1
|
Bravo J, Magalhães C, Andrade EB, Magalhães A, Summavielle T. The impact of psychostimulants on central and peripheral neuro-immune regulation: a scoping review of cytokine profiles and their implications for addiction. Front Cell Neurosci 2023; 17:1109611. [PMID: 37305435 PMCID: PMC10251407 DOI: 10.3389/fncel.2023.1109611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
It is now well-accepted that psychostimulants act on glial cells causing neuroinflammation and adding to the neurotoxic effects of such substances. Neuroinflammation can be described as an inflammatory response, within the CNS, mediated through several cytokines, reactive oxygen species, chemokines and other inflammatory markers. These inflammatory players, in particular cytokines, play important roles. Several studies have demonstrated that psychostimulants impact on cytokine production and release, both centrally and at the peripheral level. Nevertheless, the available data is often contradictory. Because understanding how cytokines are modulated by psychoactive substances seems crucial to perspective successful therapeutic interventions, here, we conducted a scoping review of the available literature. We have focused on how different psychostimulants impact on the cytokine profile. Publications were grouped according to the substance addressed (methamphetamine, cocaine, methylphenidate, MDMA or other amphetamines), the type of exposure and period of evaluation (acute, short- or long-term exposure, withdrawal, and reinstatement). Studies were further divided in those addressing central cytokines, circulating (peripheral) levels, or both. Our analysis showed that the classical pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were those more investigated. The majority of studies have reported increased levels of these cytokines in the central nervous system after acute or repeated drug. However, studies investigating cytokine levels during withdrawal or reinstatement have shown higher variability in their findings. Although we have identified fewer studies addressing circulating cytokines in humans, the available data suggest that the results may be more robust in animal models than in patients with problematic drug use. As a major conclusion, an extensive use of arrays for relevant cytokines should be considered to better determine which cytokines, upon the classical ones, may be involved in the progression from episodic use to the development of addiction. A concerted effort is still necessary to address the link between peripheral and central immune players, including from a longitudinal perspective. Until there, the identification of new biomarkers and therapeutic targets to envision personalized immune-based therapeutics will continue to be unlikely.
Collapse
Affiliation(s)
- Joana Bravo
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| | - Catarina Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Elva B. Andrade
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
- Immunobiology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - Teresa Summavielle
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
2
|
Maternal Over- and Malnutrition and Increased Risk for Addictive and Eating Disorders in the Offspring. Nutrients 2023; 15:nu15051095. [PMID: 36904093 PMCID: PMC10004806 DOI: 10.3390/nu15051095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence from human and animal studies has shown that maternal overnutrition and/or obesity are linked with neurobehavioral changes in the offspring. This fetal programming is characterized by adaptive responses to changes in the nutritional state during early life. In the past decade, an association has been made between overconsumption of highly-palatable food by the mother during fetal development and abnormal behaviors resembling addiction in the offspring. Maternal overnutrition can lead to alterations in the offspring's brain reward circuitry leading to hyperresponsiveness of this circuit following exposure to calorie-dense foods later in life. Given the accumulating evidence indicating that the central nervous system plays a pivotal role in regulating food intake, energy balance, and the motivation to seek food, a dysfunction in the reward circuitry may contribute to the addiction-like behaviors observed in the offspring. However, the underlying mechanisms leading to these alterations in the reward circuitry during fetal development and their relevance to the increased risk for the offspring to later develop addictive-like behaviors is still unclear. Here, we review the most relevant scientific reports about the impact of food overconsumption during fetal development and its effect on addictive-like behaviors of the offspring in the context of eating disorders and obesity.
Collapse
|
3
|
Intranasal Methylprednisolone Ameliorates Neuroinflammation Induced by Chronic Toluene Exposure. Pharmaceutics 2022; 14:pharmaceutics14061195. [PMID: 35745768 PMCID: PMC9230943 DOI: 10.3390/pharmaceutics14061195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Inhalants are chemical substances that induce intoxication, and toluene is the main component of them. Increasing evidence indicates that a dependence on inhalants involves a state of chronic stress associated to the activation of immune cells in the central nervous system and release of proinflammatory mediators, especially in some brain areas such as the nucleus accumbens and frontal cortex, where the circuits of pleasure and reward are. In this study, anti-neuroinflammatory treatment based on a single dose of intranasal methylprednisolone was assessed in a murine model of chronic toluene exposure. The levels of proinflammatory mediators, expression levels of Iba-1 and GFAP, and histological changes in the frontal cortex and nucleus accumbens were evaluated after the treatment. The chronic exposure to toluene significantly increased the levels of TNF-α, IL-6, and NO, the expression of GFAP, and induced histological alterations in mouse brains. The treatment with intranasally administered MP significantly reduced the expression of TNF-α and NO and the expression of GFAP (p < 0.05); additionally, it reversed the central histological damage. These results indicate that intranasally administered methylprednisolone could be considered as a treatment to reverse neuroinflammation and histological damages associated with the use of inhalants.
Collapse
|
4
|
Marusich JA, Gay EA, Stewart DA, Blough BE. Sex differences in inflammatory cytokine levels following synthetic cathinone self-administration in rats. Neurotoxicology 2022; 88:65-78. [PMID: 34742947 PMCID: PMC8748414 DOI: 10.1016/j.neuro.2021.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Synthetic cathinones are used as stimulants of abuse. Many abused drugs, including stimulants, activate nuclear factor-κB (NF-κB) transcription leading to increases in NF-κB-regulated pro-inflammatory cytokines, and the level of inflammation appears to correlate with length of abuse. The purpose of this study was to measure the profile of IL-1α, IL-1β, IL-6, CCL2 and TNF-α in brain and plasma to examine if drug exposure alters inflammatory markers. Male and female Sprague-Dawley rats were trained to self-administer α-pyrrolidinopentiophenone (α-PVP) (0.1 mg/kg/infusion), 4-methylmethcathinone (4MMC) (0.5 mg/kg/infusion), or saline through autoshaping, and then self-administered for 21 days during 1 h (short access; ShA) or 6 h (long access; LgA) sessions. Separate rats were assigned to a naïve control group. Cytokine levels were examined in amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, thalamus, and plasma. Rats acquired synthetic cathinone self-administration, and there were no sex differences in drug intake. Synthetic cathinone self-administration produced sex differences in IL-1α, IL-1β, IL-6, CCL2 and TNF-α levels. There were widespread increases in inflammatory cytokines in the brains of male rats compared to females, particularly for 4MMC, whereas females were more likely to show increased inflammatory cytokines in plasma compared to saline groups than males. Furthermore, these sex differences in cytokine levels were more common after LgA access to synthetic cathinones than ShA. These results suggest that synthetic cathinone use likely produces sex-selective patterns of neuroinflammation during the transition from use to abuse. Consequently, treatment need may differ depending on the progression of synthetic cathinone abuse and based on sex.
Collapse
Affiliation(s)
- Julie A. Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Elaine A. Gay
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Cheng Y, Kim WK, Wellman LL, Sanford LD, Guo ML. Short-Term Sleep Fragmentation Dysregulates Autophagy in a Brain Region-Specific Manner. Life (Basel) 2021; 11:life11101098. [PMID: 34685469 PMCID: PMC8538758 DOI: 10.3390/life11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, we investigated autophagy, glial activation status, and corticotropin releasing factor (CRF) signaling in the brains of mice after 5 days of sleep fragmentation (SF). Three different brain regions including the striatum, hippocampus, and frontal cortex were selected for examination based on roles in sleep regulation and sensitivity to sleep disruption. For autophagy, we monitored the levels of various autophagic induction markers including beclin1, LC3II, and p62 as well as the levels of lysosomal associated membrane protein 1 and 2 (LAMP1/2) and the transcription factor EB (TFEB) which are critical for lysosome function and autophagy maturation stage. For the status of microglia and astrocytes, we determined the levels of Iba1 and GFAP in these brain regions. We also measured the levels of CRF and its cognate receptors 1 and 2 (CRFR1/2). Our results showed that 5 days of SF dysregulated autophagy in the striatum and hippocampus but not in the frontal cortex. Additionally, 5 days of SF activated microglia in the striatum but not in the hippocampus or frontal cortex. In the striatum, CRFR2 but not CRFR1 was significantly increased in SF-experienced mice. CRF did not alter its mRNA levels in any of the three brain regions assessed. Our findings revealed that autophagy processes are sensitive to short-term SF in a region-specific manner and suggest that autophagy dysregulation may be a primary initiator for brain changes and functional impairments in the context of sleep disturbances and disorders.
Collapse
Affiliation(s)
- Yan Cheng
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Drug Addiction Laboratory, Department Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Woong-Ki Kim
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurie L. Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Larry D. Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (Y.C.); (W.-K.K.); (L.L.W.); (L.D.S.)
- Drug Addiction Laboratory, Department Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Correspondence: ; Tel.: +1-757-446-5891
| |
Collapse
|
6
|
Montagud-Romero S, Miñarro J, Rodríguez-Arias M. Unravelling the Neuroinflammatory Mechanisms Underlying the Effects of Social Defeat Stress on Use of Drugs of Abuse. Curr Top Behav Neurosci 2021; 54:153-180. [PMID: 34628585 DOI: 10.1007/7854_2021_260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The immune system provides the first line of the organism's defenses, working to maintain homeostasis against external threats and respond also to internal danger signals. There is much evidence to suggest that modifications of inflammatory parameters are related to vulnerability to develop mental illnesses, such as depression, autism, schizophrenia, and substance use disorders. In addition, not only are inflammatory parameters related to these disorders, but stress also induces the activation of the immune system, as recent preclinical research demonstrates. Social stress activates the immune response in the central nervous system through a number of mechanisms; for example, by promoting microglial stimulation, modifying peripheral and brain cytokine levels, and altering the blood brain barrier, which allows monocytes to traffic into the brain. In this chapter, we will first deal with the most important short- and long-term consequences of social defeat (SD) stress on the neuroinflammatory response. SD experiences (brief episodes of social confrontations during adolescence and adulthood) induce functional modifications in the brain, which are accompanied by an increase in proinflammatory markers. Most importantly, inflammatory mechanisms play a significant role in mediating the process of adaptation in the face of adversity (resilience vs susceptibility), allowing us to understand individual differences in stress responses. Secondly, we will address the role of the immune system in the vulnerability and enhanced sensitivity to drugs of abuse after social stress. We will explore in depth the effects seen in the inflammatory system in response to social stress and how they enhance the rewarding effects of drugs such as alcohol or cocaine. To conclude, we will consider pharmacological and environmental interventions that seek to influence the inflammatory response to social stress and diminish increased drug intake, as well as the translational potential and future directions of this exciting new field of research.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain. .,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
7
|
Krueger RF, Hobbs KA, Conway CC, Dick DM, Dretsch MN, Eaton NR, Forbes MK, Forbush KT, Keyes KM, Latzman RD, Michelini G, Patrick CJ, Sellbom M, Slade T, South S, Sunderland M, Tackett J, Waldman I, Waszczuk MA, Wright AG, Zald DH, Watson D, Kotov R. Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry 2021; 20:171-193. [PMID: 34002506 PMCID: PMC8129870 DOI: 10.1002/wps.20844] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Hierarchical Taxonomy of Psychopathology (HiTOP) is an empirical effort to address limitations of traditional mental disorder diagnoses. These include arbitrary boundaries between disorder and normality, disorder co-occurrence in the modal case, heterogeneity of presentation within dis-orders, and instability of diagnosis within patients. This paper reviews the evidence on the validity and utility of the disinhibited externalizing and antagonistic externalizing spectra of HiTOP, which together constitute a broad externalizing superspectrum. These spectra are composed of elements subsumed within a variety of mental disorders described in recent DSM nosologies, including most notably substance use disorders and "Cluster B" personality disorders. The externalizing superspectrum ranges from normative levels of impulse control and self-assertion, to maladaptive disinhibition and antagonism, to extensive polysubstance involvement and personality psychopathology. A rich literature supports the validity of the externalizing superspectrum, and the disinhibited and antagonistic spectra. This evidence encompasses common genetic influences, environmental risk factors, childhood antecedents, cognitive abnormalities, neural alterations, and treatment response. The structure of these validators mirrors the structure of the phenotypic externalizing superspectrum, with some correlates more specific to disinhibited or antagonistic spectra, and others relevant to the entire externalizing superspectrum, underlining the hierarchical structure of the domain. Compared with traditional diagnostic categories, the externalizing superspectrum conceptualization shows improved utility, reliability, explanatory capacity, and clinical applicability. The externalizing superspectrum is one aspect of the general approach to psychopathology offered by HiTOP and can make diagnostic classification more useful in both research and the clinic.
Collapse
Affiliation(s)
| | - Kelsey A. Hobbs
- Department of PsychologyUniversity of MinnesotaMinneapolisMNUSA
| | | | - Danielle M. Dick
- Department of PsychologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Michael N. Dretsch
- US Army Medical Research Directorate ‐ WestWalter Reed Army Institute of Research, Joint Base Lewis‐McChordWAUSA
| | | | - Miriam K. Forbes
- Centre for Emotional Health, Department of PsychologyMacquarie UniversitySydneyNSWAustralia
| | | | | | | | - Giorgia Michelini
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | | | - Martin Sellbom
- Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Tim Slade
- Matilda Centre for Research in Mental Health and Substance UseUniversity of SydneySydneyNSWAustralia
| | - Susan C. South
- Department of Psychological SciencesPurdue UniversityWest LafayetteINUSA
| | - Matthew Sunderland
- Matilda Centre for Research in Mental Health and Substance UseUniversity of SydneySydneyNSWAustralia
| | | | - Irwin Waldman
- Department of PsychologyEmory UniversityAtlantaGAUSA
| | | | | | - David H. Zald
- Department of PsychologyVanderbilt UniversityNashvilleTNUSA
| | - David Watson
- Department of PsychologyUniversity of Notre DameNotre DameINUSA
| | - Roman Kotov
- Department of PsychiatryStony Brook UniversityStony BrookNYUSA
| | | |
Collapse
|
8
|
Loganathan K, Ho ETW. Value, drug addiction and the brain. Addict Behav 2021; 116:106816. [PMID: 33453587 DOI: 10.1016/j.addbeh.2021.106816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
Over the years, various models have been proposed to explain the psychology and biology of drug addiction, built primarily around the habit and compulsion models. Recent research indicates drug addiction may be goal-directed, motivated by excessive valuation of drugs. Drug consumption may initially occur for the sake of pleasure but may transition to a means of escaping withdrawal, stress and negative emotions. In this hypothetical paper, we propose a value-based neurobiological model for drug addiction. We posit that during dependency, the value-based decision-making system in the brain is not inactive but has instead prioritized drugs as the reward of choice. In support of this model, we consider the role of valuation in choice, its influence on pleasure and punishment, and how valuation is contrasted in impulsive and compulsive behaviours. We then discuss the neurobiology of value, beginning with the dopaminergic system and its relationship with incentive salience before moving to brain-wide networks involved in valuation, control and prospection. These value-based neurobiological components are then integrated into the cycle of addiction as we consider the development of drug dependency from a valuation perspective. We conclude with a discussion of cognitive interventions utilizing value-based decision-making, highlighting not just advances in recalibrating the valuation system to focus on non-drug rewards, but also areas for improvement in refining this approach.
Collapse
Affiliation(s)
- Kavinash Loganathan
- Centre for Intelligent Signal & Imaging, Universiti Teknologi PETRONAS, Perak, Malaysia.
| | - Eric Tatt Wei Ho
- Centre for Intelligent Signal & Imaging, Universiti Teknologi PETRONAS, Perak, Malaysia; Dept of Electrical & Electronics Engineering, Universiti Teknologi PETRONAS, Perak, Malaysia
| |
Collapse
|
9
|
Zhang J, Deji C, Fan J, Chang L, Miao X, Xiao Y, Zhu Y, Li S. Differential alteration in gut microbiome profiles during acquisition, extinction and reinstatement of morphine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110058. [PMID: 32791167 DOI: 10.1016/j.pnpbp.2020.110058] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Substance addiction is a chronic and complicated disease involving genetic and environmental factors. Coregulated by the above factors, perturbations of the gut microbiome have been shown to have an essential role in the development of many neuropsychiatric disorders, including addiction. However, shifts in the gut microbiome during different stages of morphine addiction remain uncharacterized. In the present study, we harvested fecal samples from mice at the acquisition (both the control and morphine groups), extinction and reinstatement stages of morphine-induced conditioned place preference (CPP). Gut microbiome profiles were detected with 16S ribosomal RNA gene sequencing. We observed an increase in community richness following morphine conditioning, and it decreased after 4 weeks of abstinence. The abundance of Verrucomicrobia increased and Bacteroides decreased at the acquisition of morphine-induced CPP, while a recovery trend was found at the extinction stage. Several discriminative genera were identified for the characterization of different stages of morphine CPP. Functional analysis of taxa with differential abundance between CPP stages was mainly enriched in the pathways of amino acid metabolism. Taken together, our findings will extend the association between dysbiosis of the gut microbiome and the opioid-induced rewarding or reinforcing behaviors.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China
| | - Cuola Deji
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jingna Fan
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liao Chang
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China
| | - Xinyao Miao
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yifan Xiao
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yongsheng Zhu
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China..
| | - Shengbin Li
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.; Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China..
| |
Collapse
|
10
|
Stamatovich SN, Lopez-Gamundi P, Suchting R, Colpo GD, Walss-Bass C, Lane SD, Schmitz JM, Wardle MC. Plasma pro- and anti-inflammatory cytokines may relate to cocaine use, cognitive functioning, and depressive symptoms in cocaine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 47:52-64. [DOI: 10.1080/00952990.2020.1828439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Paula Lopez-Gamundi
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela D. Colpo
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Consuelo Walss-Bass
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott D. Lane
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joy M. Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Margaret C. Wardle
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Ezeomah C, Cunningham KA, Stutz SJ, Fox RG, Bukreyeva N, Dineley KT, Paessler S, Cisneros IE. Fentanyl self-administration impacts brain immune responses in male Sprague-Dawley rats. Brain Behav Immun 2020; 87:725-738. [PMID: 32165150 DOI: 10.1016/j.bbi.2020.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Opioid use disorder (OUD) affects over two million in the United States and is an increasing public health crisis. The abuse of fentanyl and the emergence of potent fentanyl derivatives increases the risk for the user to succumb to overdose, but also to develop OUD. While intense attention is currently focused on understanding the complexity of behaviors and neural functions that contribute to OUD, much remains to be discovered concerning the interactions of opioid intake with the immune response in the central nervous system (CNS). In the present studies, we tested the hypothesis that short-term abstinence from fentanyl self-administration associates with altered expression of innate immune markers. Male Sprague-Dawley rats were trained to self-administer fentanyl (0.0032 mg/kg/infusion) to stability followed by 24 h of abstinence. Several innate immune markers, as well as opioid receptors (ORs) and intracellular pattern recognition receptors (PRRs), were interrogated within nodes of the neurocircuitry involved in OUD processes, including the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), hippocampus (HIP) and midbrain (MB). In the present study, few immune targets were impacted in the PFC and MB during short-term abstinence from fentanyl (relative to saline) self-administration. However, increased expression of cytokines [e.g., interleukin (IL)1β, IL5], chemokines [e.g., C-C motif chemokine 20 (MIP3α)], tumor necrosis factor α (TNFα) and interferon (IFN) proteins (e.g., IFNβ and IFNγ)] was seen in the NAc, while decreased expression of cytokines (e.g., several ILs), chemokines [e.g., granulocyte-macrophage colony-stimulating factor (GMCSF), monocyte chemoattractant protein (MCP) MCP1, MIP3α], the chemokine ligand 5 (RANTES) and interferons (e.g., IFNβ and IFNγ) in the HIP. Positive correlations were observed between cumulative fentanyl intake and expression of IL1β and IL6 in the NAc, and significant negative correlations with fentanyl intake and IFN β, IL2, IL5, IL12p70 and IL17 in the HIP. Few changes in OR expression was observed during early abstinence from fentanyl self-administration. Excitingly, the expression of the PRR, stimulator of interferon genes (STING) negatively correlated with cumulative fentanyl intake and significantly correlated to specific cytokines, chemokines and interferon proteins in the HIP. Although the CPu appears relatively invulnerable to changes in innate immune markers, the highest correlations between cumulative fentanyl intake with MAVS and/or STING was measured in the CPu. Our findings provide the first evidence of CNS innate immune responses and implicate STING as novel mechanistic targets of immunomodulation during short-term abstinence from fentanyl self-administration.
Collapse
Affiliation(s)
- Chiomah Ezeomah
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Kathryn A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Sonja J Stutz
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Robert G Fox
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Natalya Bukreyeva
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Kelly T Dineley
- Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA
| | - Irma E Cisneros
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77550, USA.
| |
Collapse
|
12
|
Hillmer AT, Matuskey D, Huang Y, Nabulsi N, Ropchan J, Carson RE, O'Malley SS, Cosgrove KP. Tobacco Smoking in People Is Not Associated with Altered 18-kDa Translocator Protein Levels: A PET Study. J Nucl Med 2020; 61:1200-1204. [PMID: 32005773 DOI: 10.2967/jnumed.119.237735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of tobacco smoking on the immune system of the brain are not well elucidated. Although nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. PET imaging of the 18-kDa translocator protein (TSPO) provides a biomarker for microglia, the primary immunocompetent cells of the brain. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 h) and 20 nonsmokers using a fully quantitative modeling approach for the first time, to our knowledge. Methods: 11C-PBR28 (N-((2-(methoxy-11C)-phenyl)methyl)-N-(6-phenoxy-3-pyridinyl)acetamide) PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. 11C-PBR28 volumes of distribution were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence of significant differences in regional 11C-PBR28 volumes of distribution between smokers and nonsmokers (whole-brain Cohen d = 0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in the brain (measured as SUV) for tobacco smokers than for nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that nonsmokers and smokers have comparable TSPO levels in the brain. Additional work with other biomarkers is needed to fully characterize the effects of tobacco smoking on the brain immune system.
Collapse
Affiliation(s)
- Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut .,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - Stephanie S O'Malley
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Abstract
Despite decades of research, few medications have gained Food and Drug Administration (FDA) approval for the management of substance abuse disorder. The paucity of successful medications can be attributed, in part, to the lack of clearly identified neurobiological targets for addressing the core pathology of addictive behavior. Commonalities in the behavioral and brain processes involved in the rewarding effects of drugs and foods has prompted the evaluation of candidate medications that target neural pathways involved in both drug and eating disorders. Here, pharmacological strategies for the development of novel medications for drug addiction are presented in the context of potential overlapping neurobiological targets identified for eating disorders (e.g., obesity, overeating, binge-eating) and substance abuse. Mechanisms discussed in this chapter include modulators of the gut-brain axis (e.g., leptin, ghrelin, cholecystokinin, cocaine- and amphetamine-regulated transcript, and pancreatic peptides) and neurotransmitter systems (e.g., opioids, cannabinoids, dopamine, serotonin, and acetylcholine).
Collapse
|
14
|
Beard CL, Schmitz JM, Soder HE, Suchting R, Yoon JH, Hasan KM, Narayana PA, Moeller FG, Lane SD. Regional differences in white matter integrity in stimulant use disorders: A meta-analysis of diffusion tensor imaging studies. Drug Alcohol Depend 2019; 201:29-37. [PMID: 31176066 PMCID: PMC6660908 DOI: 10.1016/j.drugalcdep.2019.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Converging lines of evidence from diffusion tensor imaging (DTI) studies reveal significant alterations in white matter (WM) microstructure in the prefrontal cortex of chronic stimulant users compared to controls, suggesting compromised axonal microstructure and/or myelin. METHODS A meta-analysis of DTI-based WM integrity was conducted for white matter regions across the corpus callosum and association fibers. Articles were sourced and selected using PRISMA guidelines for systematic review and meta-analysis. Inclusion and exclusion criteria were determined by the authors in order to best capture WM integrity among individuals with primary stimulant use in comparison to healthy control subjects. RESULTS Eleven studies that focused on region-of-interest (ROI)-based analysis of WM integrity were extracted from an initial pool of 113 independent studies. Analysis across ROIs indicated significantly lower fractional anisotropy (FA) values in stimulant use groups compared to controls with a small to moderate overall effect (Hedges' g = -0.37, 95% CI [-0.54, -0.20]). Eigenvalues were also analyzed, revealing a significant effect for radial diffusivity (RD; Hedges' g = 0.24, 95% CI [0.01, 0.47]) but not axial diffusivity (AD; Hedges' g = 0.05, 95% CI [-0.20, 0.29]) or mean diffusivity (MD; Hedges' g = 0.20, 95% CI [-0.01, 0.41]). Subgroup analyses based on specific ROIs, primary substance use, poly-substance use, and imaging technology were also explored. CONCLUSION Results of the present study suggest a consistent effect of compromised WM integrity for individuals with stimulant use disorders. Furthermore, no significant differences were found between cocaine and methamphetamine-based groups.
Collapse
Affiliation(s)
- Charlotte L Beard
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA; Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA
| | - Joy M Schmitz
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA.
| | - Heather E Soder
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Robert Suchting
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Jin H Yoon
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Ponnada A Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | | | - Scott D Lane
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Rd., Houston, TX, 77054, USA
| |
Collapse
|
15
|
Liśkiewicz A, Przybyła M, Park M, Liśkiewicz D, Nowacka-Chmielewska M, Małecki A, Barski J, Lewin-Kowalik J, Toborek M. Methamphetamine-associated cognitive decline is attenuated by neutralizing IL-1 signaling. Brain Behav Immun 2019; 80:247-254. [PMID: 30885840 PMCID: PMC7210788 DOI: 10.1016/j.bbi.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 11/28/2022] Open
Abstract
Methamphetamine (METH) abusers are prone to develop a variety of comorbidities, including cognitive disabilities, and the immunological responses have been recognized as an important component involved in the toxicity of this drug. Cytokines are among the key mediators between systemic inflammatory status and tissue responses. One of these, interleukin 1 (IL-1), has been hypothesized to be involved in cognitive functions and also appears to play a pivotal role among inflammatory molecules. In the present study, we demonstrate that exposure of mice to METH markedly increased the protein level of IL-1β in hippocampal tissue. Additionally, METH administration induced a decline in spatial learning as determined by the Morris water maze test. We next evaluated the hypothesis that blocking IL-1β signaling can protect against METH-induced loss of cognitive functioning. The results indicated that METH-induced impaired spatial learning abilities were attenuated by co-administration of mouse IL-1 Trap, a dimeric fusion protein that incorporates the extracellular domains of both of the IL-1 receptor components required for IL-1 signaling (IL-1 receptor type 1 and IL-1 receptor accessory protein), linked to the Fc portion of murine IgG2a. This effect was associated with a decrease in hippocampal IL-1β level. The current study indicates for the first time that the loss of METH-related cognitive decline can be attenuated by neutralizing IL-1 signaling. Our findings suggest a potential new therapeutic pathway for treatment of altered cognitive abilities that occur in METH abusing individuals.
Collapse
Affiliation(s)
- Arkadiusz Liśkiewicz
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department of Physiology, Medical University of Silesia, Katowice 40-752, Poland.
| | - Marta Przybyła
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami, School of Medicine, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Jarosław Barski
- Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Medical University of Silesia, Katowice 40-752, Poland
| | - Michal Toborek
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department of Biochemistry and Molecular Biology, University of Miami, School of Medicine, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
16
|
Andersen SL. Stress, sensitive periods, and substance abuse. Neurobiol Stress 2019; 10:100140. [PMID: 30569003 PMCID: PMC6288983 DOI: 10.1016/j.ynstr.2018.100140] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Research on the inter-relationship between drug abuse and social stress has primarily focused on the role of stress exposure during adulthood and more recently, adolescence. Adolescence is a time of heightened reward sensitivity, but it is also a time when earlier life experiences are expressed. Exposure to stress early in postnatal life is associated with an accelerated age of onset for drug use. Lifelong addiction is significantly greater if drug use is initiated during early adolescence. Understanding how developmental changes following stress exposure interact with sensitive periods to unfold over the course of maturation is integral to reducing their later impact on substance use. Arousal levels, gender/sex, inflammation, and the timing of stress exposure play a role in the vulnerability of these circuits. The current review focuses on how early postnatal stress impacts brain development during a sensitive period to increase externalizing and internalizing behaviors in adolescence that include social interactions (aggression; sexual activity), working memory impairment, and depression. How stress effects the developmental trajectories of brain circuits that are associated with addiction are discussed for both clinical and preclinical studies.
Collapse
|
17
|
Adisetiyo V, McGill CE, DeVries WH, Jensen JH, Hanlon CA, Helpern JA. Elevated Brain Iron in Cocaine Use Disorder as Indexed by Magnetic Field Correlation Imaging. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:579-588. [PMID: 30581153 DOI: 10.1016/j.bpsc.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Iron homeostasis is a critical biological process that may be disrupted in cocaine use disorder (CUD). In the brain, iron is required for neural processes involved in addiction and can be lethal to cells if unbound, especially in excess. Moreover, recent studies have implicated elevated brain iron in conditions of prolonged psychostimulant exposure. Thus, the purpose of this study was to examine iron in basal ganglia reward regions of individuals with CUD using an advanced imaging method called magnetic field correlation (MFC) imaging. METHODS MFC imaging was acquired in 19 non-treatment-seeking individuals with CUD and 19 healthy control individuals (both male and female). Region-of-interest analyses for MFC group differences and within-group correlations with age and years of cocaine use were conducted in the globus pallidus internal segment (GPi), globus pallidus external segment, putamen, caudate nucleus, thalamus, and red nucleus. RESULTS Individuals with CUD had significantly elevated MFC compared with control individuals within the GPi. In control individuals, MFC significantly increased with age in the GPi, globus pallidus external segment, putamen, and caudate nucleus. Conversely, there were no significant MFC within-group correlations in the CUD group. CONCLUSIONS Individuals with CUD have excess iron in the GPi, as indexed by MFC, and lack the age-related gradual iron deposition seen in normal aging. Because the globus pallidus is critical for the transition of goal-directed behavior to compulsive behavior, significantly elevated iron in the GPi may contribute to the persistence of CUD. These findings implicate dysregulation of brain iron homeostasis in CUD and support pursuing this new line of research.
Collapse
Affiliation(s)
- Vitria Adisetiyo
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| | - Corinne E McGill
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - William H DeVries
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| | - Colleen A Hanlon
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph A Helpern
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina; Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
19
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
20
|
Maternal Overnutrition Programs Central Inflammation and Addiction-Like Behavior in Offspring. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8061389. [PMID: 30027100 PMCID: PMC6031166 DOI: 10.1155/2018/8061389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022]
Abstract
Obesity or maternal overnutrition during pregnancy and lactation might have long-term consequences in offspring health. Fetal programming is characterized by adaptive responses to specific environmental conditions during early life stages. Programming alters gene expression through epigenetic modifications leading to a transgenerational effect of behavioral phenotypes in the offspring. Maternal intake of hypercaloric diets during fetal development programs aberrant behaviors resembling addiction in offspring. Programming by hypercaloric surplus sets a gene expression pattern modulating axonal pruning, synaptic signaling, and synaptic plasticity in selective regions of the reward system. Likewise, fetal programming can promote an inflammatory phenotype in peripheral and central sites through different cell types such as microglia and T and B cells, which contribute to disrupted energy sensing and behavioral pathways. The molecular mechanism that regulates the central and peripheral immune cross-talk during fetal programming and its relevance on offspring's addictive behavior susceptibility is still unclear. Here, we review the most relevant scientific reports about the impact of hypercaloric nutritional fetal programming on central and peripheral inflammation and its effects on addictive behavior of the offspring.
Collapse
|