1
|
Zanker J, Hüser D, Savy A, Lázaro-Petri S, Hammer EM, Schwarzer C, Heilbronn R. Evaluation of the SH-SY5Y cell line as an in vitro model for potency testing of a neuropeptide-expressing AAV vector. Front Mol Neurosci 2023; 16:1280556. [PMID: 38098942 PMCID: PMC10720649 DOI: 10.3389/fnmol.2023.1280556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Viral vectors have become important tools for basic research and clinical gene therapy over the past years. However, in vitro testing of vector-derived transgene function can be challenging when specific post-translational modifications are needed for biological activity. Similarly, neuropeptide precursors need to be processed to yield mature neuropeptides. SH-SY5Y is a human neuroblastoma cell line commonly used due to its ability to differentiate into specific neuronal subtypes. In this study, we evaluate the suitability of SH-SY5Y cells in a potency assay for neuropeptide-expressing adeno-associated virus (AAV) vectors. We looked at the impact of neuronal differentiation and compared single-stranded (ss) AAV and self-complementary (sc) AAV transduction at increasing MOIs, RNA transcription kinetics, as well as protein expression and mature neuropeptide production. SH-SY5Y cells proved highly transducible with AAV1 already at low MOIs in the undifferentiated state and even better after neuronal differentiation. Readouts were GFP or neuropeptide mRNA expression. Production of mature neuropeptides was poor in undifferentiated cells. By contrast, differentiated cells produced and sequestered mature neuropeptides into the medium in a MOI-dependent manner.
Collapse
Affiliation(s)
- Jeanette Zanker
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Hüser
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrien Savy
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Lázaro-Petri
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva-Maria Hammer
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Regine Heilbronn
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
3
|
Zhang S, Cooper-Knock J, Weimer AK, Shi M, Moll T, Marshall JNG, Harvey C, Nezhad HG, Franklin J, Souza CDS, Ning K, Wang C, Li J, Dilliott AA, Farhan S, Elhaik E, Pasniceanu I, Livesey MR, Eitan C, Hornstein E, Kenna KP, Veldink JH, Ferraiuolo L, Shaw PJ, Snyder MP. Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron 2022; 110:992-1008.e11. [PMID: 35045337 PMCID: PMC9017397 DOI: 10.1016/j.neuron.2021.12.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Annika K Weimer
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minyi Shi
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Jack N G Marshall
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Helia Ghahremani Nezhad
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - John Franklin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Cheng Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison A Dilliott
- Department of Neurology and Neurosurgery, the Montreal Neurological Institute, McGill University, Montreal, QC H3A 1A1, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, the Montreal Neurological Institute, McGill University, Montreal, QC H3A 1A1, Canada
| | - Eran Elhaik
- Department of Biology, Lunds Universitet, Lund 223 62, Sweden
| | - Iris Pasniceanu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Michael P Snyder
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Alieva AK, Filatova EV, Rudenok MM, Slominsky PA, Shadrina MI. Housekeeping Genes for Parkinson's Disease in Humans and Mice. Cells 2021; 10:cells10092252. [PMID: 34571901 PMCID: PMC8470043 DOI: 10.3390/cells10092252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
A critical aspect of real-time PCR is the presence of housekeeping genes (HKGs) as an internal control for the normalization of expression data for genes of interest. It is necessary to select correct HKGs in the investigation of various pathologies. Thereby, we analyzed the stability of expression of the HKGs in Parkinson’s disease (PD). The work was carried out in the peripheral blood of patients with PD and in the brain tissues and peripheral blood of mice with MPTP-induced PD. As a result, Aars was the most stably expressed HKG in the mouse brain as a whole. However, different genes were more stably expressed in different parts of the brain. Polr2f was the most stably expressed in the cortex, Psmd6 was the most stably expressed in the cerebellum, and Psmd7 was the most stably expressed in the striatum and substantia nigra. HKGs were different in similar tissues of the studied organisms. Polr2f was the most stably expressed HKG in the peripheral blood of mice, whereas PSMD6 was the most stably expressed gene in humans. Thus, there is no universal HKG both for different brain tissues of one organism and for similar tissues of different organisms. Furthermore, the identified most stably expressed HKGs can be considered as such only under conditions in PD.
Collapse
|
5
|
Mercatelli D, Balboni N, Giorgio FD, Aleo E, Garone C, Giorgi FM. The Transcriptome of SH-SY5Y at Single-Cell Resolution: A CITE-Seq Data Analysis Workflow. Methods Protoc 2021; 4:mps4020028. [PMID: 34066513 PMCID: PMC8163004 DOI: 10.3390/mps4020028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) is a recently established multimodal single cell analysis technique combining the immunophenotyping capabilities of antibody labeling and cell sorting with the resolution of single-cell RNA sequencing (scRNA-seq). By simply adding a 12-bp nucleotide barcode to antibodies (cell hashing), CITE-seq can be used to sequence antibody-bound tags alongside the cellular mRNA, thus reducing costs of scRNA-seq by performing it at the same time on multiple barcoded samples in a single run. Here, we illustrate an ideal CITE-seq data analysis workflow by characterizing the transcriptome of SH-SY5Y neuroblastoma cell line, a widely used model to study neuronal function and differentiation. We obtained transcriptomes from a total of 2879 single cells, measuring an average of 1600 genes/cell. Along with standard scRNA-seq data handling procedures, such as quality checks and cell filtering procedures, we performed exploratory analyses to identify most stable genes to be possibly used as reference housekeeping genes in qPCR experiments. We also illustrate how to use some popular R packages to investigate cell heterogeneity in scRNA-seq data, namely Seurat, Monocle, and slalom. Both the CITE-seq dataset and the code used to analyze it are freely shared and fully reusable for future research.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
- Correspondence: (D.M.); (F.M.G.); Tel.: +39-05-12094521 (F.M.G.)
| | - Nicola Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Francesca De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (F.D.G.); (C.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | | | - Caterina Garone
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (F.D.G.); (C.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Federico Manuel Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
- Correspondence: (D.M.); (F.M.G.); Tel.: +39-05-12094521 (F.M.G.)
| |
Collapse
|
6
|
Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol 2020; 518:110924. [PMID: 32619581 DOI: 10.1016/j.mce.2020.110924] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Oxytocin has been suggested as a potential therapeutic agent in autism and other neuropsychiatric conditions. Although, the link between the deficit in "SH3 domain and ankyrin repeat containing protein 3" (SHANK3) and autism spectrum disorders is highly studied topic, developmental mechanisms are still poorly understood. In this study, we clearly confirm that SHANK3 deficiency is accompanied with abnormalities in neurite number and length, which are reversed by oxytocin treatment (1 μM, 48h) in primary hippocampal neurons. Transient silencing for the SHANK3 gene (siSHANK3) in neuron-like cell line (SH-SY5Y) revealed a significant decrease in the expression levels of Neurexins 1α, 1β, 2α and 2β. Oxytocin treatment compensated reduced levels of Synapsin I, PSD95 and Neuroligin 3 in siSHANK3 cells suggesting a marked potential of oxytocin to ameliorate defects present in conditions of SHANK3 deficiency. Further analysis of hippocampal tissue revealed that oxytocin application (0.1 μg/μl, s.c. at P2 and P3 day) affects levels of synaptic proteins and GTPases in both WT and SHANK3 deficient mice on day P5. Oxytocin stimulated the mRNA expression of RhoB and Rac1 in both WT and SHANK3 deficient mice. Our data suggest that autism relevant synaptic pathologies could be reversed by oxytocin treatment.
Collapse
Affiliation(s)
- Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Kokavcova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Meliskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karel Frimmel
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
7
|
Cooper-Knock J, Zhang S, Kenna KP, Moll T, Franklin JP, Allen S, Nezhad HG, Iacoangeli A, Yacovzada NY, Eitan C, Hornstein E, Elhaik E, Celadova P, Bose D, Farhan S, Fishilevich S, Lancet D, Morrison KE, Shaw CE, Al-Chalabi A, Veldink JH, Kirby J, Snyder MP, Shaw PJ. Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene. Cell Rep 2020; 33:108456. [PMID: 33264630 PMCID: PMC7710676 DOI: 10.1016/j.celrep.2020.108456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. CAV1 and CAV2 organize membrane lipid rafts (MLRs) important for cell signaling and neuronal survival, and overexpression of CAV1 ameliorates ALS phenotypes in vivo. Genome-wide association studies localize a large proportion of ALS risk variants within the non-coding genome, but further characterization has been limited by lack of appropriate tools. By designing and applying a pipeline to identify pathogenic genetic variation within enhancer elements responsible for regulating gene expression, we identify disease-associated variation within CAV1/CAV2 enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce CAV1/CAV2 expression in neurons. Additional enrichment of ALS-associated mutations within CAV1 exons positions CAV1 as an ALS risk gene. We propose CAV1/CAV2 overexpression as a personalized medicine target for ALS.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| | - Sai Zhang
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - John P Franklin
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Samantha Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Helia Ghahremani Nezhad
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nancy Y Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elhaik
- Department of Biology, Lund University, Lund, Sweden
| | - Petra Celadova
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Daniel Bose
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Sali Farhan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
8
|
Wright Muelas M, Mughal F, O'Hagan S, Day PJ, Kell DB. The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data. Sci Rep 2019; 9:17960. [PMID: 31784565 PMCID: PMC6884504 DOI: 10.1038/s41598-019-54288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
We recently introduced the Gini coefficient (GC) for assessing the expression variation of a particular gene in a dataset, as a means of selecting improved reference genes over the cohort ('housekeeping genes') typically used for normalisation in expression profiling studies. Those genes (transcripts) that we determined to be useable as reference genes differed greatly from previous suggestions based on hypothesis-driven approaches. A limitation of this initial study is that a single (albeit large) dataset was employed for both tissues and cell lines. We here extend this analysis to encompass seven other large datasets. Although their absolute values differ a little, the Gini values and median expression levels of the various genes are well correlated with each other between the various cell line datasets, implying that our original choice of the more ubiquitously expressed low-Gini-coefficient genes was indeed sound. In tissues, the Gini values and median expression levels of genes showed a greater variation, with the GC of genes changing with the number and types of tissues in the data sets. In all data sets, regardless of whether this was derived from tissues or cell lines, we also show that the GC is a robust measure of gene expression stability. Using the GC as a measure of expression stability we illustrate its utility to find tissue- and cell line-optimised housekeeping genes without any prior bias, that again include only a small number of previously reported housekeeping genes. We also independently confirmed this experimentally using RT-qPCR with 40 candidate GC genes in a panel of 10 cell lines. These were termed the Gini Genes. In many cases, the variation in the expression levels of classical reference genes is really quite huge (e.g. 44 fold for GAPDH in one data set), suggesting that the cure (of using them as normalising genes) may in some cases be worse than the disease (of not doing so). We recommend the present data-driven approach for the selection of reference genes by using the easy-to-calculate and robust GC.
Collapse
Affiliation(s)
- Marina Wright Muelas
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Farah Mughal
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Steve O'Hagan
- School of Chemistry, Department of Chemistry, The Manchester Institute of Biotechnology 131, Princess Street, Manchester, M1 7DN, UK
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester, M1 7DN, UK
| | - Philip J Day
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester, M1 7DN, UK.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK.
| | - Douglas B Kell
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, 10 Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Draper ACE, Wilson Z, Maile C, Faccenda D, Campanella M, Piercy RJ. Species-specific consequences of an E40K missense mutation in superoxide dismutase 1 (SOD1). FASEB J 2019; 34:458-473. [PMID: 31914665 DOI: 10.1096/fj.201901455r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/11/2022]
Abstract
A glutamic acid to lysine (E40K) residue substitution in superoxide dismutase 1 (SOD1) is associated with canine degenerative myelopathy: the only naturally occurring large animal model of amyotrophic lateral sclerosis (ALS). The E40 residue is highly conserved across mammals, except the horse, which naturally carries the (dog mutant) K40 residue. Here we hypothesized that in vitro expression of mutant dog SOD1 would recapitulate features of human ALS (ie, SOD1 protein aggregation, reduced cell viability, perturbations in mitochondrial morphology and membrane potential, reduced ATP production, and increased superoxide ion levels); further, we hypothesized that an equivalent equine SOD1 variant would share similar perturbations in vitro, thereby explain horses' susceptibility to certain neurodegenerative diseases. As in human ALS, expression of mutant dog SOD1 was associated with statistically significant increased aggregate formation, raised superoxide levels (ROS), and altered mitochondrial morphology (increased branching (form factor)), when compared to wild-type dog SOD1-expressing cells. Similar deficits were not detected in cells expressing the equivalent horse SOD1 variant. Our data helps explain the ALS-associated cellular phenotype of dogs expressing the mutant SOD1 protein and reveals that species-specific sequence conservation does not necessarily predict pathogenicity. The work improves understanding of the etiopathogenesis of canine degenerative myelopathy.
Collapse
Affiliation(s)
- Alexandra C E Draper
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| | - Zoe Wilson
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| | - Charlotte Maile
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| | - Danilo Faccenda
- Mitochondrial Cell Biology and Pharmaceutical Research Unit, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Michelangelo Campanella
- Mitochondrial Cell Biology and Pharmaceutical Research Unit, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.,University College London Consortium for Mitochondrial Research, University College London, University of London, London, UK
| | - Richard J Piercy
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
10
|
Morales-Hojas R, Hinsley M, Armean IM, Silk R, Harrup LE, Gonzalez-Uriarte A, Veronesi E, Campbell L, Nayduch D, Saski C, Tabachnick WJ, Kersey P, Carpenter S, Fife M. The genome of the biting midge Culicoides sonorensis and gene expression analyses of vector competence for bluetongue virus. BMC Genomics 2018; 19:624. [PMID: 30134833 PMCID: PMC6106943 DOI: 10.1186/s12864-018-5014-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The new genomic technologies have provided novel insights into the genetics of interactions between vectors, viruses and hosts, which are leading to advances in the control of arboviruses of medical importance. However, the development of tools and resources available for vectors of non-zoonotic arboviruses remains neglected. Biting midges of the genus Culicoides transmit some of the most important arboviruses of wildlife and livestock worldwide, with a global impact on economic productivity, health and welfare. The absence of a suitable reference genome has hindered genomic analyses to date in this important genus of vectors. In the present study, the genome of Culicoides sonorensis, a vector of bluetongue virus (BTV) in the USA, has been sequenced to provide the first reference genome for these vectors. In this study, we also report the use of the reference genome to perform initial transcriptomic analyses of vector competence for BTV. RESULTS Our analyses reveal that the genome is 189 Mb, assembled in 7974 scaffolds. Its annotation using the transcriptomic data generated in this study and in a previous study has identified 15,612 genes. Gene expression analyses of C. sonorensis females infected with BTV performed in this study revealed 165 genes that were differentially expressed between vector competent and refractory females. Two candidate genes, glutathione S-transferase (gst) and the antiviral helicase ski2, previously recognized as involved in vector competence for BTV in C. sonorensis (gst) and repressing dsRNA virus propagation (ski2), were confirmed in this study. CONCLUSIONS The reference genome of C. sonorensis has enabled preliminary analyses of the gene expression profiles of vector competent and refractory individuals. The genome and transcriptomes generated in this study provide suitable tools for future research on arbovirus transmission. These provide a valuable resource for these vector lineage, which diverged from other major Dipteran vector families over 200 million years ago. The genome will be a valuable source of comparative data for other important Dipteran vector families including mosquitoes (Culicidae) and sandflies (Psychodidae), and together with the transcriptomic data can yield potential targets for transgenic modification in vector control and functional studies.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK. .,Rothamsted Insect Survey, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Malcolm Hinsley
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Irina M Armean
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Rhiannon Silk
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Lara E Harrup
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Asier Gonzalez-Uriarte
- Bioinformatics group, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Eva Veronesi
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK.,National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Lahcen Campbell
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Dana Nayduch
- USDA-ARS, Center for Grain and Animal Health Research, Arthropod Borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS, 66502, USA
| | - Christopher Saski
- Department of Genetics and Biochemistry, Clemson University Genomics Institute, BRC #310, 105 Collins Street, Clemson, SC, 29634, USA
| | - Walter J Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, IFAS, 200 9th St., SE, Vero Beach, FL, 32962, USA
| | - Paul Kersey
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Simon Carpenter
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Mark Fife
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
11
|
O'Hagan S, Wright Muelas M, Day PJ, Lundberg E, Kell DB. GeneGini: Assessment via the Gini Coefficient of Reference "Housekeeping" Genes and Diverse Human Transporter Expression Profiles. Cell Syst 2018; 6:230-244.e1. [PMID: 29428416 PMCID: PMC5840522 DOI: 10.1016/j.cels.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/26/2017] [Accepted: 12/30/2017] [Indexed: 01/13/2023]
Abstract
The expression levels of SLC or ABC membrane transporter transcripts typically differ 100- to 10,000-fold between different tissues. The Gini coefficient characterizes such inequalities and here is used to describe the distribution of the expression of each transporter among different human tissues and cell lines. Many transporters exhibit extremely high Gini coefficients even for common substrates, indicating considerable specialization consistent with divergent evolution. The expression profiles of SLC transporters in different cell lines behave similarly, although Gini coefficients for ABC transporters tend to be larger in cell lines than in tissues, implying selection. Transporter genes are significantly more heterogeneously expressed than the members of most non-transporter gene classes. Transcripts with the stablest expression have a low Gini index and often differ significantly from the "housekeeping" genes commonly used for normalization in transcriptomics/qPCR studies. PCBP1 has a low Gini coefficient, is reasonably expressed, and is an excellent novel reference gene. The approach, referred to as GeneGini, provides rapid and simple characterization of expression-profile distributions and improved normalization of genome-wide expression-profiling data.
Collapse
Affiliation(s)
- Steve O'Hagan
- School of Chemistry, 131, Princess Street, Manchester M1 7DN, UK; The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK
| | - Marina Wright Muelas
- School of Chemistry, 131, Princess Street, Manchester M1 7DN, UK; The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK
| | - Philip J Day
- The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK; Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Emma Lundberg
- Science for Life Laboratory, Royal Institute of Technology (KTH), SE-17121 Solna, Sweden.
| | - Douglas B Kell
- School of Chemistry, 131, Princess Street, Manchester M1 7DN, UK; The Manchester Institute of Biotechnology, 131, Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
12
|
Lu AQ, Barnstable CJ. Generation of Photoreceptor Precursors from Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2017; 14:247-261. [DOI: 10.1007/s12015-017-9773-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Fausto AKS, Silva TDF, Romanel E, Vaslin MFS. microRNAs as reference genes for quantitative PCR in cotton. PLoS One 2017; 12:e0174722. [PMID: 28414734 PMCID: PMC5393557 DOI: 10.1371/journal.pone.0174722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/14/2017] [Indexed: 11/18/2022] Open
Abstract
Cotton (Gossypium hirsutum) is the most important non-food plant in the world. Studies concerning the fiber quality and plant fitness of cotton at molecular level depend on high sensitive and reproducible gene-expression assays. However, only a few reports have described genes suitable for normalizing gene expression data. In this study, we report for the first time that microRNAs (miRNAs) are reliable reference genes (RGs) for cotton gene expression normalization in quantitative real-time reverse transcription (RT)-PCR. The stability of cotton miRNAs was assayed in root, stem, leaf and flower samples from three different cultivars [FiberMax (FM966), Delta Opal (DO) and Cedro] and under conditions of biotic stress caused by infection with Cotton leafroll dwarf virus (CLRDV). The stability of mRNAs already described as reference genes in cotton was also assessed. The geNorm, NormFinder, BestKeeper and ΔCt algorithms were used to select the best reference genes. In 8 of the 12 sets tested, miRNAs (miR172, 168 and 390) were found to be the best RGs. To validate the best selected RGs, miR159, miR164, miR2118, miR2910, miR3476, GhDCL2 and GhDCL4 expression levels were evaluated under biotic stress conditions, and miR164 and a putative myo-inositol oxigenase gene (GhMIOX) were assessed in leaves and flowers. The RGs selected in this work proved to be excellent reference genes in the two cases studied. Our results support the use of miRNAs as reference genes for miRNA and protein-coding genes.
Collapse
Affiliation(s)
- Anna Karoline Silva Fausto
- Lab. Virologia Molecular Vegetal, Depto. Virologia, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil
| | - Tatiane da Franca Silva
- Lab. Virologia Molecular Vegetal, Depto. Virologia, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Lorena, SP, Brasil
| | - Elisson Romanel
- Lab. Virologia Molecular Vegetal, Depto. Virologia, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Lorena, SP, Brasil
| | - Maite F. S. Vaslin
- Lab. Virologia Molecular Vegetal, Depto. Virologia, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
14
|
Rendel F, Alfredsson CF, Bornehag C, Sundström BE, Nånberg E. Retracted: Effects of Di‐isononyl Phthalate on Neuropeptide Y Expression in Differentiating Human Neuronal Cells. Basic Clin Pharmacol Toxicol 2017; 120:318-323. [DOI: 10.1111/bcpt.12670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Filip Rendel
- Biomedical Sciences Karlstad University Karlstad Sweden
| | | | - Carl‐Gustaf Bornehag
- Public Health Science Department of Health Sciences Faculty of Health, Science and Technology Karlstad University Karlstad Sweden
- Icahn School of Medicine at Mount Sinai New York NYUSA
| | | | - Eewa Nånberg
- Biomedical Sciences Karlstad University Karlstad Sweden
| |
Collapse
|
15
|
Holmgren G, Ghosheh N, Zeng X, Bogestål Y, Sartipy P, Synnergren J. Identification of stable reference genes in differentiating human pluripotent stem cells. Physiol Genomics 2015; 47:232-9. [PMID: 25852171 DOI: 10.1152/physiolgenomics.00130.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/31/2015] [Indexed: 01/01/2023] Open
Abstract
Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.
Collapse
Affiliation(s)
- Gustav Holmgren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nidal Ghosheh
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Buck Institute, Novato, California; and
| | - Yalda Bogestål
- Systems Biology Research Center, University of Skövde, Skövde, Sweden
| | - Peter Sartipy
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; AstraZeneca Research and Development, Global Medicines Development, Cardiovascular and Metabolic Diseases Global Medicines Development Unit, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden;
| |
Collapse
|
16
|
Devanna P, Middelbeek J, Vernes SC. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Front Cell Neurosci 2014; 8:305. [PMID: 25309332 PMCID: PMC4176457 DOI: 10.3389/fncel.2014.00305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 11/14/2022] Open
Abstract
FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.
Collapse
Affiliation(s)
- Paolo Devanna
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Netherlands
| | - Sonja C Vernes
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| |
Collapse
|
17
|
Radke L, Giese C, Lubitz A, Hinderlich S, Sandig G, Hummel M, Frohme M. Reference gene stability in peripheral blood mononuclear cells determined by qPCR and NanoString. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1221-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Wang R, Halper-Stromberg E, Szymanski-Pierce M, Bassett SS, Avramopoulos D. Genetic determinants of neuroglobin transcription. Neurogenetics 2013; 15:65-75. [PMID: 24362753 DOI: 10.1007/s10048-013-0388-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/06/2013] [Indexed: 11/29/2022]
Abstract
Neuroglobin (NGB) is a neuron-specific vertebrate globin shown to protect against hypoxia, ischemia, oxidative stress and the toxic effects of Amyloid-beta. Following on our and others' results highlighting the importance of NGB expression in disease, we searched for genetic determinants of its expression. We found that a microRNA expressed with the NGB transcript shows significant target enrichments in the angiogenesis pathway and the Alzheimer disease/presenilin pathway. Using reporter constructs we identified potential promoter/enhancer elements between the transcription start site and 1,142 bp upstream. Using 184 post-mortem temporal lobe samples we replicated the reported negative effect of age, and after genotyping tagging SNPs we found one (rs981471) showing a significant correlation with the gene's expression and another (rs8014408) showing an interaction with age, the rare C allele being correlated with higher expression and faster decline. The two SNPs are towards the 3' end of NGB within the same LD block, 52 Kb apart and modestly correlated (r (2) = 0.5). Next generation sequencing of the same 184 temporal lobe samples and 79 confirmed AD patients across the entire gene region (including >12 Kb on the 3' and 5' flank) revealed limited coding variation, suggesting purifying selection of NGB, but did not identify regulatory or disease associated rare variants. A dinucleotide repeat in intron 1 with extensive evidence of functionality showed interesting but inconclusive results, as it was not amenable to further molecular analysis.
Collapse
Affiliation(s)
- R Wang
- Department of Psychiatry, Johns Hopkins University, School of Medicine, 733 North Broadway, MRB-507, Baltimore, MD, 21205, USA
| | | | | | | | | |
Collapse
|
19
|
Kapila N, Kishore A, Sodhi M, Sharma A, Kumar P, Mohanty AK, Jerath T, Mukesh M. Identification of Appropriate Reference Genes for qRT-PCR Analysis of Heat-Stressed Mammary Epithelial Cells in Riverine Buffaloes (Bubalus bubalis). ISRN BIOTECHNOLOGY 2013; 2013:735053. [PMID: 25937980 PMCID: PMC4393032 DOI: 10.5402/2013/735053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 11/23/2012] [Indexed: 12/17/2022]
Abstract
Gene expression studies require appropriate normalization methods for proper evaluation of reference genes. To date, not many studies have been reported on the identification of suitable reference genes in buffaloes. The present study was undertaken to determine the panel of suitable reference genes in heat-stressed buffalo mammary epithelial cells (MECs). Briefly, MEC culture from buffalo mammary gland was exposed to 42 °C for one hour and subsequently allowed to recover at 37 °C for different time intervals (from 30 m to 48 h). Three different algorithms, geNorm, NormFinder, and BestKeeper softwares, were used to evaluate the stability of 16 potential reference genes from different functional classes. Our data identified RPL4, EEF1A1, and RPS23 genes to be the most appropriate reference genes that could be utilized for normalization of qPCR data in heat-stressed buffalo MECs.
Collapse
Affiliation(s)
- Neha Kapila
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India ; Biotechnology Division, Singhania University, Jhunjhnu, Rajasthan 333515, India
| | - Amit Kishore
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Monika Sodhi
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Ankita Sharma
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Pawan Kumar
- Biotechnology Division, Singhania University, Jhunjhnu, Rajasthan 333515, India
| | - A K Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Tanushri Jerath
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - M Mukesh
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| |
Collapse
|
20
|
Götz J, Ittner A, Ittner LM. Tau-targeted treatment strategies in Alzheimer's disease. Br J Pharmacol 2012; 165:1246-59. [PMID: 22044248 DOI: 10.1111/j.1476-5381.2011.01713.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
With populations ageing worldwide, the need for treating and preventing diseases associated with high age is pertinent. Alzheimer's disease (AD) is reaching epidemic proportions, yet the currently available therapies are limited to a symptomatic relief, without halting the degenerative process that characterizes the AD brain. As in AD cholinergic neurons are lost at high numbers, the initial strategies were limited to the development of acetylcholinesterase inhibitors, and more recently the NMDA receptor antagonist memantine, in counteracting excitotoxicity. With the identification of the protein tau in intracellular neurofibrillary tangles and of the peptide amyloid-β (Aβ) in extracellular amyloid plaques in the AD brain, and a better understanding of their role in disease, newer strategies are emerging, which aim at either preventing their formation and deposition or at accelerating their clearance. Interestingly, what is well established to combat viral diseases in peripheral organs - vaccination - seems to work for the brain as well. Accordingly, immunization strategies targeting Aβ show efficacy in mice and to some degree also in humans. Even more surprising is the finding in mice that immunization strategies targeting tau, a protein that forms aggregates in nerve cells, ameliorates the tau-associated pathology. We are reviewing the literature and discuss what can be expected regarding the translation into clinical practice and how the findings can be extended to other neurodegenerative diseases with protein aggregation in brain.
Collapse
Affiliation(s)
- Jürgen Götz
- Alzheimer's and Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| | | | | |
Collapse
|
21
|
Götz J, Matamales M, Götz NN, Ittner LM, Eckert A. Alzheimer's disease models and functional genomics-How many needles are there in the haystack? Front Physiol 2012; 3:320. [PMID: 22934069 PMCID: PMC3429089 DOI: 10.3389/fphys.2012.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/23/2012] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) are complex human brain disorders that affect an increasing number of people worldwide. With the identification first of the proteins that aggregate in AD and FTLD brains and subsequently of pathogenic gene mutations that cause their formation in the familial cases, the foundation was laid for the generation of animal models. These recapitulate essential aspects of the human conditions; expression of mutant forms of the amyloid-β protein-encoding APP gene in mice reproduces amyloid-β (Aβ) plaque formation in AD, while that of mutant forms of the tau-encoding microtubule-associated protein tau (MAPT) gene reproduces tau-containing neurofibrillary tangle formation, a lesion that is also prevalent in FTLD-Tau. The mouse models have been complemented by those in lower species such as C. elegans or Drosophila, highlighting the crucial role for Aβ and tau in human neurodegenerative disease. In this review, we will introduce selected AD/FTLD models and discuss how they were instrumental, by identifying deregulated mRNAs, miRNAs and proteins, in dissecting pathogenic mechanisms in neurodegenerative disease. We will discuss some recent examples, which includes miRNA species that are specifically deregulated by Aβ, mitochondrial proteins that are targets of both Aβ and tau, and the nuclear splicing factor SFPQ that accumulates in the cytoplasm in a tau-dependent manner. These examples illustrate how a functional genomics approach followed by a careful validation in experimental models and human tissue leads to a deeper understanding of the pathogenesis of AD and FTLD and ultimately, may help in finding a cure.
Collapse
Affiliation(s)
- Jürgen Götz
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandSt Lucia, QLD, Australia
| | - Miriam Matamales
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandSt Lucia, QLD, Australia
| | - Naeman N. Götz
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandSt Lucia, QLD, Australia
| | - Lars M. Ittner
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of SydneyCamperdown, NSW, Australia
| | - Anne Eckert
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of BaselBasel, Switzerland
| |
Collapse
|
22
|
Light JE, Koyama H, Minturn JE, Ho R, Simpson AM, Iyer R, Mangino JL, Kolla V, London WB, Brodeur GM. Clinical significance of NTRK family gene expression in neuroblastomas. Pediatr Blood Cancer 2012; 59:226-32. [PMID: 21990266 PMCID: PMC3258457 DOI: 10.1002/pbc.23343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuroblastomas (NBs) are characterized by clinical heterogeneity, from spontaneous regression to relentless progression. The pattern of NTRK family gene expression contributes to these disparate behaviors. TrkA/NTRK1 is expressed in favorable NBs that regress or differentiate, whereas TrkB/NTRK2 and its ligand brain-derived neurotrophic factor (BDNF) are co-expressed in unfavorable NBs, representing an autocrine survival pathway. We determined the significance of NTRK family gene expression in a large, representative set of primary NBs. PATIENTS AND METHODS We analyzed the expression of the following genes in 814 NBs using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR): NTRK1, NTRK2, NTRK3, P75/NGFR, nerve growth factor (NGF), BDNF, IGFR1, and EGFR. Expression (high vs. low) was dichotomized by median expression value and compared to clinical and biological variables as well as outcome. RESULTS High NTRK1 expression was strongly correlated with favorable age, stage, MYCN status, histology, ploidy, risk group, and outcome (P < 0.0001 for all). However, it did not add significantly to the panel of prognostic variables currently used for cooperative group trials. NTRK2 expression was associated with risk factors but not with outcome. High NGF expression was also associated with most risk factors and weakly with unfavorable outcome. CONCLUSIONS High expression of NTRK1 is strongly associated with favorable risk factors and outcome in a large, representative population of NB patients. It did not add significantly to the current risk prediction algorithm, but it may contribute to future expression classifiers. Indeed, prospective assessment of NTRK1 and NTRK2 expression will identify tumors that would be candidates for NTRK-targeted therapy, either alone or in combination with conventional agents.
Collapse
Affiliation(s)
- Jennifer E Light
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schonrock N, Humphreys DT, Preiss T, Götz J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci 2012; 46:324-35. [PMID: 21720722 DOI: 10.1007/s12031-011-9587-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/17/2011] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA regulators of protein synthesis that are essential for normal brain development and function. Their profiles are significantly altered in neurodegenerative diseases such as Alzheimer's disease (AD) that is characterized by amyloid-β (Aβ) and tau deposition in brain. How deregulated miRNAs contribute to AD is not understood, as their dysfunction could be both a cause and a consequence of disease. To address this question we had previously profiled miRNAs in models of AD. This identified miR-9 and -181c as being down-regulated by Aβ in hippocampal cultures. Interestingly, there was a remarkable overlap with those miRNAs that are deregulated in Aβ-depositing APP23 transgenic mice and in human AD tissue. While the Aβ precursor protein APP itself is a target of miRNA regulation, the challenge resides in identifying further targets. Here, we expand the repertoire of miRNA target genes by identifying the 3' untranslated regions (3' UTRs) of TGFBI, TRIM2, SIRT1 and BTBD3 as being repressed by miR-9 and -181c, either alone or in combination. Taken together, our study identifies putative target genes of miRNAs miR-9 and 181c, which may function in brain homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Nicole Schonrock
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, 2050, Camperdown, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
24
|
Koyama H, Zhuang T, Light JE, Kolla V, Higashi M, McGrady PW, London WB, Brodeur GM. Mechanisms of CHD5 Inactivation in neuroblastomas. Clin Cancer Res 2012; 18:1588-97. [PMID: 22294723 DOI: 10.1158/1078-0432.ccr-11-2644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Neuroblastomas (NBs) have genomic, biological, and clinical heterogeneity. High-risk NBs are characterized by several genomic changes, including MYCN amplification and 1p36 deletion. We identified the chromatin-remodeling gene CHD5 as a tumor suppressor gene that maps to 1p36.31. Low or absent CHD5 expression is associated with a 1p36 deletion and an unfavorable outcome, but the mechanisms of CHD5 inactivation in NBs are unknown. EXPERIMENTAL DESIGN We examined (i) the CHD5 sequence in 188 high-risk NBs investigated through the TARGET initiative, (ii) the methylation status of the CHD5 promoter in 108 NBs with or without 1p36 deletion and/or MYCN amplification, and (iii) mRNA expression of CHD5 and MYCN in 814 representative NBs using TaqMan low-density array microfluidic cards. RESULTS We found no examples of somatically acquired CHD5 mutations, even in cases with 1p36 deletion, indicating that homozygous genomic inactivation is rare. Methylation of the CHD5 promoter was common in the high-risk tumors, and it was generally associated with both 1p deletion and MYCN amplification. High CHD5 expression was a powerful predictor of favorable outcome, and it showed prognostic value even in multivariable analysis after adjusting for MYCN amplification, 1p36 deletion, and/or 11q deletion. CONCLUSIONS We conclude that (i) somatically acquired CHD5 mutations are rare in primary NBs, so inactivation probably occurs by deletion and epigenetic silencing; (ii) CHD5 expression and promoter methylation are associated with MYCN amplification, suggesting a possible interaction between these 2 genes; and (iii) high CHD5 expression is strongly correlated with favorable clinical/biological features and outcome.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Oncology, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
ENU mutagenesis screen to establish motor phenotypes in wild-type mice and modifiers of a pre-existing motor phenotype in tau mutant mice. J Biomed Biotechnol 2011; 2011:130947. [PMID: 22219655 PMCID: PMC3246812 DOI: 10.1155/2011/130947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/04/2011] [Indexed: 11/20/2022] Open
Abstract
Modifier screening is a powerful genetic tool. While not widely used in the vertebrate system, we applied these tools to transgenic mouse strains that recapitulate key aspects of Alzheimer's disease (AD), such as tau-expressing mice. These are characterized by a robust pathology including both motor and memory impairment. The phenotype can be modulated by ENU mutagenesis, which results in novel mutant mouse strains and allows identifying the underlying gene/mutation. Here we discuss this strategy in detail. We firstly obtained pedigrees that modify the tau-related motor phenotype, with mapping ongoing. We further obtained transgene-independent motor pedigrees: (i) hyperactive, circling ENU 37 mice with a causal mutation in the Tbx1 gene—the complete knock-out of Tbx1 models DiGeorge Syndrome; (ii) ENU12/301 mice that show sudden jerky movements and tremor constantly; they have a causal mutation in the Kcnq1 gene, modelling aspects of the Romano-Ward and Jervell and Lange-Nielsen syndromes; and (iii) ENU16/069 mice with tremor and hypermetric gait that have a causal mutation in the Mpz (Myelin Protein Zero) gene, modelling Charcot-Marie-Tooth disease type 1 (CMT1B). Together, we provide evidence for a real potential of an ENU mutagenesis to dissect motor functions in wild-type and tau mutant mice.
Collapse
|
26
|
Lim YA, Grimm A, Giese M, Mensah-Nyagan AG, Villafranca JE, Ittner LM, Eckert A, Götz J. Inhibition of the mitochondrial enzyme ABAD restores the amyloid-β-mediated deregulation of estradiol. PLoS One 2011; 6:e28887. [PMID: 22174920 PMCID: PMC3236223 DOI: 10.1371/journal.pone.0028887] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a conformational disease that is characterized by amyloid-β (Aβ) deposition in the brain. Aβ exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as well as mitochondrial dysfunction. Recent reports indicate that Aβ may also interact directly with intracellular proteins such as the mitochondrial enzyme ABAD (Aβ binding alcohol dehydrogenase) in executing its toxic effects. Mitochondrial dysfunction occurs early in AD, and Aβ's toxicity is in part mediated by inhibition of ABAD as shown previously with an ABAD decoy peptide. Here, we employed AG18051, a novel small ABAD-specific compound inhibitor, to investigate the role of ABAD in Aβ toxicity. Using SH-SY5Y neuroblastoma cells, we found that AG18051 partially blocked the Aβ-ABAD interaction in a pull-down assay while it also prevented the Aβ42-induced down-regulation of ABAD activity, as measured by levels of estradiol, a known hormone and product of ABAD activity. Furthermore, AG18051 is protective against Aβ42 toxicity, as measured by LDH release and MTT absorbance. Specifically, AG18051 reduced Aβ42-induced impairment of mitochondrial respiration and oxidative stress as shown by reduced ROS (reactive oxygen species) levels. Guided by our previous finding of shared aspects of the toxicity of Aβ and human amylin (HA), with the latter forming aggregates in Type 2 diabetes mellitus (T2DM) pancreas, we determined whether AG18051 would also confer protection from HA toxicity. We found that the inhibitor conferred only partial protection from HA toxicity indicating distinct pathomechanisms of the two amyloidogenic agents. Taken together, our results present the inhibition of ABAD by compounds such as AG18051 as a promising therapeutic strategy for the prevention and treatment of AD, and suggest levels of estradiol as a suitable read-out.
Collapse
Affiliation(s)
- Yun-An Lim
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Amandine Grimm
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Maria Giese
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Ayikoe Guy Mensah-Nyagan
- Equipe Steroïdes, Neuromodulateurs et Neuropathologies, Université de Strasbourg, Strasbourg, France
| | | | - Lars M. Ittner
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Anne Eckert
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
- * E-mail: (JG); (AE)
| | - Jürgen Götz
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail: (JG); (AE)
| |
Collapse
|
27
|
Schonrock N, Matamales M, Ittner LM, Götz J. MicroRNA networks surrounding APP and amyloid-β metabolism--implications for Alzheimer's disease. Exp Neurol 2011; 235:447-54. [PMID: 22119426 DOI: 10.1016/j.expneurol.2011.11.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA regulators of protein synthesis that function as "fine-tuning" tools of gene expression in development and tissue homeostasis. Their profiles are significantly altered in neurodegenerative diseases such as Alzheimer's disease (AD) that is characterized by both amyloid-β (Aβ) and tau deposition in brain. A key challenge remains in determining how changes in miRNA profiles translate into biological function in a physiological and pathological context. The key lies in identifying specific target genes for deregulated miRNAs and understanding which pathogenic factors trigger their deregulation. Here we review the literature about the intricate network of miRNAs surrounding the regulation of the amyloid precursor protein (APP) from which Aβ is derived by proteolytic cleavage. Normal brain function is highly sensitive to any changes in APP metabolism and miRNAs function at several steps to ensure that the correct APP end product is produced and in the right form and abundance. Disruptions in this miRNA regulatory network may therefore alter Aβ production, which in turn can affect miRNA expression.
Collapse
Affiliation(s)
- Nicole Schonrock
- Stem Cell and Developmental Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | | | | | | |
Collapse
|
28
|
Kim J, Park YJ, Jang Y, Kwon YH. AMPK activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate in SH-SY5Y cells. Brain Res 2011; 1418:42-51. [PMID: 21937027 DOI: 10.1016/j.brainres.2011.08.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/16/2011] [Accepted: 08/23/2011] [Indexed: 11/25/2022]
Abstract
Obesity and diabetes have been shown to be associated with cognitive impairment or early neurodegeneration. However, the cellular mechanisms that link between these two pathologies have not been clarified. In this study, we treated SH-SY5Y human neuroblastoma cells with palmitate and observed its effect on cell apoptosis and tau hyperphosphorylation. Dose- and time-dependent effects of palmitate on apoptosis were observed. Palmitate treatment induced endoplasmic reticulum (ER) stress, determined by the expression of spliced X-box binding protein 1 (XBP-1) mRNA and immunoglobin heavy chain-binding protein (BiP). We also observed increases in c-Jun N-terminal kinase (JNK) activation and tau hyperphosphorylation in response to palmitate. Although palmitate did not impair insulin signaling as shown by the immunoblotting analysis of AKT phosphorylation, it did inactivate AMP-activated protein kinase (AMPK). Activation of AMPK by N(1)-(β-d-Ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR), significantly reduced the apoptosis of cells treated with palmitate. AICAR also significantly inhibited ER stress, resulting in reduced tau hyperphosphorylation in cells treated with palmitate. Similarly, A769662, a direct activator of AMPK, also abolished the ER stress-mediated apoptosis and tau hyperphosphorylation. Therefore, these data suggest that palmitate triggers ER stress-mediated lipotoxicity and that AMPK activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate in SH-SY5Y cells.
Collapse
Affiliation(s)
- Juhae Kim
- Department of Food and Nutrition, Seoul National University, 599 Gwanak-ro, Gwanak-Gu, Seoul, 151-742, Republic of Korea
| | | | | | | |
Collapse
|
29
|
Leduc V, Legault V, Dea D, Poirier J. Normalization of gene expression using SYBR green qPCR: A case for paraoxonase 1 and 2 in Alzheimer's disease brains. J Neurosci Methods 2011; 200:14-9. [DOI: 10.1016/j.jneumeth.2011.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
|
30
|
Abstract
Genetic variation in CLU encoding clusterin has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, but the underlying mechanisms remain unknown. Following earlier reports that tightly regulated CLU alternative transcripts have different functions, we tested CLU single nucleotide polymorphisms (SNPs) including those associated with AD for quantitative effects on individual alternative transcripts. In 190 temporal lobe samples without pathology we found that the risk allele of the AD associated SNP rs9331888 increases the relative abundance of transcript NM_203339 (P=4.3×10(-12)). Using an independent set of 115 AD and control samples, we replicated this result (p=0.0014) and further observed that multiple CLU transcripts are at higher levels in AD compared to controls. The AD SNP rs9331888 is located in the first exon of NM_203339 and therefore, it is a functional candidate for the observed effects. We tested this hypothesis by in vitro dual luciferase assays using SK-N-SH cells and mouse primary cortical neurons and found allelic effects on enhancer function, consistent with our results on post-mortem human brain. These results suggest a biological mechanism for the genetic association of CLU with AD risk and indicate that rs9331888 is one of the functional DNA variants underlying this association.
Collapse
|
31
|
Modes of Aβ toxicity in Alzheimer's disease. Cell Mol Life Sci 2011; 68:3359-75. [PMID: 21706148 PMCID: PMC3181413 DOI: 10.1007/s00018-011-0750-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 12/18/2022]
Abstract
Alzheimer’s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide.
Collapse
|
32
|
Microarray analysis on human neuroblastoma cells exposed to aluminum, β(1-42)-amyloid or the β(1-42)-amyloid aluminum complex. PLoS One 2011; 6:e15965. [PMID: 21298039 PMCID: PMC3029275 DOI: 10.1371/journal.pone.0015965] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/01/2010] [Indexed: 12/22/2022] Open
Abstract
Background A typical pathological feature of Alzheimer's disease (AD) is the appearance in the brain of senile plaques made up of β-amyloid (Aβ) and neurofibrillary tangles. AD is also associated with an abnormal accumulation of some metal ions, and we have recently shown that one of these, aluminum (Al), plays a relevant role in affecting Aβ aggregation and neurotoxicity. Methodology In this study, employing a microarray analysis of 35,129 genes, we investigated the effects induced by the exposure to the Aβ1–42-Al (Aβ-Al) complex on the gene expression profile of the neuronal-like cell line, SH-SY5Y. Principal Findings The microarray assay indicated that, compared to Aβ or Al alone, exposure to Aβ-Al complex produced selective changes in gene expression. Some of the genes selectively over or underexpressed are directly related to AD. A further evaluation performed with Ingenuity Pathway analysis revealed that these genes are nodes of networks and pathways that are involved in the modulation of Ca2+ homeostasis as well as in the regulation of glutamatergic transmission and synaptic plasticity. Conclusions and Significance Aβ-Al appears to be largely involved in the molecular machinery that regulates neuronal as well as synaptic dysfunction and loss. Aβ-Al seems critical in modulating key AD-related pathways such as glutamatergic transmission, Ca2+ homeostasis, oxidative stress, inflammation, and neuronal apoptosis.
Collapse
|
33
|
Götz J, Gladbach A, Pennanen L, van Eersel J, Schild A, David D, Ittner LM. Animal models reveal role for tau phosphorylation in human disease. Biochim Biophys Acta Mol Basis Dis 2010; 1802:860-71. [DOI: 10.1016/j.bbadis.2009.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 12/18/2022]
|
34
|
Noriega NC, Kohama SG, Urbanski HF. Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain. BMC Mol Biol 2010; 11:47. [PMID: 20565976 PMCID: PMC2914640 DOI: 10.1186/1471-2199-11-47] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/21/2010] [Indexed: 12/18/2022] Open
Abstract
Background Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods. We recently demonstrated that relative gene expression from qRT-PCR data normalized using GAPDH, ALG9 and RPL13A expression values mirrored relative expression using quantile normalization in Robust Multichip Analysis (RMA) on the Affymetrix® GeneChip® rhesus Macaque Genome Array. Having shown that qRT-PCR and Affymetrix® GeneChip® data from the same hormone replacement therapy (HRT) study yielded concordant results, we used quantile-normalized gene microarray data to identify the most stably expressed among probe sets for prospective internal reference genes across three brain regions from the HRT study and an additional study of normally menstruating rhesus macaques (cycle study). Gene selection was limited to 575 previously published human "housekeeping" genes. Twelve animals were used per study, and three brain regions were analyzed from each animal. Gene expression stabilities were determined using geNorm, NormFinder and BestKeeper software packages. Results Sequences co-annotated for ribosomal protein S27a (RPS27A), and ubiquitin were among the most stably expressed under all conditions and selection criteria used for both studies. Higher annotation quality on the human GeneChip® facilitated more targeted analysis than could be accomplished using the rhesus GeneChip®. In the cycle study, multiple probe sets annotated for actin, gamma 1 (ACTG1) showed high signal intensity and were among the most stably expressed. Conclusions Using gene microarray analysis, we identified genes showing high expression stability under various sex-steroid environments in different regions of the rhesus macaque brain. Use of quantile-normalized microarray gene expression values represents an improvement over traditional methods of selecting internal reference genes for PCR analysis.
Collapse
Affiliation(s)
- Nigel C Noriega
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
35
|
Avramopoulos D, Szymanski M, Wang R, Bassett S. Gene expression reveals overlap between normal aging and Alzheimer's disease genes. Neurobiol Aging 2010; 32:2319.e27-34. [PMID: 20570407 DOI: 10.1016/j.neurobiolaging.2010.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/23/2010] [Accepted: 04/20/2010] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a common cause of dementia with a strong genetic component and risk sharply increasing with age. We performed two parallel microarray experiments to independently identify genes involved in normal aging and genes involved in AD using RNA extracted from the temporal lobe of 22 late onset AD and 23 control brain donors. We found that AD is accompanied by significant changes in the expression of many genes with upregulation of genes involved in inflammation and in transcription regulation and downregulation of genes involved in neuronal functions. The changes with healthy aging involved multiple genes but were not as strong. Replicating and strengthening previous reports, we find a highly significant overlap between genes changing expression with age and those changing in AD, and we observe that those changes are most often in the same direction. This result supports an overlap between the biological processes of normal aging and susceptibility to AD and suggests that age related genes expression changes might increase the risk of developing AD.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, 733 N. Broadway, Baltimore, MD, USA
| | | | | | | |
Collapse
|
36
|
Elkind E, Rechnitzer H, Vaisid T, Kornspan JD, Barnoy S, Rottem S, Kosower NS. Mycoplasma hyorhinis upregulates calpastatin and inhibits calpain-dependent proteolysis in SH-SY5Y neuroblastoma cells. FEMS Microbiol Lett 2010. [DOI: 10.1111/j.1574-6968.2009.01893.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Bahr SM, Borgschulte T, Kayser KJ, Lin N. Using microarray technology to select housekeeping genes in Chinese hamster ovary cells. Biotechnol Bioeng 2009; 104:1041-6. [PMID: 19557832 DOI: 10.1002/bit.22452] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study, we have identified species-specific housekeeping genes (HKGs) for Chinese Hamster Ovary (CHO) cells using data from microarray gene expression profiling. HKGs suitable for quantitative RT-PCR normalization should display relatively stable expression levels across experimental conditions. We analyzed transcription profiles of several IgG-producing recombinant CHO cell lines under numerous culture conditions using a custom CHO DNA microarray platform and calculated relative expression variability from 124 microarrays. We selected a novel panel of candidate HKGs based on their low variability in expression from the microarray data. Compared to three traditional HKGs (Gapdh, Actb, and B2m), the majority of genes on this panel demonstrated lower or equal variability. Each candidate HKG was then validated using qRT-PCR. Final selection of CHO-specific HKGs include Actr5, Eif3i, Hirip3, Pabpn1, Vezt, Cog1, and Yaf2. The results reported here provide a useful tool for gene expression analyses in CHO cells, a critical expression platform used in biotherapeutics.
Collapse
Affiliation(s)
- Scott M Bahr
- Cell Sciences and Development, SAFC Biosciences, St. Louis, Missouri 63103, USA
| | | | | | | |
Collapse
|
38
|
Abstract
In dementia research, animal models have become indispensable tools. They not only model aspects of the human condition, but also simulate processes that occur in humans and hence provide insight into how disease is initiated and propagated. The present review discusses two prominent human neurodegenerative disorders, Alzheimer's disease and frontotemporal dementia. It discusses what we would like to model in animals and highlights some of the more recent achievements using species as diverse as mice, fish, flies and worms. Advances in imaging and therapy are explored. We also discuss some anticipated new models and developments. These will reveal how key players in the pathogenesis of Alzheimer's disease and frontotemporal dementia, such as the peptide Aβ (amyloid β) and the protein tau, cause neuronal dysfunction and eventually, neuronal demise. Understanding these processes fully will lead to early diagnosis and therapy.
Collapse
|
39
|
van Eersel J, Bi M, Ke YD, Hodges JR, Xuereb JH, Gregory GC, Halliday GM, Götz J, Kril JJ, Ittner LM. Phosphorylation of soluble tau differs in Pick's disease and Alzheimer's disease brains. J Neural Transm (Vienna) 2009; 116:1243-51. [PMID: 19693433 DOI: 10.1007/s00702-009-0293-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/03/2009] [Indexed: 11/28/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a common cause of presenile dementia characterised by behavioural and language disturbances. Pick's disease (PiD) is a subtype of FTLD, which presents with intraneuronal inclusions consisting of hyperphosphorylated tau protein aggregates. Although Alzheimer's disease (AD) is also characterised by tau lesions, these are both histologically and biochemically distinct from the tau aggregates found in PiD. What determines the distinct characteristics of these tau lesions is unknown. As phosphorylated, soluble tau has been suggested to be the precursor of tau aggregates, we compared both the level and phosphorylation profile of tau in tissue extracts of AD and PiD brains to determine whether the differences in the tau lesions are reflected by differences in soluble tau. Levels of soluble tau were decreased in AD but not PiD. In addition, soluble tau was phosphorylated to a greater extent in AD than in PiD and displayed a different phosphorylation profile in the two disorders. Consistently, tau kinases were activated to different degrees in AD compared with PiD. Such differences in solubility and phosphorylation may contribute, at least in part, to the formation of distinct tau deposits, but may also have implications for the clinical differences between AD and PiD.
Collapse
Affiliation(s)
- Janet van Eersel
- Discipline of Pathology, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stamova BS, Apperson M, Walker WL, Tian Y, Xu H, Adamczy P, Zhan X, Liu DZ, Ander BP, Liao IH, Gregg JP, Turner RJ, Jickling G, Lit L, Sharp FR. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. BMC Med Genomics 2009; 2:49. [PMID: 19656400 PMCID: PMC2736983 DOI: 10.1186/1755-8794-2-49] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 08/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. METHODS Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT), 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS) and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. RESULTS Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder). CONCLUSION The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.
Collapse
Affiliation(s)
- Boryana S Stamova
- Department of Neurology and M,I,N,D, Institute, University of California at Davis Medical Center, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kwon MJ, Oh E, Lee S, Roh MR, Kim SE, Lee Y, Choi YL, In YH, Park T, Koh SS, Shin YK. Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One 2009; 4:e6162. [PMID: 19584937 PMCID: PMC2703796 DOI: 10.1371/journal.pone.0006162] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/10/2009] [Indexed: 11/18/2022] Open
Abstract
Normalization of mRNA levels using endogenous reference genes (ERGs) is critical for an accurate comparison of gene expression between different samples. Despite the popularity of traditional ERGs (tERGs) such as GAPDH and ACTB, their expression variability in different tissues or disease status has been reported. Here, we first selected candidate housekeeping genes (HKGs) using human gene expression data from different platforms including EST, SAGE, and microarray, and 13 novel ERGs (nERGs) (ARL8B, CTBP1, CUL1, DIMT1L, FBXW2, GPBP1, LUC7L2, OAZ1, PAPOLA, SPG21, TRIM27, UBQLN1, ZNF207) were further identified from these HKGs. The mean coefficient variation (CV) values of nERGs were significantly lower than those of tERGs and the expression level of most nERGs was relatively lower than high expressing tERGs in all dataset. The higher expression stability and lower expression levels of most nERGs were validated in 108 human samples including formalin-fixed paraffin-embedded (FFPE) tissues, frozen tissues and cell lines, through quantitative real-time RT-PCR (qRT-PCR). Furthermore, the optimal number of nERGs required for accurate normalization was as few as two, while four genes were required when using tERGs in FFPE tissues. Most nERGs identified in this study should be better reference genes than tERGs, based on their higher expression stability and fewer numbers needed for normalization when multiple ERGs are required.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Laboratory of Molecular Pathology, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ensel Oh
- Interdiciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, Korea
| | - Seungmook Lee
- Department of Statistics, College of Natural Science, Seoul National University, Seoul, Korea
| | | | - Si Eun Kim
- Laboratory of Molecular Pathology, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yangsoon Lee
- LG Life Sciences, Ltd., R&D Research Park, Daejeon, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Taesung Park
- Department of Statistics, College of Natural Science, Seoul National University, Seoul, Korea
| | - Sang Seok Koh
- Protein Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
- Interdiciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
42
|
Identification and validation of suitable reference genes for quantitative expression of xylA and xylE genes in Pseudomonas putida mt-2. J Biosci Bioeng 2009; 107:210-4. [PMID: 19217562 DOI: 10.1016/j.jbiosc.2008.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/12/2008] [Indexed: 11/23/2022]
Abstract
Reference genes are used to normalize target genes for relative quantification in gene expression studies. However, different experimental conditions may affect the expression of reference genes, which could lead to erroneous quantitative results. In this study, we performed real-time polymerase chain to investigate the expression of eight reference genes (rpoN, rpoD, dbhA, phaF, 16S rRNA, gst, lexA, and atkA) in Pseudomonas putida mt-2 during degradation of p-xylene. According to their expression stability, geNorm software analysis revealed that rpoN, rpoD, 16S rRNA, and atkA were suitable reference genes with highly stable expression, whereas phaF and dbhA were not suitable due to unstable expression. When normalized either to phaF or dbhA, xylA and xylE expression were significantly different compared to the expression levels normalized with the normalization factor (NF(4)) obtained from the four most stable reference genes (rpoN, -rpoD, -16S rRNA, and -atkA). The use of unstably expressing reference genes resulted in an over- or underestimation of target gene expression, a delay in maximal gene expression, and an increase in gene expression in the absence of inducer. While experimental results indicated that the relative maximum expression of xylA and xylE occurred at different times, unstable reference genes indicated that the maximum expression occurred at the same time. Our study indicates that a valid set of reference genes covering a broad expression range is recommended to accurately normalize and quantify the relative expression levels of the target gene(s) transcripts in many microbial processes.
Collapse
|
43
|
Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 2009; 10:11. [PMID: 19232096 PMCID: PMC2667184 DOI: 10.1186/1471-2199-10-11] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/20/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR. RESULTS The expression stability of 32 genes was assessed by qRT-PCR using a set of cDNAs from 24 different plant samples, which included different tissues, developmental stages and temperature stresses. The selected sequences included 12 well-known HKGs representing different functional classes and 20 genes novel with reference to the normalization issue. The expression stability of the 32 candidate genes was tested by the computer programs geNorm and NormFinder using five different data-sets. Some discrepancies were detected in the ranking of the candidate reference genes, but there was substantial agreement between the groups of genes with the most and least stable expression. Three new identified reference genes appear more effective than the well-known and frequently used HKGs to normalize gene expression in wheat. Finally, the expression study of a gene encoding a PDI-like protein showed that its correct evaluation relies on the adoption of suitable normalization genes and can be negatively affected by the use of traditional HKGs with unstable expression, such as actin and alpha-tubulin. CONCLUSION The present research represents the first wide screening aimed to the identification of reference genes and of the corresponding primer pairs specifically designed for gene expression studies in wheat, in particular for qRT-PCR analyses. Several of the new identified reference genes outperformed the traditional HKGs in terms of expression stability under all the tested conditions. The new reference genes will enable more accurate normalization and quantification of gene expression in wheat and will be helpful for designing primer pairs targeting orthologous genes in other plant species.
Collapse
Affiliation(s)
- Anna R Paolacci
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Oronzo A Tanzarella
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Enrico Porceddu
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Mario Ciaffi
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
44
|
Götz J, Ittner LM, Schonrock N, Cappai R. An update on the toxicity of Abeta in Alzheimer's disease. Neuropsychiatr Dis Treat 2008; 4:1033-42. [PMID: 19337449 PMCID: PMC2646638 DOI: 10.2147/ndt.s3016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease is characterized histopathologically by deposition of insoluble forms of the peptide Abeta and the protein tau in brain. Abeta is the principal component of amyloid plaques and tau of neurofibrillary tangles. Familial cases of AD are associated with causal mutations in the gene encoding the amyloid precursor protein, APP, from which the amyloidogenic Abeta peptide is derived, and this supports a role for Abeta in disease. Abeta can promote tau pathology and at the same time its toxicity is also tau-dependent. Abeta can adopt different conformations including soluble oligomers and insoluble fibrillar species present in plaques. We discuss which of these conformations exert toxicity, highlight molecular pathways involved and discuss what has been learned by applying functional genomics.
Collapse
Affiliation(s)
- Jürgen Götz
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW 2050, Australia.
| | | | | | | |
Collapse
|
45
|
Cernaianu G, Brandmaier P, Scholz G, Ackermann OP, Alt R, Rothe K, Cross M, Witzigmann H, Tröbs RB. All-trans retinoic acid arrests neuroblastoma cells in a dormant state. Subsequent nerve growth factor/brain-derived neurotrophic factor treatment adds modest benefit. J Pediatr Surg 2008; 43:1284-94. [PMID: 18639684 DOI: 10.1016/j.jpedsurg.2008.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 12/03/2007] [Accepted: 01/06/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Therapies aiming at inducing differentiation or apoptosis of neuroblastoma (NB) are an important research topic. Although retinoic acid showed promising antitumoral results, its effects against refractory disease are limited. Putative candidates for combination therapies are nerve growth factor (NGF; Tebu-Bio/Peprotech, Offenbach, Germany) and brain-derived neurotrophic factor (BDNF; Tebu-Bio/Peprotech, Offenbach, Germany) because their receptors are of prognostic clinical value in clinical neuroblastoma. Another clinical prognostic factor is the number of Schwann cells. Substances secreted by Schwann cells proved antitumoral capacities in vitro. The aim of the study was to analyze whether retinoic acid may offer an additional line of attack acting independent from Schwann cells and whether additive treatment with the neurotrophin-receptor ligands NGF/BDNF confers additional benefit. METHODS Human SHSY-5Y NB cells were cultured in vitro. After a 7-day all-trans retinoic acid (ATRA; Sigma-Aldrich Chemie, Taufkirchen, Germany) treatment (15 mumol/L of ATRA), NB proliferation was proportional to extinction in dimethyl-thiazol-diphenyltetrazoliumbromide (MTT) tests. Fluorescence-activated cell sorter (FACS) analysis for annexin and propidium iodide determined the degree of apoptosis and necrosis as well as the expression of the Schwann type cell marker S100. The S100 messenger RNA was assessed by reverse transcriptase polymerase chain reaction. In addition, the effect on NB proliferation was investigated when ATRA was combined with a 7-day treatment with NGF or BDNF (10, 50, 100 ng/mL) either before or after the 7-day ATRA treatment. RESULTS All-trans retinoic acid reduced proliferation (0.116 +/- 0.006 SEM vs 0.359 +/- 0.010 SEM in the untreated control group; P < .001). After ATRA treatment, 95% +/- 1.82% SEM were still viable, with only 2.61% +/- 1.17% SEM apoptotic and 2.38% +/- 0.69% SEM necrotic cells. All-trans retinoic acid induced a remarkable decrease in S100 expression in FACS (16.91% +/- 1.72% SEM vs 32.33% +/- 2.54% SEM in controls; P = .009). The S100 messenger RNA levels were not increased by ATRA (DeltaDeltaT values: 1.73, 2.77, and 1.43; n = 3). Both NGF and BDNF had only a modest synergistic effect when given after ATRA treatment. No effect was seen when they were administered before ATRA treatment. CONCLUSIONS All-trans retinoic proved to be a vigorous inhibitor of NB proliferation in vitro. However, because most NB cells remained viable combination therapies are required. Treatment with NGF and BDNF showed only a modest benefit and did not reflect the strong prognostic impact of tyrosine kinase receptors in clinical NB. The ATRA-induced proliferation arrest is not related to Schwann type subdifferentiation. This suggests that substances secreted by Schwann cells could be possible independent combination partners. We suggest studies using combinations of ATRA and substances secreted by Schwann cells.
Collapse
Affiliation(s)
- Grigore Cernaianu
- Department of Pediatric Surgery, Marienhospital II-Kinderchirurgische Klinik der Ruhr-Universität Bochum, Widumerstr 8, 44627 Herne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Götz J, David D, Hoerndli F, Ke YD, Schonrock N, Wiesner A, Fath T, Bokhari L, Lim YA, Deters N, Ittner LM. Functional Genomics Dissects Pathomechanisms in Tauopathies: Mitosis Failure and Unfolded Protein Response. NEURODEGENER DIS 2008; 5:179-81. [DOI: 10.1159/000113696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Bors A, Ribiczey P, Köblös G, Brózik A, Ujfaludi Z, Magócsi M, Váradi A, Tordai A, Kovács T, Arányi T. External cell control polymerase chain reaction: replacing internal standards with an unbiased strategy for quantitative polymerase chain reaction normalization. Anal Biochem 2007; 372:261-3. [PMID: 17945177 DOI: 10.1016/j.ab.2007.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/10/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Affiliation(s)
- András Bors
- Institute of Haematology and Immunology, National Medical Centre, Diószegi u. 64, 1113 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hoerndli FJ, Pelech S, Papassotiropoulos A, Götz J. Abeta treatment and P301L tau expression in an Alzheimer's disease tissue culture model act synergistically to promote aberrant cell cycle re-entry. Eur J Neurosci 2007; 26:60-72. [PMID: 17587323 DOI: 10.1111/j.1460-9568.2007.05618.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microarrays enable the observation of gene expression in experimental models of Alzheimer's disease (AD), with implications for the human pathology. Histopathologically, AD is characterized by Abeta-containing plaques and tau-containing neurofibrillary tangles. Here, we used a human SH-SY5Y neuroblastoma cell system to assess the role of P301L mutant human tau expression, and treatment with or without Abeta on gene regulation. We found that Abeta and P301L tau expression independently affect the regulation of genes controlling cell proliferation and synaptic elements. Moreover, Abeta and P301L tau act synergistically on cell cycle and DNA damage genes, yet influence specific genes within these categories. By using neuronally differentiated P301L tau cells, we can show that Abeta treatment induces an early upregulation of cell cycle control and synaptic genes. At the protein level, by using Kinetworks multi-immunoblotting and BrdU labelling, we found that although P301L tau and Abeta both affected levels of cell cycle proteins, their effects were distinct, in particular concerning DNA damage proteins. Moreover, DNA synthesis was observed only when SH-SY5Y cells overexpressed human wild-type or P301L tau and were incubated with Abeta. Thus, our study shows that Abeta treatment and human tau overexpression in an AD cell culture model act synergistically to promote aberrant cell cycle re-entry, supporting the mitosis failure hypothesis in AD.
Collapse
Affiliation(s)
- Frederic J Hoerndli
- Division of Psychiatry Research, University of Zurich, August Forel Str. 1, 8008 Zurich, Switzerland
| | | | | | | |
Collapse
|
49
|
Martínez T, Pascual A. Gene expression profile in β-amyloid-treated SH-SY5Y neuroblastoma cells. Brain Res Bull 2007; 72:225-31. [PMID: 17452285 DOI: 10.1016/j.brainresbull.2007.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/05/2007] [Accepted: 01/09/2007] [Indexed: 11/20/2022]
Abstract
The beta-amyloid peptide, the major component of the senile plaques in Alzheimer's disease (AD), has been probed to be toxic to neurons both in vivo and in vitro. Several mechanisms have been proposed to be involved in the amyloid-induced neurotoxicity; among others it has been suggested that the beta-amyloid peptide exerts its toxic effect mainly by activating the surrounding microglia population, which in turn induces the synthesis and release of preapoptotic and pro-inflammatory factors. In addition, a direct effect of beta-amyloid on neurons has been also described. However, the precise mechanisms involved in the amyloid-induced neurotoxicity have been not yet definitely clarified. To characterize the effects directly induced on neurons, we have analyzed the gene expression profile induced by the 25-35 beta-amyloid fragment in human SH-SY5Y neuroblastoma cells, by using the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Our results confirm that beta-amyloid may directly induce neuronal cell death; activating signals that in vivo have been described as causative of Alzheimer's disease.
Collapse
Affiliation(s)
- Tamara Martínez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier, 4. 28029 Madrid, Spain
| | | |
Collapse
|
50
|
Kidd M, Nadler B, Mane S, Eick G, Malfertheiner M, Champaneria M, Pfragner R, Modlin I. GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR. Physiol Genomics 2007; 30:363-70. [PMID: 17456737 DOI: 10.1152/physiolgenomics.00251.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Accurate quantitation of target genes depends on correct normalization. Use of genes with variable tissue transcription (GAPDH) is problematic, particularly in clinical samples, which are derived from different tissue sources. Using a large-scale gene database (Affymetrix U133A) data set of 36 gastrointestinal (GI) tumors and normal tissues, we identified 8 candidate reference genes and established expression levels by real-time RT-PCR in an independent data set (n = 42). A geometric averaging method (geNorm) identified ALG9, TFCP2, and ZNF410 as the most robustly expressed control genes. Examination of raw C(T) values demonstrated that these genes were tightly correlated between themselves (R2 > 0.86, P < 0.0001), with low variability [coefficient of variation (CV) <12.7%] and high interassay reproducibility (r = 0.93, P = 0.001). In comparison, the alternative control gene, GAPDH, exhibited the highest variability (CV = 18.1%), was significantly differently expressed between tissue types (P = 0.05), was poorly correlated with the three reference genes (R2 < 0.4), and was considered the least stable gene. To illustrate the importance of correct normalization, the target gene, MTA1, was significantly overexpressed (P = 0.0006) in primary GI neuroendocrine tumor (NET) samples (vs. normal GI samples) when normalized by geNorm(ATZ) but not when normalized using GAPDH. The geNorm(ATZ) approach was, in addition, applicable to adenocarcinomas; MTA1 was overexpressed (P < 0.04) in malignant colon, pancreas, and breast tumors compared with normal tissues. We provide a robust basis for the establishment of a reference gene set using GeneChip data and provide evidence for the utility of normalizing a malignancy-associated gene (MTA1) using novel reference genes and the geNorm approach in GI NETs as well as in adenocarcinomas and breast tumors.
Collapse
Affiliation(s)
- Mark Kidd
- Gastrointestinal Research Group, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|