/j.ceb.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
'Structural maintenance of chromosomes' (SMC) complexes are required for the folding of genomic DNA into loops. Theoretical considerations and single-molecule experiments performed with the SMC complexes cohesin and condensin indicate that DNA folding occurs via loop extrusion. Recent work indicates that this process is essential for the assembly of antigen receptor genes by V(D)J recombination in developing B and T cells of the vertebrate immune system. Here, I review how recent studies of the mouse immunoglobulin heavy chain locus Igh have provided evidence for this hypothesis and how the formation of chromatin loops by cohesin and regulation of this process by CTCF and Wapl might ensure that all variable gene segments in this locus (VH segments) participate in recombination with a re-arranged DJH segment, to ensure generation of a maximally diverse repertoire of B-cell receptors and antibodies.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
20
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
21
|
Feng D, Li Z, Qin L, Hao B. The role of chromatin organizer Satb1 in shaping TCR repertoire in adult thymus. Genome 2021; 64:821-832. [PMID: 33617384 DOI: 10.1139/gen-2020-0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cells recognize the universe of foreign antigens with a diverse repertoire of T cell receptors generated by V(D)J recombination. Special AT-rich binding protein 1 (Satb1) is a chromatin organizer that plays an essential role in T cell development. Previous study has shown that Satb1 regulates the re-induction of recombinase Rag1 and Rag2 in CD4+CD8+ thymocytes, affecting the secondary rearrangement of the Tcra gene. Here, we detected the repertoires of four TCR genes, Tcrd, Tcrg, Tcrb, and Tcra, in the adult thymus, and explored the role of the Satb1 in shaping the TCR repertoires. We observed a strong bias in the V and J gene usages of the Tcrd and Tcrg repertoires in WT and Satb1-deleted thymocytes. Satb1 deletion had few effects on the V(D)J rearrangement and repertoire of the Tcrg, Tcrd, and Tcrb genes. The Tcra repertoire was severely impaired in Satb1-deleted thymocytes, while the primary rearrangement was relatively normal. We also found the CDR3 length of TCRα chain was significantly longer in Satb1-deleted thymocytes, which can be explained by the strong bias of the proximal Jα usage. Our results showed that Satb1 plays an essential role in shaping TCR repertoires in αβ T cells.
Collapse
Affiliation(s)
- Delong Feng
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Litao Qin
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China.,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450003, P.R. China
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China.,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
22
|
Dai HQ, Hu H, Lou J, Ye AY, Ba Z, Zhang X, Zhang Y, Zhao L, Yoon HS, Chapdelaine-Williams AM, Kyritsis N, Chen H, Johnson K, Lin S, Conte A, Casellas R, Lee CS, Alt FW. Loop extrusion mediates physiological Igh locus contraction for RAG scanning. Nature 2021; 590:338-343. [PMID: 33442057 PMCID: PMC9037962 DOI: 10.1038/s41586-020-03121-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
RAG endonuclease initiates Igh V(D)J recombination in progenitor B cells by binding a JH-recombination signal sequence (RSS) within a recombination centre (RC) and then linearly scanning upstream chromatin, presented by loop extrusion mediated by cohesin, for convergent D-RSSs1,2. The utilization of convergently oriented RSSs and cryptic RSSs is intrinsic to long-range RAG scanning3. Scanning of RAG from the DJH-RC-RSS to upstream convergent VH-RSSs is impeded by D-proximal CTCF-binding elements (CBEs)2-5. Primary progenitor B cells undergo a mechanistically undefined contraction of the VH locus that is proposed to provide distal VHs access to the DJH-RC6-9. Here we report that an inversion of the entire 2.4-Mb VH locus in mouse primary progenitor B cells abrogates rearrangement of both VH-RSSs and normally convergent cryptic RSSs, even though locus contraction still occurs. In addition, this inversion activated both the utilization of cryptic VH-RSSs that are normally in opposite orientation and RAG scanning beyond the VH locus through several convergent CBE domains to the telomere. Together, these findings imply that broad deregulation of CBE impediments in primary progenitor B cells promotes RAG scanning of the VH locus mediated by loop extrusion. We further found that the expression of wings apart-like protein homologue (WAPL)10, a cohesin-unloading factor, was low in primary progenitor B cells compared with v-Abl-transformed progenitor B cell lines that lacked contraction and RAG scanning of the VH locus. Correspondingly, depletion of WAPL in v-Abl-transformed lines activated both processes, further implicating loop extrusion in the locus contraction mechanism.
Collapse
Affiliation(s)
- Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| | - Hongli Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiangman Lou
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhaoqing Ba
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xuefei Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yiwen Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lijuan Zhao
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hye Suk Yoon
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aimee M. Chapdelaine-Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nia Kyritsis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Huan Chen
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kerstin Johnson
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Conte
- Lymphocyte Nuclear Biology, NIAMS, NIH, and Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, and Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cheng-Sheng Lee
- Institute of Molecular and Cellular Biology, Department of Life Sciences, Hsinchu, Taiwan, 30013, R.O.C.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| |
Collapse
|
23
|
Ros F, Offner S, Klostermann S, Thorey I, Niersbach H, Breuer S, Zarnt G, Lorenz S, Puels J, Siewe B, Schueler N, Dragicevic T, Ostler D, Hansen-Wester I, Lifke V, Kaluza B, Kaluza K, van Schooten W, Buelow R, Tissot AC, Platzer J. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity. MAbs 2020; 12:1846900. [PMID: 33228444 PMCID: PMC7780963 DOI: 10.1080/19420862.2020.1846900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transgenic animals incorporating human antibody genes are extremely attractive for drug development because they obviate subsequent antibody humanization procedures required for therapeutic translation. Transgenic platforms have previously been established using mice, but also more recently rats, chickens, and cows and are now in abundant use for drug development. However, rabbit-based antibody generation, with a strong track record for specificity and affinity, is able to include gene conversion mediated sequence diversification, thereby enhancing binder maturation and improving the variance/selection of output antibodies in a different way than in rodents. Since it additionally frequently permits good binder generation against antigens that are only weakly immunogenic in other organisms, it is a highly interesting species for therapeutic antibody generation. We report here on the generation, utilization, and analysis of the first transgenic rabbit strain for human antibody production. Through the knockout of endogenous IgM genes and the introduction of human immunoglobulin sequences, this rabbit strain has been engineered to generate a highly diverse human IgG antibody repertoire. We further incorporated human CD79a/b and Bcl2 (B-cell lymphoma 2) genes, which enhance B-cell receptor expression and B-cell survival. Following immunization against the angiogenic factor BMP9 (Bone Morphogenetic Proteins 9), we were able to isolate a set of exquisitely affine and specific neutralizing antibodies from these rabbits. Sequence analysis of these binders revealed that both somatic hypermutation and gene conversion are fully operational in this strain, without compromising the very high degree of humanness. This powerful new transgenic strategy will allow further expansion of the use of endogenous immune mechanisms in drug development.
Collapse
Affiliation(s)
- Francesca Ros
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Sonja Offner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharmaceutical Research and Early Development, Informatics, Roche Innovation Center Munich , Penzberg, Germany
| | - Irmgard Thorey
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Helmut Niersbach
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich , Penzberg, Germany
| | - Sebastian Breuer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Grit Zarnt
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Lorenz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | - Basile Siewe
- THE JACKSON LABORATORY JMCRS, Sacramento, CA, USA
| | - Nicole Schueler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Tajana Dragicevic
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Dominique Ostler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Imke Hansen-Wester
- Supplier Quality Management, Global External Quality Roche Diagnostics GmbH , Penzberg, Germany
| | - Valeria Lifke
- Personalized Healthcare Solution, Immunoassay Development and System Integration, Roche Diagnostics GmbH , Penzberg, Germany
| | - Brigitte Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Klaus Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | | | - Alain C Tissot
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Josef Platzer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| |
Collapse
|
24
|
Zhao H, Li Z, Zhu Y, Bian S, Zhang Y, Qin L, Naik AK, He J, Zhang Z, Krangel MS, Hao B. A role of the CTCF binding site at enhancer Eα in the dynamic chromatin organization of the Tcra-Tcrd locus. Nucleic Acids Res 2020; 48:9621-9636. [PMID: 32853367 PMCID: PMC7515734 DOI: 10.1093/nar/gkaa711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
The regulation of T cell receptor Tcra gene rearrangement has been extensively studied. The enhancer Eα plays an essential role in Tcra rearrangement by establishing a recombination centre in the Jα array and a chromatin hub for interactions between Vα and Jα genes. But the mechanism of the Eα and its downstream CTCF binding site (here named EACBE) in dynamic chromatin regulation is unknown. The Hi-C data showed that the EACBE is located at the sub-TAD boundary which separates the Tcra–Tcrd locus and the downstream region including the Dad1 gene. The EACBE is required for long-distance regulation of the Eα on the proximal Vα genes, and its deletion impaired the Tcra rearrangement. We also noticed that the EACBE and Eα regulate the genes in the downstream sub-TAD via asymmetric chromatin extrusion. This study provides a new insight into the role of CTCF binding sites at TAD boundaries in gene regulation.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongchang Zhu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shasha Bian
- Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Litao Qin
- Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jiangtu He
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
25
|
Ba Z, Lou J, Ye AY, Dai HQ, Dring EW, Lin SG, Jain S, Kyritsis N, Kieffer-Kwon KR, Casellas R, Alt FW. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 2020; 586:305-310. [PMID: 32717742 PMCID: PMC7554077 DOI: 10.1038/s41586-020-2578-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
The RAG endonuclease initiates Igh locus V(D)J recombination in progenitor (pro)-B cells1. Upon binding a recombination centre-based JH, RAG scans upstream chromatin via loop extrusion, potentially mediated by cohesin, to locate Ds and assemble a DJH-based recombination centre2. CTCF looping factor-bound elements (CBEs) within IGCR1 upstream of Ds impede RAG scanning3-5; however, their inactivation allows scanning to proximal VHs, where additional CBEs activate rearrangement and impede scanning any further upstream5. Distal VH utilization is thought to involve diffusional access to the recombination centre following large-scale Igh locus contraction6-8. Here we test the potential of linear RAG scanning to mediate distal VH usage in G1-arrested v-Abl pro-B cell lines9, which undergo robust D-to-JH but little VH-to-DJH rearrangements, presumably owing to lack of locus contraction2,5. Through an auxin-inducible approach10, we degraded the cohesin component RAD2110-12 or CTCF12,13 in these G1-arrested lines. Degradation of RAD21 eliminated all V(D)J recombination and interactions associated with RAG scanning, except for reecombination centre-located DQ52-to-JH joining, in which synapsis occurs by diffusion2. Remarkably, while degradation of CTCF suppressed most CBE-based chromatin interactions, it promoted robust recombination centre interactions with, and robust VH-to-DJH joining of, distal VHs, with patterns similar to those of 'locus-contracted' primary pro-B cells. Thus, downmodulation of CTCF-bound scanning-impediment activity promotes cohesin-driven RAG scanning across the 2.7-Mb Igh locus.
Collapse
Affiliation(s)
- Zhaoqing Ba
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Jiangman Lou
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Edward W Dring
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sherry G Lin
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Suvi Jain
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nia Kyritsis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kyong-Rim Kieffer-Kwon
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA
- Center of Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA.
- Center of Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Shinoda K, Maman Y, Canela A, Schatz DG, Livak F, Nussenzweig A. Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Rep 2020; 29:4471-4481.e6. [PMID: 31875554 DOI: 10.1016/j.celrep.2019.11.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022] Open
Abstract
During V(D)J recombination, RAG proteins introduce DNA double-strand breaks (DSBs) at recombination signal sequences (RSSs) that contain either 12- or 23-nt spacer regions. Coordinated 12/23 cleavage predicts that DSBs at variable (V) gene segments should equal the level of breakage at joining (J) segments. Contrary to this, here we report abundant RAG-dependent DSBs at multiple Vκ gene segments independent of V-J rearrangement. We find that a large fraction of Vκ gene segments are flanked not only by a bone-fide 12 spacer but also an overlapping, 23-spacer flipped RSS. These compatible pairs of RSSs mediate recombination and deletion inside the Vκ cluster even in the complete absence of Jκ gene segments and support a V(D)J recombination center (RC) independent of the conventional Jκ-centered RC. We propose an improved model of Vκ-Jκ repertoire formation by incorporating these surprisingly frequent, evolutionarily conserved intra-Vκ cluster recombination events.
Collapse
Affiliation(s)
- Kenta Shinoda
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Hakubi Center for Advanced Research and Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
27
|
Hill L, Ebert A, Jaritz M, Wutz G, Nagasaka K, Tagoh H, Kostanova-Poliakova D, Schindler K, Sun Q, Bönelt P, Fischer M, Peters JM, Busslinger M. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 2020; 584:142-147. [PMID: 32612238 PMCID: PMC7116900 DOI: 10.1038/s41586-020-2454-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
Nuclear processes, such as V(D)J recombination, are orchestrated by the three-dimensional organization of chromosomes at multiple levels, including compartments1 and topologically associated domains (TADs)2,3 consisting of chromatin loops4. TADs are formed by chromatin-loop extrusion5-7, which depends on the loop-extrusion function of the ring-shaped cohesin complex8-12. Conversely, the cohesin-release factor Wapl13,14 restricts loop extension10,15. The generation of a diverse antibody repertoire, providing humoral immunity to pathogens, requires the participation of all V genes in V(D)J recombination16, which depends on contraction of the 2.8-Mb-long immunoglobulin heavy chain (Igh) locus by Pax517,18. However, how Pax5 controls Igh contraction in pro-B cells remains unknown. Here we demonstrate that locus contraction is caused by loop extrusion across the entire Igh locus. Notably, the expression of Wapl is repressed by Pax5 specifically in pro-B and pre-B cells, facilitating extended loop extrusion by increasing the residence time of cohesin on chromatin. Pax5 mediates the transcriptional repression of Wapl through a single Pax5-binding site by recruiting the polycomb repressive complex 2 to induce bivalent chromatin at the Wapl promoter. Reduced Wapl expression causes global alterations in the chromosome architecture, indicating that the potential to recombine all V genes entails structural changes of the entire genome in pro-B cells.
Collapse
Affiliation(s)
- Louisa Hill
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Anja Ebert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kota Nagasaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Karina Schindler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Bönelt
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
28
|
Wu Q, Liu P, Wang L. Many facades of CTCF unified by its coding for three-dimensional genome architecture. J Genet Genomics 2020; 47:407-424. [PMID: 33187878 DOI: 10.1016/j.jgg.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
CCCTC-binding factor (CTCF) is a multifunctional zinc finger protein that is conserved in metazoan species. CTCF is consistently found to play an important role in many diverse biological processes. CTCF/cohesin-mediated active chromatin 'loop extrusion' architects three-dimensional (3D) genome folding. The 3D architectural role of CTCF underlies its multifarious functions, including developmental regulation of gene expression, protocadherin (Pcdh) promoter choice in the nervous system, immunoglobulin (Ig) and T-cell receptor (Tcr) V(D)J recombination in the immune system, homeobox (Hox) gene control during limb development, as well as many other aspects of biology. Here, we review the pleiotropic functions of CTCF from the perspective of its essential role in 3D genome architecture and topological promoter/enhancer selection. We envision the 3D genome as an enormous complex architecture, with tens of thousands of CTCF sites as connecting nodes and CTCF proteins as mysterious bonds that glue together genomic building parts with distinct articulation joints. In particular, we focus on the internal mechanisms by which CTCF controls higher order chromatin structures that manifest its many façades of physiological and pathological functions. We also discuss the dichotomic role of CTCF sites as intriguing 3D genome nodes for seemingly contradictory 'looping bridges' and 'topological insulators' to frame a beautiful magnificent house for a cell's nuclear home.
Collapse
Affiliation(s)
- Qiang Wu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China.
| | - Peifeng Liu
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Leyang Wang
- MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Center for Comparative Biomedicine, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
29
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Mechanism and regulation of class switch recombination by IgH transcriptional control elements. Adv Immunol 2020; 147:89-137. [PMID: 32981636 DOI: 10.1016/bs.ai.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
30
|
Allyn BM, Lee KD, Bassing CH. Genome Topology Control of Antigen Receptor Gene Assembly. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2617-2626. [PMID: 32366683 PMCID: PMC7440635 DOI: 10.4049/jimmunol.1901356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/22/2020] [Indexed: 02/02/2023]
Abstract
The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Igκ, TCRα/δ, and TCRβ loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein-mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage-specific locus compaction as well as broad usage of V segments. CTCF/cohesin-dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin-dependent and -independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.
Collapse
Affiliation(s)
- Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kyutae D Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
31
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Recombination may occur in the absence of transcription in the immunoglobulin heavy chain recombination centre. Nucleic Acids Res 2020; 48:3553-3566. [PMID: 32086526 PMCID: PMC7144927 DOI: 10.1093/nar/gkaa108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Developing B cells undergo V(D)J recombination to generate a vast repertoire of Ig molecules. V(D)J recombination is initiated by the RAG1/RAG2 complex in recombination centres (RCs), where gene segments become accessible to the complex. Whether transcription is the causal factor of accessibility or whether it is a side product of other processes that generate accessibility remains a controversial issue. At the IgH locus, V(D)J recombination is controlled by Eμ enhancer, which directs the transcriptional, epigenetic and recombinational events in the IgH RC. Deletion of Eμ enhancer affects both transcription and recombination, making it difficult to conclude if Eμ controls the two processes through the same or different mechanisms. By using a mouse line carrying a CpG-rich sequence upstream of Eμ enhancer and analyzing transcription and recombination at the single-cell level, we found that recombination could occur in the RC in the absence of detectable transcription, suggesting that Eμ controls transcription and recombination through distinct mechanisms. Moreover, while the normally Eμ-dependent transcription and demethylating activities were impaired, recruitment of chromatin remodeling complexes was unaffected. RAG1 was efficiently recruited, thus compensating for the defective transcription-associated recruitment of RAG2, and providing a mechanistic basis for RAG1/RAG2 assembly to initiate V(D)J recombination.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| |
Collapse
|
32
|
Tani-Ichi S, Wagatsuma K, Hara T, Cui G, Abe S, Miyachi H, Kitano S, Ikuta K. Innate-like CD27 +CD45RB high γδ T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs. THE JOURNAL OF IMMUNOLOGY 2020; 204:2671-2684. [PMID: 32238459 DOI: 10.4049/jimmunol.1801243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
TCR signaling is required for homeostasis of naive αβ T cells. However, whether such a signal is necessary for γδ T cell homeostasis in the periphery remains unknown. In this study, we present evidence that a portion of Vγ2+ γδ T cells, one of the major γδ T cell subsets in the secondary lymphoid organs, requires TCR signaling for homeostasis. To attenuate γδTCR signals, we generated mice lacking Eγ4 (Eγ4-/-), an enhancer located at the 3'-most end of the TCRγ locus. Overall, we found that in thymus, Eγ4 loss altered V-J rearrangement, chromatin accessibility, and transcription of the TCRγ locus in a distance-dependent manner. Vγ2+ γδ T cells in Eγ4-/- mice developed normally both fetal and adult mouse thymi but were relatively reduced in number in spleen and lymph nodes. Although Vγ2 TCR transcription decreased in all subpopulations of Eγ4-/- mice, the number of Vγ2+ γδ T cells decreased and TCR signaling was attenuated only in the innate-like CD27+CD45RBhigh subpopulation in peripheral lymphoid organs. Consistently, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice transferred into Rag2-deficient mice were not efficiently recovered, suggesting that continuous TCR signaling is required for their homeostasis. Finally, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice showed impaired TCR-induced activation and antitumor responses. These results suggest that normal homeostasis of innate-like CD27+CD45RBhigh Vγ2+ γδ T cells in peripheral lymphoid organs requires TCR signaling.
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; .,Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Keisuke Wagatsuma
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
33
|
Lion M, Muhire B, Namiki Y, Tolstorukov MY, Oettinger MA. Alterations in chromatin at antigen receptor loci define lineage progression during B lymphopoiesis. Proc Natl Acad Sci U S A 2020; 117:5453-5462. [PMID: 32098847 PMCID: PMC7071903 DOI: 10.1073/pnas.1914923117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Developing lymphocytes diversify their antigen receptor (AgR) loci by variable (diversity) joining (V[D]J) recombination. Here, using the micrococcal nuclease (MNase)-based chromatin accessibility (MACC) assay with low-cell count input, we profile both small-scale (kilobase) and large-scale (megabase) changes in chromatin accessibility and nucleosome occupancy in primary cells during lymphoid development, tracking the changes as different AgR loci become primed for recombination. The three distinct chromatin structures identified in this work define unique features of immunoglobulin H (IgH), Igκ, and T cell receptor-α (TCRα) loci during B lymphopoiesis. In particular, we find locus-specific temporal changes in accessibility both across megabase-long AgR loci and locally at the recombination signal sequences (RSSs). These changes seem to be regulated independently and can occur prior to lineage commitment. Large-scale changes in chromatin accessibility occur without significant change in nucleosome density and represent key features of AgR loci not previously described. We further identify local dynamic repositioning of individual RSS-associated nucleosomes at IgH and Igκ loci while they become primed for recombination during B cell commitment. These changes in chromatin at AgR loci are regulated in a locus-, lineage-, and stage-specific manner during B lymphopoiesis, serving either to facilitate or to impose a barrier to V(D)J recombination. We suggest that local and global changes in chromatin openness in concert with nucleosome occupancy and placement of histone modifications facilitate the temporal order of AgR recombination. Our data have implications for the organizing principles that govern assembly of these large loci as well as for mechanisms that might contribute to aberrant V(D)J recombination and the development of lymphoid tumors.
Collapse
Affiliation(s)
- Mattia Lion
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Brejnev Muhire
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Yuka Namiki
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Marjorie A Oettinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
34
|
Zhao H, Li Z, Zhu Y, Hao B. A linear-amplification VDJ-seq technique for quantification of immunoglobulin and T cell receptor diversity. Genome 2019; 63:145-153. [PMID: 31825677 DOI: 10.1139/gen-2019-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The V(D)J recombination is essential for generating a highly diverse repertoire of antigen receptors expressed on T and B lymphocytes. Here, we developed a linear-amplification VDJ-seq technique for quantifying V(D)J recombination of antigen receptor genes. This technique takes advantage of linear amplification using in vitro transcription and reverse transcription to avoid bias generated by the PCR amplification of low copy number of target DNA. The unrearranged alleles are removed by in vitro cleavage with the CRISPR-Cas9 system. The linear-amplification VDJ-seq assay was applied in quantification of the Vκ-Jκ recombination of the mouse Igκ gene with Jκ capture primers. The Jκ genes were detected in 95.86% of clean reads with more than half containing the Vκ gene, indicating high specificity of capturing and amplification. We also applied this approach to quantify the usage of Jα within the Trav12 gene family of the Tcra gene.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongchang Zhu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, P.R. China
| |
Collapse
|
35
|
Shi Z, Zhang Q, Yan H, Yang Y, Wang P, Zhang Y, Deng Z, Yu M, Zhou W, Wang Q, Yang X, Mo X, Zhang C, Huang J, Dai H, Sun B, Zhao Y, Zhang L, Yang YG, Qiu X. More than one antibody of individual B cells revealed by single-cell immune profiling. Cell Discov 2019; 5:64. [PMID: 31839985 PMCID: PMC6901605 DOI: 10.1038/s41421-019-0137-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Antibodies have a common structure consisting of two identical heavy (H) and two identical light (L) chains. It is widely accepted that a single mature B cell produces a single antibody through restricted synthesis of only one VHDJH (encoding the H-chain variable region) and one VLJL (encoding the L-chain variable region) via recombination. Naive B cells undergo class-switch recombination (CSR) from initially producing membrane-bound IgM and IgD to expressing more effective membrane-bound IgG, IgA, or IgE when encountering antigens. To ensure the "one cell - one antibody" paradigm, only the constant region of the H chain is replaced during CSR, while the rearranged VHDJH pattern and the L chain are kept unchanged. To define those long-standing classical concepts at the single-cell transcriptome level, we applied the Chromium Single-Cell Immune Profiling Solution and Sanger sequencing to evaluate the Ig transcriptome repertoires of single B cells. Consistent with the "one cell - one antibody" rule, most of the B cells showed one V(D)J recombination pattern. Intriguingly, however, two or more VHDJH or VLJL recombination patterns of IgH chain or IgL chain were also observed in hundreds to thousands of single B cells. Moreover, each Ig class showed unique VHDJH recombination pattern in a single B-cell expressing multiple Ig classes. Together, our findings reveal an unprecedented presence of multi-Ig specificity in some single B cells, implying regulation of Ig gene rearrangement and class switching that differs from the classical mechanisms of both the "one cell - one antibody" rule and CSR.
Collapse
Affiliation(s)
- Zhan Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Qingyang Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Huige Yan
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Yixiao Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
| | - Zhenling Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Meng Yu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Wenjing Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Xi Yang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057 China
- Department of Biomedical Science, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Chi Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Baofa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057 China
- Department of Biomedical Science, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- College of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| |
Collapse
|
36
|
Azagra A, Marina-Zárate E, Ramiro AR, Javierre BM, Parra M. From Loops to Looks: Transcription Factors and Chromatin Organization Shaping Terminal B Cell Differentiation. Trends Immunol 2019; 41:46-60. [PMID: 31822368 DOI: 10.1016/j.it.2019.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
B lymphopoiesis is tightly regulated at the level of gene transcription. In recent years, investigators have shed light on the transcription factor networks and the epigenetic machinery involved at all differentiation steps of mammalian B cell development. During terminal differentiation, B cells undergo dramatic changes in gene transcriptional programs to generate germinal center B cells, plasma cells and memory B cells. Recent evidence indicates that mature B cell formation involves an essential contribution from 3D chromatin conformations through its interplay with transcription factors and epigenetic machinery. Here, we provide an up-to-date overview of the coordination between transcription factors, epigenetic changes, and chromatin architecture during terminal B cell differentiation, focusing on recent discoveries and technical advances for studying 3D chromatin structures.
Collapse
Affiliation(s)
- Alba Azagra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain
| | - Ester Marina-Zárate
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
37
|
Johanson TM, Allan RS. Kinks in the chain: examining recombination-activating gene scanning during V(D)J recombination. Immunol Cell Biol 2019; 97:859-861. [PMID: 31613394 DOI: 10.1111/imcb.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
38
|
Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. Int J Mol Sci 2019; 20:ijms20174179. [PMID: 31454991 PMCID: PMC6747487 DOI: 10.3390/ijms20174179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/26/2023] Open
Abstract
Over the past two decades, studies have demonstrated that several features of T-cell and thymic development are conserved from teleosts to mammals. In particular, works using zebrafish (Danio rerio) and medaka (Oryzias latipes) have shed light on the cellular and molecular mechanisms underlying these biological processes. In particular, the ease of noninvasive in vivo imaging of these species enables direct visualization of all events associated with these processes, which are, in mice, technically very demanding. In this review, we focus on defining the similarities and differences between zebrafish and medaka in T-cell development and thymus organogenesis; and highlight their advantages as two complementary model systems for T-cell immunobiology and modeling of human diseases.
Collapse
|
39
|
3D Chromosomal Landscapes in Hematopoiesis and Immunity. Trends Immunol 2019; 40:809-824. [PMID: 31422902 DOI: 10.1016/j.it.2019.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Epigenetic dysregulation plays a profound role in the pathogenesis of hematological malignancies, which is often the result of somatic mutations of chromatin regulators. Previously, these mutations were largely considered to alter gene expression in two dimensions, by activating or repressing chromatin states; however, research in the last decade has highlighted the increasing impact of the 3D organization of the genome in gene regulation and disease pathogenesis. Here, we summarize the current principles of 3D chromatin organization, how the integrity of the 3D genome governs immune cell development and malignant transformation, as well as how underlying (epi-)genetic drivers of 3D chromatin alterations might act as potential novel therapeutic targets for hematological malignancies.
Collapse
|
40
|
Ciccone DN, Namiki Y, Chen C, Morshead KB, Wood AL, Johnston CM, Morris JW, Wang Y, Sadreyev R, Corcoran AE, Matthews AGW, Oettinger MA. The murine IgH locus contains a distinct DNA sequence motif for the chromatin regulatory factor CTCF. J Biol Chem 2019; 294:13580-13592. [PMID: 31285261 PMCID: PMC6746451 DOI: 10.1074/jbc.ra118.007348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/13/2019] [Indexed: 01/03/2023] Open
Abstract
Antigen receptor assembly in lymphocytes involves stringently-regulated coordination of specific DNA rearrangement events across several large chromosomal domains. Previous studies indicate that transcription factors such as paired box 5 (PAX5), Yin Yang 1 (YY1), and CCCTC-binding factor (CTCF) play a role in regulating the accessibility of the antigen receptor loci to the V(D)J recombinase, which is required for these rearrangements. To gain clues about the role of CTCF binding at the murine immunoglobulin heavy chain (IgH) locus, we utilized a computational approach that identified 144 putative CTCF-binding sites within this locus. We found that these CTCF sites share a consensus motif distinct from other CTCF sites in the mouse genome. Additionally, we could divide these CTCF sites into three categories: intergenic sites remote from any coding element, upstream sites present within 8 kb of the VH-leader exon, and recombination signal sequence (RSS)-associated sites characteristically located at a fixed distance (∼18 bp) downstream of the RSS. We noted that the intergenic and upstream sites are located in the distal portion of the VH locus, whereas the RSS-associated sites are located in the DH-proximal region. Computational analysis indicated that the prevalence of CTCF-binding sites at the IgH locus is evolutionarily conserved. In all species analyzed, these sites exhibit a striking strand-orientation bias, with >98% of the murine sites being present in one orientation with respect to VH gene transcription. Electrophoretic mobility shift and enhancer-blocking assays and ChIP–chip analysis confirmed CTCF binding to these sites both in vitro and in vivo.
Collapse
Affiliation(s)
- David N Ciccone
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Yuka Namiki
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Changfeng Chen
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Katrina B Morshead
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Andrew L Wood
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Colette M Johnston
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - John W Morris
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Yanqun Wang
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Anne E Corcoran
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Adam G W Matthews
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114.,Department of Biological Sciences and Program in Biochemistry, Wellesley College, Wellesley, Massachusetts 02481
| | - Marjorie A Oettinger
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
41
|
Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH allele in B-cell acute lymphoblastic leukemia. Nat Commun 2019; 10:2789. [PMID: 31243274 PMCID: PMC6594946 DOI: 10.1038/s41467-019-10637-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
IGH@ proto-oncogene translocation is a common oncogenic event in lymphoid lineage cancers such as B-ALL, lymphoma and multiple myeloma. Here, to investigate the interplay between IGH@ proto-oncogene translocation and IGH allelic exclusion, we perform long-read whole-genome and transcriptome sequencing along with epigenetic and 3D genome profiling of Nalm6, an IGH-DUX4 positive B-ALL cell line. We detect significant allelic imbalance on the wild-type over the IGH-DUX4 haplotype in expression and epigenetic data, showing IGH-DUX4 translocation occurs on the silenced IGH allele. In vitro, this reduces the oncogenic stress of DUX4 high-level expression. Moreover, patient samples of IGH-DUX4 B-ALL have similar expression profile and IGH breakpoints as Nalm6, suggesting a common mechanism to allow optimal dosage of non-toxic DUX4 expression. The IGH@ proto-oncogene translocation is a known genomic driver in several blood cancers. Here, the authors show that IGH-DUX4 translocation occurs on the silenced IGH allele avoiding toxic high-level expression of DUX4 in B-ALL.
Collapse
|
42
|
Rodgers W, Byrum JN, Simpson DA, Hoolehan W, Rodgers KK. RAG2 localization and dynamics in the pre-B cell nucleus. PLoS One 2019; 14:e0216137. [PMID: 31075127 PMCID: PMC6510410 DOI: 10.1371/journal.pone.0216137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
RAG2 of the V(D)J recombinase is essential for lymphocyte development. Within the RAG2 noncore region is a plant homeodomain (PHD) that interacts with the modified histone H3K4me3, and this interaction is important for relieving inhibition of the RAG recombinase for V(D)J recombination. However, the effect of the noncore region on RAG2 localization and dynamics in cell nuclei is poorly understood. Here, we used cell imaging to measure the effect of mutating the RAG2 noncore region on properties of the full length protein. We measured GFP-labeled full length RAG2 (FL), the RAG2 core region alone (Core), and a T490A mutant in the noncore region, which has unique regulatory properties. This showed that FL, T490A, and Core localized to nuclear domains that were adjacent to DAPI-rich heterochromatin, and that contained the active chromatin marker H3K4me3. Within the RAG2-enriched regions, T490A exhibited greater colocalization with H3K4me3 than either FL or Core. Furthermore, colocalization of H3K4me3 with FL and T490A, but not Core, increased in conditions that increased H3K4me3 levels. Superresolution imaging showed H3K4me3 was distributed as puncta that RAG2 abutted, and mobility measurements showed that T490A had a significantly lower rate of diffusion within the nucleus than either FL or Core proteins. Finally, mutating Trp453 of the T490A mutant (W453A,T490A), which blocks PHD-dependent interactions with H3K4me3, abolished the T490A-mediated increased colocalization with H3K4me3 and slower mobility compared to FL. Altogether, these data show that Thr490 in the noncore region modulates RAG2 localization and dynamics in the pre-B cell nucleus, such as by affecting RAG2 interactions with H3K4me3.
Collapse
Affiliation(s)
- William Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, United States of America
| | - Jennifer N. Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Destiny A. Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Karla K. Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Jiang N, Fan Y, Zhou Y, Wang W, Ma J, Zeng L. Transcriptome analysis of Aeromonas hydrophila infected hybrid sturgeon (Huso dauricus×Acipenser schrenckii). Sci Rep 2018; 8:17925. [PMID: 30560883 PMCID: PMC6298973 DOI: 10.1038/s41598-018-36376-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
The hybrid sturgeon (Huso dauricus × Acipenser schrenckii) is an economically important species in China. With the increasing aquaculture of hybrid sturgeon, the bacterial diseases are a great concern of the industry. In this study, de novo sequencing was used to compare the difference in transcriptome in spleen of the infected and mock infected sturgeon with Aeromonas hydrophila. Among 187,244 unigenes obtained, 87,887 unigenes were annotated and 1,147 unigenes were associated with immune responses genes. Comparative expression analysis indicated that 2,723 differently expressed genes between the infected and mock-infected group were identified, including 1,420 up-regulated and 1,303 down-regulated genes. 283 differently expressed anti-bacterial immune related genes were scrutinized, including 168 up-regulated and 115 down-regulated genes. Ten of the differently expressed genes were further validated by qRT-PCR. In this study, toll like receptors (TLRs) pathway, NF-kappa B pathway, class A scavenger receptor pathway, phagocytosis pathway, mannose receptor pathway and complement pathway were shown to be up-regulated in Aeromonas hydrophila infected hybrid sturgeon. Additionally, 65,040 potential SSRs and 2,133,505 candidate SNPs were identified from the hybrid sturgeon spleen transcriptome. This study could provide an insight of host immune genes associated with bacterial infection in hybrid sturgeon.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Weiling Wang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Jie Ma
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, P. R. China.
| |
Collapse
|
45
|
Mackeh R, Marr AK, Fadda A, Kino T. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801071. [PMID: 30718982 PMCID: PMC6348741 DOI: 10.1177/1550762918801071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Nuclear hormone receptors (NRs) are evolutionarily conserved ligand-dependent
transcription factors. They are essential for human life, mediating the actions
of lipophilic molecules, such as steroid hormones and metabolites of fatty acid,
cholesterol, and external toxic compounds. The C2H2-type zinc finger proteins
(ZNFs) form the largest family of the transcription factors in humans and are
characterized by multiple, tandemly arranged zinc fingers. Many of the C2H2-type
ZNFs are conserved throughout evolution, suggesting their involvement in
preserved biological activities, such as general transcriptional regulation and
development/differentiation of organs/tissues observed in the early embryonic
phase. However, some C2H2-type ZNFs, such as those with the Krüppel-associated
box (KRAB) domain, appeared relatively late in evolution and have significantly
increased family members in mammals including humans, possibly modulating their
complicated transcriptional network and/or supporting the morphological
development/functions specific to them. Such evolutional characteristics of the
C2H2-type ZNFs indicate that these molecules influence the NR functions
conserved through evolution, whereas some also adjust them to meet with specific
needs of higher organisms. We review the interaction between NRs and C2H2-type
ZNFs by focusing on some of the latter molecules.
Collapse
|
46
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
47
|
Lin SG, Ba Z, Alt FW, Zhang Y. RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes. Adv Immunol 2018; 139:93-135. [PMID: 30249335 DOI: 10.1016/bs.ai.2018.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective adaptive immune system depends on the ability of developing B and T cells to generate diverse immunoglobulin (Ig) and T cell receptor repertoires, respectively. Such diversity is achieved through a programmed somatic recombination process whereby germline V, D, and J segments of antigen receptor loci are assembled to form the variable region V(D)J exons of Ig and TCRs. Studies of this process, termed V(D)J recombination, have provided key insights into our understanding of a variety of general gene regulatory and DNA repair processes over the last several decades. V(D)J recombination is initiated by the RAG endonuclease which generates DNA double-stranded breaks at the borders of V, D, and J segments. In this review, we cover recent work that has elucidated RAG structure and work that revealed that RAG has a novel chromatin scanning activity, likely mediated by chromatin loop extrusion, that contributes to its ability to locate V, D, J gene segment substrates within large chromosomal loop domains bounded by CTCF-binding elements (CBEs). This latter function, coupled with the role CBE-based chromatin loop domains and subdomains within them play in focusing V(D)J recombination activity within antigen receptor loci, provide mechanistic explanations for long-standing questions regarding V(D)J segment usage diversification and in limiting potentially deleterious off-target RAG-initiated recombination events genome-wide. This review will focus mainly on studies of the mouse Ig heavy chain locus, but the principles described also apply to other Ig loci and to TCR loci in mice and humans.
Collapse
Affiliation(s)
- Sherry G Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | - Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Jain S, Ba Z, Zhang Y, Dai HQ, Alt FW. CTCF-Binding Elements Mediate Accessibility of RAG Substrates During Chromatin Scanning. Cell 2018; 174:102-116.e14. [PMID: 29804837 PMCID: PMC6026039 DOI: 10.1016/j.cell.2018.04.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/07/2018] [Accepted: 04/25/2018] [Indexed: 01/06/2023]
Abstract
RAG endonuclease initiates antibody heavy chain variable region exon assembly from V, D, and J segments within a chromosomal V(D)J recombination center (RC) by cleaving between paired gene segments and flanking recombination signal sequences (RSSs). The IGCR1 control region promotes DJH intermediate formation by isolating Ds, JHs, and RCs from upstream VHs in a chromatin loop anchored by CTCF-binding elements (CBEs). How VHs access the DJHRC for VH to DJH rearrangement was unknown. We report that CBEs immediately downstream of frequently rearranged VH-RSSs increase recombination potential of their associated VH far beyond that provided by RSSs alone. This CBE activity becomes particularly striking upon IGCR1 inactivation, which allows RAG, likely via loop extrusion, to linearly scan chromatin far upstream. VH-associated CBEs stabilize interactions of D-proximal VHs first encountered by the DJHRC during linear RAG scanning and thereby promote dominant rearrangement of these VHs by an unanticipated chromatin accessibility-enhancing CBE function.
Collapse
MESH Headings
- Animals
- CCCTC-Binding Factor/metabolism
- Cell Line
- Chromatin/metabolism
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Homeodomain Proteins/metabolism
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Mutagenesis
- Protein Sorting Signals
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- V(D)J Recombination
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Suvi Jain
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhaoqing Ba
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Zhang
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Hypomorphic Rag1 mutations alter the preimmune repertoire at early stages of lymphoid development. Blood 2018; 132:281-292. [PMID: 29743177 DOI: 10.1182/blood-2017-12-820985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Hypomorphic RAG1 mutations allowing residual T- and B-cell development have been found in patients presenting with delayed-onset combined immune deficiency with granulomas and/or autoimmunity (CID-G/AI) and abnormalities of the peripheral T- and B-cell repertoire. To examine how hypomorphic Rag1 mutations affect the earliest stages of lymphocyte development, we used CRISPR/Cas9 to generate mouse models with mutations equivalent to those found in patients with CID-G/AI. Immunological characterization showed partial development of T and B lymphocytes, with persistence of naïve cells and preserved serum immunoglobulin but impaired antibody responses and presence of autoantibodies, thereby recapitulating the phenotype seen in patients with CID-G/AI. By using high-throughput sequencing, we identified marked skewing of Igh V and Trb V gene usage in early progenitors, with a bias for productive Igh and Trb rearrangements after selection occurred and increased apoptosis of B-cell progenitors. Rearrangement at the Igk locus was impaired, and polyreactive immunoglobulin M antibodies were detected. This study provides novel insights into how hypomorphic Rag1 mutations alter the primary repertoire of T and B cells, setting the stage for immune dysregulation frequently seen in patients.
Collapse
|
50
|
Abstract
Enhancers are short noncoding segments of DNA (100-1000 bp) that control the temporal and spatial activity of genes in an orientation-independent manner. They can be separated from their target genes by large distances and are thus known as distal regulatory elements. One consequence of the variability in the distance separating enhancers and their target promoters is that it is difficult to determine which elements are involved in the regulation of a particular gene. Moreover, enhancers can be found in clusters in which multiple regulatory elements control expression of the same target gene. However, little is known about how the individual elements contribute to gene expression. Here, we describe how chromatin conformation promotes and constraints enhancer activity. Further, we discuss enhancer clusters and what is known about the contribution of individual elements to the regulation of target genes. Finally, we examine the reliability of different methods used to identify enhancers.
Collapse
Affiliation(s)
- Valentina Snetkova
- Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA.,MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA
| |
Collapse
|