1
|
Zimmer VC, Lauer AA, Haupenthal V, Stahlmann CP, Mett J, Grösgen S, Hundsdörfer B, Rothhaar T, Endres K, Eckhardt M, Hartmann T, Grimm HS, Grimm MOW. A bidirectional link between sulfatide and Alzheimer's disease. Cell Chem Biol 2024; 31:265-283.e7. [PMID: 37972592 DOI: 10.1016/j.chembiol.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Reduced sulfatide level is found in Alzheimer's disease (AD) patients. Here, we demonstrate that amyloid precursor protein (APP) processing regulates sulfatide synthesis and vice versa. Different cell culture models and transgenic mice models devoid of APP processing or in particular the APP intracellular domain (AICD) reveal that AICD decreases Gal3st1/CST expression and subsequently sulfatide synthesis. In return, sulfatide supplementation decreases Aβ generation by reducing β-secretase (BACE1) and γ-secretase processing of APP. Increased BACE1 lysosomal degradation leads to reduced BACE1 protein level in endosomes. Reduced γ-secretase activity is caused by a direct effect on γ-secretase activity and reduced amounts of γ-secretase components in lipid rafts. Similar changes were observed by analyzing cells and mice brain samples deficient of arylsulfatase A responsible for sulfatide degradation or knocked down in Gal3st1/CST. In line with these findings, addition of sulfatides to brain homogenates of AD patients resulted in reduced γ-secretase activity. Human brain APP level shows a significant negative correlation with GAL3ST1/CST expression underlining the in vivo relevance of sulfatide homeostasis in AD.
Collapse
Affiliation(s)
- Valerie Christin Zimmer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Anna Andrea Lauer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Viola Haupenthal
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Christoph Peter Stahlmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Janine Mett
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty NT-Natural Science and Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Sven Grösgen
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Benjamin Hundsdörfer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Tatjana Rothhaar
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Heike Sabine Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Marcus Otto Walter Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany.
| |
Collapse
|
2
|
Honda A, Nozumi M, Ito Y, Natsume R, Kawasaki A, Nakatsu F, Abe M, Uchino H, Matsushita N, Ikeda K, Arita M, Sakimura K, Igarashi M. Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Rep 2023; 42:113195. [PMID: 37816355 DOI: 10.1016/j.celrep.2023.113195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/19/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Fatty acids have long been considered essential to brain development; however, the involvement of their synthesis in nervous system formation is unclear. We generate mice with knockout of GPSN2, an enzyme for synthesis of very-long-chain fatty acids (VLCFAs) and investigate the effects. Both GPSN2-/- and GPSN2+/- mice show abnormal neuronal networks as a result of impaired neuronal polarity determination. Lipidomics of GPSN2-/- embryos reveal that ceramide synthesis is specifically inhibited depending on FA length; namely, VLCFA-containing ceramide is reduced. We demonstrate that lipid rafts are highly enriched in growth cones and that GPSN2+/- neurons lose gangliosides in their membranes. Application of C24:0 ceramide, but not C16:0 ceramide or C24:0 phosphatidylcholine, to GPSN2+/- neurons rescues both neuronal polarity determination and lipid-raft density in the growth cone. Taken together, our results indicate that VLCFA synthesis contributes to physiological neuronal development in brain network formation, in particular neuronal polarity determination through the formation of lipid rafts.
Collapse
Affiliation(s)
- Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan; Center for Research Promotion, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Haruki Uchino
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
3
|
Hammoud M, Rodrigues AMS, Assiri I, Sabir E, Lafhal K, Najeh S, Jakani M, Imad N, Bourrahouat A, Ait Sab I, Elqadiry R, Nassih H, Outzourit A, Elamiri M, Maoulainine F, Slitine Elidrissi N, Bennaoui F, Bourous M, Mrhar S, Essaadouni L, Stien D, Rada N, Bouskraoui M, Houël E, Fdil N. Sphingolipidoses in Morocco: Chemical profiling for an affordable and rapid diagnosis strategy. Prostaglandins Other Lipid Mediat 2023; 168:106751. [PMID: 37295489 DOI: 10.1016/j.prostaglandins.2023.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Sphingolipidoses are a group of metabolic diseases in which lysosomal hydrolases dysfunction disrupt normal sphingolipids' metabolism, leading to excess accumulation in cellular compartments and excretion in urine. These pathologies represent a significant burden among Moroccan population, for which an easy access to enzymatic assays and genetic tests is not guaranteed. Parallel analytical methods thus have to be developed for preliminary screening. In this study, 107 patients were addressed to the metabolic platform of the Marrakesh Faculty of Medicine for diagnosis confirmation. Thin-Layer Chromatography was used as a first step to perform chemical profiling of the patients' urinary lipids, allowing 36% of the patients to be efficiently oriented towards the adequate enzymatic assay. UPLC-MS/MS analyses of urinary sulfatides excreted in urines patient had been used to control the reliability of TLC analysis and to obtain more accurate information related to the sulfatides isoforms. This analytical process combining TLC with UPLC-MS/MS has enabled rapid and appropriate patient management in a reduced time and with reduced resources.
Collapse
Affiliation(s)
- M Hammoud
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - A M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| | - I Assiri
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - Es Sabir
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - K Lafhal
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - S Najeh
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - M Jakani
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - N Imad
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - A Bourrahouat
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - I Ait Sab
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - R Elqadiry
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - H Nassih
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - A Outzourit
- Internal Medicine Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Elamiri
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco
| | - F Maoulainine
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - N Slitine Elidrissi
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - F Bennaoui
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Bourous
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - S Mrhar
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - L Essaadouni
- Internal Medicine Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - D Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| | - N Rada
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Bouskraoui
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - E Houël
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France.
| | - N Fdil
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco.
| |
Collapse
|
4
|
D'Amico D, Barone R, Di Felice V, Ances B, Prideaux B, Eugenin EA. Chronic brain damage in HIV-infected individuals under antiretroviral therapy is associated with viral reservoirs, sulfatide release, and compromised cell-to-cell communication. Cell Mol Life Sci 2023; 80:116. [PMID: 37016051 PMCID: PMC11071786 DOI: 10.1007/s00018-023-04757-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
HIV infection has become a chronic and manageable disease due to the effective use of antiretroviral therapies (ART); however, several chronic aging-related comorbidities, including cognitive impairment, remain a major public health issue. However, these mechanisms are unknown. Here, we identified that glial and myeloid viral reservoirs are associated with local myelin damage and the release of several myelin components, including the lipid sulfatide. Soluble sulfatide compromised gap junctional communication and calcium wave coordination, essential for proper cognition. We propose that soluble sulfatide could be a potential biomarker and contributor to white matter compromise observed in HIV-infected individuals even in the current ART era.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brendan Prideaux
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA.
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Acid Sphingomyelinase Inhibitor, Imipramine, Reduces Hippocampal Neuronal Death after Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232314749. [PMID: 36499076 PMCID: PMC9740309 DOI: 10.3390/ijms232314749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Traumatic brain injury (TBI) broadly degrades the normal function of the brain after a bump, blow, or jolt to the head. TBI leads to the aggravation of pre-existing brain dysfunction and promotes neurotoxic cascades that involve processes such as oxidative stress, loss of dendritic arborization, and zinc accumulation. Acid sphingomyelinase (ASMase) is an enzyme that hydrolyzes sphingomyelin to ceramide in cells. Under normal conditions, ceramide plays an important role in various physiological functions, such as differentiation and apoptosis. However, under pathological conditions, excessive ceramide production is toxic and activates the neuronal-death pathway. Therefore, we hypothesized that the inhibition of ASMase activity by imipramine would reduce ceramide formation and thus prevent TBI-induced neuronal death. To test our hypothesis, an ASMase inhibitor, imipramine (10 mg/kg, i.p.), was administrated to rats immediately after TBI. Based on the results of this study, we confirmed that imipramine significantly reduced ceramide formation, dendritic loss, oxidative stress, and neuronal death in the TBI-imipramine group compared with the TBI-vehicle group. Additionally, we validated that imipramine prevented TBI-induced cognitive dysfunction and the modified neurological severity score. Consequently, we suggest that ASMase inhibition may be a promising therapeutic strategy to reduce hippocampal neuronal death after TBI.
Collapse
|
6
|
Pergande MR, Kang C, George D, Sutter PA, Crocker SJ, Cologna SM, Givogri MI. Lipidomic analysis identifies age-disease-related changes and potential new biomarkers in brain-derived extracellular vesicles from metachromatic leukodystrophy mice. Lipids Health Dis 2022; 21:32. [PMID: 35351138 PMCID: PMC8962106 DOI: 10.1186/s12944-022-01644-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent findings show that extracellular vesicle constituents can exert short- and long-range biological effects on neighboring cells in the brain, opening an exciting avenue for investigation in the field of neurodegenerative diseases. Although it is well documented that extracellular vesicles contain many lipids and are enriched in sphingomyelin, cholesterol, phosphatidylserines and phosphatidylinositols, no reports have addressed the lipidomic profile of brain derived EVs in the context of Metachromatic Leukodystrophy, a lysosomal storage disease with established metabolic alterations in sulfatides. METHODS In this study, we isolated and characterized the lipid content of brain-derived EVs using the arylsulfatase A knockout mouse as a model of the human condition. RESULTS Our results suggest that biogenesis of brain-derived EVs is a tightly regulated process in terms of size and protein concentration during postnatal life. Our lipidomic analysis demonstrated that sulfatides and their precursors (ceramides) as well as other lipids including fatty acids are altered in an age-dependent manner in EVs isolated from the brain of the knockout mouse. CONCLUSIONS In addition to the possible involvement of EVs in the pathology of Metachromatic Leukodystrophy, our study underlines that measuring lipid signatures in EVs may be useful as biomarkers of disease, with potential application to other genetic lipidoses.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Christina Kang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St. M/C 512, Chicago, IL, 60612, USA
| | - Diann George
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St. M/C 512, Chicago, IL, 60612, USA
| | - Pearl A Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.,Laboratory for Integrative Neurosciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St. M/C 512, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nat Commun 2022; 13:1259. [PMID: 35273160 PMCID: PMC8913628 DOI: 10.1038/s41467-022-28889-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.
Collapse
|
8
|
Blomqvist M, Zetterberg H, Blennow K, Månsson JE. Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration. Mol Cell Neurosci 2021; 116:103670. [PMID: 34562592 DOI: 10.1016/j.mcn.2021.103670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Rebiai R, Givogri MI, Gowrishankar S, Cologna SM, Alford ST, Bongarzone ER. Synaptic Function and Dysfunction in Lysosomal Storage Diseases. Front Cell Neurosci 2021; 15:619777. [PMID: 33746713 PMCID: PMC7978225 DOI: 10.3389/fncel.2021.619777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.
Collapse
Affiliation(s)
- Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Stephania M. Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Simon T. Alford
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
11
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front Med (Lausanne) 2020; 7:576221. [PMID: 33195324 PMCID: PMC7606900 DOI: 10.3389/fmed.2020.576221] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Aysilu I Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
12
|
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal Chim Acta 2020; 1132:134-155. [PMID: 32980104 PMCID: PMC7525043 DOI: 10.1016/j.aca.2020.05.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
Aberrant expression of glycosphingolipids has been implicated in a myriad of diseases, but our understanding of the strucural diversity, spatial distribution, and biological function of this class of biomolecules remains limited. These challenges partly stem from a lack of sensitive tools that can detect, identify, and quantify glycosphingolipids at the molecular level. Mass spectrometry has emerged as a powerful tool poised to address most of these challenges. Here, we review the recent developments in analytical glycosphingolipidomics with an emphasis on sample preparation, mass spectrometry and tandem mass spectrometry-based structural characterization, label-free and labeling-based quantification. We also discuss the nomenclature of glycosphingolipids, and emerging technologies like ion mobility spectrometry in differentiation of glycosphingolipid isomers. The intrinsic advantages and shortcomings of each method are carefully critiqued in line with an individual's research goals. Finally, future perspectives on analytical sphingolipidomics are stated, including a need for novel and more sensive methods in isomer separation, low abundance species detection, and profiling the spatial distribution of glycosphingolipid molecular species in cells and tissues using imaging mass spectrometry.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States.
| |
Collapse
|
13
|
Canerina-Amaro A, Pereda D, Diaz M, Rodriguez-Barreto D, Casañas-Sánchez V, Heffer M, Garcia-Esparcia P, Ferrer I, Puertas-Avendaño R, Marin R. Differential Aggregation and Phosphorylation of Alpha Synuclein in Membrane Compartments Associated With Parkinson Disease. Front Neurosci 2019; 13:382. [PMID: 31068782 PMCID: PMC6491821 DOI: 10.3389/fnins.2019.00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson’s disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes. For instance, instability of lipid raft (LR) microdomains, membrane regions with a particular lipid composition, is an early event in the development of PD. However, the relevance of membrane microdomains in the regulation and trafficking of the distinct α-syn configurations associated with PD remains unexplored. In this study, using 6- and 14-month-old healthy and MPTP-treated animals as a model of PD, we have investigated the putative molecular alterations of raft membrane microstructures, and their impact on α-syn dynamics and conformation. A comparison of lipid analyses of LR microstructures and non-raft (NR) fractions showed alterations in gangliosides, cholesterol, polyunsaturated fatty acids (PUFA) and phospholipids in the midbrain and cortex of aged and MPTP-treated mice. In particular, the increase of PUFA and phosphatidylserine (PS) during aging correlated with α-syn multimeric formation in NR. In these aggregates, α-syn was phosphorylated in pSer129, the most abundant post-transductional modification of α-syn promoting toxic aggregation. Interestingly, similar variations in PUFA and PS content correlating with α-syn insoluble accumulation were also detected in membrane microstructures from the human cortex of incidental Parkinson Disease (iPD) and PD, as compared to healthy controls. Furthermore, structural changes in membrane lipid microenvironments may induce rearrangements in raft-interacting proteins involved in other neuropathologies. Therefore, we also investigated the dynamic of other protein markers involved in cognition and memory impairment such as metabotropic glutamate receptor 5 (mGluR5), ionotropic NMDA receptor (NMDAR2B), prion protein (PrPc) and amyloid precursor protein (APP), whose activity depends on membrane lipid organization. We observed a decline of these protein markers in LR fractions with the progression of aging and pathology. Overall, our findings demonstrate that lipid alterations in membranous compartments promoted by brain aging and PD-like injury may have an effect on α-syn aggregation and segregation in abnormal multimeric structures.
Collapse
Affiliation(s)
- Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Daniel Pereda
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Mario Diaz
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Deiene Rodriguez-Barreto
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Verónica Casañas-Sánchez
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Marija Heffer
- Department of Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
14
|
Dias IHK, Ferreira R, Gruber F, Vitorino R, Rivas-Urbina A, Sanchez-Quesada JL, Vieira Silva J, Fardilha M, de Freitas V, Reis A. Sulfate-based lipids: Analysis of healthy human fluids and cell extracts. Chem Phys Lipids 2019; 221:53-64. [PMID: 30910732 DOI: 10.1016/j.chemphyslip.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Sulfate-based lipids (SL) have been proposed as players in inflammation, immunity and infection. In spite of the many biochemical processes linked to SL, analysis on this class of lipids has only focused on specific SL sub-classes in individual fluids or cells leaving a range of additional SL in other biological samples unaccounted for. This study describes the mass spectrometry screening of SL in lipid extracts of human fluids (saliva, plasma, urine, seminal fluid) and primary human cells (RBC, neutrophils, fibroblasts and skin epidermal) using targeted precursor ion scanning (PIS) approach. The PIS 97 mass spectra reveal a wide diversity of SL including steroid sulfates, sulfoglycolipids and other unidentified SL, as well as metabolites such as taurines, sulfated polyphenols and hypurate conjugates. Semi-quantification of SL revealed that plasma exhibited the highest content of SL whereas seminal fluid and epithelial cells contained the highest sulphur to phosphorous (S/P) ratio. The complexity of biofluids and cells sulfateome presented in this study highlight the importance of expanding the panel of synthetic sulfate-based lipid standards. Also, the heterogenous distribution of SL provides evidence for the interplay of sulfotransferases/sulfatases, opening new avenues for biomarker discovery in oral health, cardiovascular, fertility and dermatology research areas.
Collapse
Affiliation(s)
| | - Rita Ferreira
- Departamento de Quimica, Research Unit of Química Orgânica, Produtos Naturais e Agro-alimentares (QOPNA), Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Florian Gruber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - José Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - Joana Vieira Silva
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal; Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
15
|
Scesa G, Moyano AL, Bongarzone ER, Givogri MI. Port-to-port delivery: Mobilization of toxic sphingolipids via extracellular vesicles. J Neurosci Res 2017; 94:1333-40. [PMID: 27638615 DOI: 10.1002/jnr.23798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 01/02/2023]
Abstract
The discovery that most cells produce extracellular vesicles (EVs) and release them in the extracellular milieu has spurred the idea that these membranous cargoes spread pathogenic mechanisms. In the brain, EVs may have multifold and important physiological functions, from deregulating synaptic activity to promoting demyelination to changes in microglial activity. The finding that small EVs (exosomes) contain α-synuclein and β-amyloid, among other pathogenic proteins, is an example of this notion, underscoring their potential role in the brains of patients with Parkinson's and Alzheimer's diseases. Given that they are membranous vesicles, we speculate that EVs also have an intrinsic capacity to incorporate sphingolipids. In conditions under which these lipids are elevated to toxic levels, such as in Krabbe's disease and metachromatic leukodystrophy, EVs may contribute to spread disease from sick to healthy cells. In this essay, we discuss a working hypothesis that brain cells in sphingolipidoses clear some of the accumulated lipid material to attempt restoring cell homeostasis via EV secretion. We hypothesize that secreted sphingolipid-loaded EVs shuttle pathogenic lipids to cells that are not intrinsically affected, contributing to establishing non-cell-autonomous defects. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giuseppe Scesa
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois
| | - Ana Lis Moyano
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine. University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
16
|
Sural-Fehr T, Bongarzone ER. How membrane dysfunction influences neuronal survival pathways in sphingolipid storage disorders. J Neurosci Res 2017; 94:1042-8. [PMID: 27638590 DOI: 10.1002/jnr.23763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022]
Abstract
Sphingolipidoses are a class of inherited diseases that result from the toxic accumulation of undigested sphingolipids in lysosomes and other cellular membranes. Sphingolipids are particularly enriched in cells of the nervous system, and their excessive accumulation during disease has a significant impact on the nervous system. Neuronal dysfunction followed by neurological compromise is a common feature in many of these diseases; however, the underlying mechanisms that cause vulnerability of neurons are not fully understood. The plasma membrane plays a critical role in regulating cellular survival pathways, and its dysfunction has been implicated in neuronal failure in various adult-onset neuropathies. In the context of sphingolipidoses, we hypothesize that gradual accumulation of undigested lipids in plasma membranes causes local disruptions in lipid raft domains, leading to deregulation of multiple signaling pathways important for neuronal survival and function. We propose that defects in downstream signaling as a result of membrane dysfunction are common mechanisms underlying neuronal vulnerability in sphingolipid storage disorders with neurological compromise. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuba Sural-Fehr
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Blomqvist M, Borén J, Zetterberg H, Blennow K, Månsson JE, Ståhlman M. High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS. J Lipid Res 2017; 58:1482-1489. [PMID: 28550076 DOI: 10.1194/jlr.d076588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Sulfatides (STs) are a group of glycosphingolipids that are highly expressed in brain. Due to their importance for normal brain function and their potential involvement in neurological diseases, development of accurate and sensitive methods for their determination is needed. Here we describe a high-throughput oriented and quantitative method for the determination of STs in cerebrospinal fluid (CSF). The STs were extracted using a fully automated liquid/liquid extraction method and quantified using ultra-performance liquid chromatography coupled to tandem mass spectrometry. With the high sensitivity of the developed method, quantification of 20 ST species from only 100 μl of CSF was performed. Validation of the method showed that the STs were extracted with high recovery (90%) and could be determined with low inter- and intra-day variation. Our method was applied to a patient cohort of subjects with an Alzheimer's disease biomarker profile. Although the total ST levels were unaltered compared with an age-matched control group, we show that the ratio of hydroxylated/nonhydroxylated STs was increased in the patient cohort. In conclusion, we believe that the fast, sensitive, and accurate method described in this study is a powerful new tool for the determination of STs in clinical as well as preclinical settings.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
|
19
|
Quantification of plasma sulfatides by mass spectrometry: Utility for metachromatic leukodystrophy. Anal Chim Acta 2016; 955:79-85. [PMID: 28088283 DOI: 10.1016/j.aca.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022]
Abstract
Impaired sulfatide catabolism is the primary biochemical insult in patients with the inherited neurodegenerative disease, metachromatic leukodystrophy (MLD), and sulfatide elevation in body fluids is useful in the diagnostic setting. Here we used mass spectrometry to quantify fourteen species of sulfatide, in addition to the deacetylated derivative, lyso-sulfatide, using high pressure liquid chromatography-electrospray ionisation-tandem mass spectrometry in both positive and negative ion mode. A single phase extraction of 0.01 mL of MLD plasma identified all 14 sulfatide species in the positive ion mode but none in the negative ion mode. Interrogation of seven major and seven hydroxylated molecular species, as well as lyso-sulfatide, identified the C18 isoform as the most informative for MLD. The C18 produced a linear response and was below the limit of quantification (<10 pmol mL-1) in control plasma with concentrations in MLD plasma ranging from 12 to 196 pmol mL-1. Serial plasma samples from an MLD patient post-therapeutic bone marrow transplant proved similar to non-disease controls with C18 sulfatide concentrations below the limit of quantification, as did samples from three individuals with an arylsulfatase A pseudodeficiency - a population variant which appears deficient upon enzymatic assay, without manifestation of disease. These findings emphasise the utility of the C18 sulfatide species for the diagnosis of MLD and biochemical monitoring of MLD patients. Extension of this approach to a newborn screening card correctly identified an MLD patient at birth with elevated C18 sulfatide at levels almost double that present in the newborn card from his unaffected sibling, suggesting the methodology may have applicability for newborn screening.
Collapse
|
20
|
Pintado-Sierra M, García-Álvarez I, Bribián A, Medina-Rodríguez EM, Lebrón-Aguilar R, Garrido L, de Castro F, Fernández-Mayoralas A, Quintanilla-López JE. A comprehensive profiling of sulfatides in myelin from mouse brain using liquid chromatography coupled to high-resolution accurate tandem mass spectrometry. Anal Chim Acta 2016; 951:89-98. [PMID: 27998489 DOI: 10.1016/j.aca.2016.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022]
Abstract
Sulfatides are sulfoglycolipids found in the myelin sheath. The composition ratio of sulfatide molecular species changes with age, and it has also been associated with the pathogenesis of various human central nervous system diseases. However, profiling sulfatides in biological samples is difficult, due to the great variety of molecular species. In this work, a new, easy and reliable liquid chromatography-electrospray tandem mass spectrometry (LC-ESI(+)-MS/MS) method has been developed to profile sulfatide content in biological samples of myelin. The 'wrong-way-round' ionization effect has been described for this type of molecules for the first time, making it possible to correctly identify as many as 37 different sulfatides in mouse brain myelin samples, including molecules with different fatty acid chain lengths and varying degrees of unsaturation and hydroxylation. A chemometric analysis of their relative abundances showed that the main difference among individuals of different ages was the content of sulfatides with odd-numbered fatty acid chains, in addition to hydroxylated species.
Collapse
Affiliation(s)
- M Pintado-Sierra
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - I García-Álvarez
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain
| | - A Bribián
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal (CSIC), Doctor Arce 37, 28002, Madrid, Spain
| | - E M Medina-Rodríguez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain
| | - R Lebrón-Aguilar
- Instituto de Química-Física 'Rocasolano' (CSIC), Serrano 119, 28006, Madrid, Spain
| | - L Garrido
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - F de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal (CSIC), Doctor Arce 37, 28002, Madrid, Spain
| | - A Fernández-Mayoralas
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | |
Collapse
|
21
|
Grassi S, Prioni S, Cabitta L, Aureli M, Sonnino S, Prinetti A. The Role of 3-O-Sulfogalactosylceramide, Sulfatide, in the Lateral Organization of Myelin Membrane. Neurochem Res 2015; 41:130-43. [DOI: 10.1007/s11064-015-1747-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/12/2022]
|
22
|
van Gestel RA, Brouwers JF, Ultee A, Helms JB, Gadella BM. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells. Cell Tissue Res 2015; 363:129-145. [PMID: 26378009 PMCID: PMC4700079 DOI: 10.1007/s00441-015-2272-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/06/2015] [Indexed: 01/13/2023]
Abstract
Lipid rafts are micro-domains of ordered lipids (Lo phase) in biological membranes. The Lo phase of cellular membranes can be isolated from disordered lipids (Ld phase) after treatment with 1 % Triton X-100 at 4 °C in which the Lo phase forms the detergent-resistant membrane (DRM) fraction. The lipid composition of DRM derived from Madin-Darby canine kidney (MDCK) cells, McArdle cells and porcine sperm is compared with that of the whole cell. Remarkably, the unsaturation and chain length degree of aliphatic chains attached to phospholipids is virtually the same between DRM and whole cells. Cholesterol and sphingomyelin were enriched in DRMs but to a cell-specific molar ratio. Sulfatides (sphingolipids from MDCK cells) were enriched in the DRM while a seminolipid (an alkylacylglycerolipid from sperm) was depleted from the DRM. Treatment with <5 mM methyl-ß-cyclodextrin (MBCD) caused cholesterol removal from the DRM without affecting the composition and amount of the phospholipid while higher levels disrupted the DRM. The substantial amount of (poly)unsaturated phospholipids in DRMs as well as a low stoichiometric amount of cholesterol suggest that lipid rafts in biological membranes are more fluid and dynamic than previously anticipated. Using negative staining, ultrastructural features of DRM were monitored and in all three cell types the DRMs appeared as multi-lamellar vesicular structures with a similar morphology. The detergent resistance is a result of protein–cholesterol and sphingolipid interactions allowing a relatively passive attraction of phospholipids to maintain the Lo phase. For this special issue, the relevance of our findings is discussed in a sperm physiological context.
Collapse
Affiliation(s)
- Renske A van Gestel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Anton Ultee
- Department of Pathology, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Sulfatide-Hsp70 interaction promotes Hsp70 clustering and stabilizes binding to unfolded protein. Biomolecules 2015; 5:958-73. [PMID: 25989600 PMCID: PMC4496704 DOI: 10.3390/biom5020958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023] Open
Abstract
The 70-kDa heat shock protein (Hsp70), one of the major stress-inducible molecular chaperones, is localized not only in the cytosol, but also in extracellular milieu in mammals. Hsp70 interacts with various cell surface glycolipids including sulfatide (3'-sulfogalactosphingolipid). However, the molecular mechanism, as well as the biological relevance, underlying the glycolipid-Hsp70 interaction is unknown. Here we report that sulfatide promotes Hsp70 oligomerization through the N-terminal ATPase domain, which stabilizes the binding of Hsp70 to unfolded protein in vitro. We find that the Hsp70 oligomer has apparent molecular masses ranging from 440 kDa to greater than 669 kDa. The C-terminal peptide-binding domain is dispensable for the sulfatide-induced oligomer formation. The oligomer formation is impaired in the presence of ATP, while the Hsp70 oligomer, once formed, is unable to bind to ATP. These results suggest that sulfatide locks Hsp70 in a high-affinity state to unfolded proteins by clustering the peptide-binding domain and blocking the binding to ATP that induces the dissociation of Hsp70 from protein substrates.
Collapse
|
24
|
Pituch KC, Moyano AL, Lopez-Rosas A, Marottoli FM, Li G, Hu C, van Breemen R, Månsson JE, Givogri MI. Dysfunction of platelet-derived growth factor receptor α (PDGFRα) represses the production of oligodendrocytes from arylsulfatase A-deficient multipotential neural precursor cells. J Biol Chem 2015; 290:7040-53. [PMID: 25605750 DOI: 10.1074/jbc.m115.636498] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound receptor for platelet-derived growth factor A (PDGFRα) is crucial for controlling the production of oligodendrocytes (OLs) for myelination, but regulation of its activity during OL differentiation is largely unknown. We have examined the effect of increased sulfated content of galactosylceramides (sulfatides) on the regulation of PDGFRα in multipotential neural precursors (NPs) that are deficient in arylsulfatase A (ASA) activity. This enzyme is responsible for the lysosomal hydrolysis of sulfatides. We show that sulfatide accumulation significantly impacts the formation of OLs via deregulation of PDGFRα function. PDGFRα is less associated with detergent-resistant membranes in ASA-deficient cells and showed a significant decrease in AKT phosphorylation. Rescue experiments with ASA showed a normalization of the ratio of long versus short sulfatides, restored PDGFRα levels, corrected its localization to detergent-resistant membranes, increased AKT phosphorylation, and normalized the production of OLs in ASA-deficient NPs. Moreover, our studies identified a novel mechanism that regulates the secretion of PDGFRα in NPs, in glial cells, and in the brain cortex via exosomal shedding. Our study provides a first step in understanding the role of sulfatides in regulating PDGFRα levels in OLs and its impact in myelination.
Collapse
Affiliation(s)
- Katarzyna C Pituch
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| | - Ana L Moyano
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| | - Aurora Lopez-Rosas
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| | | | - Guannan Li
- the Department of Medical Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois 60612 and
| | - Chenqi Hu
- the Department of Medical Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois 60612 and
| | - Richard van Breemen
- the Department of Medical Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois 60612 and
| | - Jan E Månsson
- the Department of Clinical Chemistry, Sahlgren Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Maria I Givogri
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| |
Collapse
|