1
|
Tian B, Xu LL, Jiang LD, Lin X, Shen J, Shen H, Su KJ, Gong R, Qiu C, Luo Z, Yao JH, Wang ZQ, Xiao HM, Zhang LS, Deng HW. Identification of the serum metabolites associated with cow milk consumption in Chinese Peri-/Postmenopausal women. Int J Food Sci Nutr 2024; 75:537-549. [PMID: 38918932 DOI: 10.1080/09637486.2024.2366223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Cow milk consumption (CMC) and downstream alterations of serum metabolites are commonly considered important factors regulating human health status. Foods may lead to metabolic changes directly or indirectly through remodelling gut microbiota (GM). We sought to identify the metabolic alterations in Chinese Peri-/Postmenopausal women with habitual CMC and explore if the GM mediates the CMC-metabolite associations. 346 Chinese Peri-/Postmenopausal women participants were recruited in this study. Fixed effects regression and partial least squares discriminant analysis (PLS-DA) were applied to reveal alterations of serum metabolic features in different CMC groups. Spearman correlation coefficient was computed to detect metabolome-metagenome association. 36 CMC-associated metabolites including palmitic acid (FA(16:0)), 7alpha-hydroxy-4-cholesterin-3-one (7alphaC4), citrulline were identified by both fixed effects regression (FDR < 0.05) and PLS-DA (VIP score > 2). Some significant metabolite-GM associations were observed, including FA(16:0) with gut species Bacteroides ovatus, Bacteroides sp.D2. These findings would further prompt our understanding of the effect of cow milk on human health.
Collapse
Affiliation(s)
- Bo Tian
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Lu-Lu Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lin-Dong Jiang
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Rui Gong
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- Department of Cadre Ward Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Jia-Heng Yao
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zhuo-Qi Wang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
2
|
Shi Z, Yang C, Xu X, Wu W, Jiang D, Yan D. Plasma metabolite profiles identify pediatric medulloblastoma and other brain cancer. Anal Bioanal Chem 2023; 415:471-480. [PMID: 36369592 DOI: 10.1007/s00216-022-04427-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Medulloblastoma is a malignancy of the central nervous system that occurs most frequently in childhood and is often difficult to diagnose due to its similarities to conventional imaging findings for other pediatric intracranial tumors such as astrocytomas and ependymomas. The purpose of this study was to identify new metabolites and differential metabolic pathways by analyzing the significantly different metabolites present in the plasma of children with medulloblastoma in comparison with those with other intracranial tumors. Plasma was collected from 37 children with medulloblastoma and 34 children with other intracranial tumors. Targeted and non-targeted metabolomics based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses were performed to determine metabolic changes in pediatric medulloblastomas versus other intracranial tumors. Based on multivariate statistical analysis and regression models, we identified differential metabolites in the plasma and investigated different metabolic pathways. A total of 61 differential metabolites in the plasma of children with medulloblastoma were identified by non-targeted metabolomics analysis. In addition, targeted metabolomics analysis identified four differential amino acids, thus allowing us to establish a diagnostic model for children with medulloblastoma. Metabolic pathway analysis showed that there were significant differences in patients with medulloblastoma in terms of glycerophospholipid and α-linolenic acid metabolism pathways as well as several amino acid metabolism pathways (phenylalanine, tyrosine, and tryptophan biosynthesis). We identified differential profiles of key plasma metabolites between children with medulloblastoma and other forms of intracranial tumor, thus providing a basis for identifying early diagnostic markers of medulloblastoma and new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zhengyuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Xiqiao Xu
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Wanshui Wu
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dechun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China
| | - Dan Yan
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, People's Republic of China. .,Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Xie HK, Zhao GH, Wu ZX, Li DY, Zhao MT, Li A, Liu HL, Zhou DY, Zhu BW. Differences in oxidative susceptibilities between glycerophosphocholine and glycerophosphoethanolamine in dried scallop (Argopecten irradians) adductor muscle during storage: an oxidation kinetic assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1554-1561. [PMID: 32869299 DOI: 10.1002/jsfa.10774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Phospholipids, the main lipid component in marine shellfish, mainly comprise glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE). GPC and GPE in marine shellfish, especially scallop, carry n-3 long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), although different types of glycerophospholipids (GP) have different health benefits on human health. Moreover, different GP subclasses such as GPC and GPE have different oxidative susceptibilities in complex food systems. The present study compared the oxidative susceptibilities of GPC and GPE in dried scallop during storage by high-performance liquid chromatography-tandem mass spectrometry and kinetic models, and also investigated the effects of natural phenolic antioxidant on their susceptibilities. RESULTS The results showed that GPC and GPE molecular species (carrying EPA or DHA) contents in samples continuously reduced during storage at two different temperatures. The first-order kinetic model better reflected the changes of GPC and GPE molecular species (carrying EPA or DHA) in samples than the zero-order kinetic model during storage. According to the oxidation rate (k) obtained from first-order kinetic models, GPE possessed a greater oxidation rate than GPC during storage. Moreover, the results showed that antioxidants of bamboo leaves (AOB, polar polyphenolic antioxidants) significantly decreased the oxidation rates of GPC and GPE molecular species (carrying EPA or DHA) in samples during storage, and GPC could be more effectively protected by AOB compared to GPE. CONCLUSION The present study provides a practical method for accurately evaluating the oxidative susceptibility of different phospholipid classes in complex food systems. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guan-Hua Zhao
- National Engineering Research Center of Seafood, Dalian, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zi-Xuan Wu
- National Engineering Research Center of Seafood, Dalian, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - De-Yang Li
- National Engineering Research Center of Seafood, Dalian, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Man-Tong Zhao
- National Engineering Research Center of Seafood, Dalian, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ao Li
- National Engineering Research Center of Seafood, Dalian, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hui-Lin Liu
- National Engineering Research Center of Seafood, Dalian, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Da-Yong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bei-Wei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Yaghmour MH, Thiele C, Kuerschner L. An advanced method for propargylcholine phospholipid detection by direct-infusion MS. J Lipid Res 2021; 62:100022. [PMID: 33453218 PMCID: PMC7900581 DOI: 10.1016/j.jlr.2021.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Phospholipids with a choline head group are an abundant component of cellular membranes and are involved in many important biological functions. For studies on the cell biology and metabolism of these lipids, traceable analogues where propargylcholine replaces the choline head group have proven useful. We present a novel method to analyze propargylcholine phospholipids by MS. The routine employs 1-radyl-2-lyso-sn-glycero-3-phosphopropargylcholines as labeled lysophosphatidylcholine precursors, which upon cellular conversion direct the traceable tag with superb specificity and efficiency to the primary target lipid class. Using azidopalmitate as a click-chemistry reporter, we introduce a highly specific, sensitive, and robust MS detection procedure for the propargylcholine phospholipids. In a first study, we apply the new technique to investigate choline phospholipid metabolism in brain endothelial cells. These experiments reveal differences in the metabolism of phosphatidylcholine and its pendant, ether phosphatidylcholine. The novel method described here opens a new, quantitative, and detailed view on propargylcholine phospholipid metabolism and will greatly facilitate future studies on choline phospholipid metabolism.
Collapse
Affiliation(s)
- Mohamed H Yaghmour
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Kara S, Amon L, Lühr JJ, Nimmerjahn F, Dudziak D, Lux A. Impact of Plasma Membrane Domains on IgG Fc Receptor Function. Front Immunol 2020; 11:1320. [PMID: 32714325 PMCID: PMC7344230 DOI: 10.3389/fimmu.2020.01320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid cell membranes not only represent the physical boundaries of cells. They also actively participate in many cellular processes. This contribution is facilitated by highly complex mixtures of different lipids and incorporation of various membrane proteins. One group of membrane-associated receptors are Fc receptors (FcRs). These cell-surface receptors are crucial for the activity of most immune cells as they bind immunoglobulins such as immunoglobulin G (IgG). Based on distinct mechanisms of IgG binding, two classes of Fc receptors are now recognized: the canonical type I FcγRs and select C-type lectin receptors newly referred to as type II FcRs. Upon IgG immune complex induced cross-linking, these receptors are known to induce a multitude of cellular effector responses in a cell-type dependent manner, including internalization, antigen processing, and presentation as well as production of cytokines. The response is also determined by specific intracellular signaling domains, allowing FcRs to either positively or negatively modulate immune cell activity. Expression of cell-type specific combinations and numbers of receptors therefore ultimately sets a threshold for induction of effector responses. Mechanistically, receptor cross-linking and localization to lipid rafts, i.e., organized membrane microdomains enriched in intracellular signaling proteins, were proposed as major determinants of initial FcR activation. Given that immune cell membranes might also vary in their lipid compositions, it is reasonable to speculate, that the cell membrane and especially lipid rafts serve as an additional regulator of FcR activity. In this article, we aim to summarize the current knowledge on the interplay of lipid rafts and IgG binding FcRs with a focus on the plasma membrane composition and receptor localization in immune cells, the proposed mechanisms underlying this localization and consequences for FcR function with respect to their immunoregulatory capacity.
Collapse
Affiliation(s)
- Sibel Kara
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Santoro AL, Drummond RD, Silva IT, Ferreira SS, Juliano L, Vendramini PH, Lemos MBDC, Eberlin MN, Andrade VP. In Situ DESI-MSI Lipidomic Profiles of Breast Cancer Molecular Subtypes and Precursor Lesions. Cancer Res 2020; 80:1246-1257. [PMID: 31911556 DOI: 10.1158/0008-5472.can-18-3574] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
Clinically meaningful molecular subtypes for classification of breast cancers have been established, however, initiation and progression of these subtypes remain poorly understood. The recent development of desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) facilitates the convergence of analytical chemistry and traditional pathology, allowing chemical profiling with minimal tissue pretreatment in frozen samples. Here, we characterized the chemical composition of molecular subtypes of breast cancer with DESI-MSI. Regions of interest were identified, including invasive breast cancer (IBC), ductal carcinoma in situ (DCIS), and adjacent benign tissue (ABT), and metabolomic profiles at 200 μm elaborated using Biomap software and the Lasso method. Top ions identified in IBC regions included polyunsaturated fatty acids, deprotonated glycerophospholipids, and sphingolipids. Highly saturated lipids, as well as antioxidant molecules [taurine (m/z 124.0068), uric acid (m/z 167.0210), ascorbic acid (m/z 175.0241), and glutathione (m/z 306.0765)], were able to distinguish IBC from ABT. Moreover, luminal B and triple-negative subtypes showed more complex lipid profiles compared with luminal A and HER2 subtypes. DCIS and IBC were distinguished on the basis of cell signaling and apoptosis-related ions [fatty acids (341.2100 and 382.3736 m/z) and glycerophospholipids (PE (P-16:0/22:6, m/z 746.5099, and PS (38:3), m/z 812.5440)]. In summary, DESI-MSI identified distinct lipid composition between DCIS and IBC and across molecular subtypes of breast cancer, with potential implications for breast cancer pathogenesis. SIGNIFICANCE: These findings present the first in situ metabolomic findings of the four molecular subtypes of breast cancer, DCIS, and normal tissue, and add to the understanding of their pathogenesis.
Collapse
Affiliation(s)
| | - Rodrigo D Drummond
- Laboratory of Computational Biology and Bioinformatics, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal Silva
- Laboratory of Computational Biology and Bioinformatics, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Severino S Ferreira
- Department of Surgical Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Luiz Juliano
- Department of Surgical Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Pedro H Vendramini
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Marcos N Eberlin
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil.,Mackenzie Presbyterian University, School of Engineering, São Paulo, Brazil
| | - Victor Piana Andrade
- Department of Surgical Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil.
| |
Collapse
|
7
|
Wood PL, Cebak JE. Lipidomics biomarker studies: Errors, limitations, and the future. Biochem Biophys Res Commun 2018; 504:569-575. [PMID: 29596837 DOI: 10.1016/j.bbrc.2018.03.188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/16/2022]
Abstract
Lipidomics is an ever-expanding subfield of metabolomics that surveys 3000 to 5000 individual lipids across more than 56 lipid subclasses, including lipid peroxidation products. Unfortunately, there exists a large number of publications with poor quality data obtained with unit mass resolution leading to many lipid misidentifications. This is further complicated by poor scientific oversight with regard to recognition of isobar issues, sample collection, and sample storage issues that inexplicably requires more detailed attention. Inadvertent or intentional obfuscation of relative quantification data represented as absolute quantification is a subtle but profound difference that may readers outside of the field may not realize, therefore, instigating disservice and unnecessary distrust in the scientific community. These issues need to be addressed aggressively as high quality data are essential for the translation of biomarker research to clinical practice.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA.
| | - John E Cebak
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA; Department of Medicine, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA
| |
Collapse
|
8
|
Wang M, Wang C, Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why? MASS SPECTROMETRY REVIEWS 2017; 36:693-714. [PMID: 26773411 PMCID: PMC4947032 DOI: 10.1002/mas.21492] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/28/2015] [Indexed: 05/20/2023]
Abstract
Lipidomics is rapidly expanding because of the great facilitation of recent advances in, and novel applications of, electrospray ionization mass spectrometry techniques. The greatest demands have been for successful quantification of lipid classes, subclasses, and individual molecular species in biological samples at acceptable accuracy. This review addresses the selection of internal standards in different methods for accurate quantification of individual lipid species. The principles of quantification with electrospray ionization mass spectrometry are first discussed to recognize the essentials for quantification. The basics of different lipidomics approaches are overviewed to understand the variables that need to be considered for accurate quantification. The factors that affect accurate quantification are extensively discussed, and the solutions to resolve these factors are proposed-largely through addition of internal standards. Finally, selection of internal standards for different methods is discussed in detail to address the issues of what, how, and why related to internal standards. We believe that thorough discussion of the topics related to internal standards should aid in quantitative analysis of lipid classes, subclasses, and individual molecular species and should have big impacts on advances in lipidomics. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:693-714, 2017.
Collapse
Affiliation(s)
- Miao Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
- To whom correspondence should be addressed: Xianlin Han, Ph.D., Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, Florida 32827, USA, Telephone: (407) 745-2139, Fax: (407) 745-2016,
| |
Collapse
|
9
|
Abstract
Many thousands of lipid species exist and their metabolism is interwoven via numerous pathways and networks. These networks can also change in response to cellular environment alterations, such as exercise or development of a disease. Measuring such alterations and understanding the pathways involved is crucial to fully understand cellular metabolism. Such demands have catalysed the emergence of lipidomics, which enables the large-scale study of lipids using the principles of analytical chemistry. Mass spectrometry, largely due to its analytical power and rapid development of new instruments and techniques, has been widely used in lipidomics and greatly accelerated advances in the field. This Review provides an introduction to lipidomics and describes some common, but important, cellular metabolic networks that can aid our understanding of metabolic pathways. Some representative applications of lipidomics for studying lipid metabolism and metabolic diseases are highlighted, as well as future applications for the use of lipidomics in studying metabolic pathways.
Collapse
Affiliation(s)
- Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, Florida 32827, USA and College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
10
|
Allen DK. Assessing compartmentalized flux in lipid metabolism with isotopes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1226-1242. [PMID: 27003250 DOI: 10.1016/j.bbalip.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/28/2022]
Abstract
Metabolism in plants takes place across multiple cell types and within distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally assess metabolism frequently involve homogenizing tissues and mixing metabolites from different locations. Most current isotope investigations of metabolism therefore lack the ability to resolve spatially distinct events. Recognition of this limitation has resulted in inspired efforts to advance metabolic flux analysis and isotopic labeling techniques. Though a number of these efforts have been applied to studies in central metabolism; recent advances in instrumentation and techniques present an untapped opportunity to make similar progress in lipid metabolism where the use of stable isotopes has been more limited. These efforts will benefit from sophisticated radiolabeling reports that continue to enrich our knowledge on lipid biosynthetic pathways and provide some direction for stable isotope experimental design and extension of MFA. Evidence for this assertion is presented through the review of several elegant stable isotope studies and by taking stock of what has been learned from radioisotope investigations when spatial aspects of metabolism were considered. The studies emphasize that glycerolipid production occurs across several locations with assembly of lipids in the ER or plastid, fatty acid biosynthesis occurring in the plastid, and the generation of acetyl-CoA and glycerol-3-phosphate taking place at multiple sites. Considering metabolism in this context underscores the cellular and subcellular organization that is important to enhanced production of glycerolipids in plants. An attempt is made to unify salient features from a number of reports into a diagrammatic model of lipid metabolism and propose where stable isotope labeling experiments and further flux analysis may help address questions in the field. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| |
Collapse
|
11
|
Wang M, Wang C, Han RH, Han X. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res 2016; 61:83-108. [PMID: 26703190 PMCID: PMC4733395 DOI: 10.1016/j.plipres.2015.12.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
The field of lipidomics, as coined in 2003, has made profound advances and been rapidly expanded. The mass spectrometry-based strategies of this analytical methodology-oriented research discipline for lipid analysis are largely fallen into three categories: direct infusion-based shotgun lipidomics, liquid chromatography-mass spectrometry-based platforms, and matrix-assisted laser desorption/ionization mass spectrometry-based approaches (particularly in imagining lipid distribution in tissues or cells). This review focuses on shotgun lipidomics. After briefly introducing its fundamentals, the major materials of this article cover its recent advances. These include the novel methods of lipid extraction, novel shotgun lipidomics strategies for identification and quantification of previously hardly accessible lipid classes and molecular species including isomers, and novel tools for processing and interpretation of lipidomics data. Representative applications of advanced shotgun lipidomics for biological and biomedical research are also presented in this review. We believe that with these novel advances in shotgun lipidomics, this approach for lipid analysis should become more comprehensive and high throughput, thereby greatly accelerating the lipidomics field to substantiate the aberrant lipid metabolism, signaling, trafficking, and homeostasis under pathological conditions and their underpinning biochemical mechanisms.
Collapse
Affiliation(s)
- Miao Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA
| | - Rowland H Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA; College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
12
|
Wang S, Tong Y, Ng TB, Lao L, Lam JKW, Zhang KY, Zhang ZJ, Sze SCW. Network pharmacological identification of active compounds and potential actions of Erxian decoction in alleviating menopause-related symptoms. Chin Med 2015; 10:19. [PMID: 26191080 PMCID: PMC4506602 DOI: 10.1186/s13020-015-0051-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 07/01/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Erxian decoction (EXD) is used to treat menopause-related symptoms in Chinese medicine. This study aims to identify the bioactive compounds and potential actions of EXD by network pharmacological analysis. METHODS Two databases, the Traditional Chinese Medicine Systems Pharmacology database and TCM Database@Taiwan, were used to retrieve literature of phytochemicals of EXD. STITCH 4.0 and the Comparative Toxicogenomics Database were used to search for compound-protein and compound-gene interactions, respectively. DAVID Bioinformatics Resources 6.7 and Cytoscape 3.01 with Jepetto plugin software were used to perform a network pharmacological analysis of EXD. RESULTS A total of 721 compounds were identified in EXD, of which 155 exhibited 2,656 compound-protein interactions with 1,963 associated proteins determined by STITCH4.0 database, and of which 210 had 14,893 compound-gene interactions with 8,536 associated genes determined by Comparative Toxicogenomics Database. Sixty three compounds of EXD followed the Lipinski's Rule with OB ≥30% and DL index ≥0.18, of which 20 related to 34 significant pathway- or 12 gene- associated with menopause. CONCLUSIONS Twenty compounds were identified by network pharmacology as potential effective ingredients of EXD for relieving menopause with acceptable oral bioavailability and druggability.
Collapse
Affiliation(s)
- Shiwei Wang
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yao Tong
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tzi-Bun Ng
- />School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lixing Lao
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Ka Wing Lam
- />Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kalin Yanbo Zhang
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhang-Jin Zhang
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen Cho Wing Sze
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Allen DK, Bates PD, Tjellström H. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Prog Lipid Res 2015; 58:97-120. [PMID: 25773881 DOI: 10.1016/j.plipres.2015.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant tissues.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Henrik Tjellström
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
14
|
Xu H, Valenzuela N, Fai S, Figeys D, Bennett SAL. Targeted lipidomics - advances in profiling lysophosphocholine and platelet-activating factor second messengers. FEBS J 2013; 280:5652-67. [PMID: 23826908 DOI: 10.1111/febs.12423] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022]
Abstract
Glycerophosphocholines are the major building blocks of biological membranes. They are also precursors of low-molecular-weight second messengers with mass to charge ratios of 450-600. These messengers include lysophosphatidylcholines (LPCs) and lyso-platelet activating factors (PAFs) that may be further processed into PAFs. Often considered as a single species, LPCs, PAFs and lyso-PAFs are, in fact, families of glycerophosphocholine-derived lipids distinguished by the linkage of their sn-1 carbon chains to the phosphoglyceride backbone (ester or ether), their sn-1 carbon chain length and degree of unsaturation, and the identity of their sn-2 constituents (a hydroxyl or acetyl group). Each LPC and PAF species exhibits a different affinity for its cognate G-protein-coupled receptors, and each species elicits receptor-independent actions that play critical signalling roles. Targeted mass spectrometry-based lipidomic approaches are enabling the molecular identification and quantification of these low-abundance second messengers. Variations between datasets map the temporal landscape of second messengers available for signalling, and provide snapshots of the state of structural membrane compositional remodelling at the time of extraction. Here, we review a number of advances in lipidomic methodologies used to identify LPCs, lyso-PAFs and PAFs, and highlight how these targeted approaches are providing valuable insight into the roles played by the cellular lipidome in cell function and disease susceptibility.
Collapse
Affiliation(s)
- Hongbin Xu
- Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada; Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Li J, Hoene M, Zhao X, Chen S, Wei H, Häring HU, Lin X, Zeng Z, Weigert C, Lehmann R, Xu G. Stable isotope-assisted lipidomics combined with nontargeted isotopomer filtering, a tool to unravel the complex dynamics of lipid metabolism. Anal Chem 2013; 85:4651-7. [PMID: 23537127 DOI: 10.1021/ac400293y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Investigations of complex metabolic mechanisms and networks have become a focus of research in the postgenomic area, thereby creating an increasing demand for sophisticated analytical approaches. One such tool is lipidomics analysis that provides, a detailed picture of the lipid composition of a system at a given time. Introducing stable isotopes into the studied system can additionally provide information on the synthesis, transformation and degradation of individual lipid species. However, capturing the entire dynamics of lipid networks is still a challenge. We developed and evaluated a novel strategy for the in-depth analysis of the dynamics of lipid metabolism with the capacity for high molecular specificity and network coverage. The general workflow consists of stable isotope-labeling experiments, ultrahigh-performance liquid chromatography (UHPLC)/high-resolution Orbitrap-mass spectrometry (MS) lipid profiling and data processing by a software tool for global isotopomer filtering and matching. As a proof of concept, this approach was applied to the network-wide mapping of dynamic lipid metabolism in primary human skeletal muscle cells cultured for 4, 12, and 24 h with [U-(13)C]-palmitate. In the myocellular lipid extracts, 692 isotopomers were detected that could be assigned to 203 labeled lipid species spanning 12 lipid (sub)classes. Interestingly, some lipid classes showed high turnover rates but stable total amounts while the amount of others increased in the course of palmitate treatment. The novel strategy presented here has the potential to open new detailed insights into the dynamics of lipid metabolism that may lead to a better understanding of physiological mechanisms and metabolic perturbations.
Collapse
Affiliation(s)
- Jia Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Milne SB, Mathews TP, Myers DS, Ivanova PT, Brown HA. Sum of the parts: mass spectrometry-based metabolomics. Biochemistry 2013; 52:3829-40. [PMID: 23442130 DOI: 10.1021/bi400060e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is a rapidly growing field of research used in the identification and quantification of the small molecule metabolites within an organism, thereby providing insights into cell metabolism and bioenergetics as well as processes important in clinical medicine, such as disposition of pharmaceutical compounds. It offers comprehensive information about thousands of low-molecular mass compounds (<1500 Da) that represent a wide range of pathways and intermediary metabolism. Because of its vast expansion in the past two decades, mass spectrometry has become an indispensable tool in "omic" analyses. The use of different ionization techniques such as the more traditional electrospray and matrix-assisted laser desorption, as well as recently popular desorption electrospray ionization, has allowed the analysis of a wide range of biomolecules (e.g., peptides, proteins, lipids, and sugars), and their imaging and analysis in the original sample environment in a workup free fashion. An overview of the current state of the methodology is given, as well as examples of application.
Collapse
Affiliation(s)
- Stephen B Milne
- Departments of Pharmacology, Chemistry, and Biochemistry, The Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | | | | | | | | |
Collapse
|
17
|
Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. MASS SPECTROMETRY REVIEWS 2012; 31:134-78. [PMID: 21755525 PMCID: PMC3259006 DOI: 10.1002/mas.20342] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 05/05/2023]
Abstract
Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell's lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems.
Collapse
Affiliation(s)
- Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
18
|
Dynamics of arachidonic acid mobilization by inflammatory cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:249-56. [PMID: 22155285 DOI: 10.1016/j.bbalip.2011.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 01/06/2023]
Abstract
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.
Collapse
|
19
|
Metabolism, function and mass spectrometric analysis of bis(monoacylglycero)phosphate and cardiolipin. Chem Phys Lipids 2011; 164:556-62. [DOI: 10.1016/j.chemphyslip.2011.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 11/20/2022]
|
20
|
Singh A, Prasad R. Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLoS One 2011; 6:e19266. [PMID: 21559392 PMCID: PMC3084813 DOI: 10.1371/journal.pone.0019266] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/24/2011] [Indexed: 12/27/2022] Open
Abstract
Although transcriptome and proteome approaches have been applied to determine the regulatory circuitry behind multidrug resistance (MDR) in Candida, its lipidome remains poorly characterized. Lipids do acclimatize to the development of MDR in Candida, but exactly how the acclimatization is achieved is poorly understood. In the present study, we have used a high-throughput mass spectrometry-based shotgun approach and analyzed the lipidome of genetically matched clinical azole-sensitive (AS) and -resistant (AR) isolates of C. albicans. By comparing the lipid profiling of matched isolates, we have identified major classes of lipids and determined more than 200 individual molecular lipid species among these major classes. The lipidome analysis has been statistically validated by principal component analysis. Although each AR isolate was similar with regard to displaying a high MIC to drugs, they had a distinct lipid imprint. There were some significant commonalities in the lipid profiles of these pairs, including molecular lipid species ranging from monounsaturated to polyunsaturated fatty acid-containing phosphoglycerides. Consistent fluctuation in phosphatidyl serine, mannosylinositolphosphorylceramides, and sterol esters levels indicated their compensatory role in maintaining lipid homeostasis among most AR isolates. Notably, overexpression of either CaCdr1p or CaMdr1p efflux pump proteins led to a different lipidomic response among AR isolates. This study clearly establishes the versatility of lipid metabolism in handling azole stress among various matched AR isolates. This comprehensive lipidomic approach will serve as a resource for assessing strategies aimed at disrupting the functions of Candida lipids, particularly the functional interactions between lipids and MDR determinants.
Collapse
Affiliation(s)
- Ashutosh Singh
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
21
|
Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, Yao Z, Bennett SAL, Figeys D. Lipidomics era: accomplishments and challenges. MASS SPECTROMETRY REVIEWS 2010; 29:877-929. [PMID: 20931646 DOI: 10.1002/mas.20294] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid mediators participate in signal transduction pathways, proliferation, apoptosis, and membrane trafficking in the cell. Lipids are highly complex and diverse owing to the various combinations of polar headgroups, fatty acyl chains, and backbone structures. This structural diversity continues to pose a challenge for lipid analysis. Here we review the current state of the art in lipidomics research and discuss the challenges facing this field. The latest technological developments in mass spectrometry, the role of bioinformatics, and the applications of lipidomics in lipid metabolism and cellular physiology and pathology are also discussed.
Collapse
Affiliation(s)
- Maroun Bou Khalil
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Desoubzdanne D, Claparols C, Martins-Froment N, Zedde C, Balayssac S, Gilard V, Tercé F, Martino R, Malet-Martino M. Analysis of hydrophilic and lipophilic choline compounds in radioresistant and radiosensitive glioblastoma cell lines by HILIC-ESI-MS/MS. Anal Bioanal Chem 2010; 398:2723-30. [DOI: 10.1007/s00216-010-4196-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/04/2010] [Accepted: 09/05/2010] [Indexed: 11/29/2022]
|
23
|
Singh A, Prasad T, Kapoor K, Mandal A, Roth M, Welti R, Prasad R. Phospholipidome of Candida: each species of Candida has distinctive phospholipid molecular species. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:665-77. [PMID: 20726778 DOI: 10.1089/omi.2010.0041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
By employing electrospray ionization tandem mass spectrometry (ESI-MS/MS), the phospholipidomes of eight hemiascomycetous human pathogenic Candida species have been characterized. Over 200 phospholipid molecular species were identified and quantified. There were no large differences among Candida species in phosphoglyceride class composition; however, differences in phosphoglycerides components (i.e., fatty acyl chains) were identified. In contrast, differences in sphingolipid class composition as well as in molecular species were quite evident. The phospholipid compositions of C. albicans, C. glabrata, C. parapsilosis, C. kefyr, C. tropicalis, C. dubliniensis, C. krusei, and C. utilis could be further discriminated by principal component analysis. Notwithstanding that a single strain of each species was analyzed, our data do point to a typical molecular species imprint of Candida strains.
Collapse
Affiliation(s)
- Ashutosh Singh
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Balgoma D, Montero O, Balboa MA, Balsinde J. Lipidomic approaches to the study of phospholipase A2-regulated phospholipid fatty acid incorporation and remodeling. Biochimie 2010; 92:645-50. [DOI: 10.1016/j.biochi.2009.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/26/2009] [Indexed: 12/21/2022]
|
25
|
Lane AN, Fan TWM, Xie Z, Moseley HNB, Higashi RM. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Anal Chim Acta 2009; 651:201-8. [PMID: 19782812 PMCID: PMC2757635 DOI: 10.1016/j.aca.2009.08.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile 13C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U-13C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to approximately 1% or better based on natural abundance background, and depended on the signal-to-nose ratio. The time course of incorporation of 13C from [U-13C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional 13C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.
Collapse
Affiliation(s)
- Andrew N Lane
- JG Brown Cancer Center, 529 S. Jackson Street, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
26
|
Smith JC, Hou W, Whitehead SN, Ethier M, Bennett SAL, Figeys D. Identification of lysophosphatidylcholine (LPC) and platelet activating factor (PAF) from PC12 cells and mouse cortex using liquid chromatography/multi-stage mass spectrometry (LC/MS3). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3579-3587. [PMID: 18937225 DOI: 10.1002/rcm.3768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lipids play essential roles in cellular structural support, energy storage and signal transduction. Recently, mass spectrometry (MS) has been used to produce three-dimensional maps that elucidate the lipid composition of complex cellular lysates. The identification of individual lipids within these maps is slow and requires the synthesis and spiking of each candidate lipid. We present a novel MS-based technique that rapidly elucidates the atomic connectivity of the fatty acid/alcohol substituent on the sn-1 position of several different families of glycerophosphocholine-containing lipids within the confines of a chromatographic separation. Sodiated lipid species were fragmented to produce radical cations which lost successive methylene groups upon further collisional activation to reveal the identity of the parent molecule. This approach was demonstrated to be effective on isobaric members of the lysophosphatidylcholine (LPC) and platelet activating factor (PAF) families of glycerophospholipids. We demonstrate the application of this technique to unambiguously identify these species within complex cellular lysates and tissue extracts.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Ottawa Institute of Systems Biology and Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | | | | | | | | | | |
Collapse
|
27
|
Hou W, Zhou H, Elisma F, Bennett SAL, Figeys D. Technological developments in lipidomics. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:395-409. [DOI: 10.1093/bfgp/eln042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
A decade of HPLC-MS/MS in the routine clinical laboratory--goals for further developments. Clin Biochem 2008; 41:649-62. [PMID: 18374660 DOI: 10.1016/j.clinbiochem.2008.02.017] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/17/2008] [Accepted: 02/20/2008] [Indexed: 11/20/2022]
Abstract
During the past decade, tandem mass spectrometry hyphenated to liquid chromatography separation systems (HPLC-MS/MS) has developed to an important technology in clinical chemistry - not only for research purposes but also for routine use. At present, most important application fields are target analyses in therapeutic drug monitoring (TDM) and metabolic disorders diagnosis. The essential strengths of HPLC-MS/MS include potentially high analytical specificity, wide range of applicability to small and large molecules, capability of multi- and mega-parametric tests, and the opportunity to develop powerful assays with a high degree of flexibility within a short time frame. The technique has overcome important limitations of GC-MS and is characterized by short analytical runtimes, applicability to thermo labile, polar and large molecules, and straightforward sample preparation. However, implementation of HPLC-MS/MS assays still requires substantial expertise and know-how. At the present, its application is limited to a rather small number of clinical routine laboratories. Nonetheless, HPLC-MS/MS has the potential to be further developed to a commonly applied high-throughput technique in clinical chemistry, complementary to present standard techniques as photometry and ligand binding methods. This review intends to characterize working characteristics of present day HPLC-MS/MS instrumentations used in clinical routine laboratories. Limitations of currently available systems and applications will be critically discussed. Required instrument improvements supporting the successful spreading of HPLC-MS/MS in laboratory medicine within the next decade will be outlined.
Collapse
|
29
|
Ito S, Nabetani T, Shinoda Y, Nagatsuka Y, Hirabayashi Y. Quantitative analysis of a novel glucosylated phospholipid by liquid chromatography-mass spectrometry. Anal Biochem 2008; 376:252-7. [PMID: 18342611 DOI: 10.1016/j.ab.2008.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
Building upon the demonstrated presence of a new glyceroglycolipid, phosphatidylglucoside (PtdGlc), in rat embryonic brain tissues, we have developed a method to identify minute amounts of PtdGlc in cultured cells by using nano-flow high-performance liquid chromatography and negative-ion-mode electrospray linear-ion trap time-of-flight mass spectrometry (LC-MS). A normal-phase silica gel-based column enabled us to separate PtdGlc from other lipid classes. PtdGlc was identified from its tandem mass spectrometry spectrum and from its retention time in the column. Using an internal standard collection and LC-MS, we obtained the linearity of PtdGlc at a range of 6.3-800 fmol per injection. We applied this method to analyze quantitative changes in PtdGlc in C6 glioma cells after cellular differentiation into GFAP-positive glial cells. PtdGlc in C6 glioma cells consisted exclusively of C18:0/C20:0 fatty acyl chains. Differentiation induced by the addition of anti-PtdGlc antibody plus cAMP in culture medium significantly increased the glycolipid content.
Collapse
Affiliation(s)
- Shinya Ito
- Hitachi High-Technologies Corp., 1-24-14 Nishi-shinbashi, Minato-ku, Tokyo 105-8717, Japan
| | | | | | | | | |
Collapse
|
30
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:266-277. [PMID: 17262881 DOI: 10.1002/jms.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
31
|
|
32
|
Schmidt J, Boettcher C, Kuhnt C, Kutchan TM, Zenk MH. Poppy alkaloid profiling by electrospray tandem mass spectrometry and electrospray FT-ICR mass spectrometry after [ring-13C6]-tyramine feeding. PHYTOCHEMISTRY 2007; 68:189-202. [PMID: 17113612 DOI: 10.1016/j.phytochem.2006.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 05/09/2023]
Abstract
Papaver alkaloids play a major role in medicine and pharmacy. In this study, [ring-(13)C(6)]-tyramine as a biogenetic precursor of these alkaloids was fed to Papaver somniferum seedlings. The alkaloid pattern was elucidated both by direct infusion high-resolution ESI-FT-ICR mass spectrometry and liquid chromatography/electrospray tandem mass spectrometry. Thus, based on this procedure, the structure of about 20 alkaloids displaying an incorporation of the labeled tyramine could be elucidated. These alkaloids belong to different classes, e.g. morphinan, benzylisoquinoline, protoberberine, benzo[c]phenanthridine, phthalide isoquinoline and protopine. The valuable information gained from the alkaloid profile demonstrates that the combination of these two spectrometric methods represents a powerful tool for evaluating biochemical pathways and facilitates the study of the flux of distant precursors into these natural products.
Collapse
Affiliation(s)
- Jürgen Schmidt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/S., Germany.
| | | | | | | | | |
Collapse
|
33
|
Hicks AM, DeLong CJ, Thomas MJ, Samuel M, Cui Z. Unique molecular signatures of glycerophospholipid species in different rat tissues analyzed by tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1022-9. [PMID: 16860597 DOI: 10.1016/j.bbalip.2006.05.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 04/21/2006] [Accepted: 05/14/2006] [Indexed: 10/24/2022]
Abstract
Glycerophospholipids (GPL) in animal tissues are composed of a large array of molecular species that mainly differ in the fatty acyl composition. In order to further understand the roles of GPL at the molecular level, it is necessary to have comprehensive, accurate accounts of the molecular makeup for these molecules in animal tissues. However, this task was difficult simply because the conventional technologies of profiling GPL species depended heavily on technical skill for accuracy and reliability and were extremely labor-intensive. In recent years, tandem mass spectrometry (MS/MS) proved to be a highly reliable and sensitive technology for profiling small molecules, including GPL, in biological samples. In this study, we used this technology to perform simultaneous comparative analyses for phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI) in the same lipid preparations of liver, lung, kidney, heart, pancreas, stomach, small intestine, spleen, skeleton muscle and brain of an adult rat. We produced molecular profiles of these 4 GPL classes in these 10 different tissues that are highly reproducible between different scans of the same sample and between samples from different animals. It is intriguing that each tissue was found to possess a unique signature of GPL profile that may be used to identify unknown tissues. More importantly, these profiles may also set reference points for studying changes of GPL metabolism in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Amy M Hicks
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|