1
|
Raghuraman N, White JN, Watson L, Belleï-Rodriguez CÉ, Shafir R, Wang Y, Colloca L. Neuropsychological mechanisms of observational learning in human placebo effects. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06608-7. [PMID: 38743108 PMCID: PMC11561162 DOI: 10.1007/s00213-024-06608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Scientific evidence indicates that placebo effects are psychoneurobiological events involving the contribution of distinct central nervous systems and peripheral physiological mechanisms that influence pain perception and other symptoms. Placebo effects can occur without formal conditioning and direct prior experience because crucial information can be acquired through observational learning. Observation of benefits in another person results in placebo effects of a magnitude like those induced by directly experiencing an analgesic benefit. Understanding the psychological mechanisms of observationally induced placebo effects is a complex and multifaceted endeavor. While previous reviews have highlighted various frameworks and models to understand these phenomena, the underlying biological mechanisms have been overlooked. We summarize critically current understanding of its behavioral and neural mechanisms. Understanding the neural mechanisms of hypoalgesia driven by observation can serve as a foundation for future development of novel theoretical and methodological approaches and ultimately, applications.
Collapse
Affiliation(s)
- Nandini Raghuraman
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Graduate Program in Life Sciences, Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, Baltimore, MD, USA
- Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
| | - Jewel N White
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
- Graduate Program in Life Sciences, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, USA
| | - Lakota Watson
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Graduate Program in Life Sciences, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, USA
| | | | - Roni Shafir
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
| | - Yang Wang
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA.
- Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA.
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA.
| |
Collapse
|
2
|
Szigeti B, Heifets BD. Expectancy Effects in Psychedelic Trials. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:512-521. [PMID: 38387698 DOI: 10.1016/j.bpsc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Clinical trials of psychedelic compounds like psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltrptamine (DMT) have forced a reconsideration of how nondrug factors, such as participant expectations, are measured and controlled in mental health research. As doses of these profoundly psychoactive substances increase, so does the difficulty in concealing the treatment condition in the classic double-blind, placebo-controlled trial design. As widespread public enthusiasm for the promise of psychedelic therapy grows, so do questions regarding whether and how much trial results are biased by positive expectancy. First, we review the key concepts related to expectancy and its measurement. Then, we review expectancy effects that have been reported in both micro- and macrodose psychedelic trials from the modern era. Finally, we consider expectancy as a discrete physiological process that can be independent of, or even interact with, the drug effect. Expectancy effects can be harnessed to improve treatment outcomes and can also be actively managed in controlled studies to enhance the rigor and generalizability of future psychedelic trials.
Collapse
Affiliation(s)
- Balázs Szigeti
- Translational Psychedelic Research Program, University of California San Francisco, San Francisco, California; Centre for Psychedelic Research, Imperial College London, London, UK
| | - Boris D Heifets
- Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
3
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Frisaldi E, Shaibani A, Benedetti F, Pagnini F. Placebo and nocebo effects and mechanisms associated with pharmacological interventions: an umbrella review. BMJ Open 2023; 13:e077243. [PMID: 37848293 PMCID: PMC10582987 DOI: 10.1136/bmjopen-2023-077243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVES This review aimed to summarise the existing knowledge about placebo and nocebo effects associated with pharmacological interventions and their mechanisms. DESIGN Umbrella review, adopting the Assessment of Multiple Systematic Reviews 2 tool for critical appraisal. DATA SOURCES MEDLINE/PubMed, Scopus, Web of Science, PsycINFO, Cochrane Central Register of Controlled Trial were searched in September 2022, without any time restriction, for systematic reviews, narrative reviews, original articles. Results were summarised through narrative synthesis, tables, 95% CI. OUTCOME MEASURES Mechanisms underlying placebo/nocebo effects and/or their effect sizes. RESULTS The databases search identified 372 studies, for a total of 158 312 participants, comprising 41 systematic reviews, 312 narrative reviews and 19 original articles. Seventy-three per cent of the examined systematic reviews were of high quality.Our findings revealed that mechanisms underlying placebo and/or nocebo effects have been characterised, at least in part, for: pain, non-noxious somatic sensation, Parkinson's disease, migraine, sleep disorders, intellectual disability, depression, anxiety, dementia, addiction, gynaecological disorders, attention-deficit hyperactivity disorder, immune and endocrine systems, cardiovascular and respiratory systems, gastrointestinal disorders, skin diseases, influenza and related vaccines, oncology, obesity, physical and cognitive performance. Their magnitude ranged from 0.08 to 2.01 (95% CI 0.37 to 0.89) for placebo effects and from 0.32 to 0.90 (95% CI 0.24 to 1.00) for nocebo effects. CONCLUSIONS This study provides a valuable tool for clinicians and researchers, identifying both results ready for clinical practice and gaps to address in the near future. FUNDING Università Cattolica del Sacro Cuore, Milan, Italy with the 'Finanziamento Ponte 2022' grant. PROSPERO REGISTRATION NUMBER CRD42023392281.
Collapse
Affiliation(s)
- Elisa Frisaldi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Aziz Shaibani
- Muscle and Nerve Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Fabrizio Benedetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Francesco Pagnini
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
5
|
Effective Oriental Magic for Analgesia: Acupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1451342. [PMID: 35313481 PMCID: PMC8934214 DOI: 10.1155/2022/1451342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Pain is a kind of complex physiological and psychological symptom, which makes the person debilitated and uncomfortable. Some persistent pain is unbearable for the patients, reducing the quality of life and bringing considerable pressure to the individuals and society. Pain killers seem to be effective in analgesia for patients, but their safety and addiction are crucial issues. From the theory of traditional Chinese medicine (TCM), the blocked meridian is the main cause of pain, and effective acupuncture can play a positive analgesic effect. Acupuncture that can date back thousands of years is one of the ancient medical practices in China. Its safety and effectiveness are respected. Based on its superior safety and inferior side effects, it has been gradually recognized as a therapeutic intervention method for complementary medicine, which is also generally used to treat multiple pain diseases. It is shown by modern medical studies that neurotransmitters are the material basis for the acupuncture effect, and the effect of acupuncture analgesia is related to changes in neurotransmitters. However, the specific mechanism has not been elucidated. This review aims to comprehensively discuss the historical evolution of acupuncture analgesia, clinical research of acupuncture analgesia, comparison of acupuncture and drug therapy, the neurotransmitter mechanism of acupuncture analgesia, the effect of acupuncture manipulation on analgesia, and bibliometric analysis of acupuncture treatment for pain, to explore the superiority and related mechanism of acupuncture analgesia from different aspects, and to provide a more effective treatment for alleviating patients' pain.
Collapse
|
6
|
Kimmey BA, McCall NM, Wooldridge LM, Satterthwaite T, Corder G. Engaging endogenous opioid circuits in pain affective processes. J Neurosci Res 2022; 100:66-98. [PMID: 33314372 PMCID: PMC8197770 DOI: 10.1002/jnr.24762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
The pervasive use of opioid compounds for pain relief is rooted in their utility as one of the most effective therapeutic strategies for providing analgesia. While the detrimental side effects of these compounds have significantly contributed to the current opioid epidemic, opioids still provide millions of patients with reprieve from the relentless and agonizing experience of pain. The human experience of pain has long recognized the perceived unpleasantness entangled with a unique sensation that is immediate and identifiable from the first-person subjective vantage point as "painful." From this phenomenological perspective, how is it that opioids interfere with pain perception? Evidence from human lesion, neuroimaging, and preclinical functional neuroanatomy approaches is sculpting the view that opioids predominately alleviate the affective or inferential appraisal of nociceptive neural information. Thus, opioids weaken pain-associated unpleasantness rather than modulate perceived sensory qualities. Here, we discuss the historical theories of pain to demonstrate how modern neuroscience is revisiting these ideas to deconstruct the brain mechanisms driving the emergence of aversive pain perceptions. We further detail how targeting opioidergic signaling within affective or emotional brain circuits remains a strong avenue for developing targeted pharmacological and gene-therapy analgesic treatments that might reduce the dependence on current clinical opioid options.
Collapse
Affiliation(s)
- Blake A. Kimmey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Nora M. McCall
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Lisa M. Wooldridge
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Elphinston RA, Sullivan MJL, Sterling M, Connor JP, Baranoff JA, Tan D, Day MA. Pain Medication Beliefs Mediate the Relationship Between Pain Catastrophizing and Opioid Prescription Use in Patients With Chronic Non-Cancer Pain. THE JOURNAL OF PAIN 2021; 23:379-389. [PMID: 34662709 DOI: 10.1016/j.jpain.2021.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Little is known about the mechanisms by which pain catastrophizing may be associated with opioid use outcomes. This study aimed to investigate the potential mediating role of beliefs about the appropriateness of pain medicines for pain treatment on the association between pain catastrophizing and prescription opioid use in a community chronic non-cancer pain (CNCP) sample. Individuals (N = 420) diagnosed with CNCP participated in a cross-sectional online self-report study with validated measures of pain medication beliefs, pain catastrophizing, and current prescription opioid use. Two parallel multiple mediator analyses with percentile-based bootstrapping examined pathways to both prescription opioid use and high-dose use (≥ 100mg oral morphine equivalents/day), while controlling for pain intensity and other relevant covariates. Pain medication beliefs significantly mediated the association between pain catastrophizing and prescription opioid use (CI = 0.011, 0.033). A similar pattern of findings was found for high-dose opioid use, with pain medication beliefs significantly mediating the pain catastrophizing-high-dose use association (CI = 0.006, 0.050). Pain medication beliefs are a potentially modifiable psychological mechanism by which pain catastrophizing is associated with opioid use, including high-dose use. These findings have important implications for personalizing prevention and treatment programs.
Collapse
Affiliation(s)
- Rachel A Elphinston
- RECOVER Injury Research Centre, The University of Queensland, Brisbane, Australia; National Health and Medical Research Council Centre for Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Brisbane, Australia; School of Psychology, The University of Queensland, Brisbane, Australia.
| | | | - Michele Sterling
- RECOVER Injury Research Centre, The University of Queensland, Brisbane, Australia; National Health and Medical Research Council Centre for Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Brisbane, Australia
| | - Jason P Connor
- Discipline of Psychiatry, The University of Queensland, Brisbane, Australia; National Centre for Youth Substance Use Research, The University of Queensland, Brisbane, Australia
| | - John A Baranoff
- School of Psychology, The University of Queensland, Brisbane, Australia; Centre for Treatment of Anxiety and Depression, SA Health, Adelaide, South Australia
| | - Dylan Tan
- School of Psychology, The University of Queensland, Brisbane, Australia
| | - Melissa A Day
- School of Psychology, The University of Queensland, Brisbane, Australia; Department of Rehabilitation Medicine, The University of Washington, Washington
| |
Collapse
|
8
|
Levran O, Kreek MJ. Population-specific genetic background for the OPRM1 variant rs1799971 (118A>G): implications for genomic medicine and functional analysis. Mol Psychiatry 2021; 26:3169-3177. [PMID: 33037305 DOI: 10.1038/s41380-020-00902-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022]
Abstract
The mu-opioid receptor (MOR, OPRM1) has important roles in diverse functions including reward, addiction, and response to pain treatment. SNP rs1799971 (118A > G, N40D) which occur at a high frequency (40-60%) in Asia and moderate frequency (15%) in samples of European ancestry, is the only common coding variant in the canonical transcript, in non-African populations. Despite extensive studies, the molecular consequences of this variation remained unresolved. The aim of this study was to determine the genetic background of the OPRM1 region of 118G in four representative populations and to assess its potential modulatory effect. Seven common haplotypes with distinct population distribution were identified based on seven SNPs. Three haplotypes carry the 118G and additional highly linked regulatory SNPs (e.g., rs9383689) that could modulate the effect of 118G. Extended analysis in the 1000 Genomes database (n = 2504) revealed a common East Asian-specific haplotype with a different genetic background in which there are no variant alleles for an upstream LD block tagged by the eQTL rs9397171. The major European haplotype specifically includes the eQTL intronic SNP rs62436463 that must have arisen after the split between European and Asian populations. Differentiating between the effect of 118G and these SNPs requires specific experimental approaches. The analysis also revealed a significant increase in two 118A haplotypes with eQTL SNPs associated with drug addiction (rs510769) and obesity (rs9478496) in populations with native Mexican ancestry. Future studies are required to assess the clinical implication of these findings.
Collapse
Affiliation(s)
- Orna Levran
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Abstract
BACKGROUND Pain and depression have a high impact on caring for the people who need palliative care, but both of these are neglected compared with the approach for other symptoms encountered by these patients. AREAS OF UNCERTAINTY There are few studies in humans that support the existence of common neural circuits between depression and pain that also explore the use of drugs with effects in both conditions. More knowledge is needed about the relationship of these clinical entities that will lead to the optimization of the treatment and improvement of quality of life. DATA SOURCES We conducted a search in PubMed to identify relevant articles and reviews that have been published in the last 5 years, concerning the topic of common pathways between depression and pain (2014-April 2019). THERAPEUTIC ADVANCES The connections between the 2 clinical entities start at the level of the cortical regions. The hippocampus is the main site of neural changes, modification of the immune system, neuromodulators, neurotransmitters, and signaling pathways implicated in both conditions. Increased levels of peripheral proinflammatory cytokines and neuroinflammatory changes are related to the physiopathology of these entities. Inflammation links depression and pain by altering neural circuits and changes in their common cortical regions. Antidepressants are used to treat depression and chronic, pain but more experimental studies are needed to determine which antidepressant drugs are the most effective in treating the 2 entities. CONCLUSIONS Pharmacological and nonpharmacological interventions targeting cortical changes in pain and depression are promising, but more clinical studies are needed to validate their usefulness.
Collapse
|
10
|
Chen J, Mizuno A, Lyew T, Karim HT, Karp JF, Dombrovski AY, Peciña M. Naltrexone modulates contextual processing in depression. Neuropsychopharmacology 2020; 45:2070-2078. [PMID: 32843703 PMCID: PMC7547720 DOI: 10.1038/s41386-020-00809-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022]
Abstract
Context, the information surrounding an experience, can significantly alter the meaning and the affective responses to events. Yet the biological mechanisms through which context modulate experiences are not entirely understood. Here, we hypothesized that the µ-opioid system-extensively implicated in placebo effects, a clinical phenomenon thought to rely on contextual processing-modulates the effects of contextual information on emotional attributions in patients with depression. To test this hypothesis, 20 unmedicated patients with depression completed a randomized, double-blind, placebo-controlled, crossover study of one dose of 50 mg of naltrexone, or placebo immediately before completing two sessions of the Contextual Framing fMRI task. This task captures effects of valenced contextual cues (pleasant vs. unpleasant) on emotional attribution (the rating of subtle emotional faces: fearful, neutral, or happy). Behaviorally, we found that emotional attribution was significantly moderated by the interaction between contextual cues and subtle emotional faces, such that participants' ratings of valenced faces (fearful and happy), compared to neutral, were more negative during unpleasant, compared to pleasant context cues. At a neural level, context-induced blood-oxygen-level-dependent responses in the ventromedial prefrontal cortex, the dorsal anterior cingulate, the dorsolateral prefrontal cortex, and the lateral orbitofrontal cortex, significantly moderated the effects of context on emotional attribution, and were blunted by naltrexone. Furthermore, the effects of naltrexone on emotional attribution were partially abolished in more severely depressed patients. Our results provide insights into the molecular alterations underlying context representation in patients with depression, providing pivotal early data for future treatment studies.
Collapse
Affiliation(s)
- J. Chen
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - A. Mizuno
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - T. Lyew
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - H. T. Karim
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - J. F. Karp
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - A. Y. Dombrovski
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - M. Peciña
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
11
|
Kohrt BA, Ottman K, Panter-Brick C, Konner M, Patel V. Why we heal: The evolution of psychological healing and implications for global mental health. Clin Psychol Rev 2020; 82:101920. [PMID: 33126037 DOI: 10.1016/j.cpr.2020.101920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 01/10/2023]
Abstract
Why do humans heal one another? Evolutionary psychology has advanced our understanding of why humans suffer psychological distress and mental illness. However, to date, the evolutionary origins of what drives humans to alleviate the suffering of others has received limited attention. Therefore, we draw upon evolutionary theory to assess why humans psychologically support one another, focusing on the interpersonal regulation of emotions that shapes how humans heal and console one another when in psychosocial distress. To understand why we engage in psychological healing, we review the evolution of cooperation among social species and the roles of emotional contagion, empathy, and self-regulation. We discuss key aspects of human biocultural evolution that have contributed to healing behaviors: symbolic logic including language, complex social networks, and the long period of childhood that necessitates identifying and responding to others in distress. However, both biological and cultural evolution also have led to social context when empathy and consoling are impeded. Ultimately, by understanding the evolutionary processes shaping why humans psychologically do or do not heal one another, we can improve our current approaches in global mental health and uncover new opportunities to improve the treatment of mental illness across cultures and context around the world.
Collapse
Affiliation(s)
- Brandon A Kohrt
- Division of Global Mental Health, Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC, USA.
| | - Katherine Ottman
- Division of Global Mental Health, Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC, USA
| | - Catherine Panter-Brick
- Jackson Institute of Global Affairs, Yale University, New Haven, and Department of Anthropology, Yale University, New Haven, USA
| | - Melvin Konner
- Department of Anthropology, Emory University, Atlanta, USA
| | - Vikram Patel
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, and Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
12
|
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front Psychol 2020; 11:1825. [PMID: 32849076 PMCID: PMC7412934 DOI: 10.3389/fpsyg.2020.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.
Collapse
Affiliation(s)
| | | | - Marcio Matsumoto
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.,LIM 23, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
13
|
In major depression, increased kappa and mu opioid receptor levels are associated with immune activation. Acta Neuropsychiatr 2020; 32:99-108. [PMID: 31753054 DOI: 10.1017/neu.2019.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study was carried out to delineate differences between major depressive disorder (MDD) and healthy controls in dynorphin and kappa opioid receptor (KOR) levels in association with changes in the β-endorphin - mu opioid receptor (MOR) and immune-inflammatory system. METHODS The present study examines dynorphin, KOR, β-endorphin, MOR, interleukin (IL)-6 and IL-10 in 60 drug-free male participants with MDD and 30 age-matched healthy males. RESULTS Serum dynorphin, KOR, β-endorphin and MOR are significantly higher in MDD as compared to controls. The increases in the dynorphin/KOR system and β-endorphin/MOR system are significantly intercorrelated and are both strongly associated with increased IL-6 and IL-10 levels. Dynorphin, β-endorphin, KOR and both cytokines showed a good diagnostic performance for MDD versus controls with a bootstrapped (n = 2000) area under the receiver operating curve of 0.972. The dynorphin/KOR system is significantly decreased in depression with comorbid nicotine dependence. CONCLUSION Our findings suggest that, in MDD, immune activation is associated with a simultaneous activation of dynorphin/KOR and β-endorphin/MOR signaling and that these opioid systems may participate in the pathophysiology of depression by (a) exerting immune-regulatory activities attenuating the primary immune response and (b) modulating reward responses and mood as well as emotional and behavioural responses to stress.
Collapse
|
14
|
DaSilva AF, Zubieta JK, DosSantos MF. Positron emission tomography imaging of endogenous mu-opioid mechanisms during pain and migraine. Pain Rep 2019; 4:e769. [PMID: 31579860 PMCID: PMC6727995 DOI: 10.1097/pr9.0000000000000769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/04/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022] Open
Abstract
The enormous advancements in the medical imaging methods witnessed in the past decades have allowed clinical researchers to study the function of the human brain in vivo, both in health and disease. In addition, a better understanding of brain responses to different modalities of stimuli such as pain, reward, or the administration of active or placebo interventions has been achieved through neuroimaging methods. Although magnetic resonance imaging has provided important information regarding structural, hemodynamic, and metabolic changes in the central nervous system related to pain, magnetic resonance imaging does not address modulatory pain systems at the molecular level (eg, endogenous opioid). Such important information has been obtained through positron emission tomography, bringing insights into the neuroplastic changes that occur in the context of the pain experience. Positron emission tomography studies have not only confirmed the brain structures involved in pain processing and modulation but also have helped elucidate the neural mechanisms that underlie healthy and pathological pain regulation. These data have shown some of the biological basis of the interindividual variability in pain perception and regulation. In addition, they provide crucial information to the mechanisms that drive placebo and nocebo effects, as well as represent an important source of variability in clinical trials. Positron emission tomography studies have also permitted exploration of the dynamic interaction between behavior and genetic factors and between different pain modulatory systems. This narrative review will present a summary of the main findings of the positron emission tomography studies that evaluated the functioning of the opioidergic system in the context of pain.
Collapse
Affiliation(s)
- Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Utah Health, Salt Lake City, UT, USA
| | - Marcos F. DosSantos
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Wang GJ, Wiers CE, Shumay E, Tomasi D, Yuan K, Wong CT, Logan J, Fowler JS, Volkow ND. Expectation effects on brain dopamine responses to methylphenidate in cocaine use disorder. Transl Psychiatry 2019; 9:93. [PMID: 30770780 PMCID: PMC6377670 DOI: 10.1038/s41398-019-0421-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022] Open
Abstract
The response to drugs of abuse is affected by expectation, which is modulated in part by dopamine (DA), which encodes for a reward prediction error. Here we assessed the effect of expectation on methylphenidate (MP)-induced striatal DA changes in 23 participants with an active cocaine use disorder (CUD) and 23 healthy controls (HC) using [11C]raclopride and PET both after placebo (PL) and after MP (0.5 mg/kg, i.v.). Brain dopamine D2 and D3 receptor availability (D2R: non-displaceable binding potential (BPND)) was measured under four conditions in randomized order: (1) expecting PL/receiving PL, (2) expecting PL/receiving MP, (3) expecting MP/receiving PL, and (4) expecting MP/receiving MP. Expecting MP increased pulse rate compared to expecting PL. Receiving MP decreased D2R in striatum compared to PL, indicating MP-induced striatal DA release, and this effect was significantly blunted in CUD versus HC consistent with prior findings of decreased striatal dopamine responses both in active and detoxified CUD. There was a group × challenge × expectation effect in caudate and midbrain, with expectation of MP increasing MP-induced DA release in HC but not in CUD, and expectation of PL showing a trend to increase MP-induced DA release in CUD but not in HC. These results are consistent with the role of DA in reward prediction error in the human brain: decreasing DA signaling when rewards are less than expected (blunted DA increases to MP in CUD) and increasing them when greater than expected (for PL in CUD reflecting conditioned responses to injection). Our findings also document disruption of the expectation of drug effects in dopamine signaling in participants with CUD compared to non-addicted individuals.
Collapse
Affiliation(s)
- Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892-1013, USA.
| | - Corinde E. Wiers
- 0000 0004 0481 4802grid.420085.bLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-1013 USA
| | - Elena Shumay
- 0000 0004 0481 4802grid.420085.bLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-1013 USA
| | - Dardo Tomasi
- 0000 0004 0481 4802grid.420085.bLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-1013 USA
| | - Kai Yuan
- 0000 0004 0481 4802grid.420085.bLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-1013 USA ,0000 0001 0707 115Xgrid.440736.2School of Life Science and Technology, Xidian University, 710071 Xi’an, Shaanxi China
| | - Christopher T. Wong
- 0000 0004 0481 4802grid.420085.bLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-1013 USA
| | - Jean Logan
- 0000 0004 1936 8753grid.137628.9Department of Radiology, New York University, New York, NY 11793 USA
| | - Joanna S. Fowler
- 0000 0004 0481 4802grid.420085.bLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-1013 USA ,0000 0001 2188 4229grid.202665.5Brookhaven National Laboratory, Upton, NY 11973 USA
| | - Nora D. Volkow
- 0000 0004 0481 4802grid.420085.bLaboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-1013 USA ,0000 0001 2297 5165grid.94365.3dNational Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
16
|
Hardman DI, Geraghty AWA, Howick J, Roberts N, Bishop FL. A discursive exploration of public perspectives on placebos and their effects. Health Psychol Open 2019; 6:2055102919832313. [PMID: 30800412 PMCID: PMC6378439 DOI: 10.1177/2055102919832313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that placebos could be effective in clinical practice. However, knowledge of public perspectives on placebos is underdeveloped. We conducted a discourse analysis of internet comments on news articles related to placebos, aiming to improve this knowledge for clinicians and researchers. We developed two discursive constructs of the placebo. The dominant construct of the 'placebo pill' informs a paradoxical understanding of placebos that closes down treatment. The less-prevalent counter-discursive construct of the 'treatment process' frames placebos as potentially viable within modern evidence-based medicine. We discuss the opportunities and challenges of this alternative understanding of placebos.
Collapse
|
17
|
Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018; 43:2514-2520. [PMID: 30250308 PMCID: PMC6224460 DOI: 10.1038/s41386-018-0225-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Mu opioid receptor agonists are among the most powerful analgesic medications but also among the most addictive. The current opioid crisis has energized a quest to develop opioid analgesics that are devoid of untoward effects. Since their discovery in the 1970's, there have been major advances in our understanding of the endogenous opioid systems that these drugs target. Yet many questions remain and the development of non-addictive opioid analgesics has not been achieved. However, access to new molecular, genetic and computational tools have begun to elucidate the structural dynamics of opioid receptors, the scaffolding that links them to intracellular signaling cascades, their cellular trafficking and the distinct ways that various opioid drugs modify them. This mini-review highlights some of the chemical and pharmacological findings and new perspectives that have arisen from studies using these tools. They reveal multiple layers of complexity of opioid receptor function, including a spatiotemporal specificity in opioid receptor-induced cellular signaling, ligand-directed biased signaling, allosteric modulation of ligand interactions, heterodimerization of different opioid receptors, and the existence of slice variants with different ligand specificity. By untangling these layers, basic research into the chemistry and pharmacology of opioid receptors is guiding the way towards deciphering the mysteries of tolerance and physical dependence that have plagued the field and is providing a platform for the development of more effective and safer opioids.
Collapse
|
18
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|
19
|
Darnall BD, Colloca L. Optimizing Placebo and Minimizing Nocebo to Reduce Pain, Catastrophizing, and Opioid Use: A Review of the Science and an Evidence-Informed Clinical Toolkit. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 139:129-157. [PMID: 30146045 PMCID: PMC6175287 DOI: 10.1016/bs.irn.2018.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pain, a noxious psychosensory experience, motivates escape behavior to assure protection and survival. Psychological factors alter the experience and trajectory of pain, as well as behavior and treatment response. In the context of pain, the placebo effect (expectation for pain relief) releases endogenous opioids and facilitates analgesia from exogenously administered opioids. Nocebo hyperalgesia (expectation for persistent or worsening pain) opposes endogenous opioid analgesia and patient engagement in prescription opioid tapering. Reductions in nocebo hyperalgesia and pain catastrophizing may enhance descending modulation of pain, mediate adaptive structural brain changes and promote patient engagement in opioid tapering. Interventions that minimize nocebo and optimize placebo may adaptively shape the central nervous system toward pain relief and potentially opioid reduction. Here we provide a critical description of catastrophizing and its impact on pain, placebo and nocebo effects. We also consider the importance of minimizing nocebo and optimizing placebo effects during prescription opioid tapering, and offer a clinical toolkit of resources to accomplish these goals clinically.
Collapse
Affiliation(s)
- Beth D Darnall
- School of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Division of Pain Medicine, Psychiatry and Behavioral Sciences (by courtesy), Stanford University, Palo Alto, CA, United States.
| | - Luana Colloca
- Department of Pain Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, United States; Departments of Anesthesiology and Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
20
|
Placebo Effects: Historical and Modern Evaluation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 139:1-27. [DOI: 10.1016/bs.irn.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|