1
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Phan TP, Nicholas Z, Holland AJ. Centriole structural integrity defects are a crucial feature of hydrolethalus syndrome. J Cell Biol 2025; 224:e202403022. [PMID: 40009365 PMCID: PMC11864076 DOI: 10.1083/jcb.202403022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrolethalus syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. How HYLS1 controls centriole function is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of HLS. These phenotypes arise from a loss of centriole integrity that causes tissue-specific defects in cilia assembly and function. We show that HYLS1 is recruited to the centriole by CEP120 and stabilizes the localization of centriole inner scaffold proteins that ensure the integrity of the centriolar microtubule wall. The HLS disease mutation reduced the centriole localization of HYLS1 and caused degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and contribute to HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A. Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R. Gliech
- Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E. Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thao P. Phan
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Nicholas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2025; 60:749-761.e5. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
3
|
DeSpenza T, Kiziltug E, Allington G, Barson DG, McGee S, O'Connor D, Robert SM, Mekbib KY, Nanda P, Greenberg ABW, Singh A, Duy PQ, Mandino F, Zhao S, Lynn A, Reeves BC, Marlier A, Getz SA, Nelson-Williams C, Shimelis H, Walsh LK, Zhang J, Wang W, Prina ML, OuYang A, Abdulkareem AF, Smith H, Shohfi J, Mehta NH, Dennis E, Reduron LR, Hong J, Butler W, Carter BS, Deniz E, Lake EMR, Constable RT, Sahin M, Srivastava S, Winden K, Hoffman EJ, Carlson M, Gunel M, Lifton RP, Alper SL, Jin SC, Crair MC, Moreno-De-Luca A, Luikart BW, Kahle KT. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nat Neurosci 2025; 28:536-557. [PMID: 39994410 DOI: 10.1038/s41593-024-01865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/05/2024] [Indexed: 02/26/2025]
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (ventriculomegaly) is a defining feature of congenital hydrocephalus (CH) and an under-recognized concomitant of autism. Here, we show that de novo mutations in the autism risk gene PTEN are among the most frequent monogenic causes of CH and primary ventriculomegaly. Mouse Pten-mutant ventriculomegaly results from aqueductal stenosis due to hyperproliferation of periventricular Nkx2.1+ neural progenitor cells (NPCs) and increased CSF production from hyperplastic choroid plexus. Pten-mutant ventriculomegalic cortices exhibit network dysfunction from increased activity of Nkx2.1+ NPC-derived inhibitory interneurons. Raptor deletion or postnatal everolimus treatment corrects ventriculomegaly, rescues cortical deficits and increases survival by antagonizing mTORC1-dependent Nkx2.1+ NPC pathology. Thus, PTEN mutations concurrently alter CSF dynamics and cortical networks by dysregulating Nkx2.1+ NPCs. These results implicate a nonsurgical treatment for CH, demonstrate a genetic association of ventriculomegaly and ASD, and help explain neurodevelopmental phenotypes refractory to CSF shunting in select individuals with CH.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY, USA
| | - Daniel G Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - David O'Connor
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Phan Q Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Lynn
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie A Getz
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Lauren K Walsh
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Wei Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Mackenzi L Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Annaliese OuYang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laetitia R Reduron
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer Hong
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - William Butler
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Marina Carlson
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael C Crair
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Neurobiology, UAB Heersink School of Medicine, Birmingham, AL, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Chen Q, Zhao H, Pan X, Fang C, Qiu B, Guo J, Yan X, Zhu X. A polarized multicomponent foundation upholds ciliary central microtubules. J Mol Cell Biol 2025; 16:mjae031. [PMID: 39165107 PMCID: PMC11781205 DOI: 10.1093/jmcb/mjae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/03/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Cilia's back-and-forth beat pattern requires a central pair (CP) of microtubules. However, the mechanism by which the CP is upheld above the transition zone (TZ) remains unclear. Here, we showed that a rod-like substructure marked by Cep131 and ciliary Centrin serves as a polarized CP-supporting foundation. This CP-foundation (CPF) was assembled independently of the CP during ciliogenesis in mouse ependymal cells. It protruded from the distal end of the basal body out of the TZ to enwrap the proximal end of the CP. Through proximity labeling, we identified 26 potential CPF components, among which Ccdc148 specifically localized at the proximal region of Centrin-decorated CPF and was complementary to the Cep131-enriched distal region. Cep131 deficiency abolished the CPF, resulting in CP penetration into the TZ. Consequently, cilia became prone to ultrastructural abnormality and paralysis, and Cep131-deficient mice were susceptible to late-onset hydrocephalus. In addition to Centrin, phylogenetic analysis also indicated conservations of Ccdc131 and Ccdc148 from protists to mammals, suggesting that the CPF is an evolutionarily conserved multicomponent CP-supporting platform in cilia.
Collapse
Affiliation(s)
- Qingxia Chen
- Ministry of Education–Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huijie Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xinwen Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benhua Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingting Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Yan
- Ministry of Education–Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Khoury Damaa M, Serizay J, Balagué R, Boudjema AR, Faucourt M, Delgehyr N, Goh KJ, Lu H, Tan EK, James CT, Faucon C, Mitri R, Bracht DC, Bingle CD, Dunn NR, Arnold SJ, Zaragosi LE, Barbry P, Koszul R, Omran H, Gil-Gómez G, Escudier E, Legendre M, Roy S, Spassky N, Meunier A. Cyclin O controls entry into the cell-cycle variant required for multiciliated cell differentiation. Cell Rep 2025; 44:115117. [PMID: 39740663 DOI: 10.1016/j.celrep.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC). Here, we show that Ccno is activated at the crossroads of the onset of MCC differentiation, the entry into the MCC cell-cycle variant, and the activation of the centriole biogenesis program. Its absence blocks the G1/S-like transition of the cell-cycle variant, interrupts the centriologenesis transcription program, and compromises the production of centrioles and cilia in mouse brain and human respiratory MCCs. Altogether, our study identifies CCNO as a core regulator of entry into the MCC cell-cycle variant and the interruption of this variant as one etiology of RGMC.
Collapse
Affiliation(s)
- Michella Khoury Damaa
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Jacques Serizay
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France; Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Rémi Balagué
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Amélie-Rose Boudjema
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Kim Jee Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Cameron T James
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK; Singapore-MIT Association for Research and Technology, Critical Analytics for Manufacturing Personalised-Medicine (SMART CAMP), 1 CREATE Way, Singapore 138602, Singapore
| | - Catherine Faucon
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Rana Mitri
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Diana Carolin Bracht
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Colin D Bingle
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Norris Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore; Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany
| | - Laure-Emmanuelle Zaragosi
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France; 3IA Côte d'Azur, 06560 Sophia Antipolis, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Gabriel Gil-Gómez
- Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Estelle Escudier
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Marie Legendre
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| | - Nathalie Spassky
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
6
|
Pan X, Fang C, Shen C, Li X, Xie L, Li L, Huang S, Yan X, Zhu X. Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity. Nat Commun 2024; 15:10249. [PMID: 39592607 PMCID: PMC11599927 DOI: 10.1038/s41467-024-54766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed. Here, we show that the BF-AO coupling occurs during rotational polarizations of BBs and requires Ccdc57. Ccdc57 localizes on BBs as a rotationally-asymmetric punctum, which polarizes away from the BF in BBs having achieved the rotational polarity to probably fix the BF-AO relationship. Consistently, Ccdc57-deficient ependymal multicilia lack the BF-AO coupling and display directional beats at only single cell level. Ccdc57 -/- tracheal multicilia also fail to fully align their BFs. Furthermore, Ccdc57 -/- mice manifest severe hydrocephalus, due to impaired cerebrospinal fluid flow, and high mortality. These findings unravel mechanisms governing the planar polarity of epithelial motile cilia.
Collapse
Affiliation(s)
- Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Shen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xixia Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lele Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Huang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
7
|
Fang C, Pan X, Li D, Chen W, Huang Y, Chen Y, Li L, Gao Q, Liang X, Li D, Zhu X, Yan X. Distinct roles of Kif6 and Kif9 in mammalian ciliary trafficking and motility. J Cell Biol 2024; 223:e202312060. [PMID: 39158699 PMCID: PMC11334332 DOI: 10.1083/jcb.202312060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Ciliary beat and intraflagellar transport depend on dynein and kinesin motors. The kinesin-9 family members Kif6 and Kif9 are implicated in motile cilia motilities across protists and mammals. How they function and whether they act redundantly, however, remain unclear. Here, we show that Kif6 and Kif9 play distinct roles in mammals. Kif6 forms puncta that move bidirectionally along axonemes, whereas Kif9 appears to oscillate regionally on the ciliary central apparatus. Consistently, only Kif6 displays microtubule-based motor activity in vitro, and its ciliary localization requires its ATPase activity. Kif6 deficiency in mice disrupts coordinated ciliary beat across ependymal tissues and impairs cerebrospinal fluid flow, resulting in severe hydrocephalus and high mortality. Kif9 deficiency causes mild hydrocephalus without obviously affecting the ciliary beat or the lifespan. Kif6-/- and Kif9-/- males are infertile but exhibit oligozoospermia with poor sperm motility and defective forward motion of sperms, respectively. These results suggest Kif6 as a motor for cargo transport and Kif9 as a central apparatus regulator.
Collapse
Affiliation(s)
- Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
9
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
10
|
Xie S, Xie X, Tang J, Luo B, Chen J, Wen Q, Zhou J, Chen G. Cerebral furin deficiency causes hydrocephalus in mice. Genes Dis 2024; 11:101009. [PMID: 38292192 PMCID: PMC10825277 DOI: 10.1016/j.gendis.2023.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 02/01/2024] Open
Abstract
Furin is a pro-protein convertase that moves between the trans-Golgi network and cell surface in the secretory pathway. We have previously reported that cerebral overexpression of furin promotes cognitive functions in mice. Here, by generating the brain-specific furin conditional knockout (cKO) mice, we investigated the role of furin in brain development. We found that furin deficiency caused early death and growth retardation. Magnetic resonance imaging showed severe hydrocephalus. In the brain of furin cKO mice, impaired ciliogenesis and the derangement of microtubule structures appeared along with the down-regulated expression of RAB28, a ciliary vesicle protein. In line with the widespread neuronal loss, ependymal cell layers were damaged. Further proteomics analysis revealed that cell adhesion molecules including astrocyte-enriched ITGB8 and BCAR1 were altered in furin cKO mice; and astrocyte overgrowth was accompanied by the reduced expression of SOX9, indicating a disrupted differentiation into ependymal cells. Together, whereas alteration of RAB28 expression correlated with the role of vesicle trafficking in ciliogenesis, dysfunctional astrocytes might be involved in ependymal damage contributing to hydrocephalus in furin cKO mice. The structural and molecular alterations provided a clue for further studying the potential mechanisms of furin.
Collapse
Affiliation(s)
- Shiqi Xie
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Qixin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jianrong Zhou
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
11
|
Dodd DO, Mechaussier S, Yeyati PL, McPhie F, Anderson JR, Khoo CJ, Shoemark A, Gupta DK, Attard T, Zariwala MA, Legendre M, Bracht D, Wallmeier J, Gui M, Fassad MR, Parry DA, Tennant PA, Meynert A, Wheway G, Fares-Taie L, Black HA, Mitri-Frangieh R, Faucon C, Kaplan J, Patel M, McKie L, Megaw R, Gatsogiannis C, Mohamed MA, Aitken S, Gautier P, Reinholt FR, Hirst RA, O’Callaghan C, Heimdal K, Bottier M, Escudier E, Crowley S, Descartes M, Jabs EW, Kenia P, Amiel J, Bacci GM, Calogero C, Palazzo V, Tiberi L, Blümlein U, Rogers A, Wambach JA, Wegner DJ, Fulton AB, Kenna M, Rosenfeld M, Holm IA, Quigley A, Hall EA, Murphy LC, Cassidy DM, von Kriegsheim A, Papon JF, Pasquier L, Murris MS, Chalmers JD, Hogg C, Macleod KA, Urquhart DS, Unger S, Aitman TJ, Amselem S, Leigh MW, Knowles MR, Omran H, Mitchison HM, Brown A, Marsh JA, Welburn JPI, Ti SC, Horani A, Rozet JM, Perrault I, Mill P. Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science 2024; 384:eadf5489. [PMID: 38662826 PMCID: PMC7616230 DOI: 10.1126/science.adf5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.
Collapse
Affiliation(s)
- Daniel O Dodd
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Sabrina Mechaussier
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Fraser McPhie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Chen Jing Khoo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
- Royal Brompton Hospital, LondonSW3 6NP, UK
| | - Deepesh K Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Thomas Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Marie Legendre
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Diana Bracht
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Mahmoud R Fassad
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria21561, Egypt
| | - David A Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Peter A Tennant
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Gabrielle Wheway
- Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Holly A Black
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- South East of Scotland Genetics Service, Western General Hospital, EdinburghEH4 2XU, UK
| | - Rana Mitri-Frangieh
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
- Biomechanics and Respiratory Apparatus, IMRB, U955 INSERM – Université Paris Est Créteil, CNRS ERL 7000, Créteil 94000, France
| | - Catherine Faucon
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Mitali Patel
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, LondonW1W 7FF, UK
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Roly Megaw
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- Princess Alexandra Eye Pavilion, EdinburghEH3 9HA, UK
| | - Christos Gatsogiannis
- Center for Soft Nanoscience and Institute of Medical Physics and Biophysics, Münster 48149, Germany
| | - Mai A Mohamed
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Ash Sharqiyah44519, Egypt
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Finn R Reinholt
- Core Facility for Electron Microscopy, Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo0372, Norway
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Respiratory Sciences, University of Leicester, LeicesterLE1 9HN, UK
| | - Chris O’Callaghan
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Ketil Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Mathieu Bottier
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Estelle Escudier
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung Diseases, Oslo University Hospital, Oslo0407, Norway
| | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, 35294-0024, USA
| | - Ethylin W Jabs
- Icahn School of Medicine at Mount Sinai, New York10029-6504, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester55905, USA
| | - Priti Kenia
- Department of Paediatric Respiratory Medicine, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, BirminghamB15 2TG, UK
| | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris75015, France
- Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris75015, France
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Claudia Calogero
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Viviana Palazzo
- Pediatric Pulmonary Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | | | | | - Jennifer A Wambach
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Kenna
- Department of Otolaryngology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children’s Research Institute, Seattle 98015, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children’s Hospital, Boston02115, USA
- Department of Pediatrics, Harvard Medical School, Boston 02115, USA
| | - Alan Quigley
- Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Emma A Hall
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Diane M Cassidy
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Scottish Genomes Partnership
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | | | | | - Jean-François Papon
- ENT Department, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Saclay University, Le Kremlin-Bicêtre94270, France
| | - Laurent Pasquier
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
| | - Marlène S Murris
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | | | | | - Don S Urquhart
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - Stefan Unger
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
- Department of Child Life and Health, University of Edinburgh, EdinburghEH16 4TJ, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Serge Amselem
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Margaret W Leigh
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Shih-Chieh Ti
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis 63110, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| |
Collapse
|
12
|
Castaneyra-Ruiz L, Ledbetter J, Lee S, Rangel A, Torres E, Romero B, Muhonen M. Intraventricular dimethyl sulfoxide (DMSO) induces hydrocephalus in a dose-dependent pattern. Heliyon 2024; 10:e27295. [PMID: 38486744 PMCID: PMC10937698 DOI: 10.1016/j.heliyon.2024.e27295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Dimethyl sulfoxide (DMSO), a widely utilized solvent in the medical industry, has been associated with various adverse effects, even at low concentrations, including damage to mitochondrial integrity, altered membrane potentials, caspase activation, and apoptosis. Notably, therapeutic molecules for central nervous system treatments, such as embolic agents or some chemotherapy drugs that are dissolved in DMSO, have been associated with hydrocephalus as a secondary complication. Our study investigated the potential adverse effects of DMSO on the brain, specifically focusing on the development of hydrocephalus and the effect on astrocytes. Methods Varied concentrations of DMSO were intraventricularly injected into 3-day-old mice, and astrocyte cultures were exposed to similar concentrations of DMSO. After 14 days of injection, magnetic resonance imaging (MRI) was employed to quantify the brain ventricular volumes in mice. Immunofluorescence analysis was conducted to delineate DMSO-dependent effects in the brain. Additionally, astrocyte cultures were utilized to assess astrocyte viability and the effects of cellular apoptosis. Results Our findings revealed a dose-dependent induction of ventriculomegaly in mice with 2%, 10%, and 100% DMSO injections (p < 0.001). The ciliated cells of the ventricles were also proportionally affected by DMSO concentration (p < 0.0001). Furthermore, cultured astrocytes exhibited increased apoptosis after DMSO exposure (p < 0.001). Conclusion Our study establishes that intraventricular administration of DMSO induces hydrocephalus in a dose-dependent manner. This observation sheds light on a potential explanation for the occurrence of hydrocephalus as a secondary complication in intracranial treatments utilizing DMSO as a solvent.
Collapse
Affiliation(s)
| | | | - Seunghyun Lee
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Anthony Rangel
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Evelyn Torres
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Bianca Romero
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| | - Michael Muhonen
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| |
Collapse
|
13
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Holland AJ. Centriole structural integrity defects are a crucial feature of Hydrolethalus Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583733. [PMID: 38496445 PMCID: PMC10942441 DOI: 10.1101/2024.03.06.583733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hydrolethalus Syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. However, how HYLS1 facilitates the centriole-based templating of cilia is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of the human disease. These phenotypes arise from tissue-specific defects in cilia assembly and function caused by a loss of centriole integrity. We show that HYLS1 is recruited to the centriole by CEP120 and functions to recruit centriole inner scaffold proteins that stabilize the centriolar microtubule wall. The HLS mutation disrupts the interaction of HYLS1 with CEP120 leading to HYLS1 displacement and degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and drive HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Del Bigio MR. History of research concerning the ependyma: a view from inside the human brain. Front Cell Neurosci 2024; 17:1320369. [PMID: 38259502 PMCID: PMC10800557 DOI: 10.3389/fncel.2023.1320369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The history of research concerning ependymal cells is reviewed. Cilia were identified along the surface of the cerebral ventricles c1835. Numerous anatomical and histopathological studies in the late 1800's showed irregularities in the ependymal surface that were thought to be indicative of specific pathologies such as syphilis; this was subsequently disproven. The evolution of thoughts about functions of cilia, the possible role of ependyma in the brain-cerebrospinal fluid barrier, and the relationship of ependyma to the subventricular zone germinal cells is discussed. How advances in light and electron microscopy and cell culture contributed to our understanding of the ependyma is described. Discoveries of the supraependymal serotoninergic axon network and supraependymal macrophages are recounted. Finally, the consequences of loss of ependymal cells from different regions of the central nervous system are considered.
Collapse
Affiliation(s)
- Marc R. Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Boudjema AR, Al Jord A, Lemaître AI, Faucourt M, Delgehyr N, Spassky N, Meunier A. Live-Imaging Centriole Amplification in Mouse Brain Multiciliated Cells. Methods Mol Biol 2024; 2725:167-180. [PMID: 37856024 DOI: 10.1007/978-1-0716-3507-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Multiciliated cells (MCC) display on their apical surface hundreds of beating cilia that propel physiological fluids. They line brain ventricles where they propel the cerebrospinal liquid, airways where they clear mucus and pathogens and reproductive ducts where they concentrate the sperm in males or drive the egg along the oviducts in females. Motile cilia are nucleated from basal bodies which are modified centrioles. MCC therefore evade centriole archetypal duplication program to make several hundreds and nucleate an identical number of motile cilia. Defects in this centriole amplification process lead to severe human pathologies called "ciliary aplasia" or "acilia syndrome" and more recently renamed "reduced generation of motile cilia" (RGMC). Patients with this syndrome present frequent hydrocephaly, lung failure, and subfertility. In this manuscript, we describe the protocol we developed and optimized over the years to live image the centriole amplification dynamics. We explain why mouse brain MCC is a good model and provide the tips to enable successful spatially and temporally resolved monitoring of this massive organelle reorganization.
Collapse
Affiliation(s)
- Amélie-Rose Boudjema
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, UMR 8197, INSERM, U1024, Paris Sciences et Lettres (PSL), Research University, Paris, France
| | - Adel Al Jord
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS 7241 INSERM U1050, PSL Research University, Paris, France
| | - Anne-Iris Lemaître
- Heart Failure Unit, Cardiology Department, Centre Hospitalier Universitaire (CHU) Haut-Lévèque, Bordeaux, France
| | - Marion Faucourt
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, UMR 8197, INSERM, U1024, Paris Sciences et Lettres (PSL), Research University, Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, UMR 8197, INSERM, U1024, Paris Sciences et Lettres (PSL), Research University, Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, UMR 8197, INSERM, U1024, Paris Sciences et Lettres (PSL), Research University, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, UMR 8197, INSERM, U1024, Paris Sciences et Lettres (PSL), Research University, Paris, France.
| |
Collapse
|
16
|
Petit LMG, Belgacemi R, Ancel J, Saber Cherif L, Polette M, Perotin JM, Spassky N, Pilette C, Al Alam D, Deslée G, Dormoy V. Airway ciliated cells in adult lung homeostasis and COPD. Eur Respir Rev 2023; 32:230106. [PMID: 38056888 PMCID: PMC10698550 DOI: 10.1183/16000617.0106-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/07/2023] [Indexed: 12/08/2023] Open
Abstract
Cilia are organelles emanating from the cell surface, consisting of an axoneme of microtubules that extends from a basal body derived from the centrioles. They are either isolated and nonmotile (primary cilia), or grouped and motile (motile cilia). Cilia are at the centre of fundamental sensory processes and are involved in a wide range of human disorders. Pulmonary cilia include motile cilia lining the epithelial cells of the conductive airways to orchestrate mucociliary clearance, and primary cilia found on nondifferentiated epithelial and mesenchymal cells acting as sensors and cell cycle keepers. Whereas cilia are essential along the airways, their regulatory molecular mechanisms remain poorly understood, resulting in a lack of therapeutic strategies targeting their structure or functions. This review summarises the current knowledge on cilia in the context of lung homeostasis and COPD to provide a comprehensive overview of the (patho)biology of cilia in respiratory medicine with a particular emphasis on COPD.
Collapse
Affiliation(s)
- Laure M G Petit
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Randa Belgacemi
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Lynda Saber Cherif
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Laboratoire de Biopathologie, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Charles Pilette
- Université Catholique de Louvain (UCL), Institute of Experimental and Clinical Research - Pole of Pneumology, ENT, Dermatology and Pulmonology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
- CHU Reims, Hôpital Maison Blanche, Service de Pneumologie, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| |
Collapse
|
17
|
Shin M, Lee J, Lee H, Kumar V, Kim J, Park S. Deup1 Expression Interferes with Multiciliated Differentiation. Mol Cells 2023; 46:746-756. [PMID: 38052490 PMCID: PMC10701303 DOI: 10.14348/molcells.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
A recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome per se is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells. Our time-lapse study reveals that deuterosomes with an average diameter of 300 nm have two different fates during ependymal differentiation. In the first instance, deuterosomes are scattered and gradually disappear as cells become multiciliated. In the second instance, deuterosomes self-organize into a larger aggregate, called a deuterosome cluster (DC). Unlike scattered deuterosomes, DCs possess centriole components primarily within their large structure. A characteristic of DC-containing cells is that they tend to become primary ciliated rather than multiciliated. Our in utero electroporation study shows that DCs in ependymal tissue are mostly observed at early postnatal stages, but are scarce at late postnatal stages, suggesting the presence of DC antagonists within the differentiating cells. Importantly, from our bead flow assay, ectopic expression of Deup1 significantly impairs cerebrospinal fluid flow. Furthermore, we show that expression of mouse Deup1 in Xenopus embryos has an inhibitory effect on differentiation of multiciliated cells in the epidermis. Taken together, we conclude that the DC formation of Deup1 in multiciliated cells inhibits production of multiple centrioles.
Collapse
Affiliation(s)
- Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
18
|
McCoy CJ, Paupelin-Vaucelle H, Gorilak P, Beneke T, Varga V, Gluenz E. ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell 2023; 34:ar66. [PMID: 36989043 PMCID: PMC10295485 DOI: 10.1091/mbc.e22-06-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Unc-51-like kinase (ULK) family serine-threonine protein kinase homologues have been linked to the function of motile cilia in diverse species. Mutations in Fused/STK36 and ULK4 in mice resulted in hydrocephalus and other phenotypes consistent with ciliary defects. How either protein contributes to the assembly and function of motile cilia is not well understood. Here we studied the phenotypes of ULK4 and Fused gene knockout (KO) mutants in the flagellated protist Leishmania mexicana. Both KO mutants exhibited a variety of structural defects of the flagellum cytoskeleton. Biochemical approaches indicate spatial proximity of these proteins and indicate a direct interaction between the N-terminus of LmxULK4 and LmxFused. Both proteins display a dispersed localization throughout the cell body and flagellum, with enrichment near the flagellar base and tip. The stable expression of LmxULK4 was dependent on the presence of LmxFused. Fused/STK36 was previously shown to localize to mammalian motile cilia, and we demonstrate here that ULK4 also localizes to the motile cilia in mouse ependymal cells. Taken together these data suggest a model where the pseudokinase ULK4 is a positive regulator of the kinase Fused/ STK36 in a pathway required for stable assembly of motile cilia.
Collapse
Affiliation(s)
- Ciaran J. McCoy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Peter Gorilak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
19
|
Haslea ostrearia Pigment Marennine Affects Key Actors of Neuroinflammation and Decreases Cell Migration in Murine Neuroglial Cell Model. Int J Mol Sci 2023; 24:ijms24065388. [PMID: 36982463 PMCID: PMC10049552 DOI: 10.3390/ijms24065388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Haslea ostrearia, a cosmopolitan marine pennate diatom, produces a characteristic blue pigment called marennine that causes the greening of filter-feeding organisms, such as oysters. Previous studies evidenced various biological activities of purified marennine extract, such as antibacterial, antioxidant and antiproliferative effects. These effects could be beneficial to human health. However, the specific biological activity of marennine remains to be characterized, especially regarding primary cultures of mammals. In the present study, we aimed to determine in vitro the effects of a purified extract of marennine on neuroinflammatory and cell migratory processes. These effects were assessed at non-cytotoxic concentrations of 10 and 50μg/mL on primary cultures of neuroglial cells. Marennine strongly interacts with neuroinflammatory processes in the immunocompetent cells of the central nervous system, represented by astrocytes and microglial cells. An anti-migratory activity based on a neurospheres migration assay has also been observed. These results encourage further study of Haslea blue pigment effects, particularly the identification of molecular and cellular targets affected by marennine, and strengthen previous studies suggesting that marennine has bioactivities which could be beneficial for human health applications.
Collapse
|
20
|
Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat Biotechnol 2023; 41:367-377. [PMID: 36203012 DOI: 10.1038/s41587-022-01471-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022]
Abstract
The goal when imaging bioprocesses with optical microscopy is to acquire the most spatiotemporal information with the least invasiveness. Deep neural networks have substantially improved optical microscopy, including image super-resolution and restoration, but still have substantial potential for artifacts. In this study, we developed rationalized deep learning (rDL) for structured illumination microscopy and lattice light sheet microscopy (LLSM) by incorporating prior knowledge of illumination patterns and, thereby, rationally guiding the network to denoise raw images. Here we demonstrate that rDL structured illumination microscopy eliminates spectral bias-induced resolution degradation and reduces model uncertainty by five-fold, improving the super-resolution information by more than ten-fold over other computational approaches. Moreover, rDL applied to LLSM enables self-supervised training by using the spatial or temporal continuity of noisy data itself, yielding results similar to those of supervised methods. We demonstrate the utility of rDL by imaging the rapid kinetics of motile cilia, nucleolar protein condensation during light-sensitive mitosis and long-term interactions between membranous and membrane-less organelles.
Collapse
|
21
|
Hall EA, Kumar D, Prosser SL, Yeyati PL, Herranz-Pérez V, García-Verdugo JM, Rose L, McKie L, Dodd DO, Tennant PA, Megaw R, Murphy LC, Ferreira MF, Grimes G, Williams L, Quidwai T, Pelletier L, Reiter JF, Mill P. Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis. eLife 2023; 12:e79299. [PMID: 36790165 PMCID: PMC9998092 DOI: 10.7554/elife.79299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Centrosomes are orbited by centriolar satellites, dynamic multiprotein assemblies nucleated by Pericentriolar material 1 (PCM1). To study the requirement for centriolar satellites, we generated mice lacking PCM1, a crucial component of satellites. Pcm1-/- mice display partially penetrant perinatal lethality with survivors exhibiting hydrocephalus, oligospermia, and cerebellar hypoplasia, and variably expressive phenotypes such as hydronephrosis. As many of these phenotypes have been observed in human ciliopathies and satellites are implicated in cilia biology, we investigated whether cilia were affected. PCM1 was dispensable for ciliogenesis in many cell types, whereas Pcm1-/- multiciliated ependymal cells and human PCM1-/- retinal pigmented epithelial 1 (RPE1) cells showed reduced ciliogenesis. PCM1-/- RPE1 cells displayed reduced docking of the mother centriole to the ciliary vesicle and removal of CP110 and CEP97 from the distal mother centriole, indicating compromised early ciliogenesis. Similarly, Pcm1-/- ependymal cells exhibited reduced removal of CP110 from basal bodies in vivo. We propose that PCM1 and centriolar satellites facilitate efficient trafficking of proteins to and from centrioles, including the departure of CP110 and CEP97 to initiate ciliogenesis, and that the threshold to trigger ciliogenesis differs between cell types.
Collapse
Affiliation(s)
- Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Dhivya Kumar
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Patricia L Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Vicente Herranz-Pérez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValenciaSpain
- Predepartamental Unit of Medicine, Jaume I UniversityCastelló de la PlanaSpain
| | | | - Lorraine Rose
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Lisa McKie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Daniel O Dodd
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Tennant
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Roly Megaw
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laura C Murphy
- Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Marisa F Ferreira
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Lucy Williams
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoUniversity of TorontoCanada
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
22
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
23
|
Karimy JK, Newville JC, Sadegh C, Morris JA, Monuki ES, Limbrick DD, McAllister Ii JP, Koschnitzky JE, Lehtinen MK, Jantzie LL. Outcomes of the 2019 hydrocephalus association workshop, "Driving common pathways: extending insights from posthemorrhagic hydrocephalus". Fluids Barriers CNS 2023; 20:4. [PMID: 36639792 PMCID: PMC9838022 DOI: 10.1186/s12987-023-00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The Hydrocephalus Association (HA) workshop, Driving Common Pathways: Extending Insights from Posthemorrhagic Hydrocephalus, was held on November 4 and 5, 2019 at Washington University in St. Louis. The workshop brought together a diverse group of basic, translational, and clinical scientists conducting research on multiple hydrocephalus etiologies with select outside researchers. The main goals of the workshop were to explore areas of potential overlap between hydrocephalus etiologies and identify drug targets that could positively impact various forms of hydrocephalus. This report details the major themes of the workshop and the research presented on three cell types that are targets for new hydrocephalus interventions: choroid plexus epithelial cells, ventricular ependymal cells, and immune cells (macrophages and microglia).
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Family Medicine, Mountain Area Health Education Center - Boone, North Carolina, 28607, USA
| | - Jessie C Newville
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Cameron Sadegh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, MA, Boston, 02114, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, Neuroscience Center, National Institutes of Health, 6001 Executive Blvd, NSC Rm 2112, Bethesda, MD, 20892, USA
| | - Edwin S Monuki
- Departments of Pathology & Laboratory Medicine and Developmental & Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - James P McAllister Ii
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Lauren L Jantzie
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
- Kennedy Krieger Institute, Baltimore, MD, 21287, USA.
| |
Collapse
|
24
|
Ortiz-Álvarez G, Fortoul A, Srivastava A, Moreau MX, Bouloudi B, Mailhes-Hamon C, Delgehyr N, Faucourt M, Bahin M, Blugeon C, Breau M, Géli V, Causeret F, Meunier A, Spassky N. p53/p21 pathway activation contributes to the ependymal fate decision downstream of GemC1. Cell Rep 2022; 41:111810. [PMID: 36516767 DOI: 10.1016/j.celrep.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Aurélien Fortoul
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France.
| |
Collapse
|
25
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
26
|
Rethinking the cilia hypothesis of hydrocephalus. Neurobiol Dis 2022; 175:105913. [DOI: 10.1016/j.nbd.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
27
|
Intertwined Wdr47-NTD dimer recognizes a basic-helical motif in Camsap proteins for proper central-pair microtubule formation. Cell Rep 2022; 41:111589. [DOI: 10.1016/j.celrep.2022.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/05/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
28
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
29
|
LoMastro GM, Drown CG, Maryniak AL, Jewett CE, Strong MA, Holland AJ. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells. eLife 2022; 11:80643. [PMID: 35969030 PMCID: PMC9507127 DOI: 10.7554/elife.80643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events. Every day, we inhale thousands of viruses, bacteria and pollution particles. To protect against these threats, cells in our airways produce mucus that traps inhaled particles before they reach the lungs. This mucus then needs to be removed to prevent it from becoming a breeding ground for microbes that may cause a respiratory infection. This is the responsibility of cells covered in tiny hair-like structures called cilia that move together to propel the mucus-trapped particles out of the airways. These specialized cells can have up to 300 motile cilia on their surface, which grow from structures called centrioles that then anchor the cilia in place. Multiciliated cells are generated from precursor cells that only have two centrioles. Therefore, as these precursors develop, they must produce large numbers of centrioles, considerably more than other cells that only need a couple of extra centrioles during cell division. However, recent studies have questioned whether the precursors of multiciliated cells rely on the same regulatory proteins to produce centrioles as dividing cells. To help answer this question, LoMastro et al. created genetically engineered mice that lacked or had an inactive form of PLK4, a protein which controls centriole formation in all cell types lacking multiple cilia. This showed that multiciliated cells also need this protein to produce centrioles. LoMastro et al. also found that multiciliated cells became larger while building centrioles, suggesting that this amplification process helps control the cell’s final size. Defects in motile cilia activity can lead to fluid build-up in the brain, respiratory infections and infertility. Unfortunately, these disorders are difficult to diagnose currently and there is no cure. The findings of LoMastro et al. further our understanding of how motile cilia are built and maintained, and may help future scientists to develop better diagnostic tools and treatments for patients.
Collapse
Affiliation(s)
- Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Aubrey L Maryniak
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
30
|
Sheng J, Li Q, Liu T, Wang X. Cerebrospinal fluid dynamics along the optic nerve. Front Neurol 2022; 13:931523. [PMID: 36046631 PMCID: PMC9420993 DOI: 10.3389/fneur.2022.931523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The cerebrospinal fluid (CSF) plays an important role in delivering nutrients and eliminating the metabolic wastes of the central nervous system. An interrupted CSF flow could cause disorders of the brain and eyes such as Alzheimer's disease and glaucoma. This review provides an overview of the anatomy and flow pathways of the CSF system with an emphasis on the optic nerve. Imaging technologies used for visualizing the CSF dynamics and the anatomic structures associated with CSF circulation have been highlighted. Recent advances in the use of computational models to predict CSF flow patterns have been introduced. Open questions and potential mechanisms underlying CSF circulation at the optic nerves have also been discussed.
Collapse
Affiliation(s)
- Jinqiao Sheng
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of General Engineering, Beihang University, Beijing, China
| | - Qi Li
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tingting Liu
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaofei Wang
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
31
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Gaudin N, Martin Gil P, Boumendjel M, Ershov D, Pioche-Durieu C, Bouix M, Delobelle Q, Maniscalco L, Phan TBN, Heyer V, Reina-San-Martin B, Azimzadeh J. Evolutionary conservation of centriole rotational asymmetry in the human centrosome. eLife 2022; 11:72382. [PMID: 35319462 PMCID: PMC8983040 DOI: 10.7554/elife.72382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.
Collapse
Affiliation(s)
| | | | | | - Dmitry Ershov
- Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
| | | | | | | | | | | | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
| | | | | |
Collapse
|
33
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
34
|
Hyland RM, Brody SL. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells 2021; 11:125. [PMID: 35011687 PMCID: PMC8750550 DOI: 10.3390/cells11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Motile cilia are hairlike organelles that project outward from a tissue-restricted subset of cells to direct fluid flow. During human development motile cilia guide determination of the left-right axis in the embryo, and in the fetal and neonatal periods they have essential roles in airway clearance in the respiratory tract and regulating cerebral spinal fluid flow in the brain. Dysregulation of motile cilia is best understood through the lens of the genetic disorder primary ciliary dyskinesia (PCD). PCD encompasses all genetic motile ciliopathies resulting from over 60 known genetic mutations and has a unique but often underrecognized neonatal presentation. Neonatal respiratory distress is now known to occur in the majority of patients with PCD, laterality defects are common, and very rarely brain ventricle enlargement occurs. The developmental function of motile cilia and the effect and pathophysiology of motile ciliopathies are incompletely understood in humans. In this review, we will examine the current understanding of the role of motile cilia in human development and clinical considerations when assessing the newborn for suspected motile ciliopathies.
Collapse
Affiliation(s)
- Rachael M. Hyland
- Department of Pediatrics, Division of Newborn Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110,USA;
| | - Steven L. Brody
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
35
|
Guichard P, Laporte MH, Hamel V. The centriolar tubulin code. Semin Cell Dev Biol 2021; 137:16-25. [PMID: 34896019 DOI: 10.1016/j.semcdb.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.
Collapse
Affiliation(s)
- Paul Guichard
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| | - Marine H Laporte
- University of Geneva, Department of Cell Biology, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| |
Collapse
|
36
|
Hao K, Chen Y, Yan X, Zhu X. Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nat Commun 2021; 12:6971. [PMID: 34848703 PMCID: PMC8632896 DOI: 10.1038/s41467-021-27298-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Cilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.
Collapse
Affiliation(s)
- Kai Hao
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yawen Chen
- grid.507739.f0000 0001 0061 254XState Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
| |
Collapse
|
37
|
Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules. Nat Commun 2021; 12:5796. [PMID: 34608154 PMCID: PMC8490363 DOI: 10.1038/s41467-021-26058-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
The axonemal central pair (CP) are non-centrosomal microtubules critical for planar ciliary beat. How they form, however, is poorly understood. Here, we show that mammalian CP formation requires Wdr47, Camsaps, and microtubule-severing activity of Katanin. Katanin severs peripheral microtubules to produce central microtubule seeds in nascent cilia. Camsaps stabilize minus ends of the seeds to facilitate microtubule outgrowth, whereas Wdr47 concentrates Camsaps into the axonemal central lumen to properly position central microtubules. Wdr47 deficiency in mouse multicilia results in complete loss of CP, rotatory beat, and primary ciliary dyskinesia. Overexpression of Camsaps or their microtubule-binding regions induces central microtubules in Wdr47-/- ependymal cells but at the expense of low efficiency, abnormal numbers, and wrong location. Katanin levels and activity also impact the central microtubule number. We propose that Wdr47, Camsaps, and Katanin function together for the generation of non-centrosomal microtubule arrays in polarized subcellular compartments.
Collapse
|
38
|
Cumulative Damage: Cell Death in Posthemorrhagic Hydrocephalus of Prematurity. Cells 2021; 10:cells10081911. [PMID: 34440681 PMCID: PMC8393895 DOI: 10.3390/cells10081911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
Globally, approximately 11% of all infants are born preterm, prior to 37 weeks’ gestation. In these high-risk neonates, encephalopathy of prematurity (EoP) is a major cause of both morbidity and mortality, especially for neonates who are born very preterm (<32 weeks gestation). EoP encompasses numerous types of preterm birth-related brain abnormalities and injuries, and can culminate in a diverse array of neurodevelopmental impairments. Of note, posthemorrhagic hydrocephalus of prematurity (PHHP) can be conceptualized as a severe manifestation of EoP. PHHP impacts the immature neonatal brain at a crucial timepoint during neurodevelopment, and can result in permanent, detrimental consequences to not only cerebrospinal fluid (CSF) dynamics, but also to white and gray matter development. In this review, the relevant literature related to the diverse mechanisms of cell death in the setting of PHHP will be thoroughly discussed. Loss of the epithelial cells of the choroid plexus, ependymal cells and their motile cilia, and cellular structures within the glymphatic system are of particular interest. Greater insights into the injuries, initiating targets, and downstream signaling pathways involved in excess cell death shed light on promising areas for therapeutic intervention. This will bolster current efforts to prevent, mitigate, and reverse the consequential brain remodeling that occurs as a result of hydrocephalus and other components of EoP.
Collapse
|
39
|
Ultrastructural Morphology of the Ependyma and Choroid Plexus in the African Giant Rat (Cricetomys gambianus). FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Ependymal cells line the interface between the ventricular surfaces and the brain parenchyma. These cells, in addition to the choroid plexus, form the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) and serve important functions in the protection and regulation of brain metabolism. The African giant rat (AGR) has been used as sentinels to detect potential neuropathology arising from ecotoxicological pollutions. This study examined the lateral ventricular lining by using histology, immunohistochemistry and electron microscopy. Marked variations were observed in some regions of the ventricles which showed multi-layering of ependymal cells that differed from the typical single layered ependymal cells at the apical surface, while subependymal structures revealed indistinctive neuropil and glia following histological examinations. The ependymal cells which form the epithelial lining of the ventricles were comprised of cuboidal or low columnar cells, with the plasmalemma of abutting cells forming intercellular bridge appearing links by: tight junctions (zonula occludens), intermediate junctions (zonula adherens), desmosomes (macula adherens) and infrequent gap junctions. The choroid plexus revealed cells of Kolmer with several cilia and microvilli. The possible functional components of the ependyma and choroid plexus morphology of the AGR are discussed and thus provide a baseline for further research on the AGR brain.
Collapse
|
40
|
Kwon OS, Mishra R, Safieddine A, Coleno E, Alasseur Q, Faucourt M, Barbosa I, Bertrand E, Spassky N, Le Hir H. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat Commun 2021; 12:1351. [PMID: 33649372 PMCID: PMC7921557 DOI: 10.1038/s41467-021-21590-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development. Exon junction complexes (EJCs) that mark untranslated mRNA are involved in transport, translation and nonsense-mediated mRNA decay. Here the authors show centrosomal localization of EJCs which appears to be required for both the localization of NIN mRNA around centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rahul Mishra
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Quentin Alasseur
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
41
|
Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, Leboucher S, Whitfield M, Ziyyat A, Touré A, Alvarez L, Pigino G, Janke C. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 2021; 371:371/6525/eabd4914. [PMID: 33414192 DOI: 10.1126/science.abd4914] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo-electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Gonzalo Alvarez Viar
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Jan Niklas Hansen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | - An Gong
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany
| | - Aleksandr Kostarev
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Côme Ialy-Radio
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Sophie Leboucher
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Marjorie Whitfield
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France.,Service d'histologie, d'embryologie, Biologie de la reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75014 Paris, France
| | - Aminata Touré
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Luis Alvarez
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany.
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany. .,Human Technopole, I-20157 Milan, Italy
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| |
Collapse
|
42
|
Distinct architecture and composition of mouse axonemal radial spoke head revealed by cryo-EM. Proc Natl Acad Sci U S A 2021; 118:2021180118. [PMID: 34871179 DOI: 10.1073/pnas.2021180118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The radial spoke (RS) heads of motile cilia and flagella contact projections of the central pair (CP) apparatus to coordinate motility, but the morphology is distinct for protozoa and metazoa. Here we show the murine RS head is compositionally distinct from that of Chlamydomonas Our reconstituted murine RS head core complex consists of Rsph1, Rsph3b, Rsph4a, and Rsph9, lacking Rsph6a and Rsph10b, whose orthologs exist in the protozoan RS head. We resolve its cryo-electron microscopy (cryo-EM) structure at 3.2-Å resolution. Our atomic model further reveals a twofold symmetric brake pad-shaped structure, in which Rsph4a and Rsph9 form a compact body extended laterally with two long arms of twisted Rsph1 β-sheets and potentially connected dorsally via Rsph3b to the RS stalk. Furthermore, our modeling suggests that the core complex contacts the periodic CP projections either rigidly through its tooth-shaped Rsph4a regions or elastically through both arms for optimized RS-CP interactions and mechanosignal transduction.
Collapse
|
43
|
Duan S, Li H, Zhang Y, Yang S, Chen Y, Qiu B, Huang C, Wang J, Li J, Zhu X, Yan X. Rabl2 GTP hydrolysis licenses BBSome-mediated export to fine-tune ciliary signaling. EMBO J 2021; 40:e105499. [PMID: 33241915 PMCID: PMC7809784 DOI: 10.15252/embj.2020105499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Cilia of higher animals sense various environmental stimuli. Proper ciliary signaling requires appropriate extent of BBSome-mediated export of membrane receptors across ciliary barrier transition zone (TZ) through retrograde intraflagellar transport (IFT) machinery. How the barrier passage is controlled, however, remains unknown. Here, we show that small GTPase Rabl2 functions as a molecular switch for the outward TZ passage. Rabl2-GTP enters cilia by binding to IFT-B complex. Its GTP hydrolysis enables the outward TZ passage of the BBSome and its cargos with retrograde IFT machinery, whereas its persistent association leads to their shedding from IFT-B during the passing process and consequently ciliary retention. Rabl2 deficiency or expression of a GTP-locked mutant impairs the ciliary hedgehog signaling without interfering with ciliation and respectively results in different spectrums of mouse developmental disorders. We propose that the switch role of Rabl2 ensures proper turnover of the BBSome and ciliary membrane receptors to fine-tune cilia-dependent signaling for normal embryonic development and organismic homeostasis.
Collapse
Affiliation(s)
- Shichao Duan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of PathologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hao Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yirong Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Suming Yang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yawen Chen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Benhua Qiu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cheng Huang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinsong Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Xiumin Yan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
44
|
Pellicciotta N, Das D, Kotar J, Faucourt M, Spassky N, Lauga E, Cicuta P. Cilia density and flow velocity affect alignment of motile cilia from brain cells. ACTA ACUST UNITED AC 2020; 223:223/24/jeb229310. [PMID: 33376093 PMCID: PMC7790191 DOI: 10.1242/jeb.229310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022]
Abstract
In many organs, thousands of microscopic ‘motile cilia’ beat in a coordinated fashion generating fluid flow. Physiologically, these flows are important in both development and homeostasis of ciliated tissues. Combining experiments and simulations, we studied how cilia from brain tissue align their beating direction. We subjected cilia to a broad range of shear stresses, similar to the fluid flow that cilia themselves generate, in a microfluidic setup. In contrast to previous studies, we found that cilia from mouse ependyma respond and align to these physiological shear stress at all maturation stages. Cilia align more easily earlier in maturation, and we correlated this property with the increase in multiciliated cell density during maturation. Our numerical simulations show that cilia in densely packed clusters are hydrodynamically screened from the external flow, in agreement with our experimental observation. Cilia carpets create a hydrodynamic screening that reduces the susceptibility of individual cilia to external flows. Summary: Alignment of motile cilia in mammalian brains is essential for transport of fluids as described in an in vitro model of the developing brain.
Collapse
Affiliation(s)
| | - Debasish Das
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Marion Faucourt
- Cilia biology and neurogenesis, Institut de biologie de l'Ecole normale superieure (IBENS), Ecole normale superieure, CNRS, INSERM, PSL Universite Paris, 75005, Paris, France
| | - Nathalie Spassky
- Cilia biology and neurogenesis, Institut de biologie de l'Ecole normale superieure (IBENS), Ecole normale superieure, CNRS, INSERM, PSL Universite Paris, 75005, Paris, France
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
45
|
Lemeille S, Paschaki M, Baas D, Morlé L, Duteyrat JL, Ait-Lounis A, Barras E, Soulavie F, Jerber J, Thomas J, Zhang Y, Holtzman MJ, Kistler WS, Reith W, Durand B. Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis. Nucleic Acids Res 2020; 48:9019-9036. [PMID: 32725242 PMCID: PMC7498320 DOI: 10.1093/nar/gkaa625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals. Whereas only one RFX factor regulates ciliogenesis in C. elegans, several distinct RFX factors have been implicated in this process in vertebrates. However, a clear understanding of the specific and redundant functions of different RFX factors in ciliated cells remains lacking. Using RNA-seq and ChIP-seq approaches we identified genes regulated directly and indirectly by RFX1, RFX2 and RFX3 in mouse ependymal cells. We show that these three TFs have both redundant and specific functions in ependymal cells. Whereas RFX1, RFX2 and RFX3 occupy many shared genomic loci, only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice. Our results provide a valuable list of candidate ciliary genes. They also reveal stunning differences between compensatory processes operating in vivo and ex vivo.
Collapse
Affiliation(s)
- Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Dominique Baas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Laurette Morlé
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Jean-Luc Duteyrat
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Fabien Soulavie
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Julie Jerber
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Joëlle Thomas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - W Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| |
Collapse
|
46
|
Super-Resolution Microscopy and FIB-SEM Imaging Reveal Parental Centriole-Derived, Hybrid Cilium in Mammalian Multiciliated Cells. Dev Cell 2020; 55:224-236.e6. [PMID: 33038333 DOI: 10.1016/j.devcel.2020.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Motile cilia are cellular beating machines that play a critical role in mucociliary clearance, cerebrospinal fluid movement, and fertility. In the airways, hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria, viruses, and harmful particulates. During multiciliated cell differentiation, motile cilia are templated from basal bodies, each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating. Here, we demonstrate that among the many motile cilia of a multiciliated cell, a hybrid cilium with structural features of both primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells, originates from parental centrioles, and its cellular position is biased and dependent on ciliary beating. Furthermore, we show that the hybrid cilium emerges independently of other motile cilia and functions in regulating basal body alignment.
Collapse
|
47
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
48
|
Li Y, Guo F, Jing Q, Zhu X, Yan X. Characterisation of centriole biogenesis during multiciliation in planarians. Biol Cell 2020; 112:398-408. [PMID: 32776587 DOI: 10.1111/boc.202000045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION Dense multicilia in protozoa and metazoa generate a strong force important for locomotion and extracellular fluid flow. During ciliogenesis, multiciliated cells produce hundreds of centrioles to serve as basal bodies through various pathways including deuterosome-dependent (DD), hyper-activated mother centriole-dependent (MCD) and basal bodydependent (BBD) pathways. The centrosome-free planarian Schmidtea mediterranea is widely used for regeneration studies because its neoblasts are capable of regenerating any body part after injury. However, it is currently unclear how the flatworms generate massive centrioles for multiciliated cells in the pharynx and body epidermis when their cells are initially centriole-free. RESULTS In this study, we investigate the progress of centriole amplification during the pharynx regeneration. We observe that the planarian pharyngeal epithelial cells generate their centrioles asynchronously through a de novo pathway. Most of the de novo centrioles are formed individually, whereas the remaining ones are assembled in pairs, possibly by sharing a cartwheel, or in small clusters lacking a nucleation center. Further RNAi experiments show that the known key factors of centriole duplication, including Cep152, Plk4 and Sas6, are crucial for the centriole amplification. CONCLUSIONS AND SIGNIFICANCE Our study demonstrates the distinct process of massive centriole biogenesis in S. mediterranea and helps to understand the diversity of centriole biogenesis during evolution.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fanghao Guo
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qing Jing
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
49
|
Castaneyra-Ruiz L, McAllister JP, Morales DM, Brody SL, Isaacs AM, Limbrick DD. Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone. Fluids Barriers CNS 2020; 17:46. [PMID: 32690048 PMCID: PMC7372876 DOI: 10.1186/s12987-020-00210-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Severe intraventricular hemorrhage (IVH) is one of the most devastating neurological complications in preterm infants, with the majority suffering long-term neurological morbidity and up to 50% developing post-hemorrhagic hydrocephalus (PHH). Despite the importance of this disease, its cytopathological mechanisms are not well known. An in vitro model of IVH is required to investigate the effects of blood and its components on the developing ventricular zone (VZ) and its stem cell niche. To address this need, we developed a protocol from our accepted in vitro model to mimic the cytopathological conditions of IVH in the preterm infant. METHODS Maturing neuroepithelial cells from the VZ were harvested from the entire lateral ventricles of wild type C57BL/6 mice at 1-4 days of age and expanded in proliferation media for 3-5 days. At confluence, cells were re-plated onto 24-well plates in differentiation media to generate ependymal cells (EC). At approximately 3-5 days, which corresponded to the onset of EC differentiation based on the appearance of multiciliated cells, phosphate-buffered saline for controls or syngeneic whole blood for IVH was added to the EC surface. The cells were examined for the expression of EC markers of differentiation and maturation to qualitatively and quantitatively assess the effect of blood exposure on VZ transition from neuroepithelial cells to EC. DISCUSSION This protocol will allow investigators to test cytopathological mechanisms contributing to the pathology of IVH with high temporal resolution and query the impact of injury to the maturation of the VZ. This technique recapitulates features of normal maturation of the VZ in vitro, offering the capacity to investigate the developmental features of VZ biogenesis.
Collapse
Affiliation(s)
- Leandro Castaneyra-Ruiz
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA.
| | - James P McAllister
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - Diego M Morales
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
50
|
Zhang Y, Chen Y, Zheng J, Wang J, Duan S, Zhang W, Yan X, Zhu X. Vertebrate Dynein-f depends on Wdr78 for axonemal localization and is essential for ciliary beat. J Mol Cell Biol 2020; 11:383-394. [PMID: 30060180 PMCID: PMC7727262 DOI: 10.1093/jmcb/mjy043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/23/2022] Open
Abstract
Motile cilia and flagella are microtubule-based organelles important for cell locomotion and extracellular liquid flow through beating. Although axonenal dyneins that drive ciliary beat have been extensively studied in unicellular Chlamydomonas, to what extent such knowledge can be applied to vertebrate is poorly known. In Chlamydomonas, Dynein-f controls flagellar waveforms but is dispensable for beating. The flagellar assembly of its heavy chains (HCs) requires its intermediate chain (IC) IC140 but not IC138. Here we show that, unlike its Chlamydomonas counterpart, vertebrate Dynein-f is essential for ciliary beat. We confirmed that Wdr78 is the vertebrate orthologue of IC138. Wdr78 associated with Dynein-f subunits such as Dnah2 (a HC) and Wdr63 (IC140 orthologue). It was expressed as a motile cilium-specific protein in mammalian cells. Depletion of Wdr78 or Dnah2 by RNAi paralyzed mouse ependymal cilia. Zebrafish Wdr78 morphants displayed ciliopathy-related phenotypes, such as curved bodies, hydrocephalus, abnormal otolith, randomized left-right asymmetry, and pronephric cysts, accompanied with paralyzed pronephric cilia. Furthermore, all the HCs and ICs of Dynein-f failed to localize in the Wdr78-depleted mouse ependymal cilia. Therefore, both the functions and subunit dependency of Dynein-f are altered in evolution, probably to comply with ciliary roles in higher organisms.
Collapse
Affiliation(s)
- Yirong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yawen Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Jianqun Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Juan Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Shichao Duan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| |
Collapse
|