1
|
Yang Q, Liao W, Wei Z, Qiu R, Zheng Q, Wu Q, Chen Y. Degradation and humification of steroidal estrogens in the soil environment: A review. CHEMOSPHERE 2024; 357:142043. [PMID: 38626810 DOI: 10.1016/j.chemosphere.2024.142043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Emerging pollutants are toxic and harmful chemical substances characterized by environmental persistence, bioaccumulation and biotoxicity, which can harm the ecological environment and even threaten human health. There are four categories of emerging pollutants that are causing widespread concern, namely, persistent organic pollutants, endocrine disruptors, antibiotics, and microplastics. The distribution of emerging pollutants has spatial and temporal heterogeneity, which is influenced by factors such as geographical location, climatic conditions, population density, emission amount, etc. Steroidal estrogens (SEs) discussed in this paper belong to the category of endocrine disruptors. There are generally three types of fate for SEs in the soil environment: sorption, degradation and humification. Humification is a promising pathway for the removal of SEs, especially for those that are difficult to degrade. Through humification, these difficult-to-degrade SEs can be effectively transferred or fixed, thus reducing their impact on the environment and organisms. Contrary to the well-studied process of sorption and degradation, the role and promise of the humification process for the removal of SEs has been underestimated. Based on the existing research, this paper reviews the sources, classification, properties, hazards and environmental behaviors of SEs in soil, and focuses on the degradation and humification processes of SEs and the environmental factors affecting their processes, such as temperature, pH, etc. It aims to provide references for the follow-up research of SEs, and advocates further research on the humification of organic pollutants in future studies.
Collapse
Affiliation(s)
- Qianhui Yang
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Weishan Liao
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Zebin Wei
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qian Zheng
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qitang Wu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Yangmei Chen
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
2
|
Konno N. Simultaneous activation of genes encoding urea cycle enzymes and gluconeogenetic enzymes coincides with a corticosterone surge period before metamorphosis in Xenopus laevis. Dev Growth Differ 2023; 65:6-15. [PMID: 36527293 DOI: 10.1111/dgd.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Amphibian tadpoles are postulated to excrete ammonia as nitrogen metabolites but to shift from ammonotelism to ureotelism during metamorphosis. However, it is unknown whether ureagenesis occurs or plays a functional role before metamorphosis. Here, the mRNA-expression levels of two urea cycle enzymes (carbamoyl phosphate synthetase I [CPSI] and ornithine transcarbamylase [OTC]) were measured beginning with stage-47 Xenopus tadpoles at 5 days post-fertilization (dpf), between the onset of feeding (stage 45, 4 dpf) and metamorphosis (stage 55, 32 dpf). CPSI and OTC expression levels increased significantly from stage 49 (12 dpf). Urea excretion was also detected at stage 47. A transient corticosterone surge peaking at stage 48 was previously reported, supporting the hypothesis that corticosterone can induce CPSI expression in tadpoles, as found in adult frogs and mammals. Stage-46 tadpoles were exposed to a synthetic glucocorticoid, dexamethasone (Dex, 10-500 nM) for 3 days. CPSI mRNA expression was significantly higher in tadpoles exposed to Dex than in tadpoles exposed to the vehicle control. Furthermore, glucocorticoid receptor mRNA expression increased during the pre-metamorphic period. In addition to CPSI and OTC mRNA upregulation, the expression levels of three gluconeogenic enzyme genes (glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase 1) increased with the onset of urea synthesis and excretion. These results suggest that simultaneous induction of the urea cycle and gluconeogenic enzymes coincided with a corticosterone surge occurring prior to metamorphosis. These metabolic changes preceding metamorphosis may be closely related to the onset of feeding and nutrient accumulation required for metamorphosis.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Gutierrez JA, Liu W, Perez S, Xing G, Sonnenberg G, Kou K, Blatnik M, Allen R, Weng Y, Vera NB, Chidsey K, Bergman A, Somayaji V, Crowley C, Clasquin MF, Nigam A, Fulham MA, Erion DM, Ross TT, Esler WP, Magee TV, Pfefferkorn JA, Bence KK, Birnbaum MJ, Tesz GJ. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol Metab 2021; 48:101196. [PMID: 33667726 PMCID: PMC8050029 DOI: 10.1016/j.molmet.2021.101196] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Recent studies suggest that excess dietary fructose contributes to metabolic dysfunction by promoting insulin resistance, de novo lipogenesis (DNL), and hepatic steatosis, thereby increasing the risk of obesity, type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH), and related comorbidities. Whether this metabolic dysfunction is driven by the excess dietary calories contained in fructose or whether fructose catabolism itself is uniquely pathogenic remains controversial. We sought to test whether a small molecule inhibitor of the primary fructose metabolizing enzyme ketohexokinase (KHK) can ameliorate the metabolic effects of fructose. Methods The KHK inhibitor PF-06835919 was used to block fructose metabolism in primary hepatocytes and Sprague Dawley rats fed either a high-fructose diet (30% fructose kcal/g) or a diet reflecting the average macronutrient dietary content of an American diet (AD) (7.5% fructose kcal/g). The effects of fructose consumption and KHK inhibition on hepatic steatosis, insulin resistance, and hyperlipidemia were evaluated, along with the activation of DNL and the enzymes that regulate lipid synthesis. A metabolomic analysis was performed to confirm KHK inhibition and understand metabolite changes in response to fructose metabolism in vitro and in vivo. Additionally, the effects of administering a single ascending dose of PF-06835919 on fructose metabolism markers in healthy human study participants were assessed in a randomized placebo-controlled phase 1 study. Results Inhibition of KHK in rats prevented hyperinsulinemia and hypertriglyceridemia from fructose feeding. Supraphysiologic levels of dietary fructose were not necessary to cause metabolic dysfunction as rats fed the American diet developed hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis, which were all reversed by KHK inhibition. Reversal of the metabolic effects of fructose coincided with reductions in DNL and inactivation of the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP). We report that administering single oral doses of PF-06835919 was safe and well tolerated in healthy study participants and dose-dependently increased plasma fructose indicative of KHK inhibition. Conclusions Fructose consumption in rats promoted features of metabolic dysfunction seen in metabolic diseases such as T2D and NASH, including insulin resistance, hypertriglyceridemia, and hepatic steatosis, which were reversed by KHK inhibition. PF-06835919 is a potent inhibitor of fructose metabolism in rats and humans. Rats fed fructose at levels consistent with the typical American diet develop hyperinsulinemia, hyperlipidemia and steatosis. KHK inhibition reverses fructose-induced metabolic dysfunction by blocking ChREBP activation. Due to the global dietary prevalence of fructose, KHK inhibition is a potential pharmacotherapy for metabolic diseases.
Collapse
Affiliation(s)
- Jemy A Gutierrez
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Wei Liu
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Sylvie Perez
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gang Xing
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gabriele Sonnenberg
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kou Kou
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Matt Blatnik
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340 USA
| | - Richard Allen
- Quantitative Systems Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Yan Weng
- Clinical Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Nicholas B Vera
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kristin Chidsey
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Arthur Bergman
- Clinical Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Veena Somayaji
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Collin Crowley
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Michelle F Clasquin
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Anu Nigam
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Melissa A Fulham
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Derek M Erion
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Thomas V Magee
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Jeffrey A Pfefferkorn
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gregory J Tesz
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA.
| |
Collapse
|
4
|
Zhang Y, Gao B, Valdiviez L, Zhu C, Gallagher T, Whiteson K, Fiehn O. Comparing Stable Isotope Enrichment by Gas Chromatography with Time-of-Flight, Quadrupole Time-of-Flight, and Quadrupole Mass Spectrometry. Anal Chem 2021; 93:2174-2182. [PMID: 33434014 PMCID: PMC10782559 DOI: 10.1021/acs.analchem.0c04013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stable isotope tracers are applied for in vivo and in vitro studies to reveal the activity of enzymes and intracellular metabolic pathways. Most often, such tracers are used with gas chromatography coupled to mass spectrometry (GC-MS) owing to its ease of operation and reproducible mass spectral databases. Differences in isotope tracer performance of the classic GC-quadrupole MS instrument and newer time-of-flight instruments are not well studied. Here, we used three commercially available instruments for the analysis of identical samples from a stable isotope labeling study that used [U-13C6] d-glucose to investigate the metabolism of the bacterium Rothia mucilaginosa with respect to 29 amino acids and hydroxyl acids involved in primary metabolism. The prokaryote R. mucilaginosa belongs to the family of Micrococcaceae and is present and metabolically active in the airways and sputum of cystic fibrosis patients. Overall, all three GC-MS instruments (low-resolution GC-SQ MS, low-resolution GC-TOF MS, and high-resolution GC-QTOF MS) can be used to perform stable isotope tracing studies for glycolytic intermediates, tricarboxylic acid (TCA) metabolites, and amino acids, yielding similar biological results, with high-resolution GC-QTOF MS offering additional capabilities to identify the chemical structures of unknown compounds that might show significant isotope enrichments in biological studies.
Collapse
Affiliation(s)
- Ying Zhang
- West Coast Metabolomics Center, University of California, Davis, 95616, CA, USA
- Department of Chemistry, University of California, Davis, 95616, CA, USA
| | - Bei Gao
- Department of Medicine, University of California, San Diego, San Diego, 92093, CA, USA
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Luis Valdiviez
- West Coast Metabolomics Center, University of California, Davis, 95616, CA, USA
| | - Chao Zhu
- College of Medicine & Nursing, Dezhou University, De Zhou, Shandong, 253023, China
| | - Tara Gallagher
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, 95616, CA, USA
| |
Collapse
|
5
|
Yang S, Li Y, De Boevre M, De Saeger S, Zhou J, Li Y, Zhang H, Sun F. Toxicokinetics of α-zearalenol and its masked form in rats and the comparative biotransformation in liver microsomes from different livestock and humans. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:121403. [PMID: 32143155 DOI: 10.1016/j.jhazmat.2019.121403] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Alpha-zearalenol (α-ZEL) and its masked form α-zearalenol-14 glucoside (α-ZEL-14G) have much higher oestrogenic activity than zearalenone. Owing to very limited toxicokinetic and metabolic data, no reference points could be established for risk assessment. To circumvent it, the toxicokinetic, metabolic profiles, and phenotyping of α-ZEL and α-ZEL-14G were comprehensively investigated in this study. As a result, the plasma concentrations of α-ZEL and α-ZEL-14G were all below LOQ after oral administration, while after iv injection, both could be significantly bio-transformed into various metabolites. A complete hydrolysis of α-ZEL-14G contributed to α-ZEL overall toxicity. Additionally, 31 phase I and 10 phase II metabolites of α-ZEL, and 9 phase I and 5 phase II metabolites were identified for α-ZEL-14G. For α-ZEL, hydroxylation, dehydrogenation, and glucuronidation were the major metabolic pathways, while for α-ZEL-14G, it was deglycosylation, reduction, hydroxylation, and glucuronidation. Significant metabolic differences were observed for α-ZEL and α-ZEL-14G in the liver microsomes of rats, chickens, swine, goats, cows and humans. Phenotyping studies indicated that α-ZEL and α-ZEL-14G were mediated by CYP 3A4, 2C8, and 1A2. Moreover, the deglycosylation of α-ZEL-14G was critically mediated by CES-I and CES-II. The acquired data would provide fundamental perspectives for risk evaluation of mycotoxins and their modified forms.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Huiyan Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Feifei Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China; College of Aminal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
6
|
Chen M, Waigi MG, Li S, Sun K, Si Y. Fungal laccase-mediated humification of estrogens in aquatic ecosystems. WATER RESEARCH 2019; 166:115040. [PMID: 31505307 DOI: 10.1016/j.watres.2019.115040] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Estrogens are a category of non-degradable organic pollutants prevalent in aquatic environments with reported health risks in human and wildlife reproduction. A biotechnological approach is proposed for utilizing fungal laccase-mediated humification reactions (L-MHRs) to remove estrogens from water. Through a reactive radical-mediated C-C, C-O-C, or C-N-C covalent coupling mechanism, multifarious complex polymeric structures are generated having limited solubilities, which significantly reduces their estrogenic activity and ecotoxicity. This review highlights the available literature associated with the self/cross-coupling mechanism of fungal L-MHRs in catalyzing the single-electron oxidation of estrogens and humic acid (HA). Advances in identifying unknown estrogen-HA cross-coupling products using high-resolution mass spectrometry combined with 13C-isotope labeling and 13C NMR may provide key research directions beneficial to aquatic ecological restoration measures.
Collapse
Affiliation(s)
- Mingyu Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| |
Collapse
|
7
|
Willis IM, Moir RD, Hernandez N. Metabolic programming a lean phenotype by deregulation of RNA polymerase III. Proc Natl Acad Sci U S A 2018; 115:12182-12187. [PMID: 30429315 PMCID: PMC6275490 DOI: 10.1073/pnas.1815590115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As a master negative regulator of RNA polymerase (Pol) III, Maf1 modulates transcription in response to nutrients and stress to balance the production of highly abundant tRNAs, 5S rRNA, and other small noncoding RNAs with cell growth and maintenance. This regulation of Pol III transcription is important for energetic economy as mice lacking Maf1 are lean and resist weight gain on normal and high fat diets. The lean phenotype of Maf1 knockout (KO) mice is attributed in part to metabolic inefficiencies which increase the demand for cellular energy and elevate catabolic processes, including autophagy/lipophagy and lipolysis. A futile RNA cycle involving increased synthesis and turnover of Pol III transcripts has been proposed as an important driver of these changes. Here, using targeted metabolomics, we find changes in the liver of fed and fasted Maf1 KO mice consistent with the function of mammalian Maf1 as a chronic Pol III repressor. Differences in long-chain acylcarnitine levels suggest that energy demand is higher in the fed state of Maf1 KO mice versus the fasted state. Quantitative metabolite profiling supports increased activity in the TCA cycle, the pentose phosphate pathway, and the urea cycle and reveals changes in nucleotide levels and the creatine system. Metabolite profiling also confirms key predictions of the futile RNA cycle hypothesis by identifying changes in many metabolites involved in nucleotide synthesis and turnover. Thus, constitutively high levels of Pol III transcription in Maf1 KO mice reprogram central metabolic pathways and waste metabolic energy through a futile RNA cycle.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461;
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Yang S, Zhang H, Zhang J, Li Y, Jin Y, Zhang S, De Saeger S, Li Y, Zhou J, Sun F, De Boevre M. Deglucosylation of zearalenone-14-glucoside in animals and human liver leads to underestimation of exposure to zearalenone in humans. Arch Toxicol 2018; 92:2779-2791. [PMID: 30019167 DOI: 10.1007/s00204-018-2267-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/12/2018] [Indexed: 11/27/2022]
Abstract
Zearalenone-14-glucoside (ZEN-14G), the modified mycotoxin of zearalenone (ZEN), has attracted considerable attention due to its high potential to be hydrolyzed into ZEN, which would exert toxicity. It has been confirmed that the microflora could metabolize ZEN-14G to ZEN. However, the metabolic profile of ZEN-14G and whether it could be deglucosidated in the liver are unknown. To thoroughly investigate the metabolism of ZEN-14G, in vitro metabolism including phase I and phase II metabolism was studied using liquid chromatography coupled to high-resolution mass spectrometry. Additionally, in vivo metabolism of ZEN-14G was conducted in model animals, rats, by oral administration. As a result, 29 phase I metabolites and 6 phase II metabolites were identified and significant inter-species metabolic differences were observed as well. What is more, ZEN-14G could be considerably deglucosidated into its free form of ZEN after the incubation with animals and human liver microsomes in the absence of NADPH, which was mainly metabolized by human carboxylesterase CES-I and II. Furthermore, results showed that the major metabolic pathways of ZEN-14G were deglucosylation, hydroxylation, hydrogenation and glucuronidation. Although interspecies differences in the biotransformation of ZEN-14G were observed, ZEN, α-ZEL-14G, β-ZEL-14G, α-ZEL, ZEN-14G-16GlcA and ZEN-14GlcA were the major metabolites of ZEN-14G. Additionally, a larger yield of 6-OH-ZEN-14G and 8-OH-ZEN-14G was also observed in human liver microsomes. The obtained data would be of great importance for the safety assessment of modified mycotoxin, ZEN-14G, and provide another perspective for risk assessment of mycotoxin.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huiyan Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinzhen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, 264005, Shandong, People's Republic of China
| | - Yue Jin
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Feifei Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Bee Product Quality Supervision and Testing Center, Ministry of Agriculture, Beijing, 100093, People's Republic of China.
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|