1
|
Jin W, Zhu X, Qian L, Wu C, Yang F, Zhan D, Kang Z, Luo K, Meng D, Xu G. Electroencephalogram-based adaptive closed-loop brain-computer interface in neurorehabilitation: a review. Front Comput Neurosci 2024; 18:1431815. [PMID: 39371523 PMCID: PMC11449715 DOI: 10.3389/fncom.2024.1431815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Brain-computer interfaces (BCIs) represent a groundbreaking approach to enabling direct communication for individuals with severe motor impairments, circumventing traditional neural and muscular pathways. Among the diverse array of BCI technologies, electroencephalogram (EEG)-based systems are particularly favored due to their non-invasive nature, user-friendly operation, and cost-effectiveness. Recent advancements have facilitated the development of adaptive bidirectional closed-loop BCIs, which dynamically adjust to users' brain activity, thereby enhancing responsiveness and efficacy in neurorehabilitation. These systems support real-time modulation and continuous feedback, fostering personalized therapeutic interventions that align with users' neural and behavioral responses. By incorporating machine learning algorithms, these BCIs optimize user interaction and promote recovery outcomes through mechanisms of activity-dependent neuroplasticity. This paper reviews the current landscape of EEG-based adaptive bidirectional closed-loop BCIs, examining their applications in the recovery of motor and sensory functions, as well as the challenges encountered in practical implementation. The findings underscore the potential of these technologies to significantly enhance patients' quality of life and social interaction, while also identifying critical areas for future research aimed at improving system adaptability and performance. As advancements in artificial intelligence continue, the evolution of sophisticated BCI systems holds promise for transforming neurorehabilitation and expanding applications across various domains.
Collapse
Affiliation(s)
- Wenjie Jin
- Department of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
- Rehabilitation Medicine Center, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| | - XinXin Zhu
- Rehabilitation Medicine Center, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| | - Lifeng Qian
- Rehabilitation Medicine Center, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| | - Cunshu Wu
- Department of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Rehabilitation Medicine Center, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| | - Daowei Zhan
- Rehabilitation Medicine Center, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| | - Zhaoyin Kang
- Rehabilitation Medicine Center, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| | - Kaitao Luo
- Rehabilitation Medicine Center, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, China
| | - Dianhuai Meng
- Department of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangxu Xu
- Department of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Widge AS. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacology 2024; 49:138-149. [PMID: 37415081 PMCID: PMC10700701 DOI: 10.1038/s41386-023-01643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient's DBS. In Parkinson's, patients' symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician's ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Kennedy P, Cervantes AJ. Recruitment and Differential Firing Patterns of Single Units During Conditioning to a Tone in a Mute Locked-In Human. Front Hum Neurosci 2022; 16:864983. [PMID: 36211127 PMCID: PMC9532552 DOI: 10.3389/fnhum.2022.864983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Single units that are not related to the desired task can become related to the task by conditioning their firing rates. We theorized that, during conditioning of firing rates to a tone, (a) unrelated single units would be recruited to the task; (b) the recruitment would depend on the phase of the task; (c) tones of different frequencies would produce different patterns of single unit recruitment. In our mute locked-in participant, we conditioned single units using tones of different frequencies emitted from a tone generator. The conditioning task had three phases: Listen to the tone for 20 s, then silently sing the tone for 10 s, with a prior control period of resting for 10 s. Twenty single units were recorded simultaneously while feedback of one of the twenty single units was made audible to the mute locked-in participant. The results indicate that (a) some of the non-audible single units were recruited during conditioning, (b) some were recruited differentially depending on the phase of the paradigm (listen, rest, or silent sing), and (c) single unit firing patterns were specific for different tone frequencies such that the tone could be recognized from the pattern of single unit firings. These data are important when conditioning single unit firings in brain-computer interfacing tasks because they provide evidence that increased numbers of previously unrelated single units can be incorporated into the task. This incorporation expands the bandwidth of the recorded single unit population and thus enhances the brain-computer interface. This is the first report of conditioning of single unit firings in a human participant with a brain to computer implant.
Collapse
Affiliation(s)
- Philip Kennedy
- Neural Signals, Inc., Duluth, GA, United States
- *Correspondence: Philip Kennedy,
| | | |
Collapse
|
5
|
Toolkit for Oscillatory Real-time Tracking and Estimation (TORTE). J Neurosci Methods 2022; 366:109409. [PMID: 34788695 PMCID: PMC9287843 DOI: 10.1016/j.jneumeth.2021.109409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Closing the loop between brain activity and behavior is one of the most active areas of development in neuroscience. There is particular interest in developing closed-loop control of neural oscillations. Many studies report correlations between oscillations and functional processes. Oscillation-informed closed-loop experiments might determine whether these relationships are causal and would provide important mechanistic insights which may lead to new therapeutic tools. These closed-loop perturbations require accurate estimates of oscillatory phase and amplitude, which are challenging to compute in real time. NEW METHOD We developed an easy to implement, fast and accurate Toolkit for Oscillatory Real-time Tracking and Estimation (TORTE). TORTE operates with the open-source Open Ephys GUI (OEGUI) system, making it immediately compatible with a wide range of acquisition systems and experimental preparations. RESULTS TORTE efficiently extracts oscillatory phase and amplitude from a target signal and includes a variety of options to trigger closed-loop perturbations. Implementing these tools into existing experiments is easy and adds minimal latency to existing protocols. COMPARISON WITH EXISTING METHODS Most labs use in-house lab-specific approaches, limiting replication and extension of their experiments by other groups. Accuracy of the extracted analytic signal and accuracy of oscillation-informed perturbations with TORTE match presented results by these groups. However, TORTE provides access to these tools in a flexible, easy to use toolkit without requiring proprietary software. CONCLUSION We hope that the availability of a high-quality, open-source, and broadly applicable toolkit will increase the number of labs able to perform oscillatory closed-loop experiments, and will improve the replicability of protocols and data across labs.
Collapse
|
6
|
Hughes CL, Flesher SN, Weiss JM, Boninger M, Collinger JL, Gaunt RA. Perception of microstimulation frequency in human somatosensory cortex. eLife 2021; 10:65128. [PMID: 34313221 PMCID: PMC8376245 DOI: 10.7554/elife.65128] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Microstimulation in the somatosensory cortex can evoke artificial tactile percepts and can be incorporated into bidirectional brain–computer interfaces (BCIs) to restore function after injury or disease. However, little is known about how stimulation parameters themselves affect perception. Here, we stimulated through microelectrode arrays implanted in the somatosensory cortex of two human participants with cervical spinal cord injury and varied the stimulus amplitude, frequency, and train duration. Increasing the amplitude and train duration increased the perceived intensity on all tested electrodes. Surprisingly, we found that increasing the frequency evoked more intense percepts on some electrodes but evoked less-intense percepts on other electrodes. These different frequency–intensity relationships were divided into three groups, which also evoked distinct percept qualities at different stimulus frequencies. Neighboring electrode sites were more likely to belong to the same group. These results support the idea that stimulation frequency directly controls tactile perception and that these different percepts may be related to the organization of somatosensory cortex, which will facilitate principled development of stimulation strategies for bidirectional BCIs.
Collapse
Affiliation(s)
- Christopher L Hughes
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| | - Sharlene N Flesher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States.,Department of Neurosurgery, Stanford University, Stanford, United States.,Department of Electrical Engineering, Stanford University, Stanford, United States
| | - Jeffrey M Weiss
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States
| | - Michael Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Laboratories, VA Center of Excellence, Department of Veterans Affairs, Pittsburgh, United States
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States.,Human Engineering Research Laboratories, VA Center of Excellence, Department of Veterans Affairs, Pittsburgh, United States
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
7
|
Rabinowitch I, Upadhyaya B, Pant A, Galski D, Kreines L, Bai J. Circumventing neural damage in a C. elegans chemosensory circuit using genetically engineered synapses. Cell Syst 2021; 12:263-271.e4. [PMID: 33472027 PMCID: PMC7979504 DOI: 10.1016/j.cels.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Neuronal loss can considerably diminish neural circuit function, impairing normal behavior by disrupting information flow in the circuit. Here, we use genetically engineered electrical synapses to reroute the flow of information in a C. elegans damaged chemosensory circuit in order to restore organism behavior. We impaired chemotaxis by removing one pair of interneurons from the circuit then artificially coupled two other adjacent neuron pairs by ectopically expressing the gap junction protein, connexin, in them. This restored chemotaxis in the animals. We expected to observe linear and direct information flow between the connexin-coupled neurons in the recovered circuit but also revealed the formation of new potent left-right lateral electrical connections within the connexin-expressing neuron pairs. Our analysis suggests that these additional electrical synapses help restore circuit function by amplifying weakened neuronal signals in the damaged circuit in addition to emulating the wild-type circuit. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, IMRIC - Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel.
| | - Bishal Upadhyaya
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aaradhya Pant
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dolev Galski
- Department of Medical Neurobiology, IMRIC - Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Lena Kreines
- Department of Medical Neurobiology, IMRIC - Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Zelmann R, Paulk AC, Basu I, Sarma A, Yousefi A, Crocker B, Eskandar E, Williams Z, Cosgrove GR, Weisholtz DS, Dougherty DD, Truccolo W, Widge AS, Cash SS. CLoSES: A platform for closed-loop intracranial stimulation in humans. Neuroimage 2020; 223:117314. [PMID: 32882382 PMCID: PMC7805582 DOI: 10.1016/j.neuroimage.2020.117314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
Targeted interrogation of brain networks through invasive brain stimulation has become an increasingly important research tool as well as therapeutic modality. The majority of work with this emerging capability has been focused on open-loop approaches. Closed-loop techniques, however, could improve neuromodulatory therapies and research investigations by optimizing stimulation approaches using neurally informed, personalized targets. Implementing closed-loop systems is challenging particularly with regard to applying consistent strategies considering inter-individual variability. In particular, during intracranial epilepsy monitoring, where much of this research is currently progressing, electrodes are implanted exclusively for clinical reasons. Thus, detection and stimulation sites must be participant- and task-specific. The system must run in parallel with clinical systems, integrate seamlessly with existing setups, and ensure safety features are in place. In other words, a robust, yet flexible platform is required to perform different tests with a single participant and to comply with clinical requirements. In order to investigate closed-loop stimulation for research and therapeutic use, we developed a Closed-Loop System for Electrical Stimulation (CLoSES) that computes neural features which are then used in a decision algorithm to trigger stimulation in near real-time. To summarize CLoSES, intracranial electroencephalography (iEEG) signals are acquired, band-pass filtered, and local and network features are continuously computed. If target features are detected (e.g. above a preset threshold for a certain duration), stimulation is triggered. Not only could the system trigger stimulation while detecting real-time neural features, but we incorporated a pipeline wherein we used an encoder/decoder model to estimate a hidden cognitive state from the neural features. CLoSES provides a flexible platform to implement a variety of closed-loop experimental paradigms in humans. CLoSES has been successfully used with twelve patients implanted with depth electrodes in the epilepsy monitoring unit. During cognitive tasks (N=5), stimulation in closed loop modified a cognitive hidden state on a trial by trial basis. Sleep spindle oscillations (N=6) and sharp transient epileptic activity (N=9) were detected in near real-time, and stimulation was applied during the event or at specified delays (N=3). In addition, we measured the capabilities of the CLoSES system. Total latency was related to the characteristics of the event being detected, with tens of milliseconds for epileptic activity and hundreds of milliseconds for spindle detection. Stepwise latency, the actual duration of each continuous step, was within the specified fixed-step duration and increased linearly with the number of channels and features. We anticipate that probing neural dynamics and interaction between brain states and stimulation responses with CLoSES will lead to novel insights into the mechanism of normal and pathological brain activity, the discovery and evaluation of potential electrographic biomarkers of neurological and psychiatric disorders, and the development and testing of patient-specific stimulation targets and control signals before implanting a therapeutic device.
Collapse
Affiliation(s)
- Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ishita Basu
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, University of Cincinnati, OH, USA
| | - Anish Sarma
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Ali Yousefi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Albert Einstein College of Medicine, NY, USA
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, University of Minnesota, MI, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Bronte-Stewart HM, Petrucci MN, O’Day JJ, Afzal MF, Parker JE, Kehnemouyi YM, Wilkins KB, Orthlieb GC, Hoffman SL. Perspective: Evolution of Control Variables and Policies for Closed-Loop Deep Brain Stimulation for Parkinson's Disease Using Bidirectional Deep-Brain-Computer Interfaces. Front Hum Neurosci 2020; 14:353. [PMID: 33061899 PMCID: PMC7489234 DOI: 10.3389/fnhum.2020.00353] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/21/2022] Open
Abstract
A deep brain stimulation system capable of closed-loop neuromodulation is a type of bidirectional deep brain-computer interface (dBCI), in which neural signals are recorded, decoded, and then used as the input commands for neuromodulation at the same site in the brain. The challenge in assuring successful implementation of bidirectional dBCIs in Parkinson's disease (PD) is to discover and decode stable, robust and reliable neural inputs that can be tracked during stimulation, and to optimize neurostimulation patterns and parameters (control policies) for motor behaviors at the brain interface, which are customized to the individual. In this perspective, we will outline the work done in our lab regarding the evolution of the discovery of neural and behavioral control variables relevant to PD, the development of a novel personalized dual-threshold control policy relevant to the individual's therapeutic window and the application of these to investigations of closed-loop STN DBS driven by neural or kinematic inputs, using the first generation of bidirectional dBCIs.
Collapse
Affiliation(s)
- Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew N. Petrucci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Johanna J. O’Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Muhammad Furqan Afzal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jordan E. Parker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasmine M. Kehnemouyi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerrit C. Orthlieb
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Shannon L. Hoffman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
10
|
Zanos S. Closed-Loop Neuromodulation in Physiological and Translational Research. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034314. [PMID: 30559253 DOI: 10.1101/cshperspect.a034314] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuromodulation, the focused delivery of energy to neural tissue to affect neural or physiological processes, is a common method to study the physiology of the nervous system. It is also successfully used as treatment for disorders in which the nervous system is affected or implicated. Typically, neurostimulation is delivered in open-loop mode (i.e., according to a predetermined schedule and independently of the state of the organ or physiological system whose function is sought to be modulated). However, the physiology of the nervous system or the modulated organ can be dynamic, and the same stimulus may have different effects depending on the underlying state. As a result, open-loop stimulation may fail to restore the desired function or cause side effects. In such cases, a neuromodulation intervention may be preferable to be administered in closed-loop mode. In a closed-loop neuromodulation (CLN) system, stimulation is delivered when certain physiological states or conditions are met (responsive neurostimulation); the stimulation parameters can also be adjusted dynamically to optimize the effect of stimulation in real time (adaptive neurostimulation). In this review, the reasons and the conditions for using CLN are discussed, the basic components of a CLN system are described, and examples of CLN systems used in physiological and translational research are presented.
Collapse
Affiliation(s)
- Stavros Zanos
- Translational Neurophysiology Laboratory, Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
11
|
Choi JR, Kim SM, Ryu RH, Kim SP, Sohn JW. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects. Exp Neurobiol 2018; 27:453-471. [PMID: 30636899 PMCID: PMC6318554 DOI: 10.5607/en.2018.27.6.453] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes.
Collapse
Affiliation(s)
- Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Seong-Min Kim
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| | - Rae-Hyung Ryu
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Sung-Phil Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong-Woo Sohn
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| |
Collapse
|
12
|
Donoghue JP. Brain–Computer Interfaces. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Gonzalez-Rothi EJ, Streeter KA, Hanna MH, Stamas AC, Reier PJ, Baekey DM, Fuller DD. High-frequency epidural stimulation across the respiratory cycle evokes phrenic short-term potentiation after incomplete cervical spinal cord injury. J Neurophysiol 2017; 118:2344-2357. [PMID: 28615341 DOI: 10.1152/jn.00913.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/15/2023] Open
Abstract
C2 spinal hemilesion (C2Hx) paralyzes the ipsilateral diaphragm, but recovery is possible through activation of "crossed spinal" synaptic inputs to ipsilateral phrenic motoneurons. We tested the hypothesis that high-frequency epidural stimulation (HF-ES) would potentiate ipsilateral phrenic output after subacute and chronic C2Hx. HF-ES (300 Hz) was applied to the ventrolateral C4 or T2 spinal cord ipsilateral to C2Hx in anesthetized and mechanically ventilated adult rats. Stimulus duration was 60 s, and currents ranged from 100 to 1,000 µA. Bilateral phrenic nerve activity and ipsilateral hypoglossal (XII) nerve activity were recorded before and after HF-ES. Higher T2 stimulus currents potentiated ipsilateral phasic inspiratory activity at both 2 and 12 wk post-C2Hx, whereas higher stimulus currents delivered at C4 potentiated ipsilateral phasic phrenic activity only at 12 wk (P = 0.028). Meanwhile, tonic output in the ipsilateral phrenic nerve reached 500% of baseline values at the high currents with no difference between 2 and 12 wk. HF-ES did not trigger inspiratory burst-frequency changes. Similar responses occurred following T2 HF-ES. Increases in contralateral phrenic and XII nerve output were induced by C4 and T2 HF-ES at higher currents, but the relative magnitude of these changes was small compared with the ipsilateral phrenic response. We conclude that following incomplete cervical spinal cord injury, HF-ES of the ventrolateral midcervical or thoracic spinal cord can potentiate efferent phrenic motor output with little impact on inspiratory burst frequency. However, the substantial increases in tonic output indicate that the uninterrupted 60-s stimulation paradigm used is unlikely to be useful for respiratory muscle activation after spinal injury.NEW & NOTEWORTHY Previous studies reported that high-frequency epidural stimulation (HF-ES) activates the diaphragm following acute spinal transection. This study examined HF-ES and phrenic motor output following subacute and chronic incomplete cervical spinal cord injury. Short-term potentiation of phrenic bursting following HF-ES illustrates the potential for spinal stimulation to induce respiratory neuroplasticity. Increased tonic phrenic output indicates that alternatives to the continuous stimulation paradigm used in this study will be required for respiratory muscle activation after spinal cord injury.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida;
| | - Kristi A Streeter
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Marie H Hanna
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Anna C Stamas
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Paul J Reier
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida; and
| | - David M Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - David D Fuller
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Lebedev MA, Nicolelis MAL. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol Rev 2017; 97:767-837. [PMID: 28275048 DOI: 10.1152/physrev.00027.2016] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-machine interfaces (BMIs) combine methods, approaches, and concepts derived from neurophysiology, computer science, and engineering in an effort to establish real-time bidirectional links between living brains and artificial actuators. Although theoretical propositions and some proof of concept experiments on directly linking the brains with machines date back to the early 1960s, BMI research only took off in earnest at the end of the 1990s, when this approach became intimately linked to new neurophysiological methods for sampling large-scale brain activity. The classic goals of BMIs are 1) to unveil and utilize principles of operation and plastic properties of the distributed and dynamic circuits of the brain and 2) to create new therapies to restore mobility and sensations to severely disabled patients. Over the past decade, a wide range of BMI applications have emerged, which considerably expanded these original goals. BMI studies have shown neural control over the movements of robotic and virtual actuators that enact both upper and lower limb functions. Furthermore, BMIs have also incorporated ways to deliver sensory feedback, generated from external actuators, back to the brain. BMI research has been at the forefront of many neurophysiological discoveries, including the demonstration that, through continuous use, artificial tools can be assimilated by the primate brain's body schema. Work on BMIs has also led to the introduction of novel neurorehabilitation strategies. As a result of these efforts, long-term continuous BMI use has been recently implicated with the induction of partial neurological recovery in spinal cord injury patients.
Collapse
|
15
|
Rembado I, Zanos S, Fetz EE. Cycle-Triggered Cortical Stimulation during Slow Wave Sleep Facilitates Learning a BMI Task: A Case Report in a Non-Human Primate. Front Behav Neurosci 2017; 11:59. [PMID: 28450831 PMCID: PMC5390033 DOI: 10.3389/fnbeh.2017.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/23/2017] [Indexed: 01/11/2023] Open
Abstract
Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating newly acquired information. A growing body of evidence has shown that delta (1-4 Hz) oscillatory activity, the characteristic electroencephalographic signature of SWS, is involved in coordinating interaction between the hippocampus and the neocortex and is thought to take a role in stabilizing memory traces related to a novel task. This case report describes a new protocol that uses neuroprosthetics training of a non-human primate to evaluate the effects of surface cortical electrical stimulation triggered from SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory activity promoted learning of the neuroprosthetic task. This protocol could be used to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep and offers new insights into the role of brain oscillations in information processing and memory consolidation.
Collapse
Affiliation(s)
- Irene Rembado
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of WashingtonSeattle, WA, USA
| | - Stavros Zanos
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of WashingtonSeattle, WA, USA
| | - Eberhard E. Fetz
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of WashingtonSeattle, WA, USA
- Center for Sensorimotor Neural Engineering (NSF ERC), University of WashingtonSeattle, WA, USA
| |
Collapse
|
16
|
Alam M, Rodrigues W, Pham BN, Thakor NV. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives. Brain Res 2016; 1646:25-33. [DOI: 10.1016/j.brainres.2016.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/24/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
|
17
|
Greenwald E, Masters MR, Thakor NV. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations. Med Biol Eng Comput 2016; 54:1-17. [PMID: 26753776 PMCID: PMC4839984 DOI: 10.1007/s11517-015-1429-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.
Collapse
Affiliation(s)
- Elliot Greenwald
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Matthew R Masters
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage 2015; 140:89-98. [PMID: 26481671 DOI: 10.1016/j.neuroimage.2015.10.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022] Open
Abstract
Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.
Collapse
|