1
|
Liu M, Gong S, Sheng X, Zhang Z, Wang X. Bioinformatic identification of important roles of COL1A1 and TNFRSF12A in cartilage injury and osteoporosis. J Int Soc Sports Nutr 2025; 22:2454641. [PMID: 39847474 PMCID: PMC11758804 DOI: 10.1080/15502783.2025.2454641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025] Open
Abstract
OBJECTIVE The aim of this study was to identify the key regulatory mechanisms of cartilage injury and osteoporosis through bioinformatics methods, and to provide a new theoretical basis and molecular targets for the diagnosis and treatment of the disease. METHODS Microarray data for cartilage injury (GSE129147) and osteoporosis (GSE230665) were first downloaded from the GEO database. Differential expression analysis was applied to identify genes that were significantly up-or down-regulated in the cartilage injury and osteoporosis samples. These genes were subjected to GO enrichment analysis and KEGG pathway analysis. In addition, we employed SVA and RRA methods to merge the two sets of data, eliminating batch effects and enhancing the statistical power of the analysis. Through WGCNA, we identified gene modules that were closely associated with disease phenotypes and then screened for key genes that intersected with differentially expressed genes. The diagnostic value of these genes as potential biomarkers was evaluated by ROC analysis. Moreover, we performed an immune infiltration analysis to explore the correlation between these core genes and immune cell infiltration. RESULTS We performed GO enrichment analysis and KEGG pathway analysis of genes significantly up-or down-regulated in cartilage injury and osteoporosis samples. Important biological processes, cellular components and molecular functions, and key metabolic or signaling pathways associated with osteoporosis and cartilage injury were identified. Through WGCNA, we identified gene modules that were closely associated with the disease phenotype, from which we then screened for key genes that intersected with differentially expressed genes. Ultimately, we focused on two identified core genes, COL1A1 and TNFRSF12A, and assessed the diagnostic value of these genes as potential biomarkers by ROC analysis. Meanwhile, GSVA provided an in-depth view of the role of these genes in disease-specific biological pathways. Immune infiltration analysis further revealed the possible key role of COL1A1 and TNFRSF12A in regulating immune cell infiltration in osteoporosis and cartilage injury. CONCLUSION COL1A1 and TNFRSF12A as key regulatory molecules in osteoporosis and cartilage injury.
Collapse
Affiliation(s)
- Muzi Liu
- Jiujiang No.1 People’s Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China
| | - Shiguo Gong
- Jiujiang No.1 People’s Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China
| | - Xin Sheng
- Jiujiang No.1 People’s Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China
- The First Affiliated Hospital of Nanchang University, Department of Orthopedics, Nanchang, China
| | - Zihong Zhang
- Jiujiang No.1 People’s Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China
| | - Xichun Wang
- Jiujiang No.1 People’s Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China
| |
Collapse
|
2
|
Wang Q, Li Y, Zhang Y, Wu X, Wang S, Sun X, Wang J. Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Combined with PEG Hydrogel Alleviate Maternal Simulated Birth Injury in a Rat Model. Adv Healthc Mater 2025:e2405259. [PMID: 40237194 DOI: 10.1002/adhm.202405259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Pelvic organ prolapse (POP) is a common and distressing condition affecting women, particularly those with a history of vaginal delivery. The impact of extracellular vesicles derived from adipose-derived mesenchymal stem cells (ADSC-EVs) on pelvic floor tissue injury remains unclear. Due to their short half-life and rapid clearance in vivo, ADSC-EVs lose efficacy quickly. To address this, an injectable tetra-PEG hydrogel to encapsulate ADSC-EVs (PEG@EVs) is developed. The hydrogel is formed by tetra-PEG-NH2 and tetra-PEG-NHS through an ammonolysis reaction, leading to the formation of amide bonds within seconds. Vaginal wall tissue from POP patients shows disruption in the extracellular matrix, lipid peroxidation, and inflammation. In vitro, ADSC-EVs significantly reduce H₂O₂-induced oxidative stress, lipid oxidation, and apoptosis, while enhancing the expression of Nrf2 and its downstream targets-CAT, NQO1, HO-1, and SOD2. ADSC-EVs also upregulate GPX4 and SLC7A11, reducing mitochondrial damage and mitigating ferroptosis. The Nrf2 inhibitor ML385 reverses these protective effects. In a rat model of childbirth injury, PEG@EVs treatment promotes Nrf2 nuclear translocation, induces the M1-to-M2 macrophage conversion, reduces inflammation, and stimulates collagen deposition, thereby accelerating vaginal wall repair. The findings of this study may serve as a foundation for early targeted intervention in POP, representing a promising therapeutic approach.
Collapse
Affiliation(s)
- Qing Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China
- Pelvic Floor Disorders Research Center of Peking University Health Science Center, Beijing, 100044, China
- Research Center of Female Pelvic Floor Disorders of Peking University, Beijing, 100044, China
| | - Yaqin Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China
- Pelvic Floor Disorders Research Center of Peking University Health Science Center, Beijing, 100044, China
- Research Center of Female Pelvic Floor Disorders of Peking University, Beijing, 100044, China
| | - Yue Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China
- Pelvic Floor Disorders Research Center of Peking University Health Science Center, Beijing, 100044, China
- Research Center of Female Pelvic Floor Disorders of Peking University, Beijing, 100044, China
| | - Xiaotong Wu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China
- Pelvic Floor Disorders Research Center of Peking University Health Science Center, Beijing, 100044, China
- Research Center of Female Pelvic Floor Disorders of Peking University, Beijing, 100044, China
| | - Shiyan Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China
- Pelvic Floor Disorders Research Center of Peking University Health Science Center, Beijing, 100044, China
- Research Center of Female Pelvic Floor Disorders of Peking University, Beijing, 100044, China
| | - Xiuli Sun
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China
- Pelvic Floor Disorders Research Center of Peking University Health Science Center, Beijing, 100044, China
- Research Center of Female Pelvic Floor Disorders of Peking University, Beijing, 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, No.11, Xi-Zhi-Men South Street, Xi Cheng District, Beijing, 100044, China
- Pelvic Floor Disorders Research Center of Peking University Health Science Center, Beijing, 100044, China
- Research Center of Female Pelvic Floor Disorders of Peking University, Beijing, 100044, China
| |
Collapse
|
3
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
An P, Wang J, Fan R. Identifying and validating PLAU as a potential prognostic biomarker for PDAC. Sci Rep 2025; 15:12515. [PMID: 40216916 PMCID: PMC11992124 DOI: 10.1038/s41598-025-97629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a prevalent cancer with a high mortality rate. This study aims to identify and validate biomarkers for early PDAC diagnosis. We employed the GEO2R online tool to screen differentially expressed genes (DEGs), construct protein interaction networks, and perform functional enrichment analysis, survival prognosis analysis, and expression level validation. We identified 260 DEGs, comprising 165 upregulated genes and 95 downregulated genes. Following functional enrichment and survival analysis, we selected plasminogen activator urokinase (PLAU) for the RNA and protein level verification and preliminary cell phenotype analysis. We found that PLAU knockdown inhibits the proliferation and survival of pancreatic cancer cells. Therefore, PLAU may serve as a potential biomarker, offering new strategies for understanding PDAC's pathological mechanisms.
Collapse
Affiliation(s)
- Peng An
- Material Evidence Technology Center, School of Law, Tianjin University of Commerce, Tianjin, 300134, China.
| | - Junhong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rong Fan
- Central Laboratory, Tianjin Xiqing hospital, Tianjin, 300380, PR China.
| |
Collapse
|
5
|
Xiong X, Du Y, Liu P, Li X, Lai X, Miao H, Ning B. Unveiling EIF5A2: A multifaceted player in cellular regulation, tumorigenesis and drug resistance. Eur J Pharmacol 2025; 997:177596. [PMID: 40194645 DOI: 10.1016/j.ejphar.2025.177596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The eukaryotic initiation factor 5A2 gene (EIF5A2) is a highly conserved and multifunctional gene that significantly influences various cellular processes, including translation elongation, RNA binding, ribosome binding, protein binding and post-translational modifications. Overexpression of EIF5A2 is frequently observed in multiple cancers, where it functions as an oncoprotein. Additionally, EIF5A2 is implicated in drug resistance through the regulation of various molecular pathways. In the review, we describe the structure and functions of EIF5A2 in normal cells and its role in tumorigenesis. We also elucidate the molecular mechanisms associated with EIF5A2 in the context of tumorigenesis and drug resistance. We propose that the biological roles of EIF5A2 in regulating diverse cellular processes and tumorigenesis are clinically significant and warrant further investigation.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China; Guangzhou Institute of Burn Clinical Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Yanli Du
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Peng Liu
- Departments of Burn and Plastic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xinye Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xudong Lai
- Department of infectious disease, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Haixiong Miao
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
6
|
Mastrogiacomo DM, Price A, Fu Y, Banerjee R, Knauer LA, Li K, Yang Y, Davis GE, Dellinger MT, Scallan JP. Lymphatic Malformations with Activating KRAS Mutations Impair Lymphatic Valve Development Through Matrix Metalloproteinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646922. [PMID: 40236167 PMCID: PMC11996454 DOI: 10.1101/2025.04.02.646922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BACKGROUND Lymphatic malformations (LMs) are lesions due to inherited or somatic mutations that lead to a defective lymphatic vasculature. Activating KRAS mutations have been identified recently in LM patients with lymphedema, chylous ascites, or life-threatening chylothorax. In a LM mouse model, KRAS mutations are associated with a loss of lymphatic valves, which has been proposed to cause chylothorax via retrograde lymph flow into the pleural space. However, the mechanisms underlying the loss of lymphatic valves are unknown. METHODS To investigate the mechanisms leading to valve loss, we combined the lymphatic-specific and tamoxifen-inducible Flt4CreER T2 with Kras-loxP-stop-loxP-G12D ( Kras +/G12D ) mice and Prox1GFP reporter mice to induce the restricted expression of KRAS-G12D and enable valve quantification in postnatal pups. Human dermal lymphatic endothelial cells (hdLECs) expressing KRAS-G12D were probed for changes in mRNA and protein expression with qRT-PCR, western blot, and gel zymography, and mechanistic studies were performed using 3D cell culture in collagen matrices. RESULTS Our data showed that lymphatic-specific expression of KRAS-G12D significantly attenuated valve development in the mesentery, diaphragm, and ear skin. qRT-PCR, western blot, and gel zymography using hdLECs expressing KRAS-G12D revealed the upregulation of the plasminogen activator (PA) pathway and matrix metalloproteinases (MMPs). The MMPs were sufficiently activated by plasmin, the product of the PA pathway, in hdLECs grown in a 3D collagen matrix, indicating a role for MMPs in the degradation of valve ECM core. Furthermore, a broad-spectrum MMP inhibitor given to Flt4CreER T2 ;Kras +/G12D mice rescued lymphatic valve development. CONCLUSIONS We conclude that hyperactive KRAS signaling upregulates MMPs that become excessively activated by the upregulation of the PA pathway. MMPs then degrade the lymphatic valve ECM core preventing valve formation.
Collapse
|
7
|
Ben-Haim AE, Shalev N, Amalraj AJJ, Zelinger E, Mani KA, Belausov E, Shoval I, Nativ-Roth E, Maria R, Atkins A, Sadashiva R, Koltai H, Mechrez G. Nanocarriers for cancer-targeted delivery based on Pickering emulsions stabilized by casein nanoparticles. Int J Biol Macromol 2025; 298:140822. [PMID: 39929470 DOI: 10.1016/j.ijbiomac.2025.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
This study demonstrates the development of stimuli-responsive Pickering emulsions stabilized by casein nanoparticles (CNPs) for targeted drug delivery to colorectal cancer cells (CRC). Encapsulation of a fluorescent dye simulates therapeutic delivery, demonstrating biomedical potential. The oil-in-water nanoemulsions stabilized by CNPs function as nanocarriers sensitive to matrix metalloproteinase-7 (MMP-7), an enzyme overexpressed in CRC cells, enabling precise drug release. Emulsions exhibited strong stability due CNPs forming a robust layer at the oil-water interface, enhancing bioavailability and controlled release. Covalent modifications of CNPs with polyethyleneimine (PEI) or polyacrylic acid (PAA), and pH adjustments optimize the zeta potential, improving surface charge and delivery efficiency. Maximal CNP uptake occurred with PAA-modified CNPs (-20 mV), showing superior interaction with CRC cells compared to pristine (-6.7 mV) and PEI-modified (+30.5, +42.1 mV) CNPs. Confocal microscopy and imaging flow cytometry confirmed that CNP-stabilized emulsions enhance CRC inter-localization compared to dispersed CNPs. Nanoemulsions with the highest CNP uptake showed selective interaction with tumor cells, while minimizing oil droplet uptake, driven by nanoscale dimensions and targeted surface interactions. Enzymatic degradation of CNPs by MMP-7 induces phase separation and targeted release. This dual-functional system, leveraging charge modification and enzymatic responsiveness, highlights CNP-stabilized nanoemulsions as a promising CRC-targeted drug delivery platform.
Collapse
Affiliation(s)
- Avital Ella Ben-Haim
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Nurit Shalev
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Antolin Jesila Jesu Amalraj
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Einat Zelinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Irit Shoval
- The Kanbar core facility unit, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Einat Nativ-Roth
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Ayelet Atkins
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Rajitha Sadashiva
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel.
| |
Collapse
|
8
|
Yuksel N, Ozel-Turkcu U, Gok M, Saritas O, Yazici B. Eyelid skin and fibroadipose tissue MMP-1, MMP-3, TNF-α, and IL-6 levels in patients with inactive moderate-to-severe Graves' orbitopathy. Orbit 2025; 44:190-195. [PMID: 39442182 DOI: 10.1080/01676830.2024.2414770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE To evaluate matrix metalloprotease-1 (MMP-1), matrix metalloprotease-3 (MMP-3), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) levels in the eyelid skin and fibroadipose tissue in patients with inactive moderate-to-severe Graves' orbitopathy (GO). METHODS This prospective study included 23 patients with inactive moderate-to-severe GO who underwent upper blepharoplasty and medial fat excision, and 22 age- and sex-matched healthy subjects. MMP-1, MMP-3, TNF-α, and IL-6 levels in the skin and fibroadipose tissue obtained during surgery were measured using the ELISA method. RESULTS The mean MMP-1 level in the eyelid skin (p = .003) and the mean MMP-3 level in the fibroadipose tissue (p = .04) were significantly lower in the GO group compared to the healthy control group. There were no differences in other mediators in both tissues between the two groups (p > .05). CONCLUSIONS The lower levels of proteolytic enzymes such as MMP-1 and MMP-3 in the eyelid skin and orbital fibroadipose tissue of patients with chronic inactive GO may play a role in the increase of collagen and glycosaminoglycans in orbital soft tissues.
Collapse
Affiliation(s)
- Nilay Yuksel
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Ummuhani Ozel-Turkcu
- Medical Faculty, Department of Medical Biochemistry, Mugla Sitki Kocman University, Mugla, Turkey
| | - Muslum Gok
- Medical Faculty, Department of Medical Biochemistry, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozge Saritas
- Department of Ophthalmology, Battalgazi State Hospital, Malatya, Turkey
| | | |
Collapse
|
9
|
Formica ML, Paz MC, Vaglienti MV, Subirada PV, Fernández Y, Joray MB, Luna JD, Barcelona PF, Palma SD, Sánchez MC. Doxycycline inhibits MMP-2 retinal activity and modulates the angiogenic process in vitro and in vivo. Front Cell Dev Biol 2025; 13:1561250. [PMID: 40230413 PMCID: PMC11994896 DOI: 10.3389/fcell.2025.1561250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Vascular endothelial growth factor (VEGF) inhibition is currently the first-line therapy for various retinal vascular disorders, however there is a strong need to develop novel therapies to target other molecules involved in the angiogenic process. In addition to well-known antibiotic properties, Doxycycline (DXC) has versatile non-antibiotic properties, therefore, our goal was to evaluate the effect of DXC on matrix metalloproteinase-2 (MMP-2) as a potential therapeutic alternative for retinal neovascularization (NV), using vascular and glial cells and the oxygen-induced retinopathy (OIR) mouse model. Methods MGC and BAEC viability under DXC treatment was evaluated using an MTT assay. Changes of Pro MMP-2 and MMP-2 activity were measured by gelatin zymography assay in MIO-M1 cells incubated with DXC under normoxia and hypoxic conditions. VEGF-induced angiogenesis was assessed by tube formation assay in BAEC incubated with DXC for 24 h C57BL/6 mice exposed to OIR model, were intravitreally injected with a single dose of DXC at post-natal day (P)12 and retinas evaluated at P17. Results DXC significantly decreased pro MMP-2 and MMP-2 activity in MIO-M1 supernatants and increased hypoxic-induced mRNA expression of pigmentary epithelium-derived factor (PEDF). Moreover, DXC inhibited the VEGF-induced tube formation in endothelial cells. A single intraocular administration of DXC at postnatal day (P) 12 showed a significant decrease of pro MMP-2 and MMP-2 activity together with a reduced NV and vaso-obliteration in P17 mouse retinas of OIR eyes, while no significant difference was observed neither in MMP-2 nor in VEGF protein expression. Discussion Our results lead to propose a possible DXC mechanism for inhibition of angiogenesis through the modulation of MMPs involving the VEGF/PEDF balance. These findings underscore the potential repositioning of DXC as a new possibility for treating ocular proliferative diseases.
Collapse
Affiliation(s)
- María Lina Formica
- Conicet y Departamento de Ciencias Farmacéuticas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Constanza Paz
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - María Victoria Vaglienti
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Paula Virginia Subirada
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Yamila Fernández
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - José Domingo Luna
- Departamento de Vitreo-Retina, Centro Privado de Ojos Romagosa S.A, Córdoba, Argentina
| | - Pablo Federico Barcelona
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Santiago Daniel Palma
- Conicet y Departamento de Ciencias Farmacéuticas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Cecilia Sánchez
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
10
|
Tian Z, Tang Y, Wang J, Zhang Z, Meng L, Zhang H, Zhang Y. Impact of differentially expressed genes and proteins in donor arterial plaque on renal function recovery following allogeneic kidney transplantation. Transl Androl Urol 2025; 14:637-650. [PMID: 40226083 PMCID: PMC11986501 DOI: 10.21037/tau-2024-736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/23/2025] [Indexed: 04/15/2025] Open
Abstract
Background Donor kidney arteriosclerotic plaque is a risk factor for renal allograft functional injury. The aim of this study was to screen, identify, and verify differentially expressed genes (DEGs) and proteins in arteriosclerotic plaques and analyze their correlation with renal transplant function recovery. Methods This study included 82 deceased donor allogeneic kidney transplant recipients and analyzed 20 eligible donor arterial plaque specimens. Patients were divided into "no or mild" and "moderate or severe" donor arteriosclerotic plaque groups. The latter group was further divided into impaired and normal kidney function groups. Correlations between target DEGs and proteins and transplanted kidney function recovery were determined using immunofluorescence assay, polymerase chain reaction (PCR), and western blotting. Results We identified 40 intersecting DEGs. Matrix metallopeptidase 12 (MMP12) and aquaporin 9 (AQP9) were identified as target DEGs, with their expression found to be higher in the "moderate or severe" group compared with that in the "no or mild" group. Additionally, MMP12 and AQP9 expression was higher in the impaired group than it was in the normal kidney function group. MMP12 and AQP9 are associated with transplanted kidney function recovery. Conclusions Our study contributes valuable information to the development of clinical strategies for kidney transplant maintenance.
Collapse
Affiliation(s)
- Zijian Tian
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yongbin Tang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinfu Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhipeng Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yaqun Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Chen Y, Zou J, Niimi M, Qiu X, Zhang S, Yang H, Zhu M, Fan J. Matrix Metalloproteinase-9 Enhances Osteoclastogenesis: Insights from Transgenic Rabbit Bone Marrow Models and In Vitro Studies. Int J Mol Sci 2025; 26:3194. [PMID: 40244002 PMCID: PMC11989254 DOI: 10.3390/ijms26073194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Osteoclastogenesis is tightly regulated by receptor activator of nuclear factor kappa-B ligand (RANKL) signaling, yet the role of matrix metalloproteinase-9 (MMP-9) in this process remains controversial. We established a high-yield osteoclastogenesis system using cryopreserved rabbit bone marrow cells (1 × 109 cells/femur) treated with Macrophage colony-stimulating factor (M-CSF) and RANKL. Bone marrow cells from MMP-9 transgenic rabbits (macrophage-specific overexpression) and MMP-9-transfected RAW264.7 macrophages were compared to wild-type controls. MMP-9 overexpression increased osteoclastogenesis 5.5-fold (20 ng/mL RANKL, * p < 0.01) while suppressing inflammatory cytokines (IL-1β, TNF-α). RAW264.7 macrophages stably transfected with human MMP-9 similarly exhibited reduced inflammatory cytokine levels and enhanced osteoclastogenesis. MMP-9 acts as a dual regulator of osteoclastogenesis and inflammation, suggesting therapeutic potential for osteoporosis management.
Collapse
Affiliation(s)
- Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.C.); (J.Z.); (X.Q.); (S.Z.); (H.Y.)
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan;
| | - Jialun Zou
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.C.); (J.Z.); (X.Q.); (S.Z.); (H.Y.)
| | - Manabu Niimi
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan;
| | - Xuan Qiu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.C.); (J.Z.); (X.Q.); (S.Z.); (H.Y.)
| | - Shuang Zhang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.C.); (J.Z.); (X.Q.); (S.Z.); (H.Y.)
| | - Han Yang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.C.); (J.Z.); (X.Q.); (S.Z.); (H.Y.)
| | - Maobi Zhu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.C.); (J.Z.); (X.Q.); (S.Z.); (H.Y.)
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (Y.C.); (J.Z.); (X.Q.); (S.Z.); (H.Y.)
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan;
| |
Collapse
|
12
|
Liu J, Li Y, Lian X, Zhang C, Feng J, Tao H, Wang Z. Potential target within the tumor microenvironment - MT1-MMP. Front Immunol 2025; 16:1517519. [PMID: 40196128 PMCID: PMC11973285 DOI: 10.3389/fimmu.2025.1517519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Matrix metalloproteinases are integral to the modification of the tumor microenvironment and facilitate tumor progression by degrading the extracellular matrix, releasing cytokines, and influencing the recruitment of immune cells. Among the matrix metalloproteinases, membrane-type matrix metalloproteinase 1 (MT1-MMP/MMP14) is the first identified membrane-type MMP and acts as an essential proteolytic enzyme that enables tumor infiltration and metastatic progression. Given the pivotal role of MT1-MMP in tumor progression and the correlation between its overexpression in tumors and unfavorable prognoses across multiple cancer types, a comprehensive understanding of the potential functional mechanisms of MT1-MMP is essential. This knowledge will aid in the advancement of diverse anti-tumor therapies aimed at targeting MT1-MMP. Although contemporary research has highlighted the considerable potential of MT1-MMP in targeted cancer therapy, studies pertaining to its application in cell therapy remain relatively limited. In this review, we delineate the structural characteristics and regulatory mechanisms of MT1-MMP expression, as well as its biological significance in tumorigenesis. Finally, we discussed the current status and prospects of anti-tumor therapies targeting MT1-MMP.
Collapse
Affiliation(s)
- Jinlong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yijing Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueqi Lian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenglin Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianing Feng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongfei Tao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Xu Q, Yang Y, Huang Q, Xie L, Feng Y, Yang L. Extracellular(Serum) Levels of Matrix Metalloproteinases in Pediatric Type 1 Diabetes Mellitus and Association with Diabetic Ketoacidosis and Cerebral Edema. Diabetes Metab Syndr Obes 2025; 18:819-830. [PMID: 40129484 PMCID: PMC11932032 DOI: 10.2147/dmso.s507337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) in children is associated with acute complications such as diabetic ketoacidosis (DKA) and the severe risk of diabetic ketoacidosis-related cerebral edema (DKACE). Matrix metalloproteinases (MMPs) are implicated in inflammation and tissue remodeling, potentially contributing to these complications. This study explores the role of MMPs as biomarkers in pediatric T1DM patients with DKA and DKACE. Methods We conducted a systematic cross-sectional study at Jiangxi Children's Hospital, enrolling 56 pediatric patients with T1DM, categorized into three groups: T1DM without complications, DKA, and DKACE. Serum levels of MMP-2, MMP-3, and MMP-9 were measured through ELISA. Statistical analyses assessed correlations between MMPs, glucose metabolism, and inflammatory markers, evaluating potential biomarker utility in disease characterization. Results MMP-3 and MMP-9 levels were significantly elevated in the DKACE group compared to the T1DM and DKA groups, exhibiting strong correlations with decreased pH and bicarbonate levels (both p < 0.001). MMP-2 levels were reduced in DKACE, correlating positively with pH and bicarbonate levels. Post-clinical improvement analyses demonstrated no significant differences in MMP levels between DKA and DKACE groups, suggesting stabilization post-treatment regardless of initial acidosis severity. Conclusion The distinct patterns of MMP-3 and MMP-9 elevations in DKACE highlight their potential as biomarkers for identifying and monitoring severe DKA complications. The findings suggest these enzymes play a significant role in cerebral edema pathophysiology, making them viable targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Qingbo Xu
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Yu Yang
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Qiang Huang
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Liling Xie
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Yaqin Feng
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Li Yang
- Department of Endocrinology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, 330038, People’s Republic of China
- The Affiliated Children’s Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330038, People’s Republic of China
| |
Collapse
|
14
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
15
|
Liu X, Shao Y, Li Y, Chen Z, Shi T, Tong Q, Zou X, Ju L, Pan J, Zhuang R, Pan X. Extensive Review of Nanomedicine Strategies Targeting the Tumor Microenvironment in PDAC. Int J Nanomedicine 2025; 20:3379-3406. [PMID: 40125427 PMCID: PMC11927507 DOI: 10.2147/ijn.s504503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world, mainly because of its powerful pro-connective tissue proliferation matrix and immunosuppressive tumor microenvironment (TME), which promote tumor progression and metastasis. In addition, the extracellular matrix leads to vascular collapse, increased interstitial fluid pressure, and obstruction of lymphatic return, thereby hindering effective drug delivery, deep penetration, and immune cell infiltration. Therefore, reshaping the TME to enhance tumor perfusion, increase deep drug penetration, and reverse immune suppression has become a key therapeutic strategy. Traditional therapies for PDAC, including surgery, radiation, and chemotherapy, face significant limitations. Surgery is challenging due to tumor location and growth, while chemotherapy and radiation are hindered by the dense extracellular matrix and immunosuppressive TME. In recent years, the advancement of nanotechnology has provided new opportunities to improve drug efficacy. Nanoscale drug delivery systems (NDDSs) provide several advantages, including improved drug stability in vivo, enhanced tumor penetration, and reduced systemic toxicity. However, the clinical translation of nanotechnology in PDAC therapy faces several challenges. These include the need for precise targeting and control over drug release, potential immune responses to the nanocarriers, and the scalability and cost-effectiveness of production. This article provides an overview of the latest nanobased methods for achieving better therapeutic outcomes and overcoming drug resistance. We pay special attention to TME-targeted therapy in the context of PDAC, discuss the advantages and limitations of current strategies, and emphasize promising new developments. By emphasizing the enormous potential of NDDSs in improving the treatment outcomes of patients with PDAC, while critically discussing the limitations of traditional therapies and the challenges faced by nanotechnology in achieving clinical breakthroughs, our review paves the way for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Xing Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, People’s Republic of China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Yunjiang Li
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Zuhua Chen
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Qiao Tong
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xi Zou
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Liping Ju
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Jinming Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| |
Collapse
|
16
|
Hansen AH, Lorentzen LG, Leeming DJ, Sand JMB, Hägglund P, Davies MJ. Peptidomic and proteomic analysis of precision-cut lung slice supernatants. Anal Biochem 2025; 702:115837. [PMID: 40058539 DOI: 10.1016/j.ab.2025.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
The precision-cut lung slice (PCLS) model is an ex vivo tissue system that has been used to model disease and examine the effects of exogenous compounds. Few studies have been carried out on the complement of proteins (proteome) and peptides (peptidome) secreted by PCLS and other tissue sections, during tissue culture, although such data are likely to provide critical information on the biology of tissue slices and the changes these undergo. In this study, a workflow was developed to examine the peptidome and proteome of PCLS supernatants using a modified single-pot, solid-phase-enhanced sample preparation (SP3) workflow. The performance of the SP3 workflow was evaluated in a head-to-head comparison against ultrafiltration by quantifying the recovery of synthetic peptide constructs. The SP3 workflow outperformed ultrafiltration in terms of recovery of small synthetic peptides regardless of the organic solvent used in SP3 (acetone or acetonitrile) and ultrafiltration molecular mass cut-off (2 or 10 kDa). The developed SP3 workflow provided robust data when analyzing PCLS supernatants across different conditions. The method allows, within a single workflow from individual samples, the identification of both large numbers of different native peptides (489) and also proteins (370) released from the tissue to the supernatants. This approach therefore has the capacity to provide both broad and in-depth peptidome and proteome data, with potential wide applicability to analyze the secretome of cultured tissue samples.
Collapse
Affiliation(s)
- Annika H Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark.
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diana J Leeming
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jannie M B Sand
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Zhou H, Kee HJ, Wan L, Asfaha Y, Fischer F, Kassack MU, Kurz T, Kim SH, Kee SJ, Hong YJ, Jeong MH. YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12. Korean Circ J 2025; 55:231-247. [PMID: 39601396 PMCID: PMC11922594 DOI: 10.4070/kcj.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism. METHODS New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area. The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12). RESULTS YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9-11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes. HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes. CONCLUSIONS YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
Collapse
Affiliation(s)
- Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.
| | - Le Wan
- Deparment of Orthopedics, Chonnam National University Hospital, Gwangju, Korea
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Seong Hoon Kim
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Gwangju Veterans Hospital, Gwangju, Korea.
| |
Collapse
|
18
|
Beltrán-Hernández NE, Cardenas L, Jimenez-Jacinto V, Vega-Alvarado L, Rivera HM. Biological Activity of Biomarkers Associated With Metastasis in Osteosarcoma Cell Lines. Cancer Med 2025; 14:e70391. [PMID: 40079158 PMCID: PMC11904427 DOI: 10.1002/cam4.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood. Clarifying the molecular pathways involved in metastasis is essential for enhancing patient prognoses and facilitating the development of targeted therapeutic strategies. METHODS RNA sequencing (RNA-Seq) analysis was employed to compare three conditions, hFOB1.19 versus Saos-2, hFOB1.19 versus SJSA-1, and Saos-2 versus SJSA-1, involving non-cancer osteoblasts (hFOB1.19) and highly metastatic osteosarcoma cell lines (Saos-2 and SJSA-1). Additionally, ENA datasets of RNA-Seq from osteosarcoma biopsies were included. Differentially expressed genes (DEGs) were identified and analyzed through enrichment pathway analysis and protein-protein interaction (PPI) networks. Additionally, for gene candidates, a biochemical evaluation was performed. RESULTS DEGs associated with biological functions pertinent to migration, invasion, and metastasis in osteosarcoma were identified. Notably, matrix metalloproteinase-2 (MMP-2) emerged as a promising candidate. Both canonical or full-length (FL-mmp-2) and N-terminal truncated (NTT-mmp-2) isoforms were discerned in biopsies. Moreover, MMP-2's activity was characterized in cell lines. Additionally, mRNA expression of voltage-gated sodium channels (NaVs) and voltage-gated potassium channels (KVs) was detected, and their functional expression was validated using patch clamp techniques. Evaluation of cell line migration and invasion capacities revealed their reduction in the presence of ion channel blockers (TTX and TEA) and MMP inhibitor (GM6001). CONCLUSIONS The gene functional enrichment analysis of DEGs enabled the identification of interaction networks in osteosarcoma, thereby revealing potential biomarkers. Moreover, the elucidated co-participation of TTX-sensitive NaVs and MMP-2 in facilitating migration and invasion suggests their suitability as novel prognostic biomarkers for osteosarcoma. Additionally, this study introduces a model delineating the potential interaction mechanism among ion channels, MMP-2, and other crucial factors in the metastatic cascade of osteosarcoma.
Collapse
Affiliation(s)
| | - Luis Cardenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jimenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Coyoacán Ciudad de México, Mexico
| | - Heriberto Manuel Rivera
- Universidad Autónoma del Estado de Morelos, Facultad de Medicina, Cuernavaca, Morelos, Mexico
| |
Collapse
|
19
|
Sandri A, Boschi F. Exploring Proteases as Alternative Molecular Targets to Tackle Inflammation in Cystic Fibrosis Respiratory Infections. Int J Mol Sci 2025; 26:1871. [PMID: 40076497 PMCID: PMC11899166 DOI: 10.3390/ijms26051871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic respiratory infections and excessive inflammation, driven by both host- and pathogen-derived proteases. The dysregulated activity of proteolytic enzymes such as neutrophil elastase (NE), cathepsin G, and matrix metalloproteases (MMPs) degrades lung tissue, exacerbates airway remodeling, and perpetuates inflammatory cycles. Concurrently, bacterial proteases from pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus contribute to immune evasion and tissue destruction, compounding disease severity. Despite advances in antimicrobial and anti-inflammatory therapies, protease-driven lung damage remains a critical challenge. This review examines the dual role of host and bacterial proteases in CF pathophysiology, highlighting emerging protease-targeted therapies aimed at mitigating lung damage and inflammation. Strategies explored include the inhibition of NE, MMPs, and bacterial proteases, with a focus on innovative therapeutic approaches such as dual-function inhibitors, biologics, and advanced drug delivery systems. By restoring the protease-antiprotease balance, these interventions offer the potential to improve clinical outcomes and quality of life for CF patients.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, University of Verona, Strada Le Grazie 8-15, 37134 Verona, Italy;
- General and Upper GI Surgery Division, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 8-15, 37134 Verona, Italy
| |
Collapse
|
20
|
Acuña F, Gualdoni GS, Rivollier F, Barril C, Portiansky EL, Barbeito CG, Cebral E. Differential Remodelling of Endometrial Extracellular Matrix in the Non-Pregnant Uterus of Lagostomus maximus as a Potential Mechanism Underlying Embryonic Death. Animals (Basel) 2025; 15:542. [PMID: 40003024 PMCID: PMC11851369 DOI: 10.3390/ani15040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
During development, the remodelling of fibrillar components of the uterine extracellular matrix (ECM), mediated by the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), plays an essential role in embryonic survival. Previously, we observed that in the plains viscacha (Lagostomus maximus), only caudal implantation sites (IS) contain viable embryos, whereas embryos at cranial and middle IS die and are reabsorbed. The objective of this study was to analyse the distribution and expression of key components of the endometrial ECM, including fibrillar collagens, MMPs 2 and 9, and TIMPs 1 and 2, in three uterine segments (US) of the non-pregnant adult viscachas. In sections from three US, we observed a significant craniocaudal increase in collagen fibres (Van Gieson and Picrosirius red staining) and elastic fibres (Verhoeff-Van Gieson trichrome staining), along with the immunolabelling levels of MMP-2, MMP-9, TIMP-1, and TIMP-2 (immunohistochemistry). Zymography revealed similar gelatinolytic activity of MMP-2 in the three US but higher than the MMP-9 activity. However, MMP-9 activity in the caudal segment was significantly higher than that in the cranial and middle ones. These findings suggest that uterine ECM variations along the craniocaudal axis may contribute to uterine remodelling processes that regulate embryonic survival during gestation.
Collapse
Affiliation(s)
- Francisco Acuña
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata CP1900, Buenos Aires, Argentina;
| | - Gisela Soledad Gualdoni
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1428, Buenos Aires, Argentina; (G.S.G.); (C.B.); (E.C.)
| | - Francisco Rivollier
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina;
| | - Camila Barril
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1428, Buenos Aires, Argentina; (G.S.G.); (C.B.); (E.C.)
| | - Enrique Leo Portiansky
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata CP1900, Buenos Aires, Argentina;
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP1900, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata CP1900, Buenos Aires, Argentina;
| | - Elisa Cebral
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires CP1428, Buenos Aires, Argentina; (G.S.G.); (C.B.); (E.C.)
| |
Collapse
|
21
|
Guo P, Alhaskawi A, Adel Abdo Moqbel S, Pan Z. Recent development of mitochondrial metabolism and dysfunction in osteoarthritis. Front Pharmacol 2025; 16:1538662. [PMID: 40017603 PMCID: PMC11865096 DOI: 10.3389/fphar.2025.1538662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Osteoarthritis is a degenerative joint disorder characterized by cartilage degradation, synovial inflammation, and altered subchondral bone structure. Recent insights have identified mitochondrial dysfunction as a pivotal factor in OA pathogenesis, contributing to chondrocyte apoptosis, oxidative stress, and extracellular matrix degradation. Disruptions in mitochondrial dynamics, including impaired biogenesis, mitophagy, and metabolic shifts from oxidative phosphorylation to glycolysis, exacerbate cartilage damage by promoting the production of reactive oxygen species and matrix-degrading enzymes such as ADAMTS and MMPs. This review explores the molecular mechanisms underlying mitochondrial dysfunction in OA, emphasizing its role in cartilage homeostasis and inflammation. Furthermore, it highlights emerging therapeutic strategies targeting mitochondrial pathways, including antioxidants, mitophagy enhancers, and metabolic modulators, as potential interventions to mitigate disease progression, which offer promising avenues for advancing personalized and disease-modifying treatments in OA.
Collapse
Affiliation(s)
- Pengchao Guo
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Safwat Adel Abdo Moqbel
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Yu F, Zhu C, Wu W. Senile Osteoarthritis Regulated by the Gut Microbiota: From Mechanisms to Treatments. Int J Mol Sci 2025; 26:1505. [PMID: 40003971 PMCID: PMC11855920 DOI: 10.3390/ijms26041505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive degenerative joint disease that affects the entire synovial joint, leading to the progressive degeneration of articular cartilage. It seriously affects the quality of life and global disability of patients. OA is affected by a variety of factors; the most significant risk factor for OA is age. As individuals age, the risk and severity of OA increase due to the exacerbation of cartilage degeneration and wear and tear. In recent years, research has indicated that the gut microbiota may play a significant role in the aging and OA processes. It is anticipated that regulating the gut microbiota may offer novel approaches to the treatment of OA. The objective of this paper is to examine the relationship between the gut microbiota and senile OA, to investigate the potential mechanisms involved. This review also summarizes the therapeutic strategies related to gut flora in OA management, such as prebiotics and probiotics, diet, exercise, traditional Chinese medicine (TCM) modification, and fecal microbiota transplantation (FMT), highlighting the potential clinical value of gut flora and elucidating the current challenges. The foundation for future research directions is established through the summarization of current research progress.
Collapse
Affiliation(s)
- Fan Yu
- School of Exercise and Health, Shanghai University of Sports, Shanghai 200438, China; (F.Y.); (C.Z.)
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sports, Shanghai 200438, China; (F.Y.); (C.Z.)
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sports, Shanghai 200438, China
| |
Collapse
|
23
|
Soundararajan A, Jaysankar K, Doud E, Pasteurin RP, Surma M, Pattabiraman PP. Loss of Cathepsin K impairs collagen biogenesis and enhances actin polymerization in trabecular meshwork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637394. [PMID: 39990379 PMCID: PMC11844368 DOI: 10.1101/2025.02.10.637394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Trabecular meshwork (TM) dysfunction and extracellular matrix (ECM) dysregulation contribute to increased intraocular pressure (IOP) in primary open-angle glaucoma (POAG). Earlier, we provide a proof-of-concept study identifying the regulation and the role of Cathepsin K (CTSK), a potent collagenase, in ECM homeostasis, actin bundling, and IOP regulation. Better understanding of the loss of CTSK function in TM remains unclear. Using siRNA-mediated knockdown of CTSK (siCTSK) in human TM cells, this study investigated the role of CTSK in actin and ECM homeostasis using an unbiased proteomics approach. Loss of CTSK significantly disrupted collagen biogenesis and ECM homeostasis. CTSK depletion also increased intracellular calcium levels, with proteomics data suggesting possible involvement of calcium-regulatory proteins. Additionally, PRKD1 activation enhanced actin polymerization through the LIMK1/SSH1/cofilin pathway, promoting focal adhesion maturation. Despite increased apoptotic markers (CASP3, CASP7, TRADD, PPM1F), caspase 3/7 activation was not induced, suggesting apoptosis-independent cellular remodeling. Notably, RhoQ and myosin motor proteins were significantly downregulated, indicating altered mechanotransduction in TM cells. These findings highlight the role of CTSK in maintaining ECM homeostasis, calcium signaling, and cytoskeletal regulation in TM. Its depletion induces actin polymerization, which may influence aqueous humor outflow. Targeting CTSK-related pathways may provide novel therapeutic strategies for regulating IOP and preventing glaucoma progression.
Collapse
|
24
|
Welhaven HD, Welfley AH, Brahmachary PP, Smith DF, Bothner B, June RK. Tissue-specific and spatially dependent metabolic signatures perturbed by injury in skeletally mature male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615873. [PMID: 39975211 PMCID: PMC11838485 DOI: 10.1101/2024.09.30.615873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Joint injury is a risk factor for post-traumatic osteoarthritis. However, metabolic and microarchitectural changes within the joint post-injury in both sexes remain unexplored. This study identified tissue-specific and spatially-dependent metabolic signatures in male and female mice using matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) and LC-MS metabolomics. Male and female C57Bl/6J mice were subjected to non-invasive joint injury. Eight days post-injury, serum, synovial fluid, and whole joints were collected for metabolomics. Analyses compared between injured, contralateral, and naïve mice, revealing local and systemic responses. Data indicate sex influences metabolic profiles across all tissues, particularly amino acid, purine, and pyrimidine metabolism. MALDI-MSI generated 2D ion images of bone, the joint interface, and bone marrow, highlighting increased lipid species in injured limbs, suggesting physiological changes across injured joints at metabolic and spatial levels. Together, these findings reveal significant metabolic changes after injury, with notable sex differences.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| | | | - Donald F. Smith
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
25
|
Guo X, Wang F, Zheng M, Li L, Li L, Wang J, Miao S, Ma S, Shi X. Network pharmacology and molecular docking to study the potential molecular mechanism of Qi Fu Yin for diabetic encephalopathy. J Biomol Struct Dyn 2025; 43:917-931. [PMID: 38047625 DOI: 10.1080/07391102.2023.2289038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 12/05/2023]
Abstract
Diabetic encephalopathy is a chronic complication of diabetes that lacks an optimized treatment strategy. The present study sought to elucidate the potential molecular mechanism of Qi Fu Yin in improving diabetic encephalopathy through network pharmacology. The active components and target information of Qi Fu Yin were obtained from the TCMSP and Swiss target databases, while the target information of diabetic encephalopathy was sourced from Gene cards, OMIM, and Pharm Gkb databases. Enrichment analyses of KEGG and GO were conducted utilizing drug-disease common targets, while protein-protein interactions were predicted through the utilization of the STRING database platform. Subsequently, molecular docking was executed via Auto Dock Vina to authenticate the interaction between core components and core targets. The findings revealed that Qi Fu Yin exhibited 178 common targets with diabetic encephalopathy, and the enrichment analyses demonstrated that these targets were associated with lipid and atherosclerosis, AGE-RAGE signaling pathways, and other related pathways. The findings of the molecular docking indicated a favorable binding affinity between the active components of drug and the core targets, with EGF and quercetin exhibiting the most notable docking score. Additionally, the molecular dynamics simulation corroborated this high affinity. These results suggested that the active ingredients of Qi Fu Yin, including quercetin and kaempferol, may modulated the expression of genes such as IL10, TNF, EGF, and MMP2, thereby activating the AGE-RAGE signaling pathways and potentially serving as a therapeutic intervention for diabetic encephalopathy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodi Guo
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
- The College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Feiyan Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Meiling Zheng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Liang Li
- Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
26
|
Wu C, Shi L, Deng Y, Chen H, Lu Y, Xiong X, Yin X. Bufalin Regulates STAT3 Signaling Pathway to Inhibit Corneal Neovascularization and Fibrosis After Alkali Burn in Rats. Curr Eye Res 2025; 50:139-147. [PMID: 39356002 DOI: 10.1080/02713683.2024.2408392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE Bufalin (BU) is a bioactive ingredient extracted from the skin and parotid venom glands of Bufo raddei, which can effectively inhibit angiogenesis. The aim of this study was to investigate whether BU could affect corneal neovascularization (CoNV). METHODS A rat CoNV model (right eye) was constructed by administration of NaOH, and the left eye served as a control. Corneal damage scores of rats were detected. Hematoxylin & eosin, TUNEL, and Masson staining examined pathological changes, apoptosis, and fibrosis of corneal tissues. Immunohistochemistry and western blotting assessed the expression of proteins. RESULTS BU intervention resulted in a significant reduction in corneal inflammatory cells, repair of corneal epithelial hyperplasia, significant reduction in stromal edema, and reduction in vascular proliferation. BU can inhibit corneal neovascularization. CONCLUSION This study demonstrated that BU inhibits CoNV, fibrosis, and inflammation by modulating the STAT3 signaling pathway, elucidating the intrinsic mechanism of its protective effect. BU has great potential in the treatment of CoNV caused by corneal alkali burns.
Collapse
Affiliation(s)
- Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yan Deng
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Ying Lu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoyan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaolong Yin
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Oselusi SO, Sibuyi NR, Martin DR, Meyer M, Madiehe AM. Potential matrix metalloproteinase 2 and 9 inhibitors identified from Ehretia species for the treatment of chronic wounds - Computational drug discovery approaches. Comput Biol Med 2025; 185:109487. [PMID: 39637455 DOI: 10.1016/j.compbiomed.2024.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Matrix metalloproteinases (MMPs) serve as prognostic factors in several pathophysiological conditions, including chronic wounds. Therefore, they are considered important therapeutic targets in the intervention and treatment of these conditions. In this study, computational tools such as molecular docking and molecular dynamics simulations were used to gain insight into protein‒ligand interactions and determine the free binding energy between Ehretia species phytoconstituents and gelatinases (MMP2 and MMP9). A total of 74 phytoconstituents from Ehretia species were compiled from the literature, and 46 of these compounds were identified as potential inhibitors of at least one type of MMP. Molecular docking revealed that lithospermic acid B, rosmarinic acid, and danshensu had stronger binding affinities against the two enzymes than the reference ligands. Furthermore, (9S, 10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic (∗-octadecatrienoic) had a higher binding energy for MMP2, whereas caffeic anhydride and caffeic acid established stronger binding energy with MMP9 than the reference ligand. These complexes also demonstrated relatively stable, favourable, and comparable conformational changes with those of unbound proteins at 500 ns. The free energy decomposition results further provide detailed insights into the contributions of active site residues and different types of interactions to the overall binding free energy. Finally, most of the hit phytoconstituents (rosmarinic acid, caffeic anhydride, caffeic acid, and danshensu) had good physicochemical, drug-likeness, and pharmacokinetic properties. Collectively, our findings showed that phytoconstituents from Ehretia species could be beneficial in the search for novel MMP inhibitors as therapeutic agents for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Samson O Oselusi
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Nicole Rs Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; Health Platform, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, South Africa
| | - Darius R Martin
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Abram M Madiehe
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
28
|
Xie J, Chen S, Chen Y, Tong J, Huang H, Liao J, Sun J, Cong L, Zeng Y. FFA intervention on LO2 cells mediates SNX-10 synthesis and regulates MMP9 secretion in LX2 cells via TGF-β1. Arch Biochem Biophys 2025; 764:110255. [PMID: 39662717 DOI: 10.1016/j.abb.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a public health concern. Transforming growth factor-β1(TGF-β1) plays an important regulatory role in multiple MAFLD stages, as it can promote the expression of matrix metalloproteinase-9 (MMP9) and promote liver fibrosis. Sorting nexin protein-10 (SNX-10) may be involved in the occurrence and development of fatty liver disease. METHODS Free fatty acids (FFA) treatment was used to simulate the cellular lipid deposition stage of MAFLD and the interactions between cells were simulated via LX2 and LO2 coculture. The molecular interaction between the two cell types was studied via ELISA, immunoprecipitation, qPCR, and western blotting. RESULTS In FFA-treated LO2 cells, intracellular TGF-β1 expression increased as lipid deposition increased. FFA-treated LO2 cells promoted the expression and secretion of MMP9 by LX2 cells through paracrine pathways. MMP9 secretion decreased with decreasing SNX-10 expression in LX2 cells. The interaction between MMP9 and SNX-10 was confirmed by coimmunoprecipitation. TGF-β1 promoted the synthesis of SNX-10 through the p38 MAPK pathway, and SNX-10 affected the secretion of MMP9 through protein interactions, thereby affecting the development of liver fibrosis. CONCLUSIONS FFA induced lipid deposition in LO2 cells, and TGF-β1 mediated the p38 MAPK pathway to promote SNX-10 synthesis and stimulate MMP9 secretion, thereby regulating the involvement of LX2 in the process of liver fibrosis.
Collapse
Affiliation(s)
- Jianhui Xie
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shiyan Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yangli Chen
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Junlu Tong
- Department of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Huijie Huang
- Department of Endocrinology and Metabolic Diseases, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Jingwen Liao
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jixin Sun
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Li Cong
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
29
|
Liu M, Zhao W, Shi R, Wang Z, Li X, Wang D. Analysis of the potential biological mechanisms of geniposide on renal fibrosis by network pharmacology and experimental verification. BMC Pharmacol Toxicol 2025; 26:17. [PMID: 39871379 PMCID: PMC11770925 DOI: 10.1186/s40360-025-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Renal fibrosis is crucial in the progression of chronic kidney disease (CKD) to end-stage renal failure. Geniposide, an iridoid glycoside, has shown therapeutic potential in acute kidney injury, diabetic nephropathy, and atherosclerosis. The aim of this study was to investigate the role of geniposide in renal fibrosis and its underlying mechanisms. METHODS The network pharmacology and molecular docking methods were used to identify potential targets and pathways of geniposide for treating renal fibrosis. In vivo, the unilateral ureteral obstruction (UUO) mouse model was treated with geniposide. In vitro, TGF-β1-stimulated human renal tubular epithelial (HK-2) cells were applied for validation. HE, PAS, Masson, and immunohistochemistry staining were performed to evaluate its effects on the kidneys of UUO mice. RT-qPCR and western blotting were used to detect the expression of hub genes and signaling pathways. RESULTS 101 overlapping genes were identified, with the top 10 including AKT1, MMP9, GAPDH, BCL2, TNF, CASP3, SRC, EGFR, IL-1β, and STAT1. GO analysis suggested that these key targets were mainly involved in cell proliferation and apoptosis. KEGG analysis revealed that the PI3K/AKT, MAPK, and Rap1 signaling pathways were associated with geniposide against renal fibrosis. Molecular docking suggested a strong binding affinity of geniposide to the hub genes. In vivo experiments showed that geniposide ameliorated kidney injury and fibrosis, and inhibited the mRNA levels of AKT1, MMP9, BCL2, and TNF. In addition, geniposide inhibited the activation of the PI3K/AKT signaling pathway, thereby suppressing renal fibrosis in UUO mice and TGF-β1-induced HK-2 cells. CONCLUSIONS Geniposide can attenuate renal fibrosis by inhibiting the PI3K/AKT pathway, suggesting its potential as a therapeutic agent for renal fibrosis.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenman Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhijuan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xunliang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China.
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
30
|
Kartvelishvili T, Sapojnikova N, Asatiani N, Asanishvili L, Sokhadze V, Sichinava N, Chikovani Z. Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients. Diseases 2025; 13:30. [PMID: 39997037 PMCID: PMC11853769 DOI: 10.3390/diseases13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES In brain physiology and disease, MMP-9 is a significant and apparently peculiar factor. Numerous studies have implicated neuroinflammatory processes involving MMP-9 in the pathophysiology of addiction. This study aims to evaluate plasma MMP-9 level as a biomarker for the stages of alcohol and opioid addiction. METHODS The case subjects were patients with opioid and alcohol addiction. The quantitative assessment of MMP-9 plasma concentration was performed using monoclonal antibodies against human MMP-9. RESULTS MMP-9 levels in the plasma of patients with alcohol and opioid dependence differ from MMP-9 concentrations in apparently healthy donors. During the intoxication stage, MMP-9 concentrations in individuals with alcohol and opioid dependence are similar and higher than in the control group. While the MMP-9 level is close to the control level after alcohol withdrawal, it stays increased during opioid withdrawal. When MMP-9 levels in plasma were measured in three distinct intoxicated states (light, moderate, and heavy) in cases of alcohol addiction, the results were all similar. Two distinct opioid intoxicated states (methadone and buprenorphine) and three withdrawals-following methadone, buprenorphine, and heroin abuse-were associated with high MMP-9 levels.
Collapse
Affiliation(s)
- Tamar Kartvelishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Nelly Sapojnikova
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Nino Asatiani
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Lali Asanishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Victor Sokhadze
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | | | - Zaza Chikovani
- Narcological Clinic “Nishati”, Tbilisi 0186, Georgia (Z.C.)
| |
Collapse
|
31
|
Wan T, Li J, Liu J, Chen Y, Guo Y, Deng X, Li X, Bi J, Hu C, Chang J, Fan K. The Therapeutic Efficacy and Molecular Mechanisms of Artemisia argyi Essential Oil in Treating Feline Herpesvirus Infection via Nasal Drops. Vet Sci 2025; 12:80. [PMID: 40005840 PMCID: PMC11860925 DOI: 10.3390/vetsci12020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to explore the therapeutic potential and mechanisms of Artemisia argyi essential oil (AAEO) in managing feline herpesvirus type 1 (FeHV-1) infections. FeHV-1, the causative agent of feline viral rhinotracheitis (FVR), leads to severe respiratory and systemic complications in cats. In this study, 35 cats were divided into blank, FeHV-1 infection, and AAEO treatment groups (high, medium, and low doses). In vivo experiments demonstrated that AAEO alleviated clinical symptoms, reduced tissue damage, and modulated immune responses. The AAEO-treated groups showed higher survival rates, stabilized body temperatures, and less severe weight loss compared to the FeHV-1 group. Histopathological analysis revealed improved integrity in nasal, tracheal, and bronchial tissues. Transcriptomic and proteomic analyses identified critical pathways, such as IL-17 signaling, influenced by AAEO treatment, highlighting its role in suppressing inflammation and protecting tissue integrity. In vitro assays revealed that AAEO has concentration-dependent cytotoxicity in feline kidney cells (F81) and provides protective effects when used as a pre-treatment. These findings suggest that AAEO enhances host immune defenses and mitigates FeHV-1-induced damage through immune modulation and tissue protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.W.); (J.L.); (J.L.); (Y.C.); (Y.G.); (X.D.); (X.L.); (J.B.); (C.H.); (J.C.)
| |
Collapse
|
32
|
Ni W, Zhao Y, Shen J, Yin Q, Wang Y, Li Z, Tang T, Wen Y, Zhang Y, Jiang W, Jiang L, Wei J, Gan W, Zhang A, Zhou X, Wang B, Liu BC. Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway. Chin Med J (Engl) 2025; 138:193-204. [PMID: 38445356 PMCID: PMC11745862 DOI: 10.1097/cm9.0000000000002978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data. RESULTS Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Collapse
Affiliation(s)
- Weijie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yajie Zhao
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Jinxin Shen
- Department of Neonates, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225100, China
| | - Zuolin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Taotao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yilin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Liangyunzi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Jinxuan Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Weihua Gan
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Xiaoyu Zhou
- Department of Neonates, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| |
Collapse
|
33
|
Hu H, Xie T. Gastrodin Alleviates Lumbar Intervertebral Disc Degeneration by Suppressing the NF-κB and MAPK Pathways. Cell Biochem Biophys 2025:10.1007/s12013-024-01612-2. [PMID: 39821825 DOI: 10.1007/s12013-024-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 01/19/2025]
Abstract
Intervertebral disc degeneration (IDD) is the main pathological factor resulting in low back pain (LBP), the leading cause of disability globally. Inflammatory response and extracellular matrix (ECM) degradation are critical pathological features in the development of IDD. Gastrodin (GAS), a phenol compound isolated from Gastrodia elata Blume, plays an anti-inflammatory role in experimental models of multiple human diseases. Our study aimed to elucidate whether GAS alleviates TNF-α-induced inflammation in nucleus pulposus (NP) cells and IDD in vivo. The cytotoxicity of GAS was assessed by CCK-8 assay. Rat primary NP cells were stimulated with TNF-α to induce inflammatory response. The expression of proinflammatory cytokines, catabolic genes, and anabolic genes was detected by RT-qPCR, western blotting, and immunofluorescence staining. NF-κB and MAPK pathway activation was determined through western blotting and immunofluorescence staining. The IDD rat model was established by using percutaneous needle puncture. The therapeutic effects of GAS were confirmed by histology analysis. We found that TNF-α stimulation enhanced proinflammatory cytokine (COX2, iNOS, IL-6, and IL-1β) expression in NP cells, which was reversed by GAS treatment. GAS offset TNF-α-induced upregulation in catabolic gene (MMP3, MMP9, and MMP13) expression and downregulation in anabolic gene (Collagen II, SOX9, and Aggrecan) expression. The loss of ECM in TNF-α-treated NP cells was mitigated by GAS treatment. Mechanically, GAS abolished TNF-α-induced increase in p-IKKα, p-IKKβ, p-IκBα, p-p65, p-ERK, p-p38, and p-JNK protein levels in NP cells. In puncture-induced IDD rat models, GAS administration improved intervertebral disc (IVD) structure, increased Collagen II expression, and reduced the levels of proinflammatory factors in IVDs. Overall, GAS alleviates the inflammation and ECM degradation in NP cells via inhibiting NF-κB and MAPK pathway activation and alleviates IDD in vivo, which may be a novel treatment strategy for IDD.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Orthopedic, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei Province, China
| | - Tian Xie
- Department of Orthopedic, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, Hubei Province, China.
| |
Collapse
|
34
|
Kehusmaa A, Tuomisto A, Sirniö P, Karjalainen H, Kastinen M, Tapiainen VV, Äijälä VK, Tervahartiala T, Sorsa T, Rintala J, Meriläinen S, Saarnio J, Rautio T, Mäkinen MJ, Väyrynen JP. Associations of serum and tissue TIMP1 with host response and survival in colorectal cancer. Sci Rep 2025; 15:1440. [PMID: 39789100 PMCID: PMC11717928 DOI: 10.1038/s41598-025-85549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is a multifaceted, cytokine-like bioactive molecule whose levels are elevated in a wide range of inflammatory diseases and are associated with prognosis. Additionally, TIMP1 may play a role in driving systemic inflammation. TIMP1 immunohistochemistry and TIMP1 serum concentrations were analyzed in a cohort of 776 colorectal cancer patients. TIMP1 histoscore by cell type (tumor cell, other) was quantified using digital image analysis. Serum TIMP1 levels were evaluated for correlations with tumor TIMP1 expression, and their associations with tumor characteristics, inflammation, and prognosis were investigated. High serum TIMP1 concentrations associated with shorter overall survival (multivariable HR 1.85, 95% CI 1.30-2.65). Serum TIMP1 levels positively correlated with markers of systemic inflammation and tumor necrosis percentage but not with TIMP1 expression in tumor tissue. High TIMP1 intensity in tumor stroma associated with longer cancer-specific and overall survival in univariable analysis but not in multivariable models. T cell densities in tumor tissue positively correlated with tumor stromal TIMP1 expression and negatively with tumor epithelial TIMP1 expression. Serum TIMP1 levels show promise as a prognostic marker for colorectal cancer and correlate with systemic inflammatory markers, but do not correlate with TIMP1 expression in tumor tissue.
Collapse
Affiliation(s)
- Akseli Kehusmaa
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Anne Tuomisto
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Päivi Sirniö
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Henna Karjalainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Meeri Kastinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Vilja V Tapiainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Ville K Äijälä
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Jukka Rintala
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Sanna Meriläinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Juha Saarnio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Tero Rautio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Markus J Mäkinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| |
Collapse
|
35
|
Yu Y, Fang J, Li Y, Wang X, Zhang J, Wang J, Sun B. The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention. Nutrients 2025; 17:197. [PMID: 39796631 PMCID: PMC11723014 DOI: 10.3390/nu17010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured. However, there is currently no effective treatment method for these diseases. Therefore, we need to strive for developing effective and reliable drugs or substances to treat and prevent fibrotic diseases. Lactoferrin (LF) is a multifunctional glycoprotein with many pathological and physiologically active effects, such as antioxidant, anti-inflammatory and antimicrobial effects, and it protects against pathological and physiological conditions in various disease models. This review summarizes the effects and underlying mechanisms of LF in preventing organ fibrosis. As a naturally active substance, LF can be used as a promising and effective drug for the prevention and remission of fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jingjie Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.F.); (Y.L.); (X.W.); (B.S.)
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.F.); (Y.L.); (X.W.); (B.S.)
| | | |
Collapse
|
36
|
Gao XY, Zhang Y, Zhao WP, Tian EJ, Ommati MM, Wang JC, Wang HW, Zhou BH. Molybdenum interferes with MMPs/TIMPs expression to reduce the receptivity of porcine endometrial epithelial cells. Chem Biol Interact 2025; 405:111304. [PMID: 39486568 DOI: 10.1016/j.cbi.2024.111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
To investigate the effect of trace element molybdenum (Mo) on the receptivity of porcine endometrial epithelial cells (PEECs) and evaluate Mo toxicity and its potential molecular mechanisms, Mo-treated PEECs models were established by incubating the cells with various concentrations of medium containing Mo (0, 0.005, 0.020, 0.200, and 5 mmol/L MoNa2O4·2H2O). The results showed that Mo disrupted the morphology and ultrastructure of PEECs, triggered blurred cell edges, cell swelling, cell cycle arrest, and increased apoptosis. At the molecular level, Mo treatment activated the TGF-β1/SMAD2 and PI3K/AKT1 pathways, causing a significant increase in matrix metalloproteinase (MMP)-9 and MMP-2 protein expression. Accompanied by markedly increased tissue inhibitors matrix metalloproteinase (TIMP)-2 and decreased TIMP-1, the balance of MMP2/TIMP-2 and MMP-9/TIMP-1 were disrupted. Ultimately, the receptivity of PEECs was destroyed by excessive Mo, which is revealed by the significant decrease of receptive marker molecules, including leukemia inhibitory factor (LIF), integrins β3 (ITGβ3), heparin-binding epidermal growth factor (HB-EGF), and vascular endothelial growth factor (VEGF). To sum up, the current study demonstrated the potential toxicity of Mo to PEECs, indicating reproductive toxicity at high Mo concentrations and suggesting that the content of Mo should be evaluated as a potential risk factor.
Collapse
Affiliation(s)
- Xiao-Ying Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China
| | - Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China
| | - Wen-Peng Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China
| | - Er-Jie Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China
| | - Ji-Cang Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, PR China.
| |
Collapse
|
37
|
Fallahi F, Askari N, Jamali T, Parsapour S, Ghasemi H, Shams J, Yaraee R, Ghazanfari Z, Ghazanfari T. MMP-9 and TIMPs profiles in sulfur mustard-exposed individuals with serious lung complications. Int Immunopharmacol 2025; 145:113777. [PMID: 39657535 DOI: 10.1016/j.intimp.2024.113777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
Sulfur mustard (SM), a chemical weapon used in the Iraq-Iran war, can pose severe health risks, especially to the lungs. Dysregulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been implicated in various inflammatory lung diseases. This study compares the levels of MMPs and TIMPs in the serum and sputum of veterans with serious lung complications to a control group. Serum and sputum samples were collected and analyzed using the ELISA sandwich method. Differences between SM-exposed and control groups were assessed statistically. The serum levels of TIMP-4 and MMP-9/TIMP-4 were significantly lower and higher in the SM-exposed group respectively compared to the control group. In SM-exposed individuals resembling Bronchiolitis Obliterans (BO), Chronic Bronchitis (CB), and Asthma, TIMP-4 levels were lower than controls, while TIMP-2 levels were higher in those with CB. Although the increased TIMP-2 levels in these patients align with COPD studies, differences were observed in other factors with COPD and asthma-related MMP-9 and TIMP-4 findings. Assessment of serum levels of these factors based on severity reveals lower MMP-9/TIMP-4 levels in the severe group compared to the mild-moderate group. Individuals exposed to SM exhibit distinct MMP and TIMP profiles, with significantly lower TIMP-4 levels and higher MMP-9/TIMP-4 ratios, compared to controls. These profiles vary across different lung conditions, indicating a unique disease mechanism in SM-exposed individuals. This distinctive profile supports the classification of this condition as 'Mustard Lung.' Further research is needed to elucidate these mechanisms for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Faramarz Fallahi
- Department of Cardiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Nayere Askari
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran; Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Tahereh Jamali
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | | - Hassan Ghasemi
- Department of Ophthalmology, Shahed University, Tehran, Iran
| | - Jalaledin Shams
- Hematology-Oncology Unit, Internal Medicine Department, Shahed University, Tehran, Iran; Department of Oncology and Hematology, Shahed University, Tehran, Iran
| | - Roya Yaraee
- Department of Immunology, Shahed University, Tehran, Iran
| | - Zeinab Ghazanfari
- Department of Health Education and Promotion, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| |
Collapse
|
38
|
Janečková E, Juarez-Balarezo J, Tucker AS, Matalová E, Holomková K, Gaete M. Metalloproteinases are involved in the regulation of prenatal tooth morphogenesis. Am J Physiol Cell Physiol 2025; 328:C323-C333. [PMID: 39510136 DOI: 10.1152/ajpcell.00656.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
Collapse
Affiliation(s)
- Eva Janečková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Division of Biology, Glendale Community College, Glendale, California, United States
| | - Jesus Juarez-Balarezo
- Department of Anatomy, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
- 1st Faculty of Medicine, Institute of Histology and Embryology, Charles University, Prague, Czech Republic
| | - Eva Matalová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Holomková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Studies and Innovation in Dentistry, Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
39
|
Ghamrawi A, Basso R, Shakik N, Haddad L, Nasr Z, Harmouch C. Wharton's Jelly Mesenchymal Stem Cells: Shaping the Future of Osteoarthritis Therapy with Advancements in Chitosan-Hyaluronic Acid Scaffolds. Stem Cells Dev 2025; 34:1-16. [PMID: 39605205 DOI: 10.1089/scd.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in cartilage regeneration and osteoarthritis treatment. It covers key factors influencing chondrogenesis, including growth factors, cytokines, and hypoxia, focusing on precise timing. The effectiveness of three-dimensional cultures and scaffold-based strategies in chondrogenic differentiation is discussed. Specific biomaterials such as chitosan and hyaluronic acid are highlighted for tissue engineering. The document reviews clinical applications, incorporating evidence from animal research and early trials and molecular and histological assessments of chondrogenic differentiation processes. It addresses challenges and strategies for optimizing MSC-derived chondrocyte therapy, emphasizing the immunomodulatory properties of these cells. The review concludes as a comprehensive road map for future research and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Ahed Ghamrawi
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Rasha Basso
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Nour Shakik
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Haddad
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Chaza Harmouch
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
40
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
41
|
Fukuyama Y, Murakami H, Iemitsu M. Single Nucleotide Polymorphisms and Tendon/Ligament Injuries in Athletes: A Systematic Review and Meta-analysis. Int J Sports Med 2025; 46:3-21. [PMID: 39437988 DOI: 10.1055/a-2419-4359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This systematic review and meta-analysis aimed to identify the association between genetic polymorphisms and tendon and ligament injuries in adolescent and adult athletes of multiple competition sports. The PubMed, Web of Science, EBSCO, Cochrane Library, and MEDLINE databases were searched until July 7, 2023. Eligible articles included genetic studies on tendon and ligament injuries and comparisons between injured and non-injured athletes. This review included 31 articles, comprising 1,687 injury cases and 2,227 controls, from a meta-analysis of 12 articles. We identified 144 candidate gene polymorphisms (only single nucleotide polymorphisms were identified). The meta-analyses included vascular endothelial growth factor A (VEGFA) rs699947, collagen type I alpha 1 rs1800012, collagen type V alpha 1 rs12722, and matrix metalloproteinase 3 rs679620. The VEGFA rs699947 polymorphism showed a lower risk of injuries in athletes with the C allele ([C vs. A]: OR=0.80, 95% CI: 0.65-0.98, I 2 =3.82%, p=0.03). The risk of these injuries were not affected by other polymorphisms. In conclusion, the VEGFA rs699947 polymorphism is associated with the risk of tendon and ligament injuries in athletes. This study provides insights into genetic variations that contribute to our understanding of the risk factors for such injuries in athletes.
Collapse
Affiliation(s)
- Yumi Fukuyama
- Department of Physical Therapy, Aino University, Ibaraki, Japan
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Haruka Murakami
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
42
|
Butler AE, Nandakumar M, Sathyapalan T, Brennan E, Atkin SL. Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Their Ratios in Women with Polycystic Ovary Syndrome and Healthy Controls. Int J Mol Sci 2025; 26:321. [PMID: 39796177 PMCID: PMC11720512 DOI: 10.3390/ijms26010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by tissue inhibitors of metalloproteinases (TIMPs). This study aimed to determine whether these interacting proteins were dysregulated in PCOS. A Somascan proteomic analysis of 12 MMPs, three of their inhibitors (TIMP-1, 2, 3), two ADAMS (9, 12), five ADAMTS (1, 4, 5, 13, 15), insulin-like growth factor binding protein-1 (IGFBP-1), and insulin-like growth factor-1 (IGF-1) was undertaken in a well-validated PCOS database of 143 women with PCOS and 97 controls. Women with PCOS had significantly higher levels of MMP-9 and lower levels of MMP-2, MMP-14, TIMP-2, IGFBP-1, and IGF-1 compared to the controls (p < 0.0001, p < 0.005, p < 0.04, p < 0.05, p < 0.0001, and p < 0.0001, respectively). No differences were observed for any other MMPs. The ADAMS or ADAMTS levels did not differ between groups. Body mass index (BMI) was correlated with MMP-9 (p < 0.01), MMP-1 (p < 0.05), MMP-2 (p < 0.05), MMP-10 (p < 0.005), MMP-12 (p < 0.005), ADAM-9 (p < 0.05), and IGFBP-1 (p < 0.0001), but only MMP-9 still differed after accounting for BMI. MMP-9/TIMP-1, MMP-9/TIMP-2, and MMP-9/TIMP-3 ratios were higher in the PCOS group (p < 0.01), whilst MMP-17/TIMP-1 and MMP-17/TIMP-2 were lower (p = 0.01). MMP-2/TIMP ratios showed no difference between groups. TIMP-2 was positively correlated with CRP (p < 0.01). MMP changes in PCOS are largely driven by BMI, though increased MMP-9 is BMI-independent, suggesting that any deleterious effects of MMP-9 would be potentially exacerbated by a concomitantly increased BMI. The significant increases in the MMP-9/TIMP ratios suggests MMP-9 overactivity in PCOS.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| | - Manjula Nandakumar
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RX, UK;
| | - Edwina Brennan
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| |
Collapse
|
43
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
44
|
Gong H, Yang X, An L, Zhang W, Liu X, Shu L, Yang L. PCSK5 downregulation promotes the inhibitory effect of andrographolide on glioblastoma through regulating STAT3. Mol Cell Biochem 2025; 480:521-533. [PMID: 38553549 DOI: 10.1007/s11010-024-04977-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 01/03/2025]
Abstract
Proprotein convertase subtilisin/kexin type 5 (PCSK5) is a member of the proprotein convertase (PC) family, which processes immature proteins into functional proteins and plays an important role in the process of cell migration and transformation. Andrographolide is a non-peptide compound with PC inhibition and antitumor activity. Our research aimed to investigate the functional role of PCSK5 downregulation combined with Andro on GBM progression. Results from the cancer genome atlas (TCGA) and clinical samples revealed a significant upregulation of PCSK5 in GBM tissues than in non-tumor brain tissues. Higher expression of PCSK5 was correlated with advanced GBM stages and worse patient prognosis. PCSK5 knockdown attenuated the epithelial-mesenchymal transition (EMT)-like properties of GBM cells induced by IL-6. PCSK5 knockdown in combination with Andro treatment significantly inhibited the proliferation and invasion of GBM cells in vitro, as well as tumor growth in vivo. Mechanistically, PCSK5 downregulation reduced the expression of p-STAT3 and Matrix metalloproteinases (MMPs), which could be rescued by the p-STAT3 agonist. STAT3 silencing downregulated the expression of MMPs without affecting PCSK5. Furthermore, Andro in combination with PCSK5 silencing significantly inhibited STAT3/MMPs axis. These observations provided evidence that PCSK5 functioned as a potential tumor promoter by regulating p-STAT3/MMPs and the combination of Andro with PCSK5 silencing might be a good strategy to prevent GBM progression.
Collapse
Affiliation(s)
- Huiyuan Gong
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaomin Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Lijun An
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liping Shu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
45
|
Li Z, Chen J, Huang Z, Huang W, Wang K, Liang X, Su W. Topical application of 666-15, a potent inhibitor of CREB, alleviates alkali-induced corneal neovascularization. Exp Eye Res 2025; 250:110165. [PMID: 39571779 DOI: 10.1016/j.exer.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/02/2024]
Abstract
Corneal neovascularization (CNV) is a dynamically regulated process that arises due to a disruption in the equilibrium between pro-angiogenic and anti-angiogenic factors. Various cytokines are released by vascular endothelial cells and macrophages in damaged cornea, ultimately inducing CNV. The cAMP-response element-binding protein (CREB), a nuclear transcription factor, potentially impacts tumor angiogenesis by modulating the secretion of angiogenic proteins. This study aimed to assess the impact of 666-15, a potent inhibitor of CREB, on angiogenesis using human microvascular retinal endothelial cells (HMRECs), RAW 264.7 macrophage cell line and alkali-induce CNV mouse model. In vivo, the topical application of 666-15 (0.05 mg/mL) to the alkali-burn corneas led to 45% reduction in CNV. Additionally, in vitro treatment with 666-15 is effective in suppressing the migration, proliferation, and tube formation by HMRECs. Furthermore, treatment with 666-15 resulted in a down-regulation of pro-angiogenic cytokines expression, including VEGF-A, TGF-β1, b-FGF, and MMP-2 but simultaneously increasing anti-angiogenic cytokines expression, such as ADAMTS-1, Thrombospondin-1 (Tsp-1) and Tsp-2, both in alkali-burn corneas and HMRECs. And 666-15 inhibited the recruitment and the cytokines expression (VEGF-A, MMP-2, IL-1β, TNF-α, MCP-1 and MIP-1) of macrophage. Our findings revealed that 666-15 may suppress the function of endothelial cells and angiogenesis by restoring the homeostasis of pro-angiogenic stimuli, suggesting its potential as a therapeutic agent in the treatment of CNV and other angiogenesis-driven diseases.
Collapse
Affiliation(s)
- Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kerui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China.
| |
Collapse
|
46
|
Li R, Xu S, Guo Y, Cao C, Xu J, Hao L, Luo S, Chen X, Du Y, Li Y, Xie Y, Gao W, Li J, Xu B. Application of collagen in bone regeneration. J Orthop Translat 2025; 50:129-143. [PMID: 40171103 PMCID: PMC11960539 DOI: 10.1016/j.jot.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 04/03/2025] Open
Abstract
At present, there is a significant population of individuals experiencing bone deficiencies caused by injuries, ailments affecting the bones, congenital abnormalities, and cancer. The management of substantial bone defects a significant global orthopedic challenge due to the intricacies involved in promoting and restoring the growth of fresh osseous tissue. Autografts are widely regarded as the "gold standard" for repairing bone defects because of their superior tissue acceptance and ability to control osteogenesis. However, patients undergoing autografts may encounter various challenges, including but not limited to hernia, bleeding, nerve impairment, tissue death. Therefore, researchers in regenerative medicine are striving to find alternatives. Collagen is the most abundant protein in the human body, and its triple helix structure gives it unique characteristics that contribute to its strength and functionality in various tissues. Collagen is commonly processed into various forms such as scaffolds, sponges, membranes, hydrogels, and composite materials, due to its unique compatibility with the human body, affinity for water, minimal potential for immune reactions, adaptability, and ability to transport nutrients or drugs. As an alternative material in the field of bone regeneration, collagen is becoming increasingly important. The objective of this review is to provide a comprehensive analysis of the primary types and sources of collagen, their processes of synthesis and degradation, as well as the advancements made in bone regeneration research and its potential applications. A comprehensive investigation into the role of collagen in bone regeneration is undertaken, providing valuable points of reference for a more profound comprehension of collagen applications in this field. The concluding section provides a comprehensive overview of the prospective avenues for collagen research, underscoring their promising future and highlighting their significant potential in the field of bone regeneration. The Translational Potential of this Article. The comprehensive exploration into the diverse functions and translational potential of collagen in bone regeneration, as demonstrated in this review, these findings underscore their promising potential as a treatment option with significant clinical implications, thus paving the way for innovative and efficacious therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Rou Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Shiqing Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Yanning Guo
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Cong Cao
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Jingchen Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Lijun Hao
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Sai Luo
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Xinyao Chen
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Yuyang Du
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou 510515, PR China
| | - Yong Xie
- Department of Cardiac Surgery, The First Affiliated Hospital of Tsinghua University, Beijing 100036, PR China
| | - Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Jing Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Baohua Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
47
|
Shoari A, Ashja Ardalan A, Dimesa AM, Coban MA. Targeting Invasion: The Role of MMP-2 and MMP-9 Inhibition in Colorectal Cancer Therapy. Biomolecules 2024; 15:35. [PMID: 39858430 PMCID: PMC11762759 DOI: 10.3390/biom15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis. Their expression and activity are significantly elevated in CRC, correlating with poor prognosis and lower survival rates. This review provides a comprehensive overview of the pathophysiological roles of gelatinases in CRC, highlighting their contribution to tumor microenvironment modulation, angiogenesis, and the metastatic cascade. We also critically evaluate recent advancements in the development of gelatinase inhibitors, including small molecule inhibitors, natural compounds, and novel therapeutic approaches like gene silencing techniques. Challenges such as nonspecificity, adverse side effects, and resistance mechanisms are discussed. We explore the potential of gelatinase inhibition in combination therapies, particularly with conventional chemotherapy and emerging targeted treatments, to enhance therapeutic efficacy and overcome resistance. The novelty of this review lies in its integration of recent findings on diverse inhibition strategies with insights into their clinical relevance, offering a roadmap for future research. By addressing the limitations of current approaches and proposing novel strategies, this review underscores the potential of gelatinase inhibitors in CRC prevention and therapy, inspiring further exploration in this promising area of oncological treatment.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Arghavan Ashja Ardalan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | | | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
48
|
Kim J, Go MY, Jeon CY, Shin JU, Kim M, Lim HW, Shin DW. Pinitol Improves Diabetic Foot Ulcers in Streptozotocin-Induced Diabetes Rats Through Upregulation of Nrf2/HO-1 Signaling. Antioxidants (Basel) 2024; 14:15. [PMID: 39857349 PMCID: PMC11762712 DOI: 10.3390/antiox14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Diabetic foot ulcers represent a severe complication of diabetes, often resulting in amputation and high mortality rates. Currently, there are no treatments for diabetic foot ulcers other than antibiotics and dressings. In this study, we evaluated the wound-healing effects of an antidiabetic agent pinitol in lipopolysaccharide (LPS)-damaged human dermal fibroblasts (HDFs) and streptozotocin (STZ)-induced diabetic rat models with a foot wound. Our findings indicated that pinitol enhanced cell migration, proliferation, and wound healing by activating Nrf2, thereby mitigating oxidative stress and inflammatory responses at the wound site. Additionally, pinitol restored mitochondrial energy metabolism, decreased matrix metalloproteinase (MMP) activity, and increased collagen deposition. Furthermore, pinitol facilitated angiogenesis, contributing to improved wound healing. Taken together, these findings suggest that pinitol could be a promising therapeutic agent for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong Wook Shin
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; (J.K.); (M.Y.G.); (C.Y.J.); (J.U.S.); (M.K.); (H.W.L.)
| |
Collapse
|
49
|
Wolosowicz M, Prokopiuk S, Kaminski TW. The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease. Int J Mol Sci 2024; 25:13691. [PMID: 39769454 PMCID: PMC11728377 DOI: 10.3390/ijms252413691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM. MMP-2 is secreted as an inactive pro-enzyme (proMMP-2) and activated through proteolytic cleavage, with its activity being precisely regulated by tissue inhibitors of metalloproteinases (TIMPs). Dysregulation of MMP-2 has been linked to a variety of pathological conditions, including cardiovascular diseases, diabetic complications, kidney diseases, and cancer. In cardiovascular diseases, it contributes to vascular remodeling, atherosclerosis, and aneurysms, while in fibrotic diseases, it mediates excessive ECM degradation leading to tissue scarring. In diabetes, elevated MMP-2 activity exacerbates complications such as nephropathy, retinopathy, and cardiovascular disease. In cancer, MMP-2 facilitates tumor invasion and metastasis by degrading ECM components and promoting angiogenesis. Despite its essential roles in both physiological and pathological processes, targeting MMP-2 for therapeutic purposes presents challenges due to its dual functions in tissue remodeling and repair, raising concerns about unplanned consequences such as impaired tissue healing or excessive tissue damage. These challenges underscore the need for future research to focus on developing selective modulators that can precisely balance their activity under specific disease environments. Clinical trials targeting MMP-2 modulation highlight the potential of gelatinase inhibitors, including those targeting MMP-2, to reduce tumor progression in fibrosarcoma, breast, and lung cancers. This paper reviews the structure, function, and regulation of MMP-2, its involvement in disease pathogenesis, and the potential challenges in the therapeutic implications of modulating its activity.
Collapse
Affiliation(s)
- Marta Wolosowicz
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Slawomir Prokopiuk
- Faculty of Health Sciences, University of Lomza, 14 Akademicka St., 18-400 Łomża, Poland;
| | - Tomasz W. Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
50
|
He J, Zhang HP. Research progress and treatment status of malignant ascites. Front Oncol 2024; 14:1390426. [PMID: 39737405 PMCID: PMC11682990 DOI: 10.3389/fonc.2024.1390426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Malignant ascites (MA), a common and serious complication of various cancers in the abdominal cavity, originates from the extensive infiltration, metastasis, and growth of cancer cells in or on the abdominal cavity, leading to abnormal accumulation of fluid in the abdominal cavity and the formation of MA. MA seriously reduces the quality of life of cancer patients, shortens their survival period, and generally has a poor prognosis. Modern medicine has developed various strategies for the treatment of MA, including targeted supportive treatment, diuretic treatment, abdominal paracentesis, surgical intervention, and intraperitoneal administration therapy. Among them, chemotherapy, as one of the important treatment methods, includes both systemic chemotherapy and intraperitoneal chemotherapy, especially pressurized intraperitoneal aerosol chemotherapy (PIPAC), hyperthermic intraperitoneal chemotherapy (HIPEC), and foam-based intraperitoneal chemotherapy (FBIC), providing a new choice for the treatment of MA. In addition, innovative treatment methods such as gas-based intra-abdominal hyperthermia (GIH) combined with dehydration therapy have also shown promising application prospects. This article delves into multiple aspects of MA, including its concept, mechanism of occurrence, clinical manifestations, differential diagnostic methods, and current treatment status and research progress. This comprehensive review aims to provide valuable references for effectively controlling MA, improving cancer patients' quality of life, and prolonging the survival cycle of cancer patients in clinical practice. Malignant ascites (MA) is a common complication of cancer, which originates from the extensive infiltration, metastasis, and growth of cancer cells in the abdominal cavity or peritoneum, leading to abnormal accumulation of peritoneal fluid. It is a common clinical manifestation in the late stage of cancer. Its symptoms are stubborn and recurrent, which can lead to abdominal pain, bloating, poor appetite, fatigue, breathing difficulties, and even multiple organ failure. The median survival time for cancer patients with MA is generally 5 to 6 months. The prognosis is poor, and it is imperative to seek more active and effective treatment plans. This article reviews the research and treatment status of MA, aiming to provide certain value for controlling MA and improving the quality of life of patients.
Collapse
Affiliation(s)
- Jing He
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dali University, Dali, China
| | - Hui-ping Zhang
- Department of Oncology, Guang’anmen Hospital Jinan Hospital (Jinan Hospital of Traditional Chinese Medicine), Jinan, China
| |
Collapse
|