1
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen 0213 Oslo, Norway
| |
Collapse
|
2
|
Espinosa-Aguirre JJ, Camacho-Carranza R, Hernández-Ojeda SL, Cárdenas-Ávila RI, Santes-Palacios R. Apiole, an important constituent of parsley, is a mixed-type inhibitor of the CYP1A subfamily. Mutat Res 2024; 829:111881. [PMID: 39191149 DOI: 10.1016/j.mrfmmm.2024.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Apiole (1-allyl-2,5-dimethoxy-3,4-methylenedioxybenzene) and parsley leaves ethanolic extract containing it inhibit the rat liver microsomal ethoxy- and methoxyresorufin-O-deacetylase activities associated with cytochrome P450 (CYP) 1A1 and 1A2, respectively. Cytochrome P4501A subfamily metabolizes environmental mutagens and several drugs, leading to the formation of mutagenic metabolites. Docking analysis showed that residue Phe123 within the active site of the CYP1A1 enzyme is bound to apiole through a π/π stacking of its benzene ring. In the case of 1A2, its Phe226 interacts with the dioxolane ring of apiole. Furthermore, apiole behaves as a mixed-type inhibitor of bacterial human recombinant CYP1A1. To explore one of the possible biological implications of this inhibitory effect, we tested the capacity of apiole and the parsley ethanolic extract to interfere with the mutagenicity of the promutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) metabolized by CYP1A subfamily. As expected, both apiole and the plant extract reduced the number of revertant colonies of Salmonella typhimurium TA98 Ames strain after exposure to MeIQx, reaching a 78 % and 100 % reduction, respectively. Neither apiol nor parsley extract were mutagenic to the TA98 strain. We speculate that consuming apiole, a constituent of edible herbs, in conjunction with the utilization of pharmaceuticals metabolized by the CYP1A subfamily, may result in herb-drug interactions. Furthermore, the consumption of apiole by individuals who regularly ingest fresh vegetables may contribute to the low incidence of cancer observed in those who adhere to such a dietary regimen.
Collapse
Affiliation(s)
- J J Espinosa-Aguirre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - R Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - S L Hernández-Ojeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - R I Cárdenas-Ávila
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - R Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, Coyoacán, Ciudad de México C. P. 04530, Mexico
| |
Collapse
|
3
|
Zeng L, Wang YH, Ai CX, Zhang B, Zhang H, Liu ZM, Yu MH, Hu B. Differential effects of oxytetracycline on detoxification and antioxidant defense in the hepatopancreas and intestine of Chinese mitten crab under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172633. [PMID: 38643877 DOI: 10.1016/j.scitotenv.2024.172633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
This study aims to evaluate the effects of oxytetracycline (OTC) on detoxification and oxidative defense in the hepatopancreas and intestine of Chinese mitten crab (Eriocheir sinensis) under cadmium (Cd) stress. The crab was exposed to 0.6 μM Cd, 0.6 μM OTC, and 0.6 μM Cd plus 0.6 μM OTC for 42 days. Our results showed that in the intestine, OTC alone enhanced protein carboxylation (PC) and malondialdehyde (MDA) contents, which was associated with the increased OTC accumulation. Compared to Cd alone, Cd plus OTC increased Cd and OTC contents, and reduced detoxification (i.e., glutathione (GSH) content, gene expressions of cytochrome P450 (CYP) isoforms, 7-ethoxyresorufin O-deethylase (EROD) activity, mRNA levels and activities of glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), and antioxidant defense (i.e., gene expressions and activities of catalase (CAT) and superoxide dismutase (SOD)) in the intestine, leading to the increased in PC and MDA contents, suggesting that OTC had a synergistic effect on Cd-induced oxidative damage. In the hepatopancreas, although OTC alone increased OTC accumulation, it did not affect PC and MDA contents. Compared to Cd alone, Cd plus OTC reduced MDA content, which was closely related to the improvement of detoxification (i.e., GSH content, mRNA levels of CYP isoforms, EROD activity, gene expressions and activities of GPx, GR and GST), and antioxidant defense (gene expressions and activities of CAT and SOD, metallothionein content). Aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2) transcriptional expressions were positively correlated with most detoxification- and antioxidant-related gene expressions, respectively, indicating that AhR and Nrf2 were involved in the regulation of these gene expressions. Our results unambiguously demonstrated that OTC had tissue-specific effects on Cd-induced toxicological effect in E. sinensis, which contributed to accurately evaluating Cd toxicity modulated by TCs in crab.
Collapse
Affiliation(s)
- Lin Zeng
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China; Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing 350300, PR China.
| | - Yong-Hong Wang
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Bin Zhang
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China
| | - Hui Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui 323000, PR China
| | - Min-Hui Yu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Bing Hu
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing 350300, PR China
| |
Collapse
|
4
|
Yahyavi SK, Boisen IM, Cui Z, Jorsal MJ, Kooij I, Holt R, Juul A, Blomberg Jensen M. Calcium and vitamin D homoeostasis in male fertility. Proc Nutr Soc 2024; 83:95-108. [PMID: 38072394 DOI: 10.1017/s002966512300486x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Calcium and vitamin D have well-established roles in maintaining calcium balance and bone health. Decades of research in human subjects and animals have revealed that calcium and vitamin D also have effects on many other organs including male reproductive organs. The presence of calcium-sensing receptor, vitamin D receptor, vitamin D activating and inactivating enzymes and calcium channels in the testes, male reproductive tract and human spermatozoa suggests that vitamin D and calcium may modify male reproductive function. Functional animal models have shown that vitamin D deficiency in male rodents leads to a decrease in successful mating and fewer pregnancies, often caused by impaired sperm motility and poor sperm morphology. Human studies have to a lesser extent validated these findings; however, newer studies suggest a positive effect of vitamin D supplementation on semen quality in cases with vitamin D deficiency, which highlights the need for initiatives to prevent vitamin D deficiency. Calcium channels in male reproductive organs and spermatozoa contribute to the regulation of sperm motility and capacitation, both essential for successful fertilisation, which supports a need to avoid calcium deficiency. Studies have demonstrated that vitamin D, as a regulator of calcium homoeostasis, influences calcium influx in the testis and spermatozoa. Emerging evidence suggests a potential link between vitamin D deficiency and male infertility, although further investigation is needed to establish a definitive causal relationship. Understanding the interplay between vitamin D, calcium and male reproductive health may open new avenues for improving fertility outcomes in men.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Marie Boisen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Zhihui Cui
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ireen Kooij
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
6
|
Paustenbach DJ, Brown SE, Heywood JJ, Donnell MT, Eaton DL. Risk characterization of N-nitrosodimethylamine in pharmaceuticals. Food Chem Toxicol 2024; 186:114498. [PMID: 38341171 DOI: 10.1016/j.fct.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Since 2018, N-nitrosodimethylamine (NDMA) has been a reported contaminant in numerous pharmaceutical products. To guide the pharmaceutical industry, FDA identified an acceptable intake (AI) of 96 ng/day NDMA. The approach assumed a linear extrapolation from the Carcinogenic Potency Database (CPDB) harmonic-mean TD50 identified in chronic studies in rats. Although NDMA has been thought to act as a mutagenic carcinogen in experimental animals, it has not been classified as a known human carcinogen by any regulatory agency. Humans are exposed to high daily exogenous and endogenous doses of NDMA. Due to the likelihood of a threshold dose for NDMA-related tumors in animals, we believe that there is ample scientific basis to utilize the threshold-based benchmark dose or point-of-departure (POD) approach when estimating a Permissible Daily Exposure limit (PDE) for NDMA. We estimated that 29,000 ng/kg/day was an appropriate POD for calculating a PDE. Assuming an average bodyweight of 50 kg, we expect that human exposures to NDMA at doses below 5800 ng/day in pharmaceuticals would not result in an increased risk of liver cancer, and that there is little, if any, risk for any other type of cancer, when accounting for the mode-of-action in humans.
Collapse
Affiliation(s)
- D J Paustenbach
- Paustenbach and Associates, 970 West Broadway, Suite E, Jackson, WY, USA
| | - S E Brown
- Paustenbach and Associates, 207 Canyon Blvd, Boulder, CO, USA.
| | - J J Heywood
- Paustenbach and Associates, 207 Canyon Blvd, Boulder, CO, USA
| | - M T Donnell
- Valeo Sciences LLC, 333 Corporate Drive, Suite 130, Ladera Ranch, CA, USA
| | - D L Eaton
- Professor Emeritus, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
8
|
Akkulak M, Evin E, Durukan O, Celebioglu HU, Adali O. Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) Cell-free Supernatants. Anticancer Agents Med Chem 2024; 24:372-378. [PMID: 38058098 DOI: 10.2174/0118715206271514231124111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Ensuring colon homeostasis is of significant influence on colon cancer and delicate balance is maintained by a healthy human gut microbiota. Probiotics can modulate the diversity of the gut microbiome and prevent colon cancer. Metabolites/byproducts generated by microbial metabolism significantly impact the healthy colonic environment. Hesperidin is a polyphenolic plant compound well known for its anticancer properties. However, low bioavailability of hesperidin after digestion impedes its effectiveness. CYP2W1 is a newly discovered oncofetal gene with an unknown function. CYP2W1 gene expression peaks during embryonic development and is suddenly silenced immediately after birth. Only in the case of some types of cancer, particularly colorectal and hepatocellular carcinomas, this gene is reactivated and its expression is correlated with the severity of the disease. This study aimed to investigate the effects of hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) cell-free supernatants on CaCo2 colon cancer cell viability and CYP2W1 gene expression. METHODS Alamar Blue cell viability assay was used to investigate the cytotoxic effect of cell-free supernatant of LGG grown in the presence of hesperidin on CaCo2 cells. To observe the effect of cell-free supernatants of LGG on the expression of CYP2W1 gene, qRT-PCR was performed. RESULTS Five times diluted hesperidin treated cell-free supernatant (CFS) concentration considerably reduced CaCo2 colon cancer cell viability. Furthermore, CYP2W1 gene expression was similarly reduced following CFS treatments and nearly silenced under probiotic bacteria CFS treatment. CONCLUSION The CYP2W1 gene expression was strongly reduced by cell-free supernatants derived from LGG culture, with or without hesperidin. This suggests that the suppression may be due to bacterial byproducts rather than hesperidin. Therefore, the CYP2W1 gene in the case of deregulation of these metabolites may cause CYP2W1-related colon cancer cell proliferation.
Collapse
Affiliation(s)
- Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Emre Evin
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Ozlem Durukan
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Hasan Ufuk Celebioglu
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
9
|
Wheeler AM, Orsburn BC, Bumpus NN. Biotransformation of Efavirenz and Proteomic Analysis of Cytochrome P450s and UDP-Glucuronosyltransferases in Mouse, Macaque, and Human Brain-Derived In Vitro Systems. Drug Metab Dispos 2023; 51:521-531. [PMID: 36623884 PMCID: PMC10043944 DOI: 10.1124/dmd.122.001195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Spotlight on CYP4B1. Int J Mol Sci 2023; 24:ijms24032038. [PMID: 36768362 PMCID: PMC9916508 DOI: 10.3390/ijms24032038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The mammalian cytochrome P450 monooxygenase CYP4B1 can bioactivate a wide range of xenobiotics, such as its defining/hallmark substrate 4-ipomeanol leading to tissue-specific toxicities. Similar to other members of the CYP4 family, CYP4B1 has the ability to hydroxylate fatty acids and fatty alcohols. Structural insights into the enigmatic role of CYP4B1 with functions in both, xenobiotic and endobiotic metabolism, as well as its unusual heme-binding characteristics are now possible by the recently solved crystal structures of native rabbit CYP4B1 and the p.E310A variant. Importantly, CYP4B1 does not play a major role in hepatic P450-catalyzed phase I drug metabolism due to its predominant extra-hepatic expression, mainly in the lung. In addition, no catalytic activity of human CYP4B1 has been observed owing to a unique substitution of an evolutionary strongly conserved proline 427 to serine. Nevertheless, association of CYP4B1 expression patterns with various cancers and potential roles in cancer development have been reported for the human enzyme. This review will summarize the current status of CYP4B1 research with a spotlight on its roles in the metabolism of endogenous and exogenous compounds, structural properties, and cancer association, as well as its potential application in suicide gene approaches for targeted cancer therapy.
Collapse
|
11
|
D MO, C TZ, R SP. Human orphan cytochromes P450: An update. Curr Drug Metab 2022; 23:CDM-EPUB-128186. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Molina-Ortiz D
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Torres-Zárate C
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Santes-Palacios R
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| |
Collapse
|
12
|
Aiyappa‐Maudsley R, Storr SJ, Rakha EA, Green AR, Ellis IO, Martin SG. CYP2S1 and CYP2W1 expression is associated with patient survival in breast cancer. J Pathol Clin Res 2022; 8:550-566. [PMID: 35902379 PMCID: PMC9535097 DOI: 10.1002/cjp2.291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 12/29/2022]
Abstract
The cytochrome P450 family of enzymes metabolise a wide range of compounds and play important roles in breast cancer pathogenesis due to their involvement in estrogen metabolism and the production of carcinogenic metabolites during this process. The orphan CYPs, CYP2S1, and CYP2W1 are reportedly upregulated in breast cancer. However, their expression and association with clinicopathological and survival parameters have not been previously assessed in a large cohort of breast cancers. Protein expression of CYP2S1 and CYP2W1 was assessed in early-stage invasive breast cancers (n = 1,426) using immunohistochemistry and correlated with various clinicopathological parameters and survival. mRNA expression of CYP2S1 and CYP2W1 was also assessed in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. Low nuclear and cytoplasmic CYP2S1 was significantly associated with high-grade tumours (p ≤ 0.009), intermediate Nottingham prognostic index (NPI) group (p ≤ 0.025), high mitotic frequency (p ≤ 0.002), human epidermal growth factor receptor 2 (HER2)-negative disease (p ≤ 0.011), and ductal carcinoma (p ≤ 0.022). Cytoplasmic CYP2S1 was additionally associated with patients ≥50 years (p < 0.001), estrogen receptor (ER)-positive tumours (p = 0.011), and high nuclear pleomorphism (p = 0.003). Low cytoplasmic CYP2W1 was significantly associated with patients ≥50 years (p = 0.002), HER2-negative disease (p = 0.003), intermediate NPI (p = 0.013), and mitosis (p = 0.009). Low cytoplasmic CYP2S1 was significantly associated with adverse breast cancer specific survival (p = 0.034), which remained so in multivariate analysis (hazard ratio [HR]: 0.639; 95% confidence interval [CI]: 0.483-0.846; p = 0.002). Low nuclear CYP2W1 was significantly associated with adverse breast cancer specific survival (p = 0.012), with significance also maintained in multivariate analysis (HR: 0.677; 95% CI: 0.510-0.898; p = 0.007). No associations with survival were observed in the METABRIC cohort. CYP2S1 and CYP2W1 are associated with patient survival in breast cancer and may be important prognostic biomarkers.
Collapse
Affiliation(s)
- Radhika Aiyappa‐Maudsley
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK,Present address:
Cancer Research Centre, Department of Molecular and Clinical Cancer MedicineUniversity of Liverpool, William Henry Duncan BuildingLiverpoolUK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| |
Collapse
|
13
|
Stocco MR, Tyndale RF. Cytochrome P450 enzymes and metabolism of drugs and neurotoxins within the mammalian brain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:73-106. [PMID: 35953164 DOI: 10.1016/bs.apha.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 enzymes (CYPs) that metabolize xenobiotics are expressed and active in the brain. These CYPs contribute to the metabolism of many centrally acting compounds, including clinically used drugs, drugs of abuse, and neurotoxins. Although CYP levels are lower in the brain than in the liver, they may influence central substrate and metabolite concentrations, which could alter resulting centrally-mediated responses to these compounds. Additionally, xenobiotic metabolizing CYPs are highly variable due to genetic polymorphisms and regulation by endogenous and xenobiotic molecules. In the brain, these CYPs are sensitive to xenobiotic induction. As a result, CYPs in the brain vary widely, including among humans, and this CYP variation may influence central metabolism and resulting response to centrally acting compounds. It has been demonstrated, using experimental manipulation of CYP activity in vivo selectively within the brain, that CYP metabolism in the brain alters central substrate and metabolite concentrations, as well as drug response and neurotoxic effects. This suggests that variability in xenobiotic metabolizing CYPs in the human brain may meaningfully contribute to individual differences in response to, and effects of, centrally acting drugs and neurotoxins. This chapter will provide an overview of CYP expression in the brain, endogenous- and xenobiotic-mediated CYP regulation, and the functional impact of CYP-mediated metabolism of drugs and neurotoxins in the brain, with a focus on experimental approaches in mice, rats, and non-human primates, and a discussion regarding the potential role of xenobiotic metabolizing CYPs in the human brain.
Collapse
Affiliation(s)
- Marlaina R Stocco
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Rouge M, Elkhatib R, Delalande C, Cognié J, Reigner F, Barriere P, Deleuze S, Cousty M, Legendre F, Galera P, Hanoux V, Bouraima-Lelong H. Investigation of equine testis contribution to vitamin D bioactivation. Domest Anim Endocrinol 2022; 79:106691. [PMID: 34844012 DOI: 10.1016/j.domaniend.2021.106691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022]
Abstract
Although vitamin D acts in various biological processes, it plays a critical role in the maintenance of bone health, and regulates calcium homeostasis. In humans and rodents, the main tissues involved in vitamin D metabolism are the liver and the kidneys, however it has been shown that the testis has strongly participated in its bioactivation. Indeed, in these different species, enzymes metabolizing vitamin D (CYP27A1, CYP27B1 and CYP2R1) have been demonstrated in this tissue. Moreover, men with hypogonadism have shown a decrease in circulating levels of vitamin D. In equine species, the castration of males is a regular practice to reduce the behavior of stallions deemed too aggressive. Castration is carried out at various ages: in foals during their growth or in adulthood once they have reached their optimum size. Although horses exhibit atypical vitamin D metabolism with low circulating levels of vitamin D, it was suggested that testis may contribute to its activation as has been described in rodents and humans; castration could therefore be likely to affect its metabolism. In this study, blood levels of bioactive form of vitamin D (1 α,25[OH] 2 vitamin D 3 ) were measured before and after castration at different ages: 1 wk, after puberty (2 yr) and at adulthood (6 yr). The gene expression of enzymes involved in vitamin D metabolism has been sought in the testis of different experimental groups. No change in bioactive vitamin D3 levels was observed after castration regardless of the age at the time of surgery. The exceptional status of equine species is confirmed with a low or a lack of testis contribution to vitamin D metabolism, regardless of testicular development. This is demonstrated by a low or a lack of signal from enzymes involved in vitamin D bioactivation. Therefore, horses constitute a unique model in comparative endocrinology.
Collapse
Affiliation(s)
- Marion Rouge
- Normandie Univ, UNICAEN, OeReCa, F-14032, Caen, France.
| | | | | | - Juliette Cognié
- INRA, Université de Tours, Centre de recherche de Tours, UMR PRC, Nouzilly, France
| | - Fabrice Reigner
- INRA, Université de Tours, Centre de recherche de Tours, UEPAO, Nouzilly, France
| | - Philippe Barriere
- INRA, Université de Tours, Centre de recherche de Tours, UEPAO, Nouzilly, France
| | | | - Matthieu Cousty
- Centre Hospitalier Vétérinaire Équin du Livet, Saint-Michel-de-Livet, France
| | | | | | | | | |
Collapse
|
15
|
CYP 450 enzymes influence (R,S)-ketamine brain delivery and its antidepressant activity. Neuropharmacology 2021; 206:108936. [PMID: 34965407 DOI: 10.1016/j.neuropharm.2021.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Esketamine, the S-stereoisomer of (R,S)-ketamine was recently approved by drug agencies (FDA, EMA), as an antidepressant drug with a new mechanism of action. (R,S)-ketamine is a N-methyl-d-aspartate receptor (NMDA-R) antagonist putatively acting on GABAergic inhibitory synapses to increase excitatory synaptic glutamatergic neurotransmission. Unlike monoamine-based antidepressants, (R,S)-ketamine exhibits rapid and persistent antidepressant activity at subanesthetic doses in preclinical rodent models and in treatment-resistant depressed patients. Its major brain metabolite, (2R,6R)-hydroxynorketamine (HNK) is formed following (R,S)-ketamine metabolism by various cytochrome P450 enzymes (CYP) mainly activated in the liver depending on routes of administration [e.g., intravenous (largely used for a better bioavailability), intranasal spray, intracerebral, subcutaneous, intramuscular or oral]. Experimental or clinical studies suggest that (2R,6R)-HNK could be an antidepressant drug candidate. However, questions still remain regarding its molecular and cellular targets in the brain and its role in (R,S)-ketamine's fast-acting antidepressant effects. The purpose of the present review is: 1) to review (R,S)-ketamine pharmacokinetic properties in humans and rodents and its metabolism by CYP enzymes to form norketamine and HNK metabolites; 2) to provide a summary of preclinical strategies challenging the role of these metabolites by modifying (R,S)-ketamine metabolism, e.g., by administering a pre-treatment CYP inducers or inhibitors; 3) to analyze the influence of sex and age on CYP expression and (R,S)-ketamine metabolism. Importantly, this review describes (R,S)-ketamine pharmacodynamics and pharmacokinetics to alert clinicians about possible drug-drug interactions during a concomitant administration of (R,S)-ketamine and CYP inducers/inhibitors that could enhance or blunt, respectively, (R,S)-ketamine's therapeutic antidepressant efficacy in patients.
Collapse
|
16
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Ni KD, Liu JY. The Functions of Cytochrome P450 ω-hydroxylases and the Associated Eicosanoids in Inflammation-Related Diseases. Front Pharmacol 2021; 12:716801. [PMID: 34594219 PMCID: PMC8476763 DOI: 10.3389/fphar.2021.716801] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
The cytochrome P450 (CYP) ω-hydroxylases are a subfamily of CYP enzymes. While CYPs are the main metabolic enzymes that mediate the oxidation reactions of many endogenous and exogenous compounds in the human body, CYP ω-hydroxylases mediate the metabolism of multiple fatty acids and their metabolites via the addition of a hydroxyl group to the ω- or (ω-1)-C atom of the substrates. The substrates of CYP ω-hydroxylases include but not limited to arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, epoxyeicosatrienoic acids, leukotrienes, and prostaglandins. The CYP ω-hydroxylases-mediated metabolites, such as 20-hyroxyleicosatrienoic acid (20-HETE), 19-HETE, 20-hydroxyl leukotriene B4 (20-OH-LTB4), and many ω-hydroxylated prostaglandins, have pleiotropic effects in inflammation and many inflammation-associated diseases. Here we reviewed the classification, tissue distribution of CYP ω-hydroxylases and the role of their hydroxylated metabolites in inflammation-associated diseases. We described up-regulation of CYP ω-hydroxylases may be a pathogenic mechanism of many inflammation-associated diseases and thus CYP ω-hydroxylases may be a therapeutic target for these diseases. CYP ω-hydroxylases-mediated eicosanods play important roles in inflammation as pro-inflammatory or anti-inflammatory mediators, participating in the process stimulated by cytokines and/or the process stimulating the production of multiple cytokines. However, most previous studies focused on 20-HETE,and further studies are needed for the function and mechanisms of other CYP ω-hydroxylases-mediated eicosanoids. We believe that our studies of CYP ω-hydroxylases and their associated eicosanoids will advance the translational and clinal use of CYP ω-hydroxylases inhibitors and activators in many diseases.
Collapse
Affiliation(s)
- Kai-Di Ni
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Liu
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Fuente R, Gehring N, Bettoni C, Gil-Peña H, Alonso-Durán L, Michalke B, Santos F, Wagner CA, Rubio-Aliaga I. Systemic Jak1 activation causes extrarenal calcitriol production and skeletal alterations provoking stunted growth. FASEB J 2021; 35:e21721. [PMID: 34118090 DOI: 10.1096/fj.202100587r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Mineral homeostasis is regulated by a complex network involving endocrine actions by calcitriol, parathyroid hormone (PTH), and FGF23 on several organs including kidney, intestine, and bone. Alterations of mineral homeostasis are found in chronic kidney disease and other systemic disorders. The interplay between the immune system and the skeletal system is not fully understood, but cytokines play a major role in modulating calcitriol production and function. One of the main cellular signaling pathways mediating cytokine function is the Janus kinase (JAK)--signal transducer and activator of transcription (STAT) pathway. Here, we used a mouse model (Jak1S645P+/- ) that resembles a constitutive activating mutation of the Jak1/Stat3 signaling pathway in humans, and shows altered mineral metabolism, with higher fibroblast growth factor 23 (FGF23) levels, lower PTH levels, and higher calcitriol levels. The higher calcitriol levels are probably due to extrarenal calcitriol production. Furthermore, systemic Jak1/Stat3 activation led to growth impairment and skeletal alterations. The growth plate in long bones showed decreased chondrocyte proliferation rates and reduced height of terminal chondrocytes. Furthermore, we demonstrate that Jak1 is also involved in bone remodeling early in life. Jak1S645P+/- animals have decreased bone and cortical volume, imbalanced bone remodeling, reduced MAP kinase signaling, and local inflammation. In conclusion, Jak1 plays a major role in bone health probably both, directly and systemically by regulating mineral homeostasis. Understanding the role of this signaling pathway will contribute to a better knowledge in bone growth and in mineral physiology, and to the development of selective Jak inhibitors as osteoprotective agents.
Collapse
Affiliation(s)
- Rocío Fuente
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.,Division of Pediatrics, University of Oviedo, Oviedo, Spain
| | - Nicole Gehring
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | | | | | - Bernhard Michalke
- Department of Environmental Science, Research Unit Analytical, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Fernando Santos
- Division of Pediatrics, University of Oviedo, Oviedo, Spain.,Department of Pediatrics, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| |
Collapse
|
19
|
Structure-based virtual screening of CYP1A1 inhibitors: towards rapid tier-one assessment of potential developmental toxicants. Arch Toxicol 2021; 95:3031-3048. [PMID: 34181028 PMCID: PMC8380238 DOI: 10.1007/s00204-021-03111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 10/26/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) metabolizes estrogens, melatonin, and other key endogenous signaling molecules critical for embryonic/fetal development. The enzyme has increasing expression during pregnancy, and its inhibition or knockout increases embryonic/fetal lethality and/or developmental problems. Here, we present a virtual screening model for CYP1A1 inhibitors based on the orthosteric and predicted allosteric sites of the enzyme. Using 1001 reference compounds with CYP1A1 activity data, we optimized the decision thresholds of our model and classified the training compounds with 68.3% balanced accuracy (91.0% sensitivity and 45.7% specificity). We applied our final model to 11 known CYP1A1 orthosteric binders and related compounds, and found that our ranking of the known orthosteric binders generally agrees with the relative activity of CYP1A1 in metabolizing these compounds. We also applied the model to 22 new test compounds with unknown/unclear CYP1A1 inhibitory activity, and predicted 16 of them are CYP1A1 inhibitors. The CYP1A1 potency and modes of inhibition of these 22 compounds were experimentally determined. We confirmed that most predicted inhibitors, including drugs contraindicated during pregnancy (amiodarone, bicalutamide, cyproterone acetate, ketoconazole, and tamoxifen) and environmental agents suspected to be endocrine disruptors (bisphenol A, diethyl and dibutyl phthalates, and zearalenone), are indeed potent inhibitors of CYP1A1. Our results suggest that virtual screening may be used as a rapid tier-one method to screen for potential CYP1A1 inhibitors, and flag them out for further experimental evaluations.
Collapse
|
20
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Stading R, Couroucli X, Lingappan K, Moorthy B. The role of cytochrome P450 (CYP) enzymes in hyperoxic lung injury. Expert Opin Drug Metab Toxicol 2020; 17:171-178. [PMID: 33215946 DOI: 10.1080/17425255.2021.1853705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyperoxic lung injury is a condition that can occur in patients in need of supplemental oxygen, such as premature infants with bronchopulmonary dysplasia or adults with acute respiratory distress syndrome. Cytochrome P450 (CYP) enzymes play critical roles in the metabolism of endogenous and exogenous compounds. AREAS COVERED Through their complex pathways, some subfamilies of these enzymes may contribute to or protect against hyperoxic lung injury. Oxidative stress from reactive oxygen species (ROS) production is most likely a major contributor of hyperoxic lung injury. CYP1A enzymes have been shown to protect against hyperoxic lung injury while CYP1B enzymes seem to contribute to it. CYP2J2 enzymes help protect against hyperoxic lung injury by triggering EET production, thereby, increasing antioxidant enzymes. The metabolism of arachidonic acid to ω-terminal hydroxyeicosatetraenoic acid (20-HETEs) by CYP4A and CYP4F enzymes could impact hyperoxic lung injury via the vasodilating effects of 20-HETE. CYP2E1 and CYP2A enzymes may contribute to the oxidative stress in the lungs caused by ethanol- and nicotine-metabolism, respectively. EXPERT OPINION Overall, the CYP enzymes, depending upon the isoform, play a contributory or protective role in hyperoxic lung injury, and are, therefore, ideal candidates for developing drugs that can treat oxygen-mediated lung injury.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Xanthi Couroucli
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| |
Collapse
|
22
|
Di Consiglio E, Pistollato F, Mendoza-De Gyves E, Bal-Price A, Testai E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards neuronal and glial cells. Reprod Toxicol 2020; 98:174-188. [PMID: 33011216 PMCID: PMC7772889 DOI: 10.1016/j.reprotox.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Human iPSC-derived NSCs undergoing differentiation possess some metabolic competence. CPF entered the cells and was biotrasformed into its two main metabolites (CPFO and TCP). After repeated exposure, very limited bioaccumulation of CPF was observed. Treatment with CPF decreased neurite outgrowth, synapse number and electrical activity. Treatment with CPF increased BDNF levels and the percentage of astrocytes.
For some complex toxicological endpoints, chemical safety assessment has conventionally relied on animal testing. Apart from the ethical issues, also scientific considerations have been raised concerning the traditional approach, highlighting the importance for considering real life exposure scenario. Implementation of flexible testing strategies, integrating multiple sources of information, including in vitro reliable test methods and in vitro biokinetics, would enhance the relevance of the obtained results. Such an approach could be pivotal in the evaluation of developmental neurotoxicity (DNT), especially when applied to human cell-based models, mimicking key neurodevelopmental processes, relevant to human brain development. Here, we integrated the kinetic behaviour with the toxicodynamic alterations of chlorpyrifos (CPF), such as in vitro endpoints specific for DNT evaluation, after repeated exposure during differentiation of human neural stem cells into a mixed culture of neurons and astrocytes. The upregulation of some cytochrome P450 and glutathione S-transferase genes during neuronal differentiation and the formation of the two major CPF metabolites (due to bioactivation and detoxification) supported the metabolic competence of the used in vitro model. The alterations in the number of synapses, neurite outgrowth, brain derived neurotrophic factor, the proportion of neurons and astrocytes, as well as spontaneous electrical activity correlated well with the CPF ability to enter the cells and be bioactivated to CPF-oxon. Overall, our results confirm that combining in vitro biokinetics and assays to evaluate effects on neurodevelopmental endpoints in human cells should be regarded as a key strategy for a quantitative characterization of DNT effects.
Collapse
Affiliation(s)
- Emma Di Consiglio
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | | | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Emanuela Testai
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| |
Collapse
|
23
|
Pyo MC, Shin HS, Jeon GY, Lee KW. Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biol Pharm Bull 2020; 43:1346-1355. [DOI: 10.1248/bpb.b20-00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Hye Soo Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Gyeong Yun Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| |
Collapse
|
24
|
Robinson JF, Hamilton EG, Lam J, Chen H, Woodruff TJ. Differences in cytochrome p450 enzyme expression and activity in fetal and adult tissues. Placenta 2020; 100:35-44. [PMID: 32818874 DOI: 10.1016/j.placenta.2020.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Human cytochrome p450 (CYP) enzyme expression and activity is lower in the fetus as compared to the adult; however, limited quantitative data exists regarding the specific differences in magnitude or the degree of inducibility due to environmental factors. METHODS We utilized a combination of in silico- and molecular-based approaches to profile and compare CYP expression/activity in human adult liver and fetal tissues. Using public datasets, we evaluated human CYP expression between: 1) placenta vs. adult livers; 2) fetal vs. adult livers; or 3) five compartments of the human placenta. We generated new experimental data, characterizing expression levels of nine CYPs in placenta/fetal liver vs. adult liver. In a subset of samples, we evaluated CYP3A4 activity. Finally, we summarized evidence of human fetal CYP expression/activity and environmental exposures during pregnancy. RESULTS In silico, CYPs were predominately expressed at higher levels in the adult liver vs. fetal tissues, with a few noted exceptions. Sixty percent of CYP enzymes were expressed at nominal levels in the placenta. In wet-lab analyses, we observed significant CYP-specific differences in expression/activity between adult and fetal tissues; CYP2E1 and -3A4 were expressed significantly lower in fetal vs. adult livers, while CYP2J2 levels were similar. DISCUSSION We provide a qualitative review of the expression of the CYP enzyme family in critical sites of xenobiotic distribution during human pregnancy and novel quantitative data regarding fetal CYP expression and activity during mid-gestation. Data outputs may be a resource for modeling predictions of chemical distribution and sensitivity.
Collapse
Affiliation(s)
- Joshua F Robinson
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA; Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| | - Emily G Hamilton
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Juleen Lam
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA; Department of Health Sciences, California State University East Bay (CSUEB), Hayward, CA, USA
| | - Hao Chen
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA; Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
25
|
Luo B, Chen C, Wu X, Yan D, Chen F, Yu X, Yuan J. Cytochrome P450 2U1 Is a Novel Independent Prognostic Biomarker in Breast Cancer Patients. Front Oncol 2020; 10:1379. [PMID: 32850442 PMCID: PMC7419690 DOI: 10.3389/fonc.2020.01379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The susceptibility of breast cancer is largely affected by the metabolic capacity of breast tissue. This ability depends in part on the expression profile of cytochrome P450 (CYPs). CYPs are a superfamily of enzymes with related catalysis to endogenous and exogenous bioactive substances, including xenobiotic metabolism, drugs, and some endogenous substances metabolism which activate cells and stimulate cell signaling pathways, such as arachidonic acid metabolism, steroid metabolism, fatty acid metabolism. Interestingly, CYP was electively expressed in different tumors, and mediated the metabolic activation of multiple carcinogens and participated in the activation and deactivation of tumor therapeutic drugs. However, the biological action of cytochrome P450 2U1 (CYP2U1) in breast carcinoma is little understood so far. Methods: To investigate the biological value of CYP2U1 in breast carcinoma, we performed immunohistochemical (IHC) analysis and survival analysis based on clinico-pathological data of breast cancer. Results: IHC analysis showed that the abundance of CYP2U1 protein was inversely proportional to the state of estrogen receptor(ER) (P < 0.05), and the lower the degree of tumor differentiation, the higher the protein abundance (P < 0.001). Additionally, compared with luminal tumors, the CYP2U1 protein content was more abundant in triple negative breast cancer (P < 0.05). Importantly, survival analysis showed that higher CYP2U1 protein levels predicted poor 5-year overall survival rate (P < 0.01), 5-year disease-free survival rate (P < 0.05), and 5-year metastatic-free survival rate (P < 0.01) for the entire enrolled breast cancer patients. Conclusions: CYP2U1 is generally closely related to the clinicopathological characteristics and is also an adverse prognostic factor for breast carcinoma patients, indicating that CYP2U1 is engaged in the malignant progression of breast carcinoma.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinxin Yu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Mian P, Allegaert K, Conings S, Annaert P, Tibboel D, Pfister M, van Calsteren K, van den Anker JN, Dallmann A. Integration of Placental Transfer in a Fetal-Maternal Physiologically Based Pharmacokinetic Model to Characterize Acetaminophen Exposure and Metabolic Clearance in the Fetus. Clin Pharmacokinet 2020; 59:911-925. [PMID: 32052378 PMCID: PMC7329787 DOI: 10.1007/s40262-020-00861-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Although acetaminophen is frequently used during pregnancy, little is known about fetal acetaminophen pharmacokinetics. Acetaminophen safety evaluation has typically focused on hepatotoxicity, while other events (fetal ductal closure/constriction) are also relevant. We aimed to develop a fetal-maternal physiologically based pharmacokinetic (PBPK) model (f-m PBPK) to quantitatively predict placental acetaminophen transfer, characterize fetal acetaminophen exposure, and quantify the contributions of specific clearance pathways in the term fetus. METHODS An acetaminophen pregnancy PBPK model was extended with a compartment representing the fetal liver, which included maturation of relevant enzymes. Different approaches to describe placental transfer were evaluated (ex vivo cotyledon perfusion experiments, placental transfer prediction based on Caco-2 cell permeability or physicochemical properties [MoBi®]). Predicted maternal and fetal acetaminophen profiles were compared with in vivo observations. RESULTS Tested approaches to predict placental transfer showed comparable performance, although the ex vivo approach showed highest prediction accuracy. Acetaminophen exposure in maternal venous blood was similar to fetal venous umbilical cord blood. Prediction of fetal acetaminophen clearance indicated that the median molar dose fraction converted to acetaminophen-sulphate and N-acetyl-p-benzoquinone imine was 0.8% and 0.06%, respectively. The predicted mean acetaminophen concentration in the arterial umbilical cord blood was 3.6 mg/L. CONCLUSION The median dose fraction of acetaminophen converted to its metabolites in the term fetus was predicted. The various placental transfer approaches supported the development of a generic f-m PBPK model incorporating in vivo placental drug transfer. The predicted arterial umbilical cord acetaminophen concentration was far below the suggested postnatal threshold (24.47 mg/L) for ductal closure.
Collapse
Affiliation(s)
- Paola Mian
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands. .,Pediatric Pharmacology, Pharmacometrics Research Center and University Children's Hospital Basel (UKBB), Basel, Switzerland. .,Department of Clinical Pharmacy, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ, Enschede, The Netherlands.
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Clinical Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid Conings
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Dick Tibboel
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marc Pfister
- Pediatric Pharmacology, Pharmacometrics Research Center and University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Kristel van Calsteren
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - John N van den Anker
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Pediatric Pharmacology, Pharmacometrics Research Center and University Children's Hospital Basel (UKBB), Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - André Dallmann
- Pediatric Pharmacology, Pharmacometrics Research Center and University Children's Hospital Basel (UKBB), Basel, Switzerland
| |
Collapse
|
27
|
Yamazoe Y, Yoshinari K. Prediction of regioselectivity and preferred order of CYP1A1-mediated metabolism: Solving the interaction of human and rat CYP1A1 forms with ligands on the template system. Drug Metab Pharmacokinet 2020; 35:165-185. [DOI: 10.1016/j.dmpk.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
28
|
Saika A, Nagatake T, Kishino S, Park S, Honda T, Matsumoto N, Shimojou M, Morimoto S, Tiwari P, Node E, Hirata S, Hosomi K, Kabashima K, Ogawa J, Kunisawa J. 17( S),18( R)-epoxyeicosatetraenoic acid generated by cytochrome P450 BM-3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G-protein-coupled receptor 40-mediated neutrophil suppression. FASEB Bioadv 2020; 2:59-71. [PMID: 32123857 PMCID: PMC6996328 DOI: 10.1096/fba.2019-00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 07/24/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Dietary intake of ω3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid is beneficial for health control. We recently identified 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) as a lipid metabolite endogenously generated from eicosapentaenoic acid that exhibits potent anti-allergic and anti-inflammatory properties. However, chemically synthesized 17,18-EpETE is enantiomeric due to its epoxy group-17(S),18(R)-EpETE and 17(R),18(S)-EpETE. In this study, we demonstrated stereoselective differences of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE in amelioration of skin contact hypersensitivity and found that anti-inflammatory activity was detected in 17(S),18(R)-EpETE, but not in 17(R),18(S)-EpETE. In addition, we found that cytochrome P450 BM-3 derived from Bacillus megaterium stereoselectively converts EPA into 17(S),18(R)-EpETE, which effectively inhibited the development of skin contact hypersensitivity by inhibiting neutrophil migration in a G protein-coupled receptor 40-dependent manner. These results suggest the new availability of a bacterial enzyme to produce a beneficial lipid mediator, 17(S),18(R)-EpETE, in a stereoselective manner. Our findings highlight that bacterial enzymatic conversion of fatty acid is a promising strategy for mass production of bioactive lipid metabolites.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Takahiro Nagatake
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Si‐Bum Park
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Tetsuya Honda
- Department of DermatologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Naomi Matsumoto
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Michiko Shimojou
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Sakiko Morimoto
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Prabha Tiwari
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Eri Node
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - So‐ichiro Hirata
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of MedicineKobe UniversityHyogoJapan
| | - Koji Hosomi
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Kenji Kabashima
- Department of DermatologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Jun Kunisawa
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Graduate School of MedicineKobe UniversityHyogoJapan
- International Research and Development Center for Mucosal VaccinesThe Institute of Medical ScienceThe University of TokyoTokyoJapan
- Graduate School of MedicineGraduate School of DentistryOsaka UniversityOsakaJapan
| |
Collapse
|
29
|
Szaefer H, Licznerska B, Cykowiak M, Baer-Dubowska W. Expression of CYP2S1 and CYP2W1 in breast cancer epithelial cells and modulation of their expression by synthetic methoxy stilbenes. Pharmacol Rep 2019; 71:1001-1005. [PMID: 31561186 DOI: 10.1016/j.pharep.2019.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND "Orphan" cytochromes are a new group of P450 cytochromes without a fully recognized biological role. The expression of these CYPs in tumors is higher than that in normal tissues, which makes them attractive as chemopreventive and/or therapeutic targets. In this study, we compared the effect of synthetic methoxy stilbenes and resveratrol on the expression of two orphan cytochromes, CYP2S1 and CYP2W1, in breast cancer cells. METHODS Breast cancer cells, lines MCF7 and MDA-MB-231, were treated for 72 h with tested compounds. The expression of CYP2S1 and CYP2W1 was evaluated at the transcript and protein levels by RT-PCR and Western blot, respectively. RESULTS The constitutive expression of both isoforms was confirmed at the mRNA and protein levels. CYP2S1 and CYP2W1 showed higher expression in MDA-MB-231 cells. In MCF7 cells treated with stilbenes, the expression of both CYPs was increased at the mRNA level, whereas at the protein level this effect was confirmed for CYP2S1 alone. In contrast, in estrogen receptor-negative MDA-MB-231 cells treated with stilbenes, the expression of both CYPs decreased, but mostly at the transcript level. CONCLUSIONS The results of the present study confirmed the constitutive expression of CYP2S1 and CYP2W1 in breast cancer cells, although their relatively low level of expression suggests that they may be less involved in the transformation of therapeutic agents in these types of tumors. Stilbenes, particularly 3MS and 4MS, can modulate the expression of "orphan" CYPs more efficiently than resveratrol.
Collapse
Affiliation(s)
- Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland.
| | - Barbara Licznerska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Marta Cykowiak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
30
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
31
|
Veith AC, Bou Aram B, Jiang W, Wang L, Zhou G, Jefcoate CR, Couroucli XI, Lingappan K, Moorthy B. Mice Lacking the Cytochrome P450 1B1 Gene Are Less Susceptible to Hyperoxic Lung Injury Than Wild Type. Toxicol Sci 2019; 165:462-474. [PMID: 29939353 DOI: 10.1093/toxsci/kfy154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury. In this investigation, we determined the role of CYP1B1 in hyperoxic lung injury in vivo. Eight- to ten-week old C57BL/6 wild type (WT) and Cyp1b1-/- mice were exposed to hyperoxia (>95% O2) for 24-72 h or maintained in room air (21% O2). Lung injury was assessed by histology and lung weight to body weight (LW/BW) ratios. Extent of inflammation was determined by assessing pulmonary neutrophil infiltration and cytokine levels. Lipid peroxidation markers were quantified by gas chromatography mass spectrometry, and oxidative DNA adducts were quantified by 32P-postlabeling as markers of oxidative stress. We found that Cyp1b1-/- mice displayed attenuation of lung weight and pulmonary edema, particularly after 48-72 h of hyperoxia compared with WT controls. Further, Cyp1b1-/- mice displayed decreased levels of pulmonary oxidative DNA adducts and pulmonary isofurans after 24 h of hyperoxia. Cyp1b1-/- mice also showed increased pulmonary CYP1A1 and 1A2 and mRNA expression. In summary, our results support the hypothesis that Cyp1b1-/- mice display decreased hyperoxic lung injury than wild type counterparts and that CYP1B1 may act as a pro-oxidant during hyperoxia exposure, contributing to increases in oxidative DNA damage and accumulation of lipid hydroperoxides.
Collapse
Affiliation(s)
- Alex C Veith
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics
| | - Guodong Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
32
|
Molecular Functionality of Cytochrome P450 4 (CYP4) Genetic Polymorphisms and Their Clinical Implications. Int J Mol Sci 2019; 20:ijms20174274. [PMID: 31480463 PMCID: PMC6747359 DOI: 10.3390/ijms20174274] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023] Open
Abstract
Enzymes in the cytochrome P450 4 (CYP4) family are involved in the metabolism of fatty acids, xenobiotics, therapeutic drugs, and signaling molecules, including eicosanoids, leukotrienes, and prostanoids. As CYP4 enzymes play a role in the maintenance of fatty acids and fatty-acid-derived bioactive molecules within a normal range, they have been implicated in various biological functions, including inflammation, skin barrier, eye function, cardiovascular health, and cancer. Numerous studies have indicated that genetic variants of CYP4 genes cause inter-individual variations in metabolism and disease susceptibility. Genetic variants of CYP4A11, 4F2 genes are associated with cardiovascular diseases. Mutations of CYP4B1, CYP4Z1, and other CYP4 genes that generate 20-HETE are a potential risk for cancer. CYP4V2 gene variants are associated with ocular disease, while those of CYP4F22 are linked to skin disease and CYP4F3B is associated with the inflammatory response. The present study comprehensively collected research to provide an updated view of the molecular functionality of CYP4 genes and their associations with human diseases. Functional analysis of CYP4 genes with clinical implications is necessary to understand inter-individual variations in disease susceptibility and for the development of alternative treatment strategies.
Collapse
|
33
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Hidalgo-Sánchez M. Cyp1B1 expression patterns in the developing chick inner ear. Dev Dyn 2019; 249:410-424. [PMID: 31400045 DOI: 10.1002/dvdy.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Retinoic acid (RA) plays an important role in organogenesis as a paracrine signal through transcriptional regulation of an increasing number of known downstream target genes, regulating cell proliferation, and differentiation. During the development of the inner ear, RA directly governs the morphogenesis and specification processes mainly by means of RA-synthesizing retinaldehyde dehydrogenase (RALDH) enzymes. Interestingly, CYP1B1, a cytochrome P450 enzyme, is able to mediate the oxidative metabolisms also leading to RA generation, its expression patterns being associated with many known sites of RA activity. RESULTS This study describes for the first time the presence of CYP1B1 in the developing chick inner ear as a RALDH-independent RA-signaling mechanism. In our in situ hybridization analysis, Cyp1B1 expression was first observed in a domain located in the ventromedial wall of the otic anlagen, being included within the rostralmost aspect of an Fgf10-positive pan-sensory domain. As development proceeds, all identified Fgf10-positive areas were Cyp1B1 stained, with all sensory patches being Cyp1B1 positive at stage HH34, except the macula neglecta. CONCLUSIONS Cyp1B1 expression suggested a possible contribution of CYP1B1 action in the specification of the lateral-to-medial and dorsal-to-ventral axes of the developing chick inner ear.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| | - Luis Ó Sánchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
34
|
Cito G, Cocci A, Micelli E, Gabutti A, Russo GI, Coccia ME, Franco G, Serni S, Carini M, Natali A. Vitamin D and Male Fertility: An Updated Review. World J Mens Health 2019; 38:164-177. [PMID: 31190482 PMCID: PMC7076312 DOI: 10.5534/wjmh.190057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
To date, the key role of vitamin D in male reproductive system has been suggested, since the expression of vitamin D receptors and metabolizing enzymes was demonstrated in the testis and spermatozoa. Nevertheless, a general consensus about the role of vitamin D in male fertility is still debated. The aim of this review is to provide an updated systematic revision of the current available literature, discussing the experimental and clinical evidence on the role of vitamin D in the regulation of testis hormone production, seminal parameters and male fertility. The consequences of vitamin D deficiency on serum levels of testicular hormones have been analysed by several observational and interventional studies, with controversial results. Equally, the experimental researches not were able to state a certain relationship between vitamin D status and testis hormone production. Possible bias, including age, body mass index, and baseline vitamin D status justified the differences among studies. As well as concerning the effect of vitamin D on semen parameters, most of the studies agreed in the possibility that vitamin D might have a positive effect on human male fertility potential, particularly through better sperm motility. Regarding pregnancy outcomes, normal level of vitamin D seems to be related to better pregnancies. However, all the previous studies displayed a wide heterogeneity in study design, population, methodology, and cut off values used for the evaluation of vitamin D status. Future studies are needed to better clarify the exact role of vitamin D on hormonal and seminal panel in both fertile and infertile men.
Collapse
Affiliation(s)
- Gianmartin Cito
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy.
| | - Andrea Cocci
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Elisabetta Micelli
- Department of Gynecology and Obstetrics, St. Claire Hospital, University of Pisa, Pisa, Italy
| | - Alejandro Gabutti
- Department of Radiology, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City, Mexico
| | - Giorgio Ivan Russo
- Department of Urology, Vittorio Emanuele II, University of Catania, Catania, Italy
| | - Maria Elisabetta Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Giorgio Franco
- Department of Urology, "La Sapienza" University of Rome, Rome, Italy
| | - Sergio Serni
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Alessandro Natali
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Albertolle ME, Song HD, Wilkey CJ, Segrest JP, Guengerich FP. Glutamine-451 Confers Sensitivity to Oxidative Inhibition and Heme-Thiolate Sulfenylation of Cytochrome P450 4B1. Chem Res Toxicol 2019; 32:484-492. [PMID: 30701961 PMCID: PMC7279892 DOI: 10.1021/acs.chemrestox.8b00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (P450) family 4 enzymes are involved in the metabolism of fatty acids and the bioactivation of carcinogenic arylamines and toxic natural products, e.g., 4-ipomeanol. These and other drug-metabolizing P450s are redox sensitive, showing a loss of activity resulting from preincubation with H2O2 and recovery with mild reducing agents [Albertolle, M. W., et al. (2017) J. Biol. Chem. 292, 11230-11242]. The inhibition is due to sulfenylation of the heme-thiolate ligand, as determined by chemopreoteomics and spectroscopy. This phenomenon may have implications for chemical toxicity and observed disease-drug interactions, in which the decreased metabolism of P450 substrates occurs in patients with inflammatory diseases (e.g., influenza and autoimmunity). Human P450 1A2 was determined to be redox insensitive. To determine the mechanism underlying the differential redox sensitivity, molecular dynamics (MD) simulations were employed using the crystal structure of rabbit P450 4B1 (Protein Data Bank entry 5T6Q ). In simulating either the thiolate (Cys-S-) or the sulfenic acid (Cys-SOH) at the heme ligation site, MD revealed Gln-451 in either an "open" or "closed" conformation, respectively, between the cytosol and heme-thiolate cysteine. Mutation to either an isosteric leucine (Q451L) or glutamate (Q451E) abrogated the redox sensitivity, suggesting that this "open" conformation allows for reduction of the sulfenic acid and religation of the thiolate to the heme iron. In summary, MD simulations suggest that Gln-451 in P450 4B1 adopts conformations that may stabilize and protect the heme-thiolate sulfenic acid; mutating this residue destabilizes the interaction, producing a redox insensitive enzyme.
Collapse
Affiliation(s)
- Matthew E. Albertolle
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Hyun D. Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, United States
| | - Clayton J. Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jere P. Segrest
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, United States
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
36
|
Deng J, Guo L, Wu B. Circadian Regulation of Hepatic Cytochrome P450 2a5 by Peroxisome Proliferator-Activated Receptor γ. Drug Metab Dispos 2018; 46:1538-1545. [PMID: 30154104 DOI: 10.1124/dmd.118.083071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022] Open
Abstract
Human CYP2A6 (Cyp2a5 in mice) plays an important role in metabolism and detoxification of various drugs and chemicals. Here, we investigated a potential role of peroxisome proliferator-activated receptor γ (Ppar-γ) in circadian regulation of the Cyp2a5 enzyme. We first showed that Cyp2a5 mRNA and protein in mouse liver displayed robust circadian oscillations. Consistent with a circadian protein pattern, Cyp2a5-mediated 7-hydroxylation of coumarin was circadian time-dependent. Formation of 7-hydroxycoumarin was more extensive at a dosing time of Zeitgeber time 2 (ZT2) than that at ZT14. Interestingly, the nuclear receptor Ppar-γ was also a circadian gene. Circadian Ppar-γ protein level was strongly correlated with the Cyp2a5 mRNA level (r = 0.989). Furthermore, Ppar-γ activation (by a selective agonist, rosiglitazone) upregulated Cyp2a5 expression in Hepa-1c1c7 cells, whereas Ppar-γ knockdown downregulated Cyp2a5 expression. Also, Ppar-γ knockdown blunted the rhythmicity of Cyp2a5 mRNA in serum-shocked Hepa-1c1c7 cells. In addition, a combination of promoter truncation analysis, mobility shift, and chromatin immunoprecipitation assays revealed that Ppar-γ directly bound to a PPAR response element (i.e., the -1418- to -1396-bp region) within Cyp2a5 promoter and activated the gene transcription. Taken together, Ppar-γ was a transcriptional activator of Cyp2a5, and its rhythmic expression contributed to circadian expression of Cyp2a5.
Collapse
Affiliation(s)
- Jiangming Deng
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (J.D., L.G., B.W.) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (J.D., B.W.), Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Nobutani K, Miyoshi J, Musch MW, Nishiyama M, Watanabe J, Kaneko A, Yamamoto M, Yoshida M, Kono T, Jeong H, Chang EB. Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect 2018; 5. [PMID: 28971602 PMCID: PMC5625165 DOI: 10.1002/prp2.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Herbal medicines and natural products used for maintenance of health or treatment of diseases have many biological effects, including altering the pharmacokinetics and metabolism of other medications. Daikenchuto (TU‐100), an aqueous extract of ginger, ginseng, and Japanese green pepper fruit, is a commonly prescribed Kampo (Japanese herbal medicine) for postoperative ileus or bloating. The effects of TU‐100 on drug metabolism have not been investigated. In this study, we analyzed the effect of TU‐100 on expression of key drug‐metabolizing enzymes (DMEs) and drug transporters (DTs) in murine liver and gastrointestinal tract using a dietary model. Liver, jejunum, and proximal colon were analyzed for phase I and II DMEs and DT mRNA expression by reverse transcription (RT) first by nonquantitative and followed by quantitative polymerase chain reaction (PCR) and protein expression. Liver, jejunum, and proximal colon expressed some identical but also unique DMEs and DTs. TU‐100 increased the greatest changes in cytochrome (Cyp) 2b10 and Cyp3a11 and Mdr1a. Basal and TU‐100 stimulated levels of DME and DT expression were gender‐dependent, dose‐dependent and reversible after cessation of TU‐100 supplementation, except for some changes in the intestine. Quantitative Western blot analysis of protein extracts confirmed the quantitative PCR results.
Collapse
Affiliation(s)
- Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mark W Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | | | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan.,Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
38
|
Schepisi G, De Padova S, Scarpi E, Lolli C, Gurioli G, Menna C, Burgio SL, Rossi L, Gallà V, Casadio V, Salvi S, Conteduca V, De Giorgi U. Vitamin D status among long-term survivors of testicular cancer. Oncotarget 2018; 8:36780-36786. [PMID: 28030821 PMCID: PMC5482697 DOI: 10.18632/oncotarget.14167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 12/02/2022] Open
Abstract
A correlation between disturbances in hormone levels and the onset of metabolic disorders has been reported in long-term survivors of testicular cancer (TC). We evaluated serum vitamin D levels and other biological parameters in a consecutive series of 61 long-term (≥3 years) unilateral TC survivors with a median a follow-up of 4 years and in a cohort of healthy males. Deficient vitamin D levels were observed in 10 (17%) of the 58 long-term unilateral TC survivors but were not reported in healthy males (p=.019, Fisher test). Median vitamin D levels were 18.6 ug/L in 58 assessable TC survivors and 23.6 ug/L in 40 healthy males (p=.031). In univariate logistic regression analysis, TC diagnosis was associated with inadequate levels of vitamin D (p=.047). Vitamin D levels were lower when follow-up was > 10 years, albeit this difference was not statistically significant (p=.074). Long-term (especially > 10 years) TC survivors may have difficulty maintaining optimal vitamin D levels. Larger studies are needed to better characterize vitamin D status and possible correlations with premature hormonal aging reported in long-term TC survivors.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Silvia De Padova
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Emanuela Scarpi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Cristian Lolli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Giorgia Gurioli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Cecilia Menna
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Salvatore L Burgio
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Lorena Rossi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Valentina Gallà
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Valentina Casadio
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Samanta Salvi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Vincenza Conteduca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| | - Ugo De Giorgi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 40 I-47014 Meldola, FC, Italy
| |
Collapse
|
39
|
Kharkwal H, Batool F, Koentgen F, Bell DR, Kendall DA, Ebling FJP, Duce IR. Generation and phenotypic characterisation of a cytochrome P450 4x1 knockout mouse. PLoS One 2017; 12:e0187959. [PMID: 29227996 PMCID: PMC5724839 DOI: 10.1371/journal.pone.0187959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 4x1 (Cyp4x1) is expressed at very high levels in the brain but the function of this protein is unknown. It has been hypothesised to regulate metabolism of fatty acids and to affect the activity of endocannabinoid signalling systems, which are known to influence appetite and energy metabolism. The objective of the present investigation was to determine the impact of Cyp4x1 on body weight and energy metabolism by developing a line of transgenic Cyp4x1-knock out mice. Mice were developed with a global knock-out of the gene; the full-length RNA was undetectable, and mice were viable and fertile. Both male and female Cyp4x1-knock out mice gained significantly more body weight on normal lab chow diet compared to control flox mice on the same genetic background. At necropsy, Cyp4x1-knock out male mice had significantly greater intra-abdominal fat deposits (P<0.01), and enlarged adipocytes. Metabolic rate and locomotor activity as inferred from VO2 measures and crossing of infrared beams in metabolic cages were not significantly affected by the mutation in either gender. The respiratory exchange ratio was significantly decreased in male knock out mice (P<0.05), suggesting a greater degree of fat oxidation, consistent with their higher adiposity. When mice were maintained on a high fat diet, VO2 was significantly decreased in both male and female Cyp4x1-knock out mice. We conclude that the Cyp4x1-knock out mouse strain demonstrates a mildly obese phenotype, consistent with the view that cytochrome P450 4x1 plays a role in regulating fat metabolism.
Collapse
Affiliation(s)
- Himanshu Kharkwal
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Farhat Batool
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Frank Koentgen
- Ozgene Pty Ltd., Bentley DC, Western Australia, Australia
| | - David R. Bell
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- European Chemicals Agency, Helsinki, Finland
| | - David A. Kendall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Ian R. Duce
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat Rev 2017; 63:1-18. [PMID: 29197745 DOI: 10.1016/j.ctrv.2017.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Cancer chemoprevention is the use of synthetic, natural or biological agents to prevent or delay the development or progression of malignancies. Intriguingly, many phytochemicals with anti-inflammatory and anti-angiogenic effects, recently proposed as chemoprevention strategies, are inhibitors of Cytochrome P450 family 1B1 (CYP1B1), an enzyme overexpressed in a wide variety of tumors and associated with angiogenesis. In turn, pro-inflammatory cytokines were reported to boost CYP1B1 expression, suggesting a key role of CYP1B1 in a positive loop of inflammatory angiogenesis. Other well-known pro-tumorigenic activities of CYP1B1 rely on metabolic bioactivation of xenobiotics and steroid hormones into their carcinogenic derivatives. In contrast to initial in vitro observations, in vivo studies demonstrated a protecting role against cancer for the other CYP1 family members (CYP1A1 and CYP1A2), suggesting that the specificity of CYP1 family inhibitors should be carefully taken into account for developing potential chemoprevention strategies. Recent studies also proposed a role of CYP1B1 in multiple cell types found within the tumor microenvironment, including fibroblasts, endothelial and immune cells. Overall, our review of the current literature suggests a positive loop between inflammatory cytokines and CYP1B1, which in turn may play a key role in cancer angiogenesis, acting on both cancer cells and the tumor microenvironment. Strategies aiming at specific CYP1B1 inhibition in multiple cell types may translate into clinical chemoprevention and angioprevention approaches.
Collapse
|
41
|
Boisen IM, Bøllehuus Hansen L, Mortensen LJ, Lanske B, Juul A, Blomberg Jensen M. Possible influence of vitamin D on male reproduction. J Steroid Biochem Mol Biol 2017; 173:215-222. [PMID: 27693423 DOI: 10.1016/j.jsbmb.2016.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023]
Abstract
Vitamin D is a versatile signaling molecule with an established role in the regulation of calcium homeostasis and bone health. In recent years the spectrum of vitamin D target organs has expanded and a reproductive role is supported by the presence of the vitamin D receptor (VDR) and the vitamin D metabolizing enzymes in the gonads, reproductive tract, and human spermatozoa. Interestingly, expression levels of VDR and the vitamin D inactivating enzyme CYP24A1 in human spermatozoa serve as positive predictive markers of semen quality and are higher expressed in spermatozoa from normal than infertile men. VDR mediates a non-genomic increase in intracellular calcium concentration, sperm motility, and induces the acrosome reaction. Furthermore, functional animal model studies have shown that vitamin D is important for sex steroid production, estrogen signaling, and semen quality. Cross-sectional clinical studies have supported the notion of a positive association between serum 25-hydroxyvitamin D (25-OHD) level and semen quality in both fertile and infertile men. However, it remains to be determined whether this association reflects a causal effect. The VDR is ubiquitously expressed and activated vitamin D is a regulator of insulin, aromatase, and osteocalcin. Hence, it is plausible that the influence of vitamin D on gonadal function may be mediated indirectly through other vitamin D regulated endocrine factors. Recent studies have indicated that vitamin D supplementation may be beneficial for couples in need of assisted reproductive techniques as high serum vitamin D levels were found to be associated with a higher chance of achieving pregnancy. Randomized clinical trials are needed to determine whether systemic changes in vitamin D metabolites can influence semen quality, fertility, and sex steroid production in infertile men. In this review known and possible future implications of vitamin D in human male reproduction function will be discussed.
Collapse
Affiliation(s)
- Ida Marie Boisen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, USA
| | - Lasse Bøllehuus Hansen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, USA
| | - Li Juel Mortensen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, USA
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, USA
| | - Anders Juul
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Martin Blomberg Jensen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
42
|
Thacher TD, Levine MA. CYP2R1 mutations causing vitamin D-deficiency rickets. J Steroid Biochem Mol Biol 2017; 173:333-336. [PMID: 27473561 DOI: 10.1016/j.jsbmb.2016.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022]
Abstract
CYP2R1 is the principal hepatic 25-hydroxylase responsible for the hydroxylation of parent vitamin D to 25-hydroxyvitamin D [25(OH)D]. Serum concentrations of 25(OH)D reflect vitamin D status, because 25(OH)D is the major circulating metabolite of vitamin D. The 1α-hydroxylation of 25(OH)D in the kidney by CYP27B1 generates the fully active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25(OH)2D). The human CYP2R1 gene, located at 11p15.2, has five exons, coding for an enzyme with 501 amino acids. In Cyp2r1-/- knockout mice, serum 25(OH)D levels were reduced by more than 50% compared wild-type mice. Genetic polymorphisms of CYP2R1 account for some of the individual variability of circulating 25(OH)D values in the population. We review the evidence that inactivating mutations in CYP2R1 can lead to a novel form of vitamin D-deficiency rickets resulting from impaired 25-hydroxylation of vitamin D. We sequenced the promoter, exons and intron-exon flanking regions of the CYP2R1 gene in members of 12 Nigerian families with rickets in more than one family member. We found missense mutations (L99P and K242N) in affected members of 2 of 12 families. The L99P mutation had previously been reported as a homozygous defect in an unrelated child of Nigerian origin with rickets. In silico analyses predicted impaired CYP2R1 folding or reduced interaction with substrate vitamin D by L99P and K242N mutations, respectively. In vitro studies of the mutant CYP2R1 proteins in HEK293 cells confirmed normal expression levels but completely absent or markedly reduced 25-hydroxylase activity by the L99P and K242N mutations, respectively. Heterozygous subjects had more moderate biochemical and clinical features of vitamin D deficiency than homozygous subjects. After an oral bolus dose of 50,000 IU of vitamin D2 or vitamin D3, heterozygous subjects had lower increases in serum 25(OH)D than control subjects, and homozygous subjects had minimal increases, supporting a semidominant inheritance of these mutations. No CYP2R1 mutations were found in 27 Nigerian children with sporadic rickets, a cohort of 50 unrelated Nigerian subjects, or in 628 unrelated subjects in the 1000 Genomes Project. We conclude that mutations in CYP2R1 are responsible for an atypical form of vitamin D-deficiency rickets, which has been classified as vitamin D dependent rickets type 1B (VDDR1B, MIM 600081).
Collapse
Affiliation(s)
- Tom D Thacher
- Department of Family Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, 34th & Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Lorenzen M, Boisen IM, Mortensen LJ, Lanske B, Juul A, Blomberg Jensen M. Reproductive endocrinology of vitamin D. Mol Cell Endocrinol 2017; 453:103-112. [PMID: 28342856 DOI: 10.1016/j.mce.2017.03.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/08/2023]
Abstract
Vitamin D is a versatile hormone with several functions beyond its well-established role in maintenance of skeletal health and calcium homeostasis. The effects of vitamin D are mediated by the vitamin D receptor, which is expressed together with the vitamin D metabolizing enzymes in the reproductive tissues. The reproductive organs are therefore responsive to and able to metabolize vitamin D locally. The exact role remains to be clarified but several studies have suggested a link between vitamin D and production/release of reproductive hormones into circulation, which will be the main focus of this review. Current evidence is primarily based on small human association studies and rodent models. This highlights the need for randomized clinical trials, but also functional animal and human in vitro studies, and larger, prospective cohort studies are warranted. Given the high number of men and women suffering from reproductive problems and abnormal endocrinology research addressing the role of vitamin D in reproductive endocrinology may be of clinical importance.
Collapse
Affiliation(s)
- Mette Lorenzen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK, 2100 Copenhagen, Denmark
| | - Ida Marie Boisen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK, 2100 Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard University, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Li Juel Mortensen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK, 2100 Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, HSDM/HMS, Harvard University, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Anders Juul
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK, 2100 Copenhagen, Denmark
| | - Martin Blomberg Jensen
- University Department of Growth and Reproduction and International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 9, DK, 2100 Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard University, 188 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
44
|
de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F, Salzano C, Galdiero G, Piscopo M, Vece A, Colao A, Pivonello R. The role of vitamin D in male fertility: A focus on the testis. Rev Endocr Metab Disord 2017; 18:285-305. [PMID: 28667465 DOI: 10.1007/s11154-017-9425-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the last decade, vitamin D has emerged as a pleiotropic molecule with a multitude of autocrine, paracrine and endocrine functions, mediated by classical genomic as well as non-classical non-genomic actions, on multiple target organs and systems. The expression of vitamin D receptor and vitamin D metabolizing enzymes in male reproductive system, particularly in the testis, suggests the occurrence of vitamin D synthesis and regulation as well as function in the testis. The role of vitamin D in the modulation of testis functions, including hormone production and spermatogenesis, has been investigated in animals and humans. Experimental studies support a beneficial effect of vitamin D on male fertility, by modulating hormone production through genomic and non-genomic actions, and, particularly, by improving semen quality essentially through non-genomic actions. However, clinical studies in humans are controversial. Indeed, vitamin D seems to contribute to the modulation of the bioavailable rather than total testosterone. Moreover, although an increased prevalence or risk for testosterone deficiency was reported in men with vitamin D deficiency in observational studies, the majority of interventional studies demonstrated the lack of effect of vitamin D supplementation on circulating levels of testosterone. The most consistent effect of vitamin D was reported on semen quality. Indeed, vitamin D was shown to be positively associated to sperm motility, and to exert direct actions on spermatozoa, including non-genomic driven modulation of intracellular calcium homeostasis and activation of molecular pathways involved in sperm motility, capacitation and acrosome reaction. The current review provides a summary of current knowledge on the role of vitamin D in male fertility, by reporting clinical and experimental studies in humans and animals addressing the relationship between vitamin D and testis function.
Collapse
Affiliation(s)
| | | | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Davide Menafra
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Federica Cariati
- CEINGE Biotecnologie Avanzate s.c.a r.l., Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università "Federico II" di Napoli, Naples, Italy
| | - Ciro Salzano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Giacomo Galdiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Alfonso Vece
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| |
Collapse
|
45
|
Lv QQ, Yang XN, Yan DM, Liang WQ, Liu HN, Yang XW, Li F. Metabolic profiling of dehydrodiisoeugenol using xenobiotic metabolomics. J Pharm Biomed Anal 2017; 145:725-733. [PMID: 28806569 DOI: 10.1016/j.jpba.2017.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/02/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022]
Abstract
Dehydrodiisoeugenol (DDIE), a representative and major benzofuran-type neolignan in Myristica fragrans Houtt., shows anti-inflammatory and anti-bacterial actions. In order to better understand its pharmacological properties, xenobiotic metabolomics was used to determine the metabolic map of DDIE and its influence on endogenous metabolites. Total thirteen metabolites of DDIE were identified through in vivo and in vitro metabolism, and seven of them were reported for the first time in the present study. The identity of DDIE metabolites was achieved by comparison of the MS/MS fragmentation pattern with DDIE using ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI- QTOFMS). Demethylation and ring-opening reaction were the major metabolic pathways for in vivo metabolism of DDIE. Recombinant cytochrome P450s (CYPs) screening revealed that CYP1A1 is a primary enzyme contributing to the formation of metabolites D1-D4. More importantly, the levels of two endogenous metabolites 2,8-dihydroxyquinoline and its glucuronide were significantly elevated in mouse urine after DDIE exposure, which explains in part its modulatory effects on gut microbiota. Taken together, these data contribute to the understanding of the disposition and pharmacological activities of DDIE in vivo.
Collapse
Affiliation(s)
- Qian-Qian Lv
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Center for Differentiation and Development of Basic Theory of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiao-Nan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong-Mei Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wei-Qing Liang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, China.
| | - Hong-Ning Liu
- Research Center for Differentiation and Development of Basic Theory of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Center for Differentiation and Development of Basic Theory of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
46
|
Dhers L, Ducassou L, Boucher JL, Mansuy D. Cytochrome P450 2U1, a very peculiar member of the human P450s family. Cell Mol Life Sci 2017; 74:1859-1869. [PMID: 28083596 PMCID: PMC11107762 DOI: 10.1007/s00018-016-2443-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 2U1 (CYP2U1) exhibits several distinctive characteristics among the 57 human CYPs, such as its presence in almost all living organisms with a highly conserved sequence, its particular gene organization with only five exons, its major location in thymus and brain, and its protein sequence involving an unusually long N-terminal region containing 8 proline residues and an insert of about 20 amino acids containing 5 arginine residues after the transmembrane helix. Few substrates, including fatty acids, N-arachidonoylserotonin (AS), and some drugs, have been reported so far. However, its biological roles remain largely unknown, even though CYP2U1 mutations have been involved in some pathological situations, such as complicated forms of hereditary spastic paraplegia. These data together with its ability to hydroxylate some fatty acids and AS suggest its possible role in lipid metabolism.
Collapse
Affiliation(s)
- L Dhers
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - L Ducassou
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - J-L Boucher
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France.
| | - D Mansuy
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
47
|
Boei JJWA, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DGJ, Lahoz A, Gmuender H, Vrieling H. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol 2017; 91:2093-2105. [PMID: 27738743 PMCID: PMC5399058 DOI: 10.1007/s00204-016-1868-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Differentiated human bronchial epithelial cells in air liquid interface cultures (ALI-PBEC) represent a promising alternative for inhalation studies with rodents as these 3D airway epithelial tissue cultures recapitulate the human airway in multiple aspects, including morphology, cell type composition, gene expression and xenobiotic metabolism. We performed a detailed longitudinal gene expression analysis during the differentiation of submerged primary human bronchial epithelial cells into ALI-PBEC to assess the reproducibility and inter-individual variability of changes in transcriptional activity during this process. We generated ALI-PBEC cultures from four donors and focussed our analysis on the expression levels of 362 genes involved in biotransformation, which are of primary importance for toxicological studies. Expression of various of these genes (e.g., GSTA1, ADH1C, ALDH1A1, CYP2B6, CYP2F1, CYP4B1, CYP4X1 and CYP4Z1) was elevated following the mucociliary differentiation of airway epithelial cells into a pseudo-stratified epithelial layer. Although a substantial number of genes were differentially expressed between donors, the differences in fold changes were generally small. Metabolic activity measurements applying a variety of different cytochrome p450 substrates indicated that epithelial cultures at the early stages of differentiation are incapable of biotransformation. In contrast, mature ALI-PBEC cultures were proficient in the metabolic conversion of a variety of substrates albeit with considerable variation between donors. In summary, our data indicate a distinct increase in biotransformation capacity during differentiation of PBECs at the air-liquid interface and that the generation of biotransformation competent ALI-PBEC cultures is a reproducible process with little variability between cultures derived from four different donors.
Collapse
Affiliation(s)
- Jan J. W. A. Boei
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Binie Klein
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Renate M. Verhoosel
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Agustin Lahoz
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria-Fundación Hospital La Fe, 46009 Valencia, Spain
| | | | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
48
|
Xie C, Pogribna M, Word B, Lyn‐Cook L, Lyn‐Cook BD, Hammons GJ. In vitro analysis of factors influencing CYP1A2 expression as potential determinants of interindividual variation. Pharmacol Res Perspect 2017; 5:e00299. [PMID: 28357125 PMCID: PMC5368963 DOI: 10.1002/prp2.299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
Individual differences in drug metabolism contribute to interindividual variation that characterizes responses to drugs and risk in exposure to foreign chemicals. Large individual differences are found in expression levels of CYP1A2, a major drug-metabolizing enzyme. Underlying causes for this variation are not well understood. Several factors, including tobacco smoking, consumption of cruciferous vegetables, and sex, have been associated with modulating CYP1A2 expression. To understand factors regulating expression of CYP1A2 in establishing a causal relationship, this study examined effects of cigarette smoke condensate (CSC), indole-3-carbinol (I3C), and 17β-estradiol (estradiol) on CYP1A2 expression in in vitro systems using human liver and lung cells. Treatment with CSC (2-25 μg/mL) significantly increased levels of CYP1A2 in six cell lines examined, in a concentration- and time-dependent manner. Fold changes in expression levels relative to controls varied among cell lines. CYP1A2 enzymatic activity also increased with CSC exposure. Treatment of H1299 and HepB3 cells with dietary agent I3C (50 and 100 μmol/L) increased CYP1A2 expression. In human cell lines H1299 and H1395, treatment with estradiol (10 and 100 nmol/L) significantly reduced expression of CYP1A2. Using ChIP assays, effects of CSC on histone modifications were analyzed. Increases in H3K4me3 and H4K16ac were observed at several segments in the CYP1A2 gene, whereas H3K27me3 decreased, following CSC treatment. These results suggest that CYP1A2 expression is affected epigenetically by CSC. Additional studies will be needed to further establish regulatory mechanisms underlying effects of various environmental, dietary, and endogenous factors on CYP1A2 expression in better predicting individual variation.
Collapse
Affiliation(s)
- ChengHui Xie
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Marta Pogribna
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Beverly Word
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Lascelles Lyn‐Cook
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Beverly D. Lyn‐Cook
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - George J. Hammons
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| |
Collapse
|
49
|
Burkina V, Rasmussen MK, Pilipenko N, Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology 2017; 375:10-27. [DOI: 10.1016/j.tox.2016.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022]
|
50
|
Regulation of Human Cytochrome P4501A1 (hCYP1A1): A Plausible Target for Chemoprevention? BIOMED RESEARCH INTERNATIONAL 2016; 2016:5341081. [PMID: 28105425 PMCID: PMC5220472 DOI: 10.1155/2016/5341081] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 1A1 (hCYP1A1) has been an object of study due to its role in precarcinogen metabolism; for this reason it is relevant to know more in depth the mechanisms that rule out its expression and activity, which make this enzyme a target for the development of novel chemiopreventive agents. The aim of this work is to review the origin, regulation, and structural and functional characteristics of CYP1A1 letting us understand its role in the bioactivation of precarcinogen and the consequences of its modulation in other physiological processes, as well as guide us in the study of this important protein.
Collapse
|