1
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Wang Q, Mesaros C. Advances and challenges in liquid chromatography-spectrometry (LC-MS) methodology for quantifying androgens and estrogens in human serum and plasma. J Steroid Biochem Mol Biol 2024; 245:106618. [PMID: 39313162 DOI: 10.1016/j.jsbmb.2024.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Accurate quantification of androgens and estrogens is critical for elucidating their roles in endocrine disorders and advancing research on their functions in human biology and pathophysiology. This review highlights recent advances and ongoing challenges in liquid chromatography- mass spectrometry (LC- MS) methodology for quantifying androgens and estrogens in human serum and plasma. We summarized current approaches for analyzing the different forms of androgens and estrogens, along with their reported levels in publications from 2010 to the present. These published levels pointed out the inconsistencies in reference intervals across studies. To address these issues, advances in derivatization methods and chromatographic separation techniques are reviewed. Future perspectives for improving the accuracy and consistency of hormone quantification in clinical and research settings were also proposed.
Collapse
Affiliation(s)
- Qingqing Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Liu Y, Bai J, Dong X, Cao Y, Bao M, Lu Y, Zeng H, Zhan L, Guo Y. Online Charge-Generation Derivatization by Electrochemical Radical Cations of Thianthrene: Mass Spectrometry Imaging of Estrogens in Biological Tissues. Anal Chem 2024. [PMID: 39031066 DOI: 10.1021/acs.analchem.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Estrogens play a significant role in endocrinology and oncology. Although separation methods coupled with mass spectrometry (MS) have emerged as a powerful tool for studying estrogens, imaging the spatial distributions of estrogens is crucial but remains challenging due to its low endogenous concentration and poor ionization efficiency. Charge-generation derivatization, such as N-alkylpyridinium quaternization and S-methyl thioetherification, represents a method wherein neutral molecules involving analytes and derivatization reagents undergo chemical reactions to establish permanent charges directly onto the analytes to improve detection sensitivity. Here, we developed a novel derivatization reagent, thianthrene (TT), which enabled oxidization to radical cations ([TT]•+) using an electrochemical method and completed the online charge-generation derivatization of estrogens on a mass spectrometry imaging platform. In this strategy, [TT]•+ can efficiently and selectively derivatize estrogens via an electrophilic aromatic substitution reaction. Results indicated that derivatization with [TT]•+ can significantly enhance imaging sensitivity (3 orders of magnitude), enabling the visualization of estrogen and its metabolites in ovarian and breast tissues. Furthermore, a higher mass intensity of these estrogens was captured in breast para-cancerous tissues than in cancerous tissues, which might provide estrogens spatial dimension information for further research on the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Yingchao Liu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoxia Dong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuqi Cao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingmai Bao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingjie Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hui Zeng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Reens AL, Cosetta CM, Saur R, Trofimuk O, Brooker SL, Lee ML, Sun AK, McKenzie GJ, Button JE. Tunable control of B. infantis abundance and gut metabolites by co-administration of human milk oligosaccharides. Gut Microbes 2024; 16:2304160. [PMID: 38235736 PMCID: PMC10798361 DOI: 10.1080/19490976.2024.2304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Precision engineering of the gut microbiome holds promise as an effective therapeutic approach for diseases associated with a disruption in this microbial community. Engrafting a live biotherapeutic product (LBP) in a predictable, controllable manner is key to the consistent success of this approach and has remained a challenge for most LBPs under development. We recently demonstrated high-level engraftment of Bifidobacterium longum subsp. infantis (B. infantis) in adults when co-dosed with a specific prebiotic, human milk oligosaccharides (HMO). Here, we present a cellular kinetic-pharmacodynamic approach, analogous to pharmacokinetic-pharmacodynamic-based analyses of small molecule- and biologic-based drugs, to establish how HMO controls expansion, abundance, and metabolic output of B. infantis in a human microbiota-based model in gnotobiotic mice. Our data demonstrate that the HMO dose controls steady-state abundance of B. infantis in the microbiome, and that B. infantis together with HMO impacts gut metabolite levels in a targeted, HMO-dependent manner. We also found that HMO creates a privileged niche for B. infantis expansion across a 5-log range of bacterial inocula. These results demonstrate remarkable control of both B. infantis levels and the microbiome community metabolic outputs using this synbiotic approach, and pave the way for precision engineering of desirable microbes and metabolites to treat a range of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin L. Lee
- Prolacta Bioscience, Duarte, CA, USA
- Department of Biostatistics, University of California Los Angeles Fielding School of Public Health, Los AngelesCA, USA
| | | | | | | |
Collapse
|
5
|
Yu S, You J, Shi X, Zou X, Lu Z, Wang Y, Tan J, Sun Z, Li Z, Ji Z, Song C. Rapid Analysis of Estrogens in Meat Samples by High Performance Liquid Chromatography with Fluorescence Detection. J Fluoresc 2024; 34:425-436. [PMID: 37284963 DOI: 10.1007/s10895-023-03248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
A novel reagent named 4-(N-methyl-1,3-dioxo-benzoisoquinolin-6-yl-oxy)benzene sulfonyl chloride (MBIOBS-Cl) for the determination of estrogens in food samples by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Estrogens could be easily labeled by MBIOBS-Cl in Na2CO3-NaHCO3 buffer solution at pH 10.0. The complete labeling reaction for estrogens could be accomplished within five minutes, the corresponding derivatives exhibited strong fluorescence with the maximum excitation and emission wavelengths at 249 nm and 443 nm, respectively. The derivatization conditions, such as the molar ratio of reagent to estrogens, derivatization time, pH, temperature, and buffers were optimized. Derivatives were sufficiently stable to be efficiently analyzed by HPLC with a reversed-phase Agilent ZORBAX 300SB-C18 column with a good baseline resolution. Excellent linear correlations were obtained for all estrogen derivatives with correlation coefficients greater than 0.9998. Ultrasonic-Assisted extraction was used to optimize the extraction of estrogens from meat samples with a recovery higher than 82%. The detection limits (LOD, S/N = 3) of the method ranged from 0.95 to 3.3 μg· kg-1. The established method, which is fast, simple, inexpensive, and environment friendly, can be successfully applied for the detection of four steroidal estrogens from meat samples with little matrix interference.
Collapse
Affiliation(s)
- Shuiqiang Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Xinxin Shi
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiaocong Zou
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhihao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jiangkun Tan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhongyin Ji
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Cuihua Song
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| |
Collapse
|
6
|
Davignon LM, Brouillard A, Juster RP, Marin MF. The role of sex hormones, oral contraceptive use, and its parameters on visuospatial abilities, verbal fluency, and verbal memory. Horm Behav 2024; 157:105454. [PMID: 37981465 DOI: 10.1016/j.yhbeh.2023.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Sex hormones can cross the blood-brain barrier and access brain regions underlying higher-order cognition. Containing synthetic sex hormones, oral contraceptives (OC) have been found to modulate visuospatial and verbal abilities, though inconsistencies have been found in the literature. Among possible explanations, certain OC use parameters (progestin androgenicity, synthetic hormone levels, duration of use) have not received consistent consideration. Thus, the objectives were to (1) examine group differences between men, combined OC users, and naturally cycling women (NC women; not using OC) in visuospatial abilities, verbal fluency, and verbal memory and (2) investigate the contribution of endogenous and exogenous sex hormones on these effects. We also aimed to (3) identify OC use parameters relevant to cognitive outcomes. In total, 70 combined OC users, 53 early follicular (EF) women, 43 pre-ovulatory (PO) women, and 47 men underwent cognitive tests. Performance was compared based on hormonal milieus (OC, EF, PO, men) and OC users' contraceptive androgenicity (anti, low, high). Correlations between performance, hormone levels and OC use duration were also conducted. OC use dampened the sex difference that typically favors men in 3D visuospatial abilities, whereas its duration of use positively predicted verbal fluency. Androgenicity and hormone levels did not predict performance in any task. These results highlight the importance of considering OC use duration. Results also did not support a role for androgenicity in cognition. Importantly, combined OC use (including prolonged use) does not impair visuospatial, verbal, and memory functions in a healthy young sample.
Collapse
Affiliation(s)
- Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Robert-Paul Juster
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada
| | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada.
| |
Collapse
|
7
|
Kaneko H, Matsuoka H, Ishige T, Kobayashi H, Higashi T. Derivatization procedure of estradiol with a combination of MPDNP-F and 4-dimethylaminopyridine to generate product ion containing estradiol-skeleton for reliable determination of its serum/plasma concentrations by LC/ESI-MS/MS. Anal Bioanal Chem 2024; 416:597-608. [PMID: 38082136 PMCID: PMC10761386 DOI: 10.1007/s00216-023-05069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/04/2024]
Abstract
The quantification of serum/plasma estradiol (E2) is useful for the diagnosis, pathological analysis, and monitoring of the therapeutic efficacy of estrogen-dependent diseases. In this study, an improved derivatization method using 1-(2,4-dinitro-5-fluorophenyl)-4,4-dimethylpiperazinium iodide (MPDNP-F) was developed and combined with liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) for the sensitive and specific quantification of the serum/plasma E2. In the new method, the reaction time was reduced to 15 min from 90 min (two-step reaction in the previous method) by the direct reaction of MPDNP-F with E2 at 60°C in the presence of 4-dimethylaminopyridine (DMAP). DMAP served as the organic catalyst and had a less negative effect on the LC/ESI-MS/MS instrument compared to the non-volatile inorganic salt (NaHCO3), which was used in the previous method. The collision-induced dissociation of the molecular cation ([M]+) of the resulting derivative provided a product ion containing the E2-skeleton ([M-NO2-H]+), which significantly enhanced the assay sensitivity and specificity; compared to the dansyl chloride derivatization, which is the currently most-used derivatization procedure for the LC/ESI-MS/MS assays of E2, the MPDNP-F derivatization had significantly fewer interfering peaks and a clear and flat baseline in the serum sample analysis. The MPDNP-F derivatization-LC/ESI-MS/MS method enabled the precise and accurate quantification of E2 even at a 5.0 pg/mL concentration (lower limit of quantification) with a small sample volume (100 μL of serum/plasma) and had a tolerance for the matrix effect. This method was also proven to serve as a more sensitive and specific alternative to the clinically used chemiluminescence enzyme immunoassay.
Collapse
Affiliation(s)
- Honoka Kaneko
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, 2641, Chiba, Japan
| | - Hiroki Matsuoka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, 2641, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Hironori Kobayashi
- Clinical Laboratory Division, Shimane University Hospital, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, 2641, Chiba, Japan.
| |
Collapse
|
8
|
Brouillard A, Davignon LM, Turcotte AM, Marin MF. Morphologic alterations of the fear circuitry: the role of sex hormones and oral contraceptives. Front Endocrinol (Lausanne) 2023; 14:1228504. [PMID: 38027091 PMCID: PMC10661904 DOI: 10.3389/fendo.2023.1228504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Endogenous sex hormones and oral contraceptives (OCs) have been shown to influence key regions implicated in fear processing. While OC use has been found to impact brain morphology, methodological challenges remain to be addressed, such as avoiding selection bias between OC users and non-users, as well as examining potential lasting effects of OC intake. Objective We investigated the current and lasting effects of OC use, as well as the interplay between the current hormonal milieu and history of hormonal contraception use on structural correlates of the fear circuitry. We also examined the role of endogenous and exogenous sex hormones within this network. Methods We recruited healthy adults aged 23-35 who identified as women currently using (n = 62) or having used (n = 37) solely combined OCs, women who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary endogenous sex hormones and current users' salivary ethinyl estradiol (EE) were assessed using liquid chromatography - tandem mass spectrometry. Using structural magnetic resonance imaging, we extracted surface-based gray matter volumes (GMVs) and cortical thickness (CT) for regions of interest of the fear circuitry. Exploratory whole-brain analyses were conducted with surface-based and voxel-based morphometry methods. Results Compared to men, all three groups of women exhibited a larger GMV of the dorsal anterior cingulate cortex, while only current users showed a thinner ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never users exhibited a thicker right anterior insular cortex than past users. While associations with endogenous sex hormones remain unclear, we showed that EE dosage in current users had a greater influence on brain anatomy compared to salivary EE levels and progestin androgenicity, with lower doses being associated with smaller cortical GMVs. Discussion Our results highlight a sex difference for the dorsal anterior cingulate cortex GMV (a fear-promoting region), as well as a reduced CT of the ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC use. Precisely, this finding was driven by lower EE doses. These findings may represent structural vulnerabilities to anxiety and stress-related disorders. We showed little evidence of durable anatomical effects, suggesting that OC intake can (reversibly) affect fear-related brain morphology.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | | | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Hammouda MM, Elattar KM, Rashed MM, Osman AMA. Synthesis, biological activities, and future perspectives of steroidal monocyclic pyridines. RSC Med Chem 2023; 14:1934-1972. [PMID: 37859725 PMCID: PMC10583814 DOI: 10.1039/d3md00411b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Steroidal pyridines are a class of compounds that have been the subject of extensive research in recent years due to their potential biological activities. The introduction of a pyridine ring into the steroid skeleton can significantly alter the chemical and biological properties of the compound, making it more potent and/or selective for a particular target. Different synthetic methods have been developed for the preparation of steroidal pyridines. This review provides an overview of the synthesis, biological activities, and future perspectives of steroidal monocyclic dihydropyridines, tetrahydropyridines, and pyridines from 2005 to the present. The different synthetic methods that have been developed for the preparation of these steroids are discussed, as well as the proposed mechanisms and the biological activities that have been reported. Finally, the potential of steroidal monocyclic pyridines for the development of new drugs is discussed. This review is intended to provide a comprehensive overview of the field of steroidal monocyclic pyridines for researchers and scientists who are interested in this area of research. It is also hoped that this review will stimulate further research into the synthesis and biological activities of steroidal pyridines to develop new and improved drugs for the treatment of diseases.
Collapse
Affiliation(s)
- Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt +201010655354
| | - Marwa M Rashed
- Toxicology Department, Mansoura Hospital, Faculty of Medicine, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Amany M A Osman
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Menoufia University Shebin El-Koam Egypt
| |
Collapse
|
10
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
11
|
Cui J, Zhang J, Sun S, Fan W, Xi H, Xu X, Ji L, Zhang S, Wang D, Zhao W. Rapid and sensitive determination of free fatty acids based on in-source microdroplet-driven derivatization coupled with high-resolution mass spectrometry. Anal Chim Acta 2023; 1278:341717. [PMID: 37709460 DOI: 10.1016/j.aca.2023.341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/16/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Accurate and sensitive measurements of free fatty acids (FFAs) in biological samples are valuable for diagnosing and prognosing diseases. In this study, an in-source microdroplet derivation strategy combined with high-resolution mass spectrometry was developed to analyze FFAs in lipid extracts of biological samples directly. FFAs were rapidly derivated with 2-picolylamine (PA) in the microdroplet which is derived by electrospray. With the proposed method, twelve typical FFAs were determined reliably with high sensitivity and acceptable linearities (R2 ≥ 0.94). The LODs and LOQs for the twelve FFAs were 9-76 pg mL-1 and 30-253 pg mL-1, respectively. The developed method was applied to analyze the alteration of FFAs in liver and kidney samples of rats induced by perfluorooctane sulfonate (PFOS) exposure. The good results demonstrate that the established analysis technique is dependable and has promising applications in detecting FFAs associated with complex biological samples.
Collapse
Affiliation(s)
- Jiaqi Cui
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxun Zhang
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Shihao Sun
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Wu Fan
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hui Xi
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Xiujuan Xu
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Lingbo Ji
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Shusheng Zhang
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China
| | - Dingzhong Wang
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Wuduo Zhao
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Vitku J, Horackova L, Kolatorova L, Duskova M, Skodova T, Simkova M. Derivatized versus non-derivatized LC-MS/MS techniques for the analysis of estrogens and estrogen-like endocrine disruptors in human plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115083. [PMID: 37269613 DOI: 10.1016/j.ecoenv.2023.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Bisphenols, parabens, alkylphenols and triclosan are anthropogenic substances with a phenolic group that have been introduced to the environment in recent decades. As they possess hormone-like effects, they have been termed endocrine disruptors (EDs), and can interfere with steroid pathways in organisms. To evaluate the potential impact of EDs on steroid biosynthesis and metabolism, sensitive and robust methods enabling the concurrent measurement of EDs and steroids in plasma are needed. Of crucial importance is the analysis of unconjugated EDs, which possess biological activity. The aim of the study was to develop and validate LC-MS/MS methods with and without a derivatization step for the analysis of unconjugated steroids (estrone-E1, estradiol-E2, estriol-E3, aldosterone-ALDO) and different groups of EDs (bisphenols, parabens, nonylphenol-NP and triclosan-TCS), and compare these methods on a set of 24 human plasma samples using Passing-Bablok regression analysis. Both methods were validated according to FDA and EMA guidelines. The method with dansyl chloride derivatization allowed 17 compounds to be measured: estrogens (E1, E2, E3), bisphenols (bisphenol A-BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methylparaben-MP, ethylparaben-EP, propylparaben-PP, butylparaben-BP, benzylparaben-BenzylP), TCS and NP, with lower limits of quantification (LLOQs) between 4 and 125 pg/mL. The method without derivatization enabled 15 compounds to be analyzed: estrogens (E1, E2, E3), ALDO, bisphenols (BPA, BPS, BPF, BPAF, BPAP, BPZ), parabens (MP, EP, PP, BP, BenzylP) with LLOQs between 2 and 63 pg/mL, and NP and BPP in semiquantitative mode. Adding 6 mM ammonium fluoride post column into mobile phases in the method without derivatization achieved similar or even better LLOQs than the method with the derivatization step. The uniqueness of the methods lies in the simultaneous determination of different classes of unconjugated (bioactive) fraction of EDs together with selected steroids (estrogens + ALDO in the method without derivatization), which provides a useful tool for evaluating the relationships between EDs and steroid metabolism.
Collapse
Affiliation(s)
- J Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - L Horackova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| | - L Kolatorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Duskova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - T Skodova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Simkova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| |
Collapse
|
13
|
Zhou J, Qi X, Pan N, Li W, Fang H, Wang J, Wang S. A novel UPLC-ESI-MS assay for fifteen portal estrogens and metabolites detection and application in hepatic fibrosis. Anal Biochem 2023; 671:115158. [PMID: 37062458 DOI: 10.1016/j.ab.2023.115158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Estrogens and their metabolites (EMs) are involved in chronic liver disease and gut microbiota regulates estrogen metabolism, whereas the role of enterogenous EMs in liver disease is still elusive. Because of the extremely low level of EMs in portal serum and the EMs contain multiple pairs of isomers, an accurate determination of portal serum EMs is urgently needed. This study established a quantitative detection method for portal serum EMs and applied to non-alcoholic fatty liver disease (NAFLD) related hepatic fibrosis mice model. The serum was derived with a novel derivatization reagent 4-acetyl aminobenzene sulfonyl chloride, and a UPLC-ESI-MS system was used for quantification of 15 EMs in 120 min. Compared with normal group, the concentrations of E1, E2 in model group were significantly decreased by 4-8 times, all the C2 and C4 substitution products (2-OHE1, 2-OHE2, 2-MeOE1, 4-OHE1, 4-MeOE1, 4-OHE2, 4-MeOE2, 2-MeOE2) were significantly decreased by 2-22 times. However, the C16 and C17 substitution products (E3, 16-epiE3, 17-epiE3, 16-ketoE2) levels were increased by 3-5 times (P < 0.01). This study elucidated the changes of enterogenous EMs which entered the liver via portal vein in NAFLD - related hepatic fibrosis and provided methodological platform for other related studies on estrogen metabolism.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xueping Qi
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Na Pan
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Wanli Li
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Haiming Fang
- Department of Gastroenterology, The Second Hospital of Anhui Medical University, NO.678 Furong Road, Hefei, 230601, Anhui Province, China.
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China.
| | - Sheng Wang
- Center for Scientific Research, Anhui Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
14
|
Yuan T. Sample multiplexing for increasing throughput for quantification of estrogens in serum by LC-MS/MS. Anal Bioanal Chem 2023; 415:439-445. [PMID: 36370203 DOI: 10.1007/s00216-022-04423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022]
Abstract
Estrogens are involved in many physiological processes in vivo. The accurate and rapid quantification of estrogens is required for the diagnosis and prognosis of estrogen-related diseases. To achieve high-volume assays, we developed and validated a sample-multiplexing liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of serum estrogens including estrone (E1), estradiol (E2), and estriol (E3). A total of 100 μL serum samples were extracted using ethyl acetate. After derivatization with either dansyl chloride or pyridine-3-sulfonyl chloride, derivatized samples were combined. Then we performed the second liquid-liquid extraction using hexane to purify the mixture. Finally, the reconstitution solutions were injected into LC-MS/MS. In addition, the proposed LC-MS/MS method was validated according to FDA and CLSI guidelines. Within a single run (7 min), this sample-multiplexing LC-MS/MS method could simultaneously analyze E1, E2, and E3 in 2 serum samples. Meanwhile, the method demonstrated satisfactory analytical characteristics including accuracy (87.7-110.3%), linearity (2-1000 pg/mL, R2 > 0.99), precision (intra-assay CV, 1.7-8.7%; inter-assay CV, 1.9-9.4%), and negligible interference and carry-over effect as well as acceptable matrix effect. In conclusion, this sample-multiplexing LC-MS/MS method has achieved a doubled-throughput assay for simultaneous quantification of E1, E2, and E3 without compromising analytical characteristics.
Collapse
Affiliation(s)
- Tengfei Yuan
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Ioutsi VA, Panov YM, Usol’tseva LO, Smolin ES, Antsupova MA, Volchkov PY, Melnichenko GA, Mokrysheva NG. Analysis of Serum Estrogens Using High-Performance Liquid Chromatography–Tandem Mass Spectrometry Coupled to Differential Ion Mobility Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822140027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
16
|
Shi M, Yin L, Sun Y, Wang C, Cai L, Zhang T, Zhou X, Fawcett JP, Gao X, Gu J. Pharmacokinetic Study of Conjugated Equine Estrogens in Healthy Chinese Postmenopausal Women Using a Parallel Two-Column LC-MS/MS Method. Clin Pharmacokinet 2022; 61:1571-1583. [PMID: 36173592 DOI: 10.1007/s40262-022-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE: Postmenopausal women often require estrogen supplementation to improve menopausal and postmenopausal vasomotor symptoms and maintain hormonal balance. Conjugated equine estrogens extracted from the urine of pregnant mares are commonly used to provide this estrogen replacement therapy. The complex composition of this mixture of animal sulfated metabolites makes its bioanalysis challenging such that its detailed pharmacokinetics has not been fully characterized. The purpose of this work is to reveal the pharmacokinetic behavior of conjugated equine estrogens in healthy Chinese postmenopausal women by a parallel two-column LC-MS/MS method. METHODS An open-label study was carried out in 35 Chinese healthy postmenopausal women who received a single dose of Premarin® 0.625 mg. A high-throughput column-switching liquid chromatography-tandem mass spectrometry method was developed to determine four conjugated estrogens and two unconjugated estrogens formed by hydrolysis in vivo. The method multiplexes two high-performance liquid chromatography systems into one mass spectrometer and incorporates the positive/negative ion switching acquisition mode of mass spectrometry to significantly increase analysis efficiency. Pharmacokinetics was determined using non-compartmental methods. RESULTS Both conjugated and unconjugated estrogens can be analyzed simultaneously in a single run with an analysis time of 13.0 minutes in the column-switching liquid chromatography-tandem mass spectrometry method as opposed to 23.0 minutes in a single-column liquid chromatography-tandem mass spectrometry system. The exposures (maximum concentration and area under the curve) of estrone and equilin in Chinese women were higher than those in the North American women. CONCLUSIONS The fully validated assay was successfully applied to a pharmacokinetic study in healthy postmenopausal Chinese women after oral administration of a conjugated equine estrogen tablet. This study suggests that Chinese postmenopausal women achieve the same level of unconjugated estrogens in plasma at a lower dose of conjugated equine estrogens than North American women.
Collapse
Affiliation(s)
- Meiyun Shi
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.,School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, People's Republic of China
| | - Lei Yin
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.,School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, People's Republic of China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Can Wang
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Lanlan Cai
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Tinglan Zhang
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Xiaotong Zhou
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - J Paul Fawcett
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, People's Republic of China. .,Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Urumqi, People's Republic of China. .,Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Beijing, People's Republic of China.
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
| |
Collapse
|
17
|
Kang CX, Fan RT, Xiao HM, Wang X. Determination of estrogens in human serum using a novel chemical derivatization-assisted liquid chromatography-electrospray ionization-tandem mass spectrometry method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9345. [PMID: 35737595 DOI: 10.1002/rcm.9345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Assessing estrogen concentrations in biological systems can provide valuable information on physiological processes, which is crucial for the early diagnosis of many diseases. Because estrogens are present in the human body in low concentrations and in a wide dynamic range, analytical methods with high sensitivity and specificity are required for their determination in complex biological matrices. METHODS To discover an appropriate derivatization reagent for estrogen mass spectrometry (MS) analysis, we compared five sulfonyl chloride derivatization reagents, namely 3-methyl-8-quinolinesulfonyl chloride (MQSCl) and 8-quinolinesulfonyl chloride (QSCl), 1-methyl-1H-pyrazole-4-sulfonyl chloride, 1,2-methyl-imidazole-5-sulfonyl chloride, and dansyl chloride. By selecting the derivatization reagent with the best performance, we developed and validated a novel chemical derivatization-assisted-liquid chromatography-electrospray ionization-tandem mass spectrometry (CD-LC-ESI-MS/MS) method to simultaneously determine the concentrations of estrone, estradiol, and estriol (E1, E2, and E3) in human serum. RESULTS It was found that among the five investigated reagents, MQSCl-derivatized estrogens presented the highest sensitivity using LC-ESI-MS/MS. Based on this discovery, MQSCl was chosen to derivatize the analyzed estrogens to assist LC-ESI-MS/MS analysis. The limit of quantification of E1, E2, and E3 was measured as 2.7, 4.6, and 5.1 pg/mL, respectively. Inter- and intra-day precision, expressed as the coefficient of variation, was shown to be lower than 13.2% for all concentrations. The mean recovery was 72.4% overall, with good reproducibility at low, medium, and high concentrations in the calibration range. CONCLUSIONS The developed method was successfully applied to the quantitative determination of estrogens in clinical human serum from pediatric and adult women, demonstrating the suitability of estrogen analysis in the biological matrix at low concentration (pg/mL).
Collapse
Affiliation(s)
- Chong-Xin Kang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, China
| | - Ru-Ting Fan
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, China
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, China
| |
Collapse
|
18
|
|
19
|
Huang F, Karu K, Campos LC. Simultaneous measurement of free and conjugated estrogens in surface water using capillary liquid chromatography tandem mass spectrometry. Analyst 2021; 146:2689-2704. [PMID: 33751008 DOI: 10.1039/d0an02335c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given detrimental impacts induced by estrogens at trace level, determination of them is significant but challenging due to their low content in environmental samples and inherent weak ionisation. A modified derivatisation-based methodology was applied for the first time to detect estrogen in free and conjugated forms including some isomers simultaneously using liquid chromatography tandem mass spectrometry (LC-MSn). Derivatisation reaction with previously used 1,2-dimethyl-1H-imidazole-5-sulphonyl chloride allowed significant increase of mass spectrometric signal of analytes and also provided distinctive fragmentation for their confirmation even in complicated matrix. Then satisfactory recovery (>75%) for the majority of analytes was achieved following optimisation of solid phase extraction (SPE) factors. The linearity was validated over a wide concentration with the correlation coefficient around 0.995. The repeatability of this methodology was also confirmed via the intra-day and inter-day precision and was less than 11.73%. Validation of method quantification limits (MQLs) for all chosen estrogens was conducted using 1000 mL surface water, ranging from 7.0 to 132.3 pg L-1. The established methodology was applied to profile presence of targeted estrogens in natural surface water samples. Out of the ten compounds of interest, three free estrogens (E1, E2, E3) and two sulphate estrogens (E1-3S and E2-3S) were found over their MQLs, being in the range of 0.05-0.32 ng L-1.
Collapse
Affiliation(s)
- Fan Huang
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Gravitte A, Archibald T, Cobble A, Kennard B, Brown S. Liquid chromatography-mass spectrometry applications for quantification of endogenous sex hormones. Biomed Chromatogr 2020; 35:e5036. [PMID: 33226656 DOI: 10.1002/bmc.5036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
Liquid chromatography, coupled with tandem mass spectrometry, presents a powerful tool for the quantification of the sex steroid hormones 17-β estradiol, progesterone and testosterone from biological matrices. The importance of accurate quantification with these hormones, even at endogenous levels, has evolved with our understanding of the role these regulators play in human development, fertility and disease risk and manifestation. Routine monitoring of these analytes can be accomplished by immunoassay techniques, which face limitations on specificity and sensitivity, or using gas chromatography-mass spectrometry. LC-MS/MS is growing in capability and acceptance for clinically relevant quantification of sex steroid hormones in biological matrices and is able to overcome many of the limitations of immunoassays. Analyte specificity has improved through the use of novel derivatizing agents, and sensitivity has been refined through the use of high-resolution chromatography and mass spectrometric technology. This review highlights these innovations, among others, in LC-MS/MS steroid hormone analysis captured in the literature over the last decade.
Collapse
Affiliation(s)
- Amy Gravitte
- James H Quillen College of Medicine, East Tennessee State University, Department of Biomedical Sciences, Johnson City, TN, USA
| | - Timothy Archibald
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| | - Allison Cobble
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| | - Benjamin Kennard
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| | - Stacy Brown
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| |
Collapse
|
21
|
Direct quantification of anorethidrani disuccinate and determination of sterol metabolites by chemical derivatization combined with LC-MS/MS: Application to a Phase I pharmacokinetic study in humans. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122290. [PMID: 32891947 DOI: 10.1016/j.jchromb.2020.122290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/29/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
Anorethidrani disuccinate (ACP) is a domestically designed A-decarbonized steroid that is currently being investigated in Phase I clinical trials for the treatment of solid tumors. Only the parent drug exhibited antitumor activity; its sterol metabolite M2 showed obvious antiestrogenic effects. We have developed a rapid, sensitive, and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the direct quantification of ACP and a chemical derivatization method that can be used to quantify M2 derivatized with glycidyl trimethyl ammonium chloride (GTMA). A simple protein precipitation procedure was performed to quantify ACP. Injections were obtained within 3.5 min on an Eclipse Plus Phenyl-Hexyl column (50 mm × 2.1 mm i.d., 1.8 μm) with gradient elution; the calibration curve was linear over the range of 2.00-8000 ng/mL. For quantification of M2 in plasma, analytes were extracted by protein precipitation and converted to their GTMA derivatives at 60 °C for 2 h at pH 12; the analytes and coelutants were separated on a Luna C8(2) column (50 mm × 2.0 mm i.d., 5.0 μm). The precision (RSD) and accuracy (RE) of the intra- and interday determinations were within 10%. The derivatization procedure is a novel method for sterol determination by LC-MS/MS. The results confirmed the usefulness of this method for characterizing the pharmacokinetic profiles of ACP and its major metabolite M2 in a Phase I pharmacokinetic study.
Collapse
|
22
|
Monier M, El-Mekabaty A, Abdel-Latif D, Doğru Mert B, Elattar KM. Heterocyclic steroids: Efficient routes for annulation of pentacyclic steroidal pyrimidines. Steroids 2020; 154:108548. [PMID: 31805293 DOI: 10.1016/j.steroids.2019.108548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/09/2019] [Accepted: 11/24/2019] [Indexed: 01/01/2023]
Abstract
Steroids are components of cell membranes, signaling molecules and are a type of secondary metabolites as a result of their high impact of biological significance. The present review described the literature reports of pentacyclic steroidal pyrimidines as a type of heterocyclic steroids. The main sections included the synthesis of the investigated steroids fused at rings-A or B or D of steroid skeleton, synthesis of binary or linked-type pyrimidines, pyrimidine oxides, macromolecules and mono- or di- or tri-peptides linked-steroidal pyrimidines. Besides, the present research highlighted the biological significance of steroidal pyrimidines, in which the compounds revealed potent anticancer, antioxidant, antibacterial, and anti-Alzheimer agents. In addition, some hetero-steroids were screened for binding DNA assay and gene expression analysis. It was settled that the incorporation of pyrimidine scaffold into steroid basic skeleton is crucial for better biological results.
Collapse
Affiliation(s)
- M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Doaa Abdel-Latif
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| | - Başak Doğru Mert
- Adana Alparslan Türkeş Science and Technology University, Department of Energy Systems Engineering, 01250 Adana, Turkey
| | - Khaled M Elattar
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| |
Collapse
|
23
|
Quantitative analysis of underivatized 17 β-estradiol using a high-throughput LC-MS/MS assay - Application to support a pharmacokinetic study in ovariectomized guinea pigs. J Pharm Biomed Anal 2020; 178:112897. [PMID: 31593865 DOI: 10.1016/j.jpba.2019.112897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Difference in female sex hormone, β-estradiol (E2), levels can contribute to sex differences in biological processes that underlie target tissue functions (QT interval), vulnerability to diseases (hepatitis or HIV), and response toward therapies. Accurate quantification of plasma E2 level is thus an important aspect in both basic science research examining hormone-regulated physiological mechanisms and in clinical settings to support patient care associated with altered E2 levels. Due to lack of a high-throughput high-sensitivity analytical method, we developed and validated a LC-MS/MS assay for accurate low-level quantification of E2 and demonstrated its application to a guinea pig pharmacokinetic study in which guinea pigs were treated with 10 or 40 μg/kg E2 subcutaneously and blood samples collected at 0 (pre-dose), 0.25, 0.5, 1, 2, 4, 8, 12 and 24 h post-dosing. E2 was extracted using 90 μL ovariectomized guinea pig plasma by liquid-liquid extraction. The method was robust, sensitive with linear range from 3.9 to 1000 pg/mL, and the assay met acceptance criteria for validation parameters listed in the current FDA Guidance on Bioanalytical Method Validation. Compared to the 10 μg/kg dose, more than dose proportional increase in maximum E2 plasma concentration (Cmax) and AUC0-∞ and correspondingly longer half-life were observed after 40 μg/kg dose. This assay is a significant improvement over existing E2 quantification methods in bioanalytical field, with high precision and accuracy, low sample and injection volumes, no derivatization, and short assay run time of 3 min. This assay is amenable in high-throughput settings requiring low-level E2 quantitation in basic science research and clinical settings.
Collapse
|
24
|
Denver N, Khan S, Homer NZM, MacLean MR, Andrew R. Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol 2019; 192:105373. [PMID: 31112747 PMCID: PMC6726893 DOI: 10.1016/j.jsbmb.2019.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC-MS, GC-MS/MS, LC-MS and LC-MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5-5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment.
Collapse
Affiliation(s)
- Nina Denver
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Shazia Khan
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom.
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| |
Collapse
|
25
|
Li D, Chen J, Ai Y, Gu X, Li L, Che D, Jiang Z, Li L, Chen S, Huang H, Wang J, Cai T, Cao Y, Qi X, Wang X. Estrogen-Related Hormones Induce Apoptosis by Stabilizing Schlafen-12 Protein Turnover. Mol Cell 2019; 75:1103-1116.e9. [PMID: 31420216 DOI: 10.1016/j.molcel.2019.06.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
The mitochondrial pathway of apoptosis is controlled by the ratio of anti- and pro-apoptotic members of the Bcl-2 family of proteins. The molecular events underlying how a given physiological stimulus changes this ratio to trigger apoptosis remains unclear. We report here that human 17-β-estradiol (E2) and its related steroid hormones induce apoptosis by binding directly to phosphodiesterase 3A, which in turn recruits and stabilizes an otherwise fast-turnover protein Schlafen 12 (SLFN12). The elevated SLFN12 binds to ribosomes to exclude the recruitment of signal recognition particles (SRPs), thereby blocking the continuous protein translation occurring on the endoplasmic reticulum of E2-treated cells. These proteins include Bcl-2 and Mcl-1, whose ensuing decrease triggers apoptosis. The SLFN12 protein and an apoptosis activation marker were co-localized in syncytiotrophoblast of human placentas, where levels of estrogen-related hormones are high, and dynamic cell turnover by apoptosis is critical for successful implantation and placenta development.
Collapse
Affiliation(s)
- Dianrong Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jie Chen
- College of Biological Sciences, China Agricultural University, Beijing 100083, China; National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Youwei Ai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiaoqiong Gu
- Department of Blood Transfusion, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Clinical Biological Resource Bank and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Li Li
- Department of Gynecology and Obstetrics, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Di Che
- Clinical Biological Resource Bank and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Huangwei Huang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yang Cao
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiangbin Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Toyo'oka T. Chiral Metabolomics Using Triazine-Based Chiral Labeling Reagents by UPLC-ESI-MS/MS. Methods Mol Biol 2019; 1985:57-79. [PMID: 31069729 DOI: 10.1007/978-1-4939-9438-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The determination of enantiomers of biological molecules is an important issue because a significant difference in the activity of the enantiomers is generally observed in biological systems. Chiral separations can be carried out by direct resolution using a chiral stationary column or by indirect resolution based on the derivatization with a chiral reagent. Many chiral-labeling reagents for ultraviolet-visible and fluorescence detections have been developed for various functional groups, such as amine and carboxylic acid. However, there are hardly any labeling reagents for LC-MS-specific detection. Based on this observation, we have developed several chiral-labeling reagents for LC-MS/MS analysis.This chapter describes methodologies and applications for the indirect LC-MS/MS determination of biological chiral molecules using triazine-based chiral-labeling reagents, i.e., (S and R)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine (DMT-3(S and R)-Apy) for carboxylic acids and (S and R)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidine-2-carboxylate (DMT-(S and R)-Pro-OSu) for amines and amino acids. A reliable method for the non-targeted chiral metabolomics is also described in this chapter.
Collapse
Affiliation(s)
- Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
27
|
Desai R, Harwood DT, Handelsman DJ. Simultaneous measurement of 18 steroids in human and mouse serum by liquid chromatography-mass spectrometry without derivatization to profile the classical and alternate pathways of androgen synthesis and metabolism. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2019; 11:42-51. [PMID: 34841072 PMCID: PMC8620903 DOI: 10.1016/j.clinms.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The recently identified alternate, or backdoor, pathway of DHT synthesis provides important novel information on androgen biosynthesis beyond the classical pathway. We report a rapid and versatile liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to simultaneously and accurately quantify key steroids in human or mouse serum involved in either the classical or backdoor androgen synthesis pathways. METHODS Serum (200 µL) fortified with isotopically labelled internal standards underwent liquid-liquid extraction (LLE) with MTBE and extracts were analysed on a LC-MS/MS. The targeted steroids for quantification were testosterone (T), dihydrotestosterone (DHT), 5α-androstane-3α,17β-diol (3α diol), 5α-androstane-3β,17β-diol (3β diol), dehydroepiandrosterone (DHEA), androstenedione (A4), androsterone (AD), estradiol (E2), estrone (E1), progesterone (P4), pregnenolone (P5), androstenediol (Adiol), 17-hydroxyprogesterone (17-OHP4) and 17-hydroxypregnenolone (17-OHP5), corticosterone (B), cortisol (F), allopregnanolone (Allo-P5) and dihydroprogesterone (DHP). RESULTS The limits of quantification (LOQ) were 5 pg/mL for E2 and E1, 25 pg/mL for T, 50 pg/mL for A4 and 0.10 ng/mL for DHT, 17OHP5, P4, P5, AD, Adiol, DHEA, AlloP5 and 0.20 ng/mL for 17OHP4, 3α diol, 3β diol, DHP, 0.25 ng/mL for B and 1 ng/mL for F. Accuracy, precision, reproducibility and recovery were within acceptable limits for bioanalytical method validation. The method is illustrated in human and mouse, male and female serum. CONCLUSIONS The presented method is sufficiently sensitive, specific and reproducible to meet the quality criteria for routine laboratory application for accurate quantitation of 18 steroid concentrations in male and female serum from humans or mice for the purpose of profiling androgen synthesis and metabolism pathways.
Collapse
Key Words
- 17OHP4, 17-hydroxyprogesterone
- 17OHP5, 17hydroxypregnenolone
- 3α diol, 5α-androstane-3α17β-diol
- 3β diol, 5α-androstane-3β17β-diol
- A4, androstenedione
- AD, androsterone
- APPI, atmospheric pressure photoionization
- Adiol, androstenediol
- AlloP5, allopregnanolone
- Androgen
- B, corticosterone
- CSP, Charcoal Stripped Plasma
- DHEA, dehydroepiandrosterone
- DHP, dihydroprogesterone
- DHT, dihydrotestosterone
- Dihydrotestosterone
- E1, estrone
- E2, estradiol
- F, cortisol
- IS, internal standard
- LOD, lower limit of detection
- LOQ, lower limit of quantification
- Liquid chromatography–mass spectrometry
- ME, matrix effect
- MTBE, methyl tert-butyl ether
- NMI, National Measurement Institute
- P4, progesterone
- P5, pregnenolone
- S/N, signal-to-noise ratio
- Steroidogenesis
- T, testosterone
- Testosterone
Collapse
Affiliation(s)
- Reena Desai
- ANZAC Research Institute, University of Sydney, Sydney, NSW 2139, Australia
| | | | | |
Collapse
|
28
|
Glineur A, Barbera B, Nott K, Carbonnelle P, Ronkart S, Lognay G, Tyteca E. Trace analysis of estrogenic compounds in surface and groundwater by ultra high performance liquid chromatography-tandem mass spectrometry as pyridine-3-sulfonyl derivatives. J Chromatogr A 2018; 1534:43-54. [DOI: 10.1016/j.chroma.2017.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
|
29
|
Niu Y, Wang B, Zhao Y, Zhang J, Shao B. Highly Sensitive and High-Throughput Method for the Analysis of Bisphenol Analogues and Their Halogenated Derivatives in Breast Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10452-10463. [PMID: 29129061 DOI: 10.1021/acs.jafc.7b04394] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The structural analogs of bisphenol A (BPA) and their halogenated derivatives (together termed BPs) have been found in the environment, food, and even the human body. Limited research showed that some of them exhibited toxicities that were similar to or even greater than that of BPA. Therefore, adverse health effects for BPs were expected for humans with low-dose exposure in early life. Breast milk is an excellent matrix and could reflect fetuses' and babies' exposure to contaminants. Some of the emerging BPs may present with trace or ultratrace levels in humans. However, existing analytical methods for breast milk cannot quantify these BPs simultaneously with high sensitivity using a small sampling weight, which is important for human biomonitoring studies. In this paper, a method based on Bond Elut Enhanced Matrix Removal-Lipid purification, pyridine-3-sulfonyl chloride derivatization, and liquid chromatography electrospray tandem mass spectrometry was developed. The method requires only a small quantity of sample (200 μL) and allowed for the simultaneous determination of 24 BPs in breast milk with ultrahigh sensitivity. The limits of quantitation of the proposed method were 0.001-0.200 μg L-1, which were 1-6.7 times lower than the only study for the simultaneous analysis of bisphenol analogs in breast milk based on a 3 g sample weight. The mean recoveries ranged from 86.11% to 119.05% with relative standard deviation (RSD) ≤ 19.5% (n = 6). Matrix effects were within 20% with RSD < 10% for six different lots of samples. The proposed method was successfully applied to 20 breast milk samples. BPA, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) were detected. BPA was still the dominant BP, followed by BPF. This is the first report describing the occurrence of BPF and BPAF in breast milk.
Collapse
Affiliation(s)
- Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control , Beijing 100013, China
| | - Bin Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Yunfeng Zhao
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health and China Center for Food Safety Risk Assessment , Beijing 100021, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control , Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control , Beijing 100013, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University , Beijing 100193, China
| |
Collapse
|
30
|
Ferreira MS, Arruda AM, Pepi GT, Martho AC, Maximiano PM, Ricci LS, Riccio MF, Noboli AC, Serafim P. High sensitivity method validated to quantify estradiol in human plasma by LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:109-114. [DOI: 10.1016/j.jchromb.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 11/16/2022]
|
31
|
Hu T, Zhang JL. Mass-spectrometry-based lipidomics. J Sep Sci 2017; 41:351-372. [PMID: 28859259 DOI: 10.1002/jssc.201700709] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass-spectrometry-based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass-spectrometry-based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass-spectrometry-based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single-cell lipidomics, flux-based lipidomics and multiomics technologies were also reviewed.
Collapse
Affiliation(s)
- Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
32
|
Wang Q, Mesaros C, Blair IA. Ultra-high sensitivity analysis of estrogens for special populations in serum and plasma by liquid chromatography-mass spectrometry: Assay considerations and suggested practices. J Steroid Biochem Mol Biol 2016; 162:70-9. [PMID: 26767303 PMCID: PMC4931956 DOI: 10.1016/j.jsbmb.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
Abstract
Estrogen measurements play an important role in the clinical evaluation of many endocrine disorders as well as in research on the role of hormones in human biology and disease. It remains an analytical challenge to quantify estrogens and their metabolites in specimens from special populations including older men, children, postmenopausal women and women receiving aromatase inhibitors. Historically, immunoassays have been used for measuring estrogens and their metabolites in biological samples for risk assessment. However, the lack of specificity and accuracy of immunoassay-based methods has caused significant problems when interpreting data generated from epidemiological studies and across different laboratories. Stable isotope dilution (SID) methodology coupled with liquid chromatography-selected reaction monitoring-mass spectrometry (LC-SRM/MS) is now accepted as the 'gold-standard' to quantify estrogens and their metabolites in serum and plasma due to improved specificity, high accuracy, and the ability to monitor multiple estrogens when compared with immunoassays. Ultra-high sensitivity can be obtained with pre-ionized derivatives when using triple quadruple mass spectrometers in the selected reaction monitoring (SRM) mode coupled with nanoflow LC. In this review, we have examined the special issues related to utilizing ultra-high sensitivity SID LC-SRM/MS-based methodology to accurately quantify estrogens and their metabolites in the serum and plasma from populations with low estrogen levels. The major issues that are discussed include: sample preparation for both unconjugated and conjugated estrogens, derivatization, chromatographic separation, matrix effects, and assay validation.
Collapse
Affiliation(s)
- Qingqing Wang
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States.
| |
Collapse
|
33
|
Higashi T, Ogawa S. Chemical derivatization for enhancing sensitivity during LC/ESI-MS/MS quantification of steroids in biological samples: a review. J Steroid Biochem Mol Biol 2016; 162:57-69. [PMID: 26454158 DOI: 10.1016/j.jsbmb.2015.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023]
Abstract
Sensitive and specific methods for the detection, characterization and quantification of endogenous steroids in body fluids or tissues are necessary for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been widely used for these purposes due to its specificity and versatility. However, the ESI efficiency and fragmentation behavior of some steroids are poor, which lead to a low sensitivity. Chemical derivatization is one of the most effective methods to improve the detection characteristics of steroids in ESI-MS/MS. Based on this background, this article reviews the recent advances in chemical derivatization for the trace quantification of steroids in biological samples by LC/ESI-MS/MS. The derivatization in ESI-MS/MS is based on tagging a proton-affinitive or permanently charged moiety on the target steroid. Introduction/formation of a fragmentable moiety suitable for the selected reaction monitoring by the derivatization also enhances the sensitivity. The stable isotope-coded derivatization procedures for the steroid analysis are also described.
Collapse
Affiliation(s)
- Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| | - Shoujiro Ogawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| |
Collapse
|
34
|
Wang C, Wu C, Zhang L, Zhang J. Ultraperformance Liquid Chromatography–Tandem Mass Spectrometry Method for Profiling Ketolic and Phenolic Sex Steroids Using an Automated Injection Program Combined with Diverter Valve Switch and Step Analysis. Anal Chem 2016; 88:7878-84. [DOI: 10.1021/acs.analchem.6b02201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caihong Wang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Caisheng Wu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Zhang
- Peking
Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinlan Zhang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
35
|
Khedr A, Alahdal AM. Liquid chromatography-tandem mass spectrometric analysis of ten estrogen metabolites at sub-picogram levels in breast cancer women. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1031:181-188. [PMID: 27497156 DOI: 10.1016/j.jchromb.2016.07.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/18/2022]
Abstract
The measurement of estrogens at sub-picogram levels is essential for research on breast cancer and postmenopausal plasma. Heretofore, these concentration levels have rarely been achieved. However, it is possible through derivatization but still represent problems for monitoring catechol estrogens and 16α-hydroxyestrone (16α-OH-E1). Estrogens possess poor ionization efficiency in MS/MS, which results in insufficient sensitivity for analyzing samples at trace concentrations. The method presented here was used to extract ten estrogen metabolites (EMs) with a derivatization step involving a new adduct. The electrospray ionization (ESI) MS/MS sensitivity for the EMs was enhanced by derivatization with 3-bromomethyl-propyphenazone (BMP). The lower limits of quantification (LLOQ) of the EMs were 12-100 femtogram on-column, equivalent to 0.3-3.6pg/mL plasma, and the limits of detection (LOD) were 0.1-0.8pg/mL plasma. The percentage coefficient of variation (CV%) at the LLOQ was <20 for all investigated EMs. Ionization suppression was minimized by reacting the excess reagent, BMP, with methanol. The method was successfully applied for the determination of ten EMs in the plasma of fifty healthy postmenopausal and fifty ductal breast cancer women aged 47-65 years old. 16α-OH-E1 and three catechol estrogen metabolites, 4-OH-E1, 2-OH-E2 and 4-OH-E2, were successfully measured in the plasma of healthy and breast cancer women. The methyl-propyphenazone-EM derivatives exhibited better sensitivity in ESI-MS (7.5-fold) compared to the commonly used dansylation procedure.
Collapse
Affiliation(s)
- Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia.
| | - Abdulrahman M Alahdal
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| |
Collapse
|
36
|
Avar P, Zrínyi Z, Maász G, Takátsy A, Lovas S, G-Tóth L, Pirger Z. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11630-11638. [PMID: 26936475 DOI: 10.1007/s11356-016-6276-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
17β-Estradiol (E2) and 17α-ethinyl estradiol (EE2), which are environmental estrogens, have been determined with LC-MS in freshwater. Their sensitive analysis needs derivatization and therefore is very hard to achieve in multiresidue screening. We analyzed samples from all the large and some small rivers (River Danube, Drava, Mur, Sava, Tisza, and Zala) of the Carpathian Basin and from Lake Balaton. Freshwater was extracted on solid phase and derivatized using dansyl chloride. Separation was performed on a Kinetex XB-C18 column. Detection was achieved with a benchtop orbitrap mass spectrometer using targeted MS analysis for quantification. Limits of quantification were 0.05 ng/L (MS1) and 0.1 ng/L (MS/MS) for E2, and 0.001 ng/L (MS1) and 0.2 ng/L (MS/MS) for EE2. River samples contained n.d.-5.2 ng/L E2 and n.d.-0.68 ng/L EE2. Average levels of E2 and EE2 were 0.61 and 0.084 ng/L, respectively, in rivers, water courses, and Lake Balaton together, but not counting city canal water. EE2 was less abundant, but it was still present in almost all of the samples. In beach water samples from Lake Balaton, we measured 0.076-0.233 E2 and n.d.-0.133 EE2. A relative high amount of EE2 was found in river Zala (0.68 ng/L) and in Hévíz-Páhoki canal (0.52 ng/L), which are both in the catchment area of Lake Balaton (Hungary).
Collapse
Affiliation(s)
- Péter Avar
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary.
| | - Zita Zrínyi
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - Gábor Maász
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - Anikó Takátsy
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary
| | - Sándor Lovas
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - László G-Tóth
- Department of Hydrozoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, 8237, Hungary
| | - Zsolt Pirger
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| |
Collapse
|
37
|
Dumont Q, Bárcenas M, Dossmann H, Bailloux I, Buisson C, Mechin N, Molina A, Lasne F, Rannulu NS, Cole RB. Improved Steroids Detection and Evidence for Their Regiospecific Decompositions Using Anion Attachment Mass Spectrometry. Anal Chem 2016; 88:3585-91. [DOI: 10.1021/acs.analchem.5b04097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quentin Dumont
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut
Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu 75252 Paris Cedex 05, France
| | - Mariana Bárcenas
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut
Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu 75252 Paris Cedex 05, France
| | - Héloïse Dossmann
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut
Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu 75252 Paris Cedex 05, France
| | - Isabelle Bailloux
- Agence Française de Lutte Contre le Dopage, Département des Analyses, 143 Avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - Corinne Buisson
- Agence Française de Lutte Contre le Dopage, Département des Analyses, 143 Avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - Nathalie Mechin
- Agence Française de Lutte Contre le Dopage, Département des Analyses, 143 Avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - Adeline Molina
- Agence Française de Lutte Contre le Dopage, Département des Analyses, 143 Avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - Françoise Lasne
- Agence Française de Lutte Contre le Dopage, Département des Analyses, 143 Avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - Nalaka S. Rannulu
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
| | - Richard B. Cole
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut
Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu 75252 Paris Cedex 05, France
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
| |
Collapse
|
38
|
Faqehi AMM, Cobice DF, Naredo G, Mak TCS, Upreti R, Gibb FW, Beckett GJ, Walker BR, Homer NZM, Andrew R. Derivatization of estrogens enhances specificity and sensitivity of analysis of human plasma and serum by liquid chromatography tandem mass spectrometry. Talanta 2015; 151:148-156. [PMID: 26946022 PMCID: PMC4791381 DOI: 10.1016/j.talanta.2015.12.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/02/2022]
Abstract
Estrogens circulate at concentrations less than 20 pg/mL in men and postmenopausal women, presenting analytical challenges. Quantitation by immunoassay is unreliable at these low concentrations. Liquid chromatography tandem mass spectrometry (LC–MS/MS) offers greater specificity and sometimes greater sensitivity, but ionization of estrogens is inefficient. Introduction of charged moieties may enhance ionization, but many such derivatives of estrogens generate non-specific product ions originating from the “reagent” group. Therefore an approach generating derivatives with product ions specific to individual estrogens was sought. Estrogens were extracted from human plasma and serum using solid phase extraction and derivatized using 2-fluoro-1-methylpyridinium-p-toluenesulfonate (FMP-TS). Electrospray in positive mode with multiple reaction monitoring using a QTrap 5500 mass spectrometer was used to quantify “FMP” derivatives of estrogens, following LC separation. Transitions for the FMP derivatives of estrone (E1) and estradiol (E2) were compound specific (m/z 362→238 and m/z 364→128, respectively). The limits of detection and quantitation were 0.2 pg on-column and the method was linear from 1–400 pg/sample. Measures of intra- and inter-assay variability, precision and accuracy were acceptable (<20%). The derivatives were stable over 24 h at 10 °C (7–9% degradation). Using this approach, E1 and E2, respectively were detected in human plasma and serum: pre-menopausal female serum (0.5 mL) 135–473, 193–722 pmol/L; male plasma (1 mL) 25–111, 60–180 pmol/L and post-menopausal female plasma (2 mL), 22–78, 29–50 pmol/L. Thus FMP derivatization, in conjunction with LC–MS/MS, is suitable for quantitative analysis of estrogens in low abundance in plasma and serum, offering advantages in specificity over immunoassay and existing MS techniques. Quantitative analysis of low amounts of estrone and estradiol in plasma and serum. Quantitation across physiological range in men and pre- and post-menopausal women. Methylpyridinium ether derivatives improve analytical specificity and sensitivity.
Collapse
Affiliation(s)
- Abdullah M M Faqehi
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Diego F Cobice
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Gregorio Naredo
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Tracy C S Mak
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Rita Upreti
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Fraser W Gibb
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Geoffrey J Beckett
- Clinical Biochemistry, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, United Kingdom.
| | - Brian R Walker
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom; Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Ruth Andrew
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom; Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
39
|
Regueiro J, Wenzl T. Development and validation of a stable-isotope dilution liquid chromatography–tandem mass spectrometry method for the determination of bisphenols in ready-made meals. J Chromatogr A 2015; 1414:110-21. [DOI: 10.1016/j.chroma.2015.08.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
|
40
|
Derivatization of steroids in biological samples for GC–MS and LC–MS analyses. Bioanalysis 2015; 7:2515-36. [DOI: 10.4155/bio.15.176] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The determination of steroids in biological samples is essential in different areas of knowledge. MS combined with either GC or LC is considered the best analytical technique for specific and sensitive determinations. However, due to the physicochemical properties of some steroids, and the low concentrations found in biological samples, the formation of a derivative prior to their analysis is required. In GC–MS determinations, derivatization is needed for generating volatile and thermally stable compounds. The improvement in terms of stability and chromatographic retention are the main reasons for selecting the derivatization agent. On the other hand, derivatization is not compulsory in LC–MS analyses and the derivatization is typically used for improving the ionization and therefore the overall sensitivity achieved.
Collapse
|
41
|
Current status and recent advantages in derivatization procedures in human doping control. Bioanalysis 2015; 7:2537-56. [DOI: 10.4155/bio.15.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Derivatization is one of the most important steps during sample preparation in doping control analysis. Its main purpose is the enhancement of chromatographic separation and mass spectrometric detection of analytes in the full range of laboratory doping control activities. Its application is shown to broaden the detectable range of compounds, even in LC–MS analysis, where derivatization is not a prerequisite. The impact of derivatization initiates from the stage of the metabolic studies of doping agents up to the discovery of doping markers, by inclusion of the screening and confirmation procedures of prohibited substances in athlete's urine samples. Derivatization renders an unlimited number of opportunities to advanced analyte detection.
Collapse
|
42
|
Development of a molecular recognition based approach for multi-residue extraction of estrogenic endocrine disruptors from biological fluids coupled to liquid chromatography-tandem mass spectrometry measurement. Anal Bioanal Chem 2015; 407:8713-23. [DOI: 10.1007/s00216-015-9024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
|
43
|
Regueiro J, Breidbach A, Wenzl T. Derivatization of bisphenol A and its analogues with pyridine-3-sulfonyl chloride: multivariate optimization and fragmentation patterns by liquid chromatography/Orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29. [PMID: 26212162 PMCID: PMC5034808 DOI: 10.1002/rcm.7242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RATIONALE Due to the growing restrictions on the use of bisphenol A (BPA), several other bisphenols are gaining importance as substitutes for BPA in a variety of applications. There is, therefore, a real need for selective and sensitive methods based on mass spectrometry which will allow the human exposure to these new bisphenols to be assessed. METHODS Derivatization of BPA and its substitutes with pyridine-3-sulfonyl chloride is used to enhance the detection capability of bisphenols by electrospray ionization mass spectrometry. A multivariate experimental design, Box-Behnken response surface, was used to evaluate the influence of the main variables potentially affecting the derivatization yield. Fragmentation patterns for all the derivatized bisphenols were acquired by high-resolution/accurate-mass Orbitrap mass spectrometry. RESULTS Temperature and pH were identified as the most important factors affecting the derivatization yield of bisphenols. Fragmentation of the protonated molecules produced abundant analyte-specific product ions. Most of the derivatized bisphenols showed significant improvements in their signal-to-noise ratios compared with the underivatized forms. The stability of these derivatives was demonstrated through several freeze/thaw cycles, short-term room temperature and long-term cold storage. CONCLUSIONS Derivatization of BPA and its structural analogues with pyridine-3-sulfonyl chloride is proposed as a specific, sensitive, high-throughput approach to their analysis by liquid chromatography coupled to electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Jorge Regueiro
- European Commission, Directorate General Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440, Geel, Belgium
| | - Andreas Breidbach
- European Commission, Directorate General Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440, Geel, Belgium
| | - Thomas Wenzl
- European Commission, Directorate General Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440, Geel, Belgium
| |
Collapse
|
44
|
Keski-Rahkonen P, Desai R, Jimenez M, Harwood DT, Handelsman DJ. Measurement of Estradiol in Human Serum by LC-MS/MS Using a Novel Estrogen-Specific Derivatization Reagent. Anal Chem 2015; 87:7180-6. [PMID: 26090565 DOI: 10.1021/acs.analchem.5b01042] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described that employs a novel derivatization reagent for the measurement of serum estradiol (E2), with simultaneous analysis of underivatized testosterone (T) and dihydrotestosterone (DHT). The main advantage of the new derivatization reagent 1,2-dimethylimidazole-5-sulfonyl chloride is its analyte-specific fragmentation that enables monitoring of confirmatory mass transitions with high sensitivity. The reaction mixture can be analyzed without additional purification steps using a 9.5 min gradient run, and sensitive detection is achieved with a triple quadrupole mass spectrometer using atmospheric pressure photoionization. Method validation was performed with human serum samples, including a comparison with a standard LC-MS/MS method using 120 samples from a clinical study, and analysis of certified E2 serum reference materials BCR-576, BCR-577, and BCR-578. The lower limits of quantification for E2, T, and DHT were 0.5 pg/mL, 25 pg/mL, and 0.10 ng/mL, respectively, from a 200-μL sample. Validation results indicated good accuracy and agreement with established, conventional LC-MS/MS assays, demonstrating suitability for analysis of samples containing E2 in the low pg/mL range, such as serum from men, children, and postmenopausal women.
Collapse
Affiliation(s)
- Pekka Keski-Rahkonen
- †ANZAC Research Institute, University of Sydney and Andrology Department, Concord Hospital, NSW Health, Sydney, NSW 2139, Australia
| | - Reena Desai
- †ANZAC Research Institute, University of Sydney and Andrology Department, Concord Hospital, NSW Health, Sydney, NSW 2139, Australia
| | - Mark Jimenez
- †ANZAC Research Institute, University of Sydney and Andrology Department, Concord Hospital, NSW Health, Sydney, NSW 2139, Australia
| | - D Tim Harwood
- †ANZAC Research Institute, University of Sydney and Andrology Department, Concord Hospital, NSW Health, Sydney, NSW 2139, Australia
| | - David J Handelsman
- †ANZAC Research Institute, University of Sydney and Andrology Department, Concord Hospital, NSW Health, Sydney, NSW 2139, Australia
| |
Collapse
|
45
|
Abstract
Estrogen metabolites are important biomarkers to evaluate cancer risks and metabolic diseases. Due to their low physiological levels, a sensitive and accurate method is required, especially for the quantitation of unconjugated forms of endogenous steroids and their metabolites in humans. Here, we evaluated various derivatives of estrogens for improved analysis by orbitrap LC/MS in human serum samples. A new chemical derivatization reagent was applied modifying phenolic steroids to form 1-methylimidazole-2-sulfonyl adducts. The method significantly improves the sensitivity 2-100 fold by full scan MS and targeted selected ion monitoring MS over other derivatization methods including, dansyl, picolinoyl, and pyridine-3-sulfonyl products.
Collapse
Affiliation(s)
- Xingnan Li
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Adrian A Franke
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States.
| |
Collapse
|
46
|
Wang Q, Bottalico L, Mesaros C, Blair IA. Analysis of estrogens and androgens in postmenopausal serum and plasma by liquid chromatography-mass spectrometry. Steroids 2015; 99:76-83. [PMID: 25150018 PMCID: PMC4336238 DOI: 10.1016/j.steroids.2014.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 01/26/2023]
Abstract
Liquid chromatography-selected reaction monitoring/mass spectrometry-based methodology has evolved to the point where accurate analyses of trace levels of estrogens and androgens in postmenopausal serum and plasma can be accomplished with high precision and accuracy. A suite of derivatization procedures has been developed, which together with modern mass spectrometry instrumentation provide investigators with robust and sensitive methodology. Pre-ionized derivatives are proving to be useful as they are not subject to suppression of the electrospray signal. Postmenopausal women with elevated plasma or serum estrogens are thought to be at increased risk for breast and endometrial cancer. Therefore, significant advances in risk assessment should be possible now that reliable methodology is available. It is also possible to conduct analyses of multiple estrogens in plasma or serum. Laboratories that are currently employing liquid chromatography/mass spectrometry methodology can now readily implement this strategy. This will help conserve important plasma and serum samples available in Biobanks, as it will be possible to conduct high sensitivity analyses using low initial sample volumes. Reported levels of both conjugated and non-conjugated estrogen metabolites are close to the limits of sensitivity of many assays to date, urging caution in the interpretation of these low values. The analysis of serum androgen precursors in postmenopausal women has not been conducted routinely in the past using liquid chromatography/mass spectrometry methodology. Integration of serum androgen levels into the panel of metabolites analyzed could provide additional information for assessing cancer risk and should be included in the future.
Collapse
Affiliation(s)
- Qingqing Wang
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lisa Bottalico
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Clementina Mesaros
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA
| | - Ian A Blair
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4863, USA.
| |
Collapse
|
47
|
Wang Q, Rangiah K, Mesaros C, Snyder NW, Vachani A, Song H, Blair IA. Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography-tandem mass spectrometry. Steroids 2015; 96:140-52. [PMID: 25637677 PMCID: PMC4369926 DOI: 10.1016/j.steroids.2015.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
An ultrasensitive stable isotope dilution liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for multiplexed quantitative analysis of six unconjugated and conjugated estrogens in human serum. The quantification utilized a new derivatization procedure, which formed analytes as pre-ionized N-methyl pyridinium-3-sulfonyl (NMPS) derivatives. This method required only 0.1mL of human serum, yet was capable of simultaneously quantifying six estrogens within 20min. The lower limit of quantitation (LLOQ) for estradiol (E2), 16α-hydroxy (OH)-E2, 4-methoxy (MeO)-E2 and 2-MeO-E2 was 1fg on column, and was 10fg on column for 4-OH-E2 and 2-OH-E2. All analytes demonstrated a linear response from 0.5 to 200pg/mL (5-2000pg/mL for 4-OH-E2 and 2-OH-E2). Using this validated method, the estrogen levels in human serum samples from 20 female patients and 20 male patients were analyzed and compared. The levels found for unconjugated serum E2 from postmenopausal women (mean 2.7pg/mL) were very similar to those obtained by highly sensitive gas chromatography-mass spectrometry (GC-MS) methodology. However, the level obtained in serum from older men (mean 9.5pg/mL) was lower than has been reported previously by both GC-MS and LC-MS procedures. The total (unconjugated+conjugated) 4-MeO-E2 levels were significantly higher in female samples compared with males (p<0.05). The enhanced sensitivity offered by the present method will allow for a more specific analysis of estrogens and their metabolites. Our observations might suggest that the level of total 4-MeO-E2 could be a potential biomarker for breast cancer cases.
Collapse
Affiliation(s)
- Qingqing Wang
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kannan Rangiah
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; NCBS, Center for Cellular and Molecular Platforms, Bangalore, India
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nathaniel W Snyder
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anil Vachani
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Haifeng Song
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
48
|
Jeilani YA, Li H, Harruna II, Alhooshani KR, Al-Saadi AA. Collision induced dissociations of non-derivatized and trimethylsilyl-derivatized estradiols: similarities in fragmentation patterns. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:308-315. [PMID: 25800012 DOI: 10.1002/jms.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 10/07/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Fragmentation mechanisms of estradiol and trimethylsilyl (TMS)-derivatized estradiol were studied by triple quadrupole tandem mass spectrometry (MSMS) and density functional theory (DFT) at B3LYP/6-311G(d,p) level. Collision induced dissociations (CID) of estradiol give product ions that are associated with the cleavage of B, C and D rings. Characteristic fragments from the cleavage of the aromatic ring A were not identified, and this was confirmed with both labeled estradiol and trimethylsilyl (TMS)-derivatized estradiol. The mechanisms are based on charge-site directed, radical-directed and charge remote fragmentations that are consistent with previous studies of steroids. CID spectra show ion pairs at m/z: 145/146, 157/158, 185/186, 211/213 and 225/226 with significant intensities, suggesting that these pairs are not from isotopic contributions. The mechanisms show similarities with some minor differences in the fragmentation patterns between the non-derivatized and the TMS-derivatized estradiol.
Collapse
Affiliation(s)
- Yassin A Jeilani
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Box 1134, Atlanta, GA, 30314, USA
| | | | | | | | | |
Collapse
|
49
|
Mohareb RM, Abbas NS, Abdelaziz MA. Heterocyclic ring extension of androstenedione: synthesis and cytotoxicity of fused pyran, pyrimidine and thiazole derivatives. Steroids 2014; 86:45-55. [PMID: 24793334 DOI: 10.1016/j.steroids.2014.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/05/2014] [Accepted: 04/14/2014] [Indexed: 11/30/2022]
Abstract
The reaction of androstenedione with either malononitrile or ethyl cyanoacetate and aromatic aldehydes 2a-c gave the pyran derivatives 4a-f, respectively. On the other hand, the reaction of androstenedione with thiourea and the aromatic aldehydes 2a-c gave the pyrimidine derivatives 6a-c, respectively. Compound 6b reacted with 2-bromo-1-arylethanone derivatives 7a-d to give the indeno[2,1-e]thiazole derivatives 8a-d. Some of the produced compounds were used for further heterocyclization reactions. The cytotoxicity of the newly obtained products was evaluated against some cancer cell lines and a normal cell line.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Nermeen S Abbas
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, Tabuk University, P.O. Box 741, Tabuk 71491, Kingdom of Saudi Arabia; Basic Science Department, Modern Academy For Engineering and Technology in Maadi, Egypt
| |
Collapse
|
50
|
Zimmers SM, Browne EP, O'Keefe PW, Anderton DL, Kramer L, Reckhow DA, Arcaro KF. Determination of free Bisphenol A (BPA) concentrations in breast milk of U.S. women using a sensitive LC/MS/MS method. CHEMOSPHERE 2014; 104:237-43. [PMID: 24507723 DOI: 10.1016/j.chemosphere.2013.12.085] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/05/2013] [Accepted: 12/23/2013] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA) is a synthetic, endocrine-disrupting compound. Free BPA has been detected in human samples indicating that humans are internally exposed to estrogenically active BPA. The purpose of this study was to develop a sensitive method to detect free BPA in human breast milk. BPA was isolated from the milk of 21 nursing mothers in the U.S. by solid-phase extraction. It was then derivatized to improve sensitivity and subsequently analyzed by ultra high performance liquid chromatography-tandem mass spectrometry. Free BPA was detected in 62% of the milk samples (≤ 0.22-10.8 ng mL(-1), median 0.68 ng mL(-1), mean 3.13 ng mL(-1)). No statistical difference in BPA concentrations was observed between women with a low or high Body Mass Index (BMI) (<30 (n=11) and>30 (n=10), respectively). However, there was a significant association between BPA concentration and race. Caucasian women had significantly higher levels of free BPA in their breast milk than non-Caucasian women (mean=4.44 (n=14) and 0.52 (n=7), respectively; p<0.05). The difference between races could be attributed to variations in exposure, lifestyle or metabolism and suggests that certain populations should take extra precautions to limit BPA exposure, particularly during pregnancy and lactation.
Collapse
Affiliation(s)
- Stephanie M Zimmers
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 240D, 240 Thatcher Road, Amherst, MA 01003, United States
| | - Eva P Browne
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 240D, 240 Thatcher Road, Amherst, MA 01003, United States
| | - Patrick W O'Keefe
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 240D, 240 Thatcher Road, Amherst, MA 01003, United States
| | - Douglas L Anderton
- Department of Sociology, University of South Carolina, Columbia, Sloan College, Room 322, Suite 321, 911 Pickens Street, Columbia, SC 29208, United States
| | - Lawrence Kramer
- Department of Civil & Environmental Engineering, University of Massachusetts, Amherst, 235 Marston Hall, Room 18, P.O. Box 35205, Amherst, MA 01003, United States
| | - David A Reckhow
- Department of Civil & Environmental Engineering, University of Massachusetts, Amherst, 235 Marston Hall, Room 18, P.O. Box 35205, Amherst, MA 01003, United States
| | - Kathleen F Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 240D, 240 Thatcher Road, Amherst, MA 01003, United States.
| |
Collapse
|