1
|
Laddha AP, Wu H, Manautou JE. Deciphering Acetaminophen-Induced Hepatotoxicity: The Crucial Role of Transcription Factors like Nuclear Factor Erythroid 2-Related Factor 2 as Genetic Determinants of Susceptibility to Drug-Induced Liver Injury. Drug Metab Dispos 2024; 52:740-753. [PMID: 38857948 DOI: 10.1124/dmd.124.001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Acetaminophen (APAP) is the most commonly used over-the-counter medication throughout the world. At therapeutic doses, APAP has potent analgesic and antipyretic effects. The efficacy and safety of APAP are influenced by multifactorial processes dependent upon dosing, namely frequency and total dose. APAP poisoning by repeated ingestion of supratherapeutic doses, depletes glutathione stores in the liver and other organs capable of metabolic bioactivation, leading to hepatocellular death due to exhausted antioxidant defenses. Numerous genes, encompassing transcription factors and signaling pathways, have been identified as playing pivotal roles in APAP toxicity, with the liver being the primary organ studied due to its central role in APAP metabolism and injury. Nuclear factor erythroid 2-related factor 2 (NRF2) and its array of downstream responsive genes are crucial in counteracting APAP toxicity. NRF2, along with its negative regulator Kelch-like ECH-associated protein 1, plays a vital role in regulating intracellular redox homeostasis. This regulation is significant in modulating the oxidative stress, inflammation, and hepatocellular death induced by APAP. In this review, we provide an updated overview of the mechanisms through which NRF2 activation and signaling critically influence the threshold for developing APAP toxicity. We also describe how genetically modified rodent models for NRF2 and related genes have been pivotal in underscoring the significance of this antioxidant response pathway. While NRF2 is a primary focus, the article comprehensively explores other genetic factors involved in phase I and phase II metabolism of APAP, inflammation, oxidative stress, and related pathways that contribute to APAP toxicity, thereby providing a holistic understanding of the genetic landscape influencing susceptibility to this condition. SIGNIFICANCE STATEMENT: This review summarizes the genetic elements and signaling pathways underlying APAP-induced liver toxicity, focusing on the crucial protective role of the transcription factor NRF2. This review also delves into the genetic intricacies influencing APAP safety and potential liver harm. It also emphasizes the need for deeper insight into the molecular mechanisms of hepatotoxicity, especially the interplay of NRF2 with other pathways.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Hangyu Wu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
2
|
Liu Z, Qiang Y, Shan S, Wang S, Liu Z, Yang Y, Huang Z, Song M, Zhao X, Song F. Aberrant mitochondrial aggregation of TDP-43 activated mitochondrial unfolded protein response and contributed to recovery of acetaminophen induced acute liver injury. Toxicol Res (Camb) 2024; 13:tfae008. [PMID: 38283824 PMCID: PMC10811519 DOI: 10.1093/toxres/tfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Mitochondrial dysfunction is a key pathological event in the acute liver injury following the overdose of acetaminophen (APAP). Calpain is the calcium-dependent protease, recent studies demonstrate that it is involved in the impairment of mitochondrial dynamics. The mitochondrial unfolded protein response (UPRmt) is commonly activated in the context of mitochondrial damage following pathological insults and contributes to the maintenance of the mitochondrial quality control through regulating a wide range of gene expression. More importantly, it is reported that abnormal aggregation of TDP-43 in mitochondria induced the activation of UPRmt. However, whether it is involved in APAP induced-hepatotoxicity remains unclear. In the present study, C57/BL6 mice were given 300 mg/kg APAP to establish a time-course model of acute liver injury. Furthermore, Calpeptin, the specific inhibiter of calpains, was used to conduct the intervention experiment. Our results showed, APAP exposure produced severe liver injury. Moreover, TDP-43 was obviously accumulated within mitochondria whereas mitochondrial protease LonP1 was significantly decreased. However, these changes exhibited significant recovery at 48 h. By contrast, the mitochondrial protease ClpP and chaperone mtHSP70 and HSP60 were consistently increased, which supported the UPRmt was activated to promote protein homeostasis. Further investigation revealed that calpain-mediated cleavage of TDP-43 could promote the accumulation of TDP-43 in mitochondria compartment, thereby facilitating the activation of UPRmt. Additionally, Calpeptin pretreatment not only protected against APAP-induced liver injury, but also suppressed the formation of TDP-43 aggregates and the activation of UPRmt. Taken together, our findings indicated that in APAP-induced acute liver injury, calpain-mediated cleavage of TDP43 caused its aberrant aggregation on the mitochondria. As a stress-protective response, the induction of UPRmt contributed to the recovery of mitochondrial function.
Collapse
Affiliation(s)
- Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Tüylü Küçükkılınç T, Ercan A. Phenelzine protects against acetaminophen induced apoptosis in HepG2 cells. Drug Chem Toxicol 2024; 47:81-89. [PMID: 37246945 DOI: 10.1080/01480545.2023.2217696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/30/2023]
Abstract
Acetaminophen (APAP) overdosing is the most common cause of drug-induced liver failure. Despite extensive study, N-acetylcysteine is currently the only antidote utilized for treatment. The purpose of this study was to evaluate the effect and mechanisms of phenelzine, an FDA-approved antidepressant, on APAP-induced toxicity in HepG2 cells. The human liver hepatocellular cell line HepG2 was used to investigate APAP-induced cytotoxicity. The protective effects of phenelzine were determined by examining the cell viability, combination index calculation, Caspase 3/7 activation, Cytochrome c release, H2O2 levels, NO levels, GSH activity, PERK protein levels, and pathway enrichment analysis. Elevated H2O2 production and decreased glutathione (GSH) levels were indicators of APAP-induced oxidative stress. The combination index of 2.04 indicated that phenelzine had an antagonistic effect on APAP-induced toxicity. When compared to APAP alone, phenelzine treatment considerably reduced caspase 3/7 activation, cytochrome c release, and H2O2 generation. However, phenelzine had minimal effect on NO and GSH levels and did not alleviate ER stress. Pathway enrichment analysis revealed a potential connection between APAP toxicity and phenelzine metabolism. These findings suggested that phenelzine's protective effect against APAP-induced cytotoxicity could be attributed to the drug's capacity to reduce APAP-mediated apoptotic signaling.
Collapse
Affiliation(s)
| | - Ayşe Ercan
- Department of Biochemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
4
|
Namba N, Kuwahara T, Kondo Y, Fukusaki K, Miyata K, Oike Y, Irie T, Ishitsuka Y. Fasudil inhibits the expression of C/EBP homologous protein to protect against liver injury in acetaminophen-overdosed mice. Biochem Biophys Res Commun 2023; 686:149166. [PMID: 37931363 DOI: 10.1016/j.bbrc.2023.149166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Acetaminophen (APAP) overdoses can cause severe liver injury. In this study, the protective effect of fasudil against APAP-induced liver injury was investigated. APAP (400 mg/kg) was administered to male C57BL/6J mice to induce liver injury, and fasudil (20 or 40 mg/kg) was injected 30 min before APAP administration. Fasudil markedly suppressed APAP-induced elevation in serum transaminase activity and hepatic necrosis and significantly reduced an increase in nitrotyrosine and DNA fragmentation. However, fasudil did not affect cytochrome P450 2E1 expression, N-acetyl-p-benzoquinone imine production or c-jun N-terminal kinase activation. In contrast, fasudil significantly inhibited an APAP-induced increase in expression of the transcription factor C/EBP homologous protein (CHOP) in the liver, accompanied by transcriptional suppression of ER stress-related molecules such as Ero1α, Atf4 and Grp78. These findings indicate that suppression of CHOP expression by fasudil exhibits a remarkable protective effect against APAP liver injury by regulating ER stress. We suggest that fasudil is a promising therapeutic candidate for treating APAP-induced liver injury.
Collapse
Affiliation(s)
- Nanami Namba
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takehiro Kuwahara
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kumiko Fukusaki
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
5
|
Miao J, Yao S, Sun H, Jiang Z, Gao Z, Xu J, Chen K. Protective Effect of Water-Soluble Acacetin Prodrug on APAP-Induced Acute Liver Injury Is Associated with Upregulation of PPARγ and Alleviation of ER Stress. Int J Mol Sci 2023; 24:11320. [PMID: 37511082 PMCID: PMC10380069 DOI: 10.3390/ijms241411320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
A water-soluble acacetin prodrug has been synthesized and reported by our group previously. Acetaminophen (APAP) overdose is a leading cause of acute liver injury. We found that subcutaneous injection of acacetin prodrug (5, 10, 20 mg/kg) decreased serum ALT, AST, and ALP, corrected the abnormal MDA and GSH in liver, and improved intrahepatic hemorrhage and destruction of liver structures in APAP (300 mg/kg)-treated mice. Molecular mechanism analysis revealed that the expressions of endoplasmic reticulum (ER) stress markers ATF6, CHOP, and p-PERK, apoptosis-related protein BAX, and cleaved caspase 3 were decreased by acacetin in a dose-dependent manner in vivo and in vitro. Moreover, via the acacetin-upregulated peroxisome-proliferator-activated receptor gamma (PPARγ) of HepG2 cells and liver, the suppressive effect of acacetin on ER stress and apoptosis was abolished by PPARγ inhibitor (GW9662) or PPARγ-siRNA. Molecular docking revealed that acacetin can bind to three active pockets of PPARγ, mainly by hydrogen bond. Our results provide novel evidence that acacetin prodrug exhibits significant protective effect against APAP-induced liver injury by targeting PPARγ, thereby suppressing ER stress and hepatocyte apoptosis. Acacetin prodrug is likely a promising new drug candidate for treating patients with acute liver injury induced by APAP.
Collapse
Affiliation(s)
- Jiaen Miao
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd., Ningbo 315100, China
| | - Shujun Yao
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd., Ningbo 315100, China
| | - Hao Sun
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd., Ningbo 315100, China
| | - Zhe Jiang
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd., Ningbo 315100, China
| | - Zhe Gao
- The Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Jia Xu
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd., Ningbo 315100, China
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd., Ningbo 315100, China
| |
Collapse
|
6
|
Pu S, Pan Y, Zhang Q, You T, Yue T, Zhang Y, Wang M. Endoplasmic Reticulum Stress and Mitochondrial Stress in Drug-Induced Liver Injury. Molecules 2023; 28:molecules28073160. [PMID: 37049925 PMCID: PMC10095764 DOI: 10.3390/molecules28073160] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is a widespread and harmful disease closely linked to mitochondrial and endoplasmic reticulum stress (ERS). Globally, severe drug-induced hepatitis, cirrhosis, and liver cancer are the primary causes of liver-related morbidity and mortality. A hallmark of DILI is ERS and changes in mitochondrial morphology and function, which increase the production of reactive oxygen species (ROS) in a vicious cycle of mutually reinforcing stress responses. Several pathways are maladapted to maintain homeostasis during DILI. Here, we discuss the processes of liver injury caused by several types of drugs that induce hepatocyte stress, focusing primarily on DILI by ERS and mitochondrial stress. Importantly, both ERS and mitochondrial stress are mediated by the overproduction of ROS, destruction of Ca2+ homeostasis, and unfolded protein response (UPR). Additionally, we review new pathways and potential pharmacological targets for DILI to highlight new possibilities for DILI treatment and mitigation.
Collapse
Affiliation(s)
- Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ting You
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuxing Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Luo G, Huang L, Zhang Z. The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets. Exp Biol Med (Maywood) 2023; 248:412-424. [PMID: 36670547 DOI: 10.1177/15353702221147563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetaminophen (APAP), a widely used antipyretic and analgesic drug in clinics, is relatively safe at therapeutic doses; however, APAP overdose may lead to fatal acute liver injury. Currently, N-acetylcysteine (NAC) is clinically used as the main antidote for APAP poisoning, but its therapeutic effect remains limited owing to rapid disease progression and the general diagnosis of advanced poisoning. As is well known, APAP-induced hepatotoxicity (AIH) is mainly caused by the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), and the toxic mechanisms of AIH are complicated. Several cellular processes are involved in the pathogenesis of AIH, including liver metabolism, mitochondrial oxidative stress and dysfunction, sterile inflammation, endoplasmic reticulum stress, autophagy, and microcirculation dysfunction. Mitochondrial oxidative stress and dysfunction are the major cellular events associated with APAP-induced liver injury. Many biomolecules involved in these biological processes are potential therapeutic targets for AIH. Therefore, there is an urgent need to comprehensively clarify the molecular mechanisms underlying AIH and to explore novel therapeutic strategies. This review summarizes the various cellular events involved in AIH and discusses their potential therapeutic targets, with the aim of providing new ideas for the treatment of AIH.
Collapse
Affiliation(s)
- Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo 315040, China
| | - Zhaowei Zhang
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| |
Collapse
|
8
|
Glycogen-Endoplasmic Reticulum Connection in the Liver. Int J Mol Sci 2023; 24:ijms24021074. [PMID: 36674588 PMCID: PMC9862463 DOI: 10.3390/ijms24021074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
Glycogen, the branched polymer of glucose is found mainly in the liver and muscle in mammals. Along with several other proteins, glycogen forms separate cellular organelles, and particles in cells. Glycogen particles in the liver have a special metabolic and also regulatory connection to the intracellular endomembrane system, particularly the endoplasmic reticulum. This connection is part of the organelle homeostasis in hepatocytes and forms a "glycogenoreticular system". The actual size of hepatic glycogen stores and the rate of glycogenolysis determines several essential liver-specific metabolic processes, such as glucose secretion for the maintenance of blood glucose levels or the glucuronidation of certain vital endo-, and xenobiotics, and are also related to liver antioxidant defense. In starvation, and in certain physiological and pathological states, where glycogen stores are depleted, functions of the glycogenoreticular system are altered. The starvation-induced depletion of hepatic glycogen content changes the biotransformation of various endo- and xenobiotics. This can be observed especially in acute DILI (drug-induced liver injury) due to paracetamol overdose, which is the most common cause of acute liver failure in the West.
Collapse
|
9
|
Kim HY, Yoon HS, Heo AJ, Jung EJ, Ji CH, Mun SR, Lee MJ, Kwon YT, Park JW. Mitophagy and endoplasmic reticulum-phagy accelerated by a p62 ZZ ligand alleviates paracetamol-induced hepatotoxicity. Br J Pharmacol 2022; 180:1247-1266. [PMID: 36479690 DOI: 10.1111/bph.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol (acetaminophen)-induced hepatotoxicity is the leading cause of drug-induced liver injury worldwide. Autophagy is a degradative process by which various cargoes are collected by the autophagic receptors such as p62/SQSTM1/Sequestosome-1 for lysosomal degradation. Here, we investigated the protective role of p62-dependent autophagy in paracetamol-induced liver injury. EXPERIMENTAL APPROACH Paracetamol-induced hepatotoxicity was induced by a single i.p. injection of paracetamol (500 mg·kg-1 ) in C57/BL6 male mice. YTK-2205 (20 mg·kg-1 ), a p62 agonist targeting ZZ domain, was co- or post-administered with paracetamol. Western blotting and immunocytochemistry were performed to explore the mechanism. KEY RESULTS N-terminal arginylation of the molecular chaperone calreticulin retro-translocated from the endoplasmic reticulum (ER) was induced in the livers undergoing paracetamol-induced hepatotoxicity, and YTK-2205 exhibited notable therapeutic efficacy in acute hepatotoxicity as assessed by the levels of serum alanine aminotransferase and hepatic necrosis. This efficacy was significantly attributed to accelerated degradation of ubiquitin (Ub) conjugates as well as damaged mitochondria (mitophagy) and endoplasmic reticulum (ER-phagy). In primary murine hepatocytes treated with paracetamol, YTK-2205 induced the co-localization of p62+ LC3+ phagophores to the sites of mitophagy and ER-phagy. A similar activity of YTK-2205 was observed with N-acetyl-p-benzoquinone imine, a putative toxic metabolite of paracetamol in Hep3B cells. CONCLUSION AND IMPLICATIONS Our results elucidated that p62-dependent autophagy plays a key role in the removal of cytotoxic materials such as damaged mitochondria in paracetamol-induced hepatotoxicity. Small molecule ligands to p62 may be developed into drugs to treat this pathological condition.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ju Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
10
|
González-Recio I, Simón J, Goikoetxea-Usandizaga N, Serrano-Maciá M, Mercado-Gómez M, Rodríguez-Agudo R, Lachiondo-Ortega S, Gil-Pitarch C, Fernández-Rodríguez C, Castellana D, Latasa MU, Abecia L, Anguita J, Delgado TC, Iruzubieta P, Crespo J, Hardy S, Petrov PD, Jover R, Avila MA, Martín C, Schaeper U, Tremblay ML, Dear JW, Masson S, McCain MV, Reeves HL, Andrade RJ, Lucena MI, Buccella D, Martínez-Cruz LA, Martínez-Chantar ML. Restoring cellular magnesium balance through Cyclin M4 protects against acetaminophen-induced liver damage. Nat Commun 2022; 13:6816. [PMID: 36433951 PMCID: PMC9700862 DOI: 10.1038/s41467-022-34262-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.
Collapse
Affiliation(s)
- Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Maria Mercado-Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Carmen Fernández-Rodríguez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Donatello Castellana
- Research & Development, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Maria U Latasa
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008, Pamplona, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería. Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n 48940, Leioa, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - Serge Hardy
- Department of Biochemistry, McGill University, H3G 1Y6, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill Unversity, H3A 1A3, Montréal, QC, Canada
| | - Petar D Petrov
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Experimental Hepatology Joint Research Unit, IIS Hospital La Fe & Dep. Biochemistry, University of Valencia, Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Experimental Hepatology Joint Research Unit, IIS Hospital La Fe & Dep. Biochemistry, University of Valencia, Valencia, Spain
| | - Matías A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, 31008, Pamplona, Spain
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ute Schaeper
- Silence Therapeutics GmbH, Berlin, Robert Rössle Strasse 10, 13125, Berlin, Germany
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, H3G 1Y6, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill Unversity, H3A 1A3, Montréal, QC, Canada
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Steven Masson
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Misti Vanette McCain
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Helen L Reeves
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Daniela Buccella
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Maria L Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
11
|
Han C, Zhang L, Hua Y, Liu H, Liu J, Shi Y, Wang X, Wang W, Jiang Y, Zhang H, Deng C, Xie Y, He S, Liu Y. Optimization of clofibrate with natural product sesamol for reducing liver injury induced by acetaminophen. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Recent advance of fluorescent probes for detection of drug-induced liver injury markers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Liu Q, Tang Q, Jing X, Zhang J, Xia Y, Yan J, Xu Y, Li J, Li Y, He J, Mo L. Mesencephalic astrocyte-derived neurotrophic factor protects against paracetamol -induced liver injury by inhibiting PERK-ATF4-CHOP signaling pathway. Biochem Biophys Res Commun 2022; 602:163-169. [PMID: 35278889 DOI: 10.1016/j.bbrc.2022.02.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Paracetamol (APAP), an over-the-counter drug, is normally safe within the therapeutic dose range but can cause irreversible liver damage after an overdose. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress protein and plays a crucial role in metabolic disease. However, the role of MANF in APAP-induced acute hepatotoxicity is still unknown. We used hepatocyte-specific MANF-knockout mice and hepatocyte-specific MANF transgenic mice to investigate the role of hepatocyte-derived MANF in APAP-induced acute liver injury. MANF deficiency was associated with a decreased expression of detoxification enzymes, aggravated glutathione depletion and apoptosis in hepatocytes. Mechanistically, MANF knockout significantly increased PERK-eIF2α-ATF4-CHOP signaling pathway. Blockade of PERK abolished MANF deficiency-over-induced hepatotoxicity after APAP administration. Conversely, hepatocyte-specific MANF overexpression attenuated APAP-induced hepatotoxicity by downregulating the PERK-eIF2α-ATF4-CHOP signaling pathway. Thus, hepatocyte-derived MANF may play a protective role in APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Xiandan Jing
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Xia
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jiamin Yan
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Xu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jiahui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Li Mo
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Matsuyama R, Okada Y, Shimma S. Metabolite alteration analysis of acetaminophen-induced liver injury using a mass microscope. Anal Bioanal Chem 2022; 414:3709-3718. [PMID: 35305118 DOI: 10.1007/s00216-022-04017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/01/2022]
Abstract
Acetaminophen (APAP)-induced liver injury (APAP-ILI), which occurs during APAP overdose, has been extensively studied. The production of N-acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP, primarily contributes to liver injury. However, the mechanism underlying APAP-ILI has not been fully characterized. For further clarification, it is important to consider drug localization and endogenous substances in the injured liver. Herein, we show the localization of NAPQI metabolites and the injury site-specific changes in endogenous substances in the rat liver following APAP overdose using a mass microscope. Our results of on-tissue derivatization matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) showed that the glutathione metabolite of APAP, a detoxified metabolite of NAPQI, localized in the damaged central vein region in the rat liver following APAP administration. Moreover, in the conventional MALDI-MSI, the intensities of some phospholipids, phosphocreatine, and ceramides decreased or increased in the damaged regions compared with those in non-damaged regions. Phosphocreatine was localized in the damaged cells, whereas its related mitochondrial creatine kinase was localized in the non-damaged cells. These results are expected to contribute to further elucidation of the mechanisms underlying APAP-ILI. Our findings illustrate the localization of NAPQI-related metabolites and endogenous molecules associated with APAP-ILI, which may be related to apoptosis or metabolic adaptation ultimately protecting the cells. As MALDI-MSI can analyze and differentiate regions with tissue damage, it is a valuable tool for analyzing the mechanism underlying drug-induced liver injury to identify novel biomarkers.
Collapse
Affiliation(s)
- Ryo Matsuyama
- Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Yuki Okada
- Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Shimadzu Analytical Innovation Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Ye H, Chen C, Wu H, Zheng K, Martín-Adrados B, Caparros E, Francés R, Nelson LJ, Gómez Del Moral M, Asensio I, Vaquero J, Bañares R, Ávila MA, Andrade RJ, Isabel Lucena M, Martínez-Chantar ML, Reeves HL, Masson S, Blumberg RS, Gracia-Sancho J, Nevzorova YA, Martínez-Naves E, Cubero FJ. Genetic and pharmacological inhibition of XBP1 protects against APAP hepatotoxicity through the activation of autophagy. Cell Death Dis 2022; 13:143. [PMID: 35145060 PMCID: PMC8831621 DOI: 10.1038/s41419-022-04580-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity induces endoplasmic reticulum (ER) stress which triggers the unfolded protein response (UPR) in hepatocytes. However, the mechanisms underlying ER stress remain poorly understood, thus reducing the options for exploring new pharmacological therapies for patients with hyperacute liver injury. Eight-to-twelve-week-old C57BL/6J Xbp1-floxed (Xbp1f/f) and hepatocyte-specific knockout Xbp1 mice (Xbp1∆hepa) were challenged with either high dose APAP [500 mg/kg] and sacrificed at early (1-2 h) and late (24 h) stages of hepatotoxicity. Histopathological examination of livers, immunofluorescence and immunohistochemistry, Western blot, real time (RT)-qPCR studies and transmission electron microscopy (TEM) were performed. Pharmacological inhibition of XBP1 using pre-treatment with STF-083010 [STF, 75 mg/kg] and autophagy induction with Rapamycin [RAPA, 8 mg/kg] or blockade with Chloroquine [CQ, 60 mg/kg] was also undertaken in vivo. Cytoplasmic expression of XBP1 coincided with severity of human and murine hyperacute liver injury. Transcriptional and translational activation of the UPR and sustained activation of JNK1/2 were major events in APAP hepatotoxicity, both in a human hepatocytic cell line and in a preclinical model. Xbp1∆hepa livers showed decreased UPR and JNK1/2 activation but enhanced autophagy in response to high dose APAP. Additionally, blockade of XBP1 splicing by STF, mitigated APAP-induced liver injury and without non-specific off-target effects (e.g., CYP2E1 activity). Furthermore, enhanced autophagy might be responsible for modulating CYP2E1 activity in Xbp1∆hepa animals. Genetic and pharmacological inhibition of Xbp1 specifically in hepatocytes ameliorated APAP-induced liver injury by enhancing autophagy and decreasing CYP2E1 expression. These findings provide the basis for the therapeutic restoration of ER stress and/or induction of autophagy in patients with hyperacute liver injury.
Collapse
Affiliation(s)
- Hui Ye
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of Anesthesiology, ZhongDa Hospital Southeast University, 210009, Nanjing, China
| | - Chaobo Chen
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of General Surgery, Wuxi Xishan People's hospital, 214105, Wuxi, China
- Department of Hepatic-Biliary-Pancreatic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical school, 210000, Nanjing, China
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of Anesthesiology, ZhongDa Hospital Southeast University, 210009, Nanjing, China
| | - Beatriz Martín-Adrados
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
| | - Esther Caparros
- Departmento de Medicina Clínica, Universidad Miguel Hernández, 03550, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, 03010, Alicante, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Rubén Francés
- Departmento de Medicina Clínica, Universidad Miguel Hernández, 03550, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, 03010, Alicante, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), Human Tissue Engineering, Faraday Building, The University of Edinburgh, EH9 3DW, Edinburgh, Scotland, UK
| | - Manuel Gómez Del Moral
- Department of Cell Biology, Complutense University School of Medicine, 28040, Madrid, Spain
| | - Iris Asensio
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Javier Vaquero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Rafael Bañares
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Matías A Ávila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, 31008, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, 31008, Pamplona, Spain
| | - Raúl J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Unidad de Gestión Clínica de Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Unidad de Gestión Clínica de Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - Maria Luz Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Bizkaia, Spain
| | - Helen L Reeves
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 DN, Newcastle upon Tyne, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE7 DN, Newcastle upon Tyne, UK
| | - Steven Masson
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 DN, Newcastle upon Tyne, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE7 DN, Newcastle upon Tyne, UK
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women´s Hospital, Harvard Medical School, Boston, and Harvard Digestive Diseases Center, 02115, Boston, MA, USA
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Liver Vascular Biology Research Group, IDIBAPS, 08036, Barcelona, Spain
- Hepatology, Department of Biomedical Research, University of Bern, cH-3008, Bern, Switzerland
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain.
| |
Collapse
|
16
|
Kim SH, Choi HJ, Seo H, Kwon D, Yun J, Jung YS. Downregulation of Glutathione-Mediated Detoxification Capacity by Binge Drinking Aggravates Acetaminophen-Induced Liver Injury through IRE1α ER Stress Signaling. Antioxidants (Basel) 2021; 10:antiox10121949. [PMID: 34943052 PMCID: PMC8750905 DOI: 10.3390/antiox10121949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Overdose of acetaminophen (APAP) can cause severe liver injury. Although alcohol is considered a risk factor for APAP toxicity, the mechanism underlying the interaction between alcohol and APAP remains unclear. Binge alcohol (5 g/kg every 12 h, 3 doses) reduced the concentration of cysteine and glutathione (GSH) and decreased expression of cystathionine β-synthase (CβS), cystathionine γ-lyase (CγL), and glutamate cysteine ligase catalytic subunit (GCLC) in the livers of male C57BL/6 mice. Furthermore, the levels of GSH S-transferase (GST) and GSH peroxidase (GPx) were decreased. To evaluate the effect of binge drinking on APAP-induced liver injury, 300 mg APAP was administered following alcohol binges. APAP in the binge group significantly amplified the serum ALT more than two fold and enhanced the pro-apoptotic proteins with a severe centrilobular necrosis compared to APAP alone. APAP treatment after alcohol binges caused lower levels of hepatic cysteine and GSH than APAP alone over 24 h, indicating that alcohol binges reduced GSH regenerating potential. Exposure to APAP after binge treatment significantly increased oxidative stress (lipid peroxidation) and endoplasmic reticulum (ER) stress (Grp78 and ATF6) markers at 6 h after treatment. Notably, the IRE1α/ASK1/MKK4/JNK pathway was activated, whereas CHOP expression was reduced by APAP administration in mice with pre-exposed alcohol binges compared with APAP alone. Thus, pretreatment with binge alcohol decreases GSH-mediated antioxidant capacity and contributes to augmentation of liver injury caused by subsequent APAP administration through differential ER stress signaling pathway.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.H.K.); (H.J.C.); (H.S.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea
| | - Hun Ji Choi
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.H.K.); (H.J.C.); (H.S.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea
| | - Hyeji Seo
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.H.K.); (H.J.C.); (H.S.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
- Correspondence: (J.Y.); (Y.-S.J.); Tel.: +82-43-261-2827 (J.Y.); +82-51-510-2816 (Y.-S.J.)
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.H.K.); (H.J.C.); (H.S.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea
- Correspondence: (J.Y.); (Y.-S.J.); Tel.: +82-43-261-2827 (J.Y.); +82-51-510-2816 (Y.-S.J.)
| |
Collapse
|
17
|
Dobrinskikh E, Al-Juboori SI, Zarate MA, Zheng L, De Dios R, Balasubramaniyan D, Sherlock LG, Orlicky DJ, Wright CJ. Pulmonary implications of acetaminophen exposures independent of hepatic toxicity. Am J Physiol Lung Cell Mol Physiol 2021; 321:L941-L953. [PMID: 34585971 PMCID: PMC8616618 DOI: 10.1152/ajplung.00234.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Both preclinical and clinical studies have demonstrated that exposures to acetaminophen (APAP) at levels that cause hepatic injury cause pulmonary injury as well. However, whether exposures that do not result in hepatic injury have acute pulmonary implications is unknown. Thus, we sought to determine how APAP exposures at levels that do not result in significant hepatic injury impact the mature lung. Adult male ICR mice (8-12 wk) were exposed to a dose of APAP known to cause hepatotoxicity in adult mice [280 mg/kg, intraperitoneal (ip)], as well as a lower dose previously reported to not cause hepatic injury (140 mg/kg, ip). We confirm that the lower dose exposures did not result in significant hepatic injury. However, like high dose, lower exposure resulted in increased cellular content of the bronchoalveolar lavage fluid and induced a proinflammatory pulmonary transcriptome. Both the lower and higher dose exposures resulted in measurable changes in lung morphometrics, with the lower dose exposure causing alveolar wall thinning. Using RNAScope, we were able to detect dose-dependent, APAP-induced pulmonary Cyp2e1 expression. Finally, using FLIM we determined that both APAP exposures resulted in acute pulmonary metabolic changes consistent with mitochondrial overload in lower doses and a shift to glycolysis at a high dose. Our findings demonstrate that APAP exposures that do not cause significant hepatic injury result in acute inflammatory, morphometric, and metabolic changes in the mature lung. These previously unreported findings may help explain the potential relationship between APAP exposures and pulmonary-related morbidity.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Saif I Al-Juboori
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Durga Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
18
|
Yan M, Wang Z, Xia T, Jin S, Liu Y, Hu H, Chang Q. Enhancement of TEX264-Mediated ER-Phagy Contributes to the Therapeutic Effect of Glycycoumarin against APA Hepatotoxicity in Mice. Biomedicines 2021; 9:biomedicines9080939. [PMID: 34440143 PMCID: PMC8394328 DOI: 10.3390/biomedicines9080939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Acetaminophen (APA)-induced hepatotoxicity is coupled with the activation of autophagy. We sought to determine whether selective autophagy of the endoplasmic reticulum (ER), termed ER-phagy, is involved in APA hepatotoxicity and to explore its potential as a therapeutic target for APA-induced liver injury (AILI). APA (300 or 600 mg/kg) was administered to male C57BL/6N mice, with and without rapamycin, glycycoumarin (GCM) and N-acetylcysteine (NAC). The results demonstrated that ER-phagy accompanied with ER stress was activated after APA overdose. The dynamic changes of LC3 and TEX264 revealed that ER-phagy was induced as early as 6 h and peaked at 24 h following the APA injection. A delayed treatment with GCM, but not rapamycin, considerably attenuated a liver injury and, consequently, reduced its mortality. This is probably due to the inhibition of ER stress and the acceleration of liver regeneration via enhanced ER-phagy. Unlike the impaired hepatocyte proliferation and more severe liver injury in mice that received prolonged treatment with NAC, liver recovery is facilitated by repeated treatment with GCM. These findings suggest that TEX264-mediated ER-phagy is a compensatory mechanism against ER stress provoked by an APA overdose. A delayed and prolonged treatment with GCM enhances ER-phagy, thus serving as a potential therapeutic approach for patients presenting at the late stage of AILI.
Collapse
Affiliation(s)
- Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (M.Y.); (Z.W.); (T.X.); (S.J.); (Y.L.)
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (M.Y.); (Z.W.); (T.X.); (S.J.); (Y.L.)
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (M.Y.); (Z.W.); (T.X.); (S.J.); (Y.L.)
| | - Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (M.Y.); (Z.W.); (T.X.); (S.J.); (Y.L.)
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (M.Y.); (Z.W.); (T.X.); (S.J.); (Y.L.)
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100091, China
- Correspondence: (H.H.); (Q.C.); Tel.: +86-10-6273-8653 (H.H.); +86-10-5783-3224 (Q.C.)
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (M.Y.); (Z.W.); (T.X.); (S.J.); (Y.L.)
- Correspondence: (H.H.); (Q.C.); Tel.: +86-10-6273-8653 (H.H.); +86-10-5783-3224 (Q.C.)
| |
Collapse
|
19
|
Naim S, Fernandez-Marrero Y, de Brot S, Bachmann D, Kaufmann T. Loss of BOK Has a Minor Impact on Acetaminophen Overdose-Induced Liver Damage in Mice. Int J Mol Sci 2021; 22:ijms22063281. [PMID: 33807047 PMCID: PMC8004760 DOI: 10.3390/ijms22063281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) is one of the most commonly used analgesic and anti-pyretic drugs, and APAP intoxication is one of the main reasons for liver transplantation following liver failure in the Western world. While APAP poisoning ultimately leads to liver necrosis, various programmed cell death modalities have been implicated, including ER stress-triggered apoptosis. The BCL-2 family member BOK (BCL-2-related ovarian killer) has been described to modulate the unfolded protein response and to promote chemical-induced liver injury. We therefore investigated the impact of the loss of BOK following APAP overdosing in mice. Surprisingly, we observed sex-dependent differences in the activation of the unfolded protein response (UPR) in both wildtype (WT) and Bok-/- mice, with increased activation of JNK in females compared with males. Loss of BOK led to a decrease in JNK activation and a reduced percentage of centrilobular necrosis in both sexes after APAP treatment; however, this protection was more pronounced in Bok-/- females. Nevertheless, serum ALT and AST levels of Bok-/- and WT mice were comparable, indicating that there was no major difference in the overall outcome of liver injury. We conclude that after APAP overdosing, loss of BOK affects initiating signaling steps linked to ER stress, but has a more minor impact on the outcome of liver necrosis. Furthermore, we observed sex-dependent differences that might be worthwhile to investigate.
Collapse
Affiliation(s)
- Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Yuniel Fernandez-Marrero
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland;
| | - Daniel Bachmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Correspondence:
| |
Collapse
|
20
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
21
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
22
|
Ishitsuka Y, Kondo Y, Kadowaki D. Toxicological Property of Acetaminophen: The Dark Side of a Safe Antipyretic/Analgesic Drug? Biol Pharm Bull 2020; 43:195-206. [PMID: 32009106 DOI: 10.1248/bpb.b19-00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is the most popular analgesic/antipyretic agent in the world. APAP has been regarded as a safer drug compared with non-steroidal anti-inflammatory drugs (NSAIDs) particularly in terms of lower risks of renal dysfunction, gastrointestinal injury, and asthma/bronchospasm induction, even in high-risk patients such as the elderly, children, and pregnant women. On the other hand, the recent increasing use of APAP has raised concerns about its toxicity. In this article, we review recent pharmacological and toxicological findings about APAP from basic, clinical, and epidemiological studies, including spontaneous drug adverse events reporting system, especially focusing on drug-induced asthma and pre-and post-natal closure of ductus arteriosus. Hepatotoxicity is the greatest fault of APAP and the most frequent cause of drug-induced acute liver failure in Western countries. However, its precise mechanism remains unclear and no effective cure beyond N-acetylcysteine has been developed. Recent animal and cellular studies have demonstrated that some cellular events, such as c-jun N-terminal kinase (JNK) pathway activation, endoplasmic reticulum (ER) stress, and mitochondrial oxidative stress may play important roles in the development of hepatitis. Herein, the molecular mechanisms of APAP hepatotoxicity are summarized. We also discuss the not-so-familiar "dark side" of APAP as an otherwise safe analgesic/antipyretic drug.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Daisuke Kadowaki
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Sojo University
| |
Collapse
|
23
|
LaBranche TP, Kopec AK, Mantena SR, Hollingshead BD, Harrington AW, Stewart ZS, Zhan Y, Hayes KD, Whiteley LO, Burdick AD, Davis JW. Zucker Lean Rats With Hepatic Steatosis Recapitulate Asymptomatic Metabolic Syndrome and Exhibit Greater Sensitivity to Drug-Induced Liver Injury Compared With Standard Nonclinical Sprague-Dawley Rat Model. Toxicol Pathol 2020; 48:994-1007. [PMID: 33252024 DOI: 10.1177/0192623320968716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty liver disease is a potential risk factor for drug-induced liver injury (DILI). Despite advances in nonclinical in vitro and in vivo models to assess liver injury during drug development, the pharmaceutical industry is still plagued by idiosyncratic DILI. Here, we tested the hypothesis that certain features of asymptomatic metabolic syndrome (namely hepatic steatosis) increase the risk for DILI in certain phenotypes of the human population. Comparison of the Zucker Lean (ZL) and Zucker Fatty rats fed a high fat diet (HFD) revealed that HFD-fed ZL rats developed mild hepatic steatosis with compensatory hyperinsulinemia without increases in liver enzymes. We then challenged steatotic HFD-fed ZL rats and Sprague-Dawley (SD) rats fed normal chow, a nonclinical model widely used in the pharmaceutical industry, with acetaminophen overdose to induce liver injury. Observations in HFD-fed ZL rats included increased liver injury enzymes and greater incidence and severity of hepatic necrosis compared with similarly treated SD rats. The HFD-fed ZL rats also had disproportionately higher hepatic drug accumulation, which was linked with abnormal hepatocellular efflux transporter distribution. Here, we identify ZL rats with HFD-induced hepatic steatosis as a more sensitive nonclinical in vivo test system for modeling DILI compared with SD rats fed normal chow.
Collapse
Affiliation(s)
- Timothy P LaBranche
- 376392Pfizer Inc, Cambridge, MA, USA.,Blueprint Medicines, Cambridge, MA, USA.,*Timothy P. LaBranche and Anna K. Kopec contributed equally
| | - Anna K Kopec
- 2253Pfizer Inc, Groton, CT, USA.,*Timothy P. LaBranche and Anna K. Kopec contributed equally
| | | | | | - Andrew W Harrington
- 2253Pfizer Inc, Chesterfield, MO, USA.,Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Zachary S Stewart
- 2253Pfizer Inc, Andover, MA, USA.,Hooke Laboratories, Lawrence, MA, USA
| | | | - Kyle D Hayes
- 2253Pfizer Inc, Andover, MA, USA.,Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA
| | | | | | - John W Davis
- 376392Pfizer Inc, Cambridge, MA, USA.,Dyne Therapeutics, Waltham, MA, USA
| |
Collapse
|
24
|
Morita K, Mizuno T, Kusuhara H. Decomposition profile data analysis of multiple drug effects identifies endoplasmic reticulum stress-inducing ability as an unrecognized factor. Sci Rep 2020; 10:13139. [PMID: 32753643 PMCID: PMC7403579 DOI: 10.1038/s41598-020-70140-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Chemicals have multiple effects in biological systems. Because their on-target effects dominate the output, their off-target effects are often overlooked and can sometimes cause dangerous adverse events. Recently, we developed a novel decomposition profile data analysis method, orthogonal linear separation analysis (OLSA), to analyse multiple effects. In this study, we tested whether OLSA identified the ability of drugs to induce endoplasmic reticulum (ER) stress as a previously unrecognized factor. After analysing the transcriptome profiles of MCF7 cells treated with different chemicals, we focused on a vector characterized by well-known ER stress inducers, such as ciclosporin A. We selected five drugs predicted to be unrecognized ER stress inducers, based on their inducing ability scores derived from OLSA. These drugs actually induced X-box binding protein 1 splicing, an indicator of ER stress, in MCF7 cells in a concentration-dependent manner. Two structurally different representatives of the five test compounds exhibited similar results in HepG2 and HuH7 cells, but not in PXB primary hepatocytes derived from human-liver chimeric mice. These results indicate that our decomposition strategy using OLSA uncovered the ER stress-inducing ability of drugs as an unrecognized effect, the manifestation of which depended on the background of the cells.
Collapse
Affiliation(s)
- Katsuhisa Morita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
25
|
Bao Y, Wang P, Shao X, Zhu J, Xiao J, Shi J, Zhang L, Zhu HJ, Ma X, Manautou JE, Zhong XB. Acetaminophen-Induced Liver Injury Alters Expression and Activities of Cytochrome P450 Enzymes in an Age-Dependent Manner in Mouse Liver. Drug Metab Dispos 2020; 48:326-336. [PMID: 32094214 DOI: 10.1124/dmd.119.089557] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Drug-induced liver injury (DILI) is a global medical problem. The risk of DILI is often related to expression and activities of drug-metabolizing enzymes, especially cytochrome P450s (P450s). However, changes on expression and activities of P450s after DILI have not been determined. The aim of this study is to fill this knowledge gap. Acetaminophen (APAP) was used as a model drug to induce DILI in C57BL/6J mice at different ages of days 10 (infant), 22 (child), and 60 (adult). DILI was assessed by levels of alanine aminotransferase and aspartate aminotransferase in plasma with a confirmation by H&E staining on liver tissue sections. The expression of selected P450s at mRNA and protein levels was measured by real-time polymerase chain reaction and liquid chromatography-tandem mass spectrometry, respectively. The activities of these P450s were determined by the formation of metabolites from probe drugs for each P450 using ultraperformance liquid chromatography-quadrupole time of flight mass spectrometry. DILI was induced at mild to severe levels in a dose-dependent manner in 200, 300, and 400 mg/kg APAP-treated groups at child and adult ages, but not at the infant age. Significantly decreased expression at mRNA and protein levels as well as enzymatic activities of CYP2E1, 3A11, 1A2, and 2C29 were found at child and adult ages. Adult male mice were more susceptible to APAP-induced liver injury than female mice with more decreased expression of P450s. These results suggest that altered levels of P450s in livers severely injured by drugs may affect the therapeutic efficacy of drugs, which are metabolized by P450s, more particularly for males. SIGNIFICANCE STATEMENT: The current study in an animal model demonstrates that acetaminophen-induced liver injury results in decreased expression and enzyme activities of several examined drug-metabolizing cytochrome P450s (P450s). The extent of such decreases is correlated to the degree of liver injury severity. The generated data may be translated to human health for patients who have drug-induced liver injury with decreased capability to metabolize drugs by certain P450s.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Pei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Xueyan Shao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jingcheng Xiao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jian Shi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Lirong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
26
|
Zuo Q, Wu Q, Lv Y, Gong X, Cheng D. Imaging of endoplasmic reticulum superoxide anion fluctuation in a liver injury model by a selective two-photon fluorescent probe. NEW J CHEM 2020. [DOI: 10.1039/d0nj00487a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An endoplasmic reticulum-targeted two-photon probe is reported with excellent sensitivity and selectivity for visualizing the O2˙− level in a liver injury model.
Collapse
Affiliation(s)
- Qingping Zuo
- Department of Pharmacy
- The First Hospital of Changsha
- Changsha
- P. R. China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
27
|
Chen Q, Yan D, Zhang Q, Zhang G, Xia M, Li J, Zhan W, Shen E, Li Z, Lin L, Chen YH, Wan X. Treatment of acetaminophen-induced liver failure by blocking the death checkpoint protein TRAIL. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165583. [DOI: 10.1016/j.bbadis.2019.165583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/16/2019] [Accepted: 10/16/2019] [Indexed: 01/06/2023]
|
28
|
Toxic Acetaminophen Exposure Induces Distal Lung ER Stress, Proinflammatory Signaling, and Emphysematous Changes in the Adult Murine Lung. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7595126. [PMID: 31885815 PMCID: PMC6914885 DOI: 10.1155/2019/7595126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Clinical studies have demonstrated a strong association between both acute toxic exposure and the repetitive, chronic exposure to acetaminophen (APAP) with pulmonary dysfunction. However, the mechanisms underlying this association are unknown. Preclinical reports have demonstrated that significant bronchiolar injury occurs with toxic APAP exposure, but very little information exists on how the distal lung is affected. However, cells in the alveolar space, including the pulmonary epithelium and resident macrophages, express the APAP-metabolizing enzyme CYP2E1 and are a potential source of toxic metabolites and subsequent distal lung injury. Thus, we hypothesized that distal lung injury would occur in a murine model of toxic APAP exposure. Following exposure of APAP (280 mg/kg, IP), adult male mice were found to have significant proximal lung histopathology as well as distal lung inflammation and emphysematous changes. Toxic APAP exposure was associated with increased CYP2E1 expression in the distal lung and accumulation of APAP-protein adducts. This injury was associated with distal lung activation of oxidant stress, endoplasmic reticulum stress, and inflammatory stress response pathways. Our findings confirm that following toxic APAP exposure, distal lung CYP2E1 expression is associated with APAP metabolism, tissue injury, and oxidant, inflammatory, and endoplasmic reticulum signaling. This previously unrecognized injury may help improve our understanding of the relationship between APAP and pulmonary-related morbidity.
Collapse
|
29
|
Tian X, Yan F, Zheng J, Cui X, Feng L, Li S, Jin L, James TD, Ma X. Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury. Anal Chem 2019; 91:15840-15845. [PMID: 31713417 DOI: 10.1021/acs.analchem.9b04189] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carboxylesterase 2 (CES2), an endoplasmic reticulum (ER) located phase I enzyme, plays a vital role in the metabolism of various endogenous and exogenous substances, and is regarded as an important target for the design of prodrugs. Unfortunately, superior highly selective ER targeting fluorescent probes for monitoring of CES2 are not currently available. Herein, we report an ER targeting CES2 selective and sensitive ratiometric fluorescent probe ERNB based on the ER localizing group p-toluenesulfonamide. ERNB possessed high specificity, sensitivity, and exhibited excellent subcellular localization when compared to commercial ER tracker, and was used to image CES2 in the ER of living cells. Additionally, using ERNB we evaluated the CES2 regulation under d,l-dithiothreitol and tunicamycin-induced ER stress. Furthermore, we determined the down regulation of CES2 activity and expression in the acetaminophen-induced acute liver injury model. On the basis of these results, we conclude that ERNB is a promising tool for highlighting the role of CES2 in the ER and in exploring the role of CES2 in the development of diseases associated with ER stress.
Collapse
Affiliation(s)
- Xiangge Tian
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Fei Yan
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 209 Tongshan Road , Xuzhou , Jiangsu 221004 , China
| | - Jingyuan Zheng
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Xiaolin Cui
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Lei Feng
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Sheng Li
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Lingling Jin
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Tony D James
- Department of Chemistry , University of Bath , Bath BA2 7AY , United Kingdom
| | - Xiaochi Ma
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 209 Tongshan Road , Xuzhou , Jiangsu 221004 , China
| |
Collapse
|
30
|
BGP-15 Protects Mitochondria in Acute, Acetaminophen Overdose Induced Liver Injury. Pathol Oncol Res 2019; 26:1797-1803. [PMID: 31705481 PMCID: PMC7297855 DOI: 10.1007/s12253-019-00721-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) induced hepatotoxicity involves activation of c-Jun amino-terminal kinase (JNK), mitochondrial damage and ER stress. BGP-15, a hydroximic acid derivative, has been reported to have hepatoprotective effects in APAP overdose induced liver damage. Effect of BGP-15 was further investigated on mitochondria in APAP-overdose induced acute liver injury in mice. We found that BGP-15 efficiently preserved mitochondrial morphology, and it caused a marked decrease in the number of damaged mitochondria. Attenuation of mitochondrial damage by BGP-15 is supported by immunohistochemistry as the TOMM20 label and the co-localized autophagy markers detected in the livers of APAP-treated mice were markedly reduced upon BGP-15 administration. This effect, along with the observed prevention of JNK activation likely contribute to the mitochondrial protective action of BGP-15.
Collapse
|
31
|
Wang X, Zhang X, Wang F, Pang L, Xu Z, Li X, Wu J, Song Y, Zhang X, Xiao J, Lin H, Liu Y. FGF1 protects against APAP-induced hepatotoxicity via suppression of oxidative and endoplasmic reticulum stress. Clin Res Hepatol Gastroenterol 2019; 43:707-714. [PMID: 31029643 DOI: 10.1016/j.clinre.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose/abuse is the leading cause of acute liver failure in many countries. Fibroblast growth factor 1 (FGF 1) is a metabolic regulator with several physiological functions. Previous studies suggested that FGF1 promotes differentiation and maturation of liver-derived stem cells. In this study, we investigated the protective effects of FGF1 against APAP-induced hepatotoxicity in mice. APAP markedly increased circulating levels of ALT and AST, while FGF1 significantly inhibited increases in the serum levels of ALT and AST, as compared to littermates. In addition, histopathological evaluation of the livers revealed that FGF1 prevented APAP-induced centrilobular necrosis. Livers exhibited severe inflammation, apoptosis, oxidative stress and endoplasmic reticulum stress in response to APAP toxicity, whereas these changes were reversed by a single injection of FGF1. In conclusion, our findings suggest that FGF1 protects mice from APAP-induced hepatotoxicity through suppression of inflammation, apoptosis, and oxidative and endoplasmic reticulum stress. Therefore, FGF1 may represent a promising therapeutic agent for APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Xiaofang Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Xie Zhang
- Department of pharmacy, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315000, PR China
| | - Fan Wang
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, 830063, PR China; Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, PR China
| | - Lingxia Pang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Zeping Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Xiaofeng Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Junnan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Yufei Song
- Department of pharmacy, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315000, PR China
| | - Xuesong Zhang
- Department of pharmacy, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315000, PR China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Hong Lin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Yanlong Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
32
|
Xie W, Xie J, Vince R, More SS. Guanabenz Attenuates Acetaminophen-Induced Liver Toxicity and Synergizes Analgesia in Mice. Chem Res Toxicol 2019; 33:162-171. [DOI: 10.1021/acs.chemrestox.9b00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Xie
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Wu Z, Liu Q, Wang L, Zheng M, Guan M, Zhang M, Zhao W, Wang C, Lu S, Cheng J, Leng S. The essential role of CYP2E1 in metabolism and hepatotoxicity of N,N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study. Arch Toxicol 2019; 93:3169-3181. [PMID: 31501917 DOI: 10.1007/s00204-019-02567-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
N,N-Dimethylformamide (DMF) is a widespread contaminant of leather factories and their surrounding environment. There is a lack of direct in vivo evidence supporting CYP2E1 as a primary enzyme responsible for DMF metabolism and hepatotoxicity. In this study, a novel Cyp2e1 knockout (KO) mouse model was generated and used to assess whether DMF metabolism and hepatotoxicity is CYP2E1 dependent using an acute toxicity protocol with a single dose of 1500 mg DMF/kg. An epidemiological study in 698 DMF-exposed workers and 188 non-DMF-exposed controls was conducted to investigate the associations between functional polymorphisms of CYP2E1 (rs6413432/rs2031920) and DMF metabolite (N-methylcarbmoylated-hemoglobin [NMHb]). We successfully established Cyp2e1 KO mice with evidence from DNA sequence analysis, which showed 1-bp insertion at 65 bp (C) site of Cyp2e1 Exon 1. In addition, western blot and in vivo pharmacokinetic study also showed a complete absence of CYP2E1 protein and a 92% and 88% reduction in CYP2E1 activity among males and females, respectively. DMF metabolism as evidenced by increased blood NMHb, and hepatotoxicity as evidenced by elevated liver/body weight ratio, activity of liver enzymes and massive liver necrosis were detected in wild-type (WT) mice but were completely abrogated in KO mice, strongly supporting a CYP2E1-dependent pattern of DMF metabolism and hepatotoxicity. Moreover, variant allele of CYP2E1-rs6413432 was also significantly associated with higher NMHb levels in DMF-exposed workers (P = 0.045). The increase of glucose-regulated protein 94 detected in WT mice but not in KO mice suggested CYP2E1-dependent endoplasmic reticulum stress may be a key mechanism underlying DMF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhijun Wu
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiang Liu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Lei Wang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Min Zheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Mingyue Guan
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Man Zhang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wenjin Zhao
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chunmin Wang
- Department of Physical and Chemical Laboratory, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Songwen Lu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Juan Cheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Shuguang Leng
- School of Public Health, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
34
|
Lee DH, Lee B, Park JS, Lee YS, Kim JH, Cho Y, Jo Y, Kim HS, Lee YH, Nam KT, Bae SH. Inactivation of Sirtuin2 protects mice from acetaminophen-induced liver injury: possible involvement of ER stress and S6K1 activation. BMB Rep 2019. [PMID: 30021675 PMCID: PMC6476489 DOI: 10.5483/bmbrep.2019.52.3.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acetaminophen (APAP) overdose can cause hepatotoxicity by inducing mitochondrial damage and subsequent necrosis in hepatocytes. Sirtuin2 (Sirt2) is an NAD+-dependent deacetylase that regulates several biological processes, including hepatic gluconeogenesis, as well as inflammatory pathways. We show that APAP decreases the expression of Sirt2. Moreover, the ablation of Sirt2 attenuates APAP-induced liver injuries, such as oxidative stress and mitochondrial damage in hepatocytes. We found that Sirt2 deficiency alleviates the APAP-mediated endoplasmic reticulum (ER) stress and phosphorylation of the p70 ribosomal S6 kinase 1 (S6K1). Moreover, Sirt2 interacts with and deacetylates S6K1, followed by S6K1 phosphorylation induction. This study elucidates the molecular mechanisms underlying the protective role of Sirt2 inactivation in APAP-induced liver injuries.
Collapse
Affiliation(s)
- Da Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722; Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Buhyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722; Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yu Seol Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722; Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Hee Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yoonjung Jo
- Department of Bioinspired Science, Ewha Womans University, Seoul 03760, Korea
| | - Hyun-Seok Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ki Taek Nam
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722; Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
35
|
Research Progress on the Animal Models of Drug-Induced Liver Injury: Current Status and Further Perspectives. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1283824. [PMID: 31119149 PMCID: PMC6500714 DOI: 10.1155/2019/1283824] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major concern in clinical studies as well as in postmarketing surveillance. It is necessary to establish an animal model of DILI for thorough investigation of mechanisms of DILI and searching for protective medications. This article reviews the current status and future perspective on establishment of DILI models based on different hepatotoxic drugs, as well as the underlying mechanisms of liver function damage induced by specific medicine. Therefore, information from this article can help researchers make a suitable selection of animal models for further study.
Collapse
|
36
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
Aivazidis S, Anderson CC, Roede JR. Toxicant-mediated redox control of proteostasis in neurodegeneration. CURRENT OPINION IN TOXICOLOGY 2019; 13:22-34. [PMID: 31602419 PMCID: PMC6785977 DOI: 10.1016/j.cotox.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Disruption in redox signaling and control of cellular processes has emerged as a key player in many pathologies including neurodegeneration. As protein aggregations are a common hallmark of several neuronal pathologies, a firm understanding of the interplay between redox signaling, oxidative and free radical stress, and proteinopathies is required to sort out the complex mechanisms in these diseases. Fortunately, models of toxicant-induced neurodegeneration can be utilized to evaluate and report mechanistic alterations in the proteostasis network (PN). The epidemiological links between environmental toxicants and neurological disease gives further credence into characterizing the toxicant-mediated PN disruptions observed in these conditions. Reviewed here are examples of mechanistic interaction between oxidative or free radical stress and PN alterations. Additionally, investigations into toxicant-mediated PN disruptions, specifically focusing on environmental metals and pesticides, are discussed. Finally, we emphasize the need to distinguish whether the presence of protein aggregations are contributory to phenotypes related to neurodegeneration, or if they are a byproduct of PN deficiencies.
Collapse
Affiliation(s)
- Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
38
|
Yan T, Huang J, Nisar MF, Wan C, Huang W. The Beneficial Roles of SIRT1 in Drug-Induced Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8506195. [PMID: 31354914 PMCID: PMC6636535 DOI: 10.1155/2019/8506195] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) as a result of accumulated drugs in the human body metabolized into toxic agents and helps generate heavy oxidative stress, inflammation, and apoptosis, which induces necrosis in hepatocytes and ultimately damages the liver. Sirtuin 1 (SIRT1) is said to have multiple vital roles in cell proliferation, aging, and antistress systems of the human body. The levels of SIRT1 and its activation precisely modulate its critical role in the interaction between multiple step procedures of DILI. The nuclear factor kappa-light-chain-enhancer of activated B cell- (NF-κB-) mediated inflammation signaling pathway, reactive oxygen species (ROS), DNA damage, mitochondrial membrane potential collapse, and endoplasmic reticulum (ER) stress also contribute to aggravate DILI. Apoptosis is regarded as the terminal reaction followed by multiple signaling cascades including caspases, p53, and mitochondrial dysfunction which have been said to contribute in DILI. The SIRT1 activator is regarded as a potential candidate for DILI, because the former could inhibit signaling of p53, NF-κB, and ER stress. On the other hand, overexpression of SIRT1 also enhances the activation of antioxidant responses via Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) signaling. The current manuscript will highlight the mechanism of DILI and the interaction of SIRT1 with various cytoplasmic factors leading to DILI along with the summary of potent SIRT1 agonists.
Collapse
Affiliation(s)
- Tingdong Yan
- 1Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jinlong Huang
- 2The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| | - Muhammad Farrukh Nisar
- 3Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Chunpeng Wan
- 4Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weifeng Huang
- 2The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
39
|
Miller CG, Holmgren A, Arnér ESJ, Schmidt EE. NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med 2018; 127:248-261. [PMID: 29609022 PMCID: PMC6165701 DOI: 10.1016/j.freeradbiomed.2018.03.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons ("reducing power") from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
40
|
Kim EH, Park PH. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction. Biochem Pharmacol 2018; 154:278-292. [DOI: 10.1016/j.bcp.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
|
41
|
Autophagy and acetaminophen-induced hepatotoxicity. Arch Toxicol 2018; 92:2153-2161. [PMID: 29876591 DOI: 10.1007/s00204-018-2237-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. APAP overdose can induce acute liver injury in humans, which is responsible for approximately 50% of total cases of acute liver failure in the United States and some European countries. Currently, the metabolism of APAP in the body has been extensively investigated; however, the exact mechanisms for APAP hepatotoxicity are not well understood. Recent studies have shown that mitochondrial dysfunction, oxidative stress and inflammatory responses play a critical role in the pathogenesis of APAP hepatotoxicity. Autophagy is a catabolic machinery aimed at recycling cellular components and damaged organelles in response to a variety of stimuli, such as nutrient deprivation and toxic stress. Increasing evidence supports that autophagy is involved in the pathophysiological process of APAP-induced liver injury. In this review, we summarized the changes of autophagy in the liver following APAP intoxication and discussed the role and its possible mechanisms of autophagy in APAP hepatotoxicity. Furthermore, this review highlights the crosstalk between mitophagy, oxidative stress and inflammation in APAP-induced liver injury and presents some possible molecular mechanisms by which activated autophagy protects against APAP-induced liver injury.
Collapse
|
42
|
Luo L, Jiang W, Liu H, Bu J, Tang P, Du C, Xu Z, Luo H, Liu B, Xiao B, Zhou Z, Liu F. De-silencing Grb10 contributes to acute ER stress-induced steatosis in mouse liver. J Mol Endocrinol 2018; 60:285-297. [PMID: 29555819 DOI: 10.1530/jme-18-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
The growth factor receptor bound protein GRB10 is an imprinted gene product and a key negative regulator of the insulin, IGF1 and mTORC1 signaling pathways. GRB10 is highly expressed in mouse fetal liver but almost completely silenced in adult mice, suggesting a potential detrimental role of this protein in adult liver function. Here we show that the Grb10 gene could be reactivated in adult mouse liver by acute endoplasmic reticulum stress (ER stress) such as tunicamycin or a short-term high-fat diet (HFD) challenge, concurrently with increased unfolded protein response (UPR) and hepatosteatosis. Lipogenic gene expression and acute ER stress-induced hepatosteatosis were significantly suppressed in the liver of the liver-specific GRB10 knockout mice, uncovering a key role of Grb10 reactivation in acute ER stress-induced hepatic lipid dysregulation. Mechanically, acute ER stress induces Grb10 reactivation via an ATF4-mediated increase in Grb10 gene transcription. Our study demonstrates for the first time that the silenced Grb10 gene can be reactivated by acute ER stress and its reactivation plays an important role in the early development of hepatic steatosis.
Collapse
Affiliation(s)
- Liping Luo
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanxiang Jiang
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jicheng Bu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Tang
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongyangzi Du
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhipeng Xu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bilian Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- The State Key Laboratory of BiotherapyWest China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology and the Metabolic Syndrome Research Center of Central South UniversityThe Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of PharmacologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
43
|
Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 2018; 17:274-283. [PMID: 29753208 PMCID: PMC6006912 DOI: 10.1016/j.redox.2018.04.019] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in many developed countries. Mitochondrial oxidative stress is considered to be the predominant cellular event in APAP-induced liver injury. Accordingly, N-acetyl cysteine, a known scavenger of reactive oxygen species (ROS), is recommended as an effective clinical antidote against APAP-induced acute liver injury (AILI) when it is given at an early phase; however, the narrow therapeutic window limits its use. Hence, the development of novel therapeutic approaches that can offer broadly protective effects against AILI is clearly needed. To this end, it is necessary to better understand the mechanisms of APAP hepatotoxicity. Up to now, in addition to mitochondrial oxidative stress, many other cellular processes, including phase I/phase II metabolism, endoplasmic reticulum stress, autophagy, sterile inflammation, microcirculatory dysfunction, and liver regeneration, have been identified to be involved in the pathogenesis of AILI, providing new targets for developing more effective therapeutic interventions against APAP-induced liver injury. In this review, we summarize intracellular and extracellular events involved in APAP hepatotoxicity, along with emphatic discussions on the possible therapeutic approaches targeting these different cellular events.
Collapse
Affiliation(s)
- Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yazhen Huo
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non-thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
44
|
Rutkowski DT. Liver function and dysfunction - a unique window into the physiological reach of ER stress and the unfolded protein response. FEBS J 2018; 286:356-378. [PMID: 29360258 DOI: 10.1111/febs.14389] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) improves endoplasmic reticulum (ER) protein folding in order to alleviate stress. Yet it is becoming increasingly clear that the UPR regulates processes well beyond those directly involved in protein folding, in some cases by mechanisms that fall outside the realm of canonical UPR signaling. These pathways are highly specific from one cell type to another, implying that ER stress signaling affects each tissue in a unique way. Perhaps nowhere is this more evident than in the liver, which-beyond being a highly secretory tissue-is a key regulator of peripheral metabolism and a uniquely proliferative organ upon damage. The liver provides a powerful model system for exploring how and why the UPR extends its reach into physiological processes that occur outside the ER, and how ER stress contributes to the many systemic diseases that involve liver dysfunction. This review will highlight the ways in which the study of ER stress in the liver has expanded the view of the UPR to a response that is a key guardian of cellular homeostasis outside of just the narrow realm of ER protein folding.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, IA, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, IA, USA
| |
Collapse
|
45
|
Sodium 4-phenylbutyric acid prevents murine acetaminophen hepatotoxicity by minimizing endoplasmic reticulum stress. J Gastroenterol 2017; 52:611-622. [PMID: 27599972 DOI: 10.1007/s00535-016-1256-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acetaminophen (APAP) overdose induces severe oxidative stress followed by hepatocyte apoptosis/necrosis. Previous studies have indicated that endoplasmic reticulum (ER) stress is involved in the cell death process. Therefore, we investigated the effect of the chemical chaperone 4-phenyl butyric acid (PBA) on APAP-induced liver injury in mice. METHODS Eight-week-old male C57Bl6/J mice were given a single intraperitoneal (i.p.) injection of APAP (450 mg/kg body weight), following which some were repeatedly injected with PBA (120 mg/kg body weight, i.p.) every 3 h starting at 0.5 h after the APAP challenge. All mice were then serially euthanized up to 12 h later. RESULTS PBA treatment dramatically ameliorated the massive hepatocyte apoptosis/necrosis that was observed 6 h after APAP administration. PBA also significantly prevented the APAP-induced increases in cleaved activating transcription factor 6 and phosphorylation of c-Jun N-terminal protein kinase and significantly blunted the increases in mRNA levels for binding immunoglobulin protein, spliced X-box binding protein-1, and C/EBP homologous protein. Moreover, PBA significantly prevented APAP-induced Bax translocation to the mitochondria, and the expression of heme oxygenase-1 mRNA and 4-hydroxynonenal. By contrast, PBA did not affect hepatic glutathione depletion following APAP administration, reflecting APAP metabolism. CONCLUSIONS PBA prevents APAP-induced liver injury even when an APAP challenge precedes its administration. The underlying mechanism of action most likely involves the prevention of ER stress-induced apoptosis/necrosis in the hepatocytes during APAP intoxication.
Collapse
|
46
|
Paridaens A, Raevens S, Colle I, Bogaerts E, Vandewynckel YP, Verhelst X, Hoorens A, van Grunsven LA, Van Vlierberghe H, Geerts A, Devisscher L. Combination of tauroursodeoxycholic acid and N-acetylcysteine exceeds standard treatment for acetaminophen intoxication. Liver Int 2017; 37:748-756. [PMID: 27706903 DOI: 10.1111/liv.13261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/23/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Acetaminophen overdose in mice is characterized by hepatocyte endoplasmic reticulum stress, which activates the unfolded protein response, and centrilobular hepatocyte death. We aimed at investigating the therapeutic potential of tauroursodeoxycholic acid, a hydrophilic bile acid known to have anti-apoptotic and endoplasmic reticulum stress-reducing capacities, in experimental acute liver injury induced by acetaminophen overdose. METHODS Mice were injected with 300 mg/kg acetaminophen, 2 hours prior to receiving tauroursodeoxycholic acid, N-acetylcysteine or a combination therapy, and were euthanized 24 hours later. Liver damage was assessed by serum transaminases, liver histology, terminal deoxynucleotidyl transferase dUTP nick end labelling staining, expression profiling of inflammatory, oxidative stress, unfolded protein response, apoptotic and pyroptotic markers. RESULTS Acetaminophen overdose resulted in a significant increase in serum transaminases, hepatocyte cell death, unfolded protein response activation, oxidative stress, NLRP3 inflammasome activation, caspase 1 and pro-inflammatory cytokine expressions. Standard of care, N-acetylcysteine and, to a lesser extent, tauroursodeoxycholic treatment were associated with significantly lower transaminase levels, hepatocyte death, unfolded protein response activation, oxidative stress markers, caspase 1 expression and NLRP3 levels. Importantly, the combination of N-acetylcysteine and tauroursodeoxycholic acid improved serum transaminase levels, reduced histopathological liver damage, UPR-activated CHOP, oxidative stress, caspase 1 expression, NLRP3 levels, IL-1β levels and the expression of pro-inflammatory cytokines and this to a greater extend than N-acetylcysteine alone. CONCLUSIONS These findings indicate that a combination strategy of N-acetylcysteine and tauroursodeoxycholic acid surpasses the standard of care in acetaminophen-induced liver injury in mice and might represent an attractive therapeutic opportunity for acetaminophen-intoxicated patients.
Collapse
Affiliation(s)
- Annelies Paridaens
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Eliene Bogaerts
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | | | - Xavier Verhelst
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University, Ghent, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Anja Geerts
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res 2017; 3:157-169. [PMID: 28670625 PMCID: PMC5489132 DOI: 10.18053/jctres.03.2017s1.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and mechanisms of liver injury induced by APAP overdose have been the focus of extensive investigation. Studies in the mouse model, which closely reproduces the human condition, have shown that hepatotoxicity is initiated by formation of a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes cellular glutathione and forms protein adducts on mitochondrial proteins. This leads to mitochondrial oxidative and nitrosative stress, accompanied by activation of c-jun N-terminal kinase (JNK) and its translocation to the mitochondria. This then amplifies the mitochondrial oxidant stress, resulting in translocation of Bax and dynamin related protein 1 (Drp1) to the mitochondria, which induces mitochondrial fission, and ultimately induction of the mitochondrial membrane permeability transition (MPT). The induction of MPT triggers release of intermembrane proteins such as apoptosis inducing factor (AIF) and endonuclease G into the cytosol and their translocation to the nucleus, causing nuclear DNA fragmentation and activation of regulated necrosis. Though these cascades of events were primarily identified in the mouse model, studies on human hepatocytes and analysis of circulating biomarkers from patients after APAP overdose, indicate that a number of mechanistic events are identical in mice and humans. Circulating biomarkers also seem to be useful in predicting the course of liver injury after APAP overdose in humans and hold promise for significant clinical use in the near future.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
48
|
Wu FL, Liu WY, Van Poucke S, Braddock M, Jin WM, Xiao J, Li XK, Zheng MH. Targeting endoplasmic reticulum stress in liver disease. Expert Rev Gastroenterol Hepatol 2016; 10:1041-52. [PMID: 27093595 DOI: 10.1080/17474124.2016.1179575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The accumulation of unfolded protein in the endoplasmic reticulum (ER) initiates an unfolded protein response (UPR) via three signal transduction cascades, which involve protein kinase RNA-like ER kinase (PERK), inositol requiring enzyme-1α (IRE1α) and activating transcription factor-6α (ATF6α). An ER stress response is observed in nearly all physiologies related to acute and chronic liver disease and therapeutic targeting of the mechanisms implicated in UPR signaling have attracted considerable attention. AREAS COVERED This review focuses on the correlation between ER stress and liver disease and the possible targets which may drive the potential for novel therapeutic intervention. Expert Commentary: We describe pathways which are involved in UPR signaling and their potential correlation with various liver diseases and underlying mechanisms which may present opportunities for novel therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Fa-Ling Wu
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| | - Wen-Yue Liu
- c Department of Endocrinology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Sven Van Poucke
- d Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy , Ziekenhuis Oost-Limburg , Genk , Belgium
| | - Martin Braddock
- e Global Medicines Development , AstraZeneca R&D , Alderley Park , UK
| | - Wei-Min Jin
- f Department of Infection Diseases , People Hospital of Wencheng County , Wenzhou , China
| | - Jian Xiao
- g Institute of Biology Science , Wenzhou University , Wenzhou , China.,h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Xiao-Kun Li
- g Institute of Biology Science , Wenzhou University , Wenzhou , China.,h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Ming-Hua Zheng
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
49
|
Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response. Viruses 2016; 8:v8050150. [PMID: 27223299 PMCID: PMC4885105 DOI: 10.3390/v8050150] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression.
Collapse
|
50
|
Bushel PR, Fannin RD, Gerrish K, Watkins PB, Paules RS. Blood gene expression profiling of an early acetaminophen response. THE PHARMACOGENOMICS JOURNAL 2016; 17:230-236. [PMID: 26927286 DOI: 10.1038/tpj.2016.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/16/2015] [Accepted: 01/20/2016] [Indexed: 01/12/2023]
Abstract
Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.
Collapse
Affiliation(s)
- P R Bushel
- Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - R D Fannin
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - K Gerrish
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - P B Watkins
- The Hamner Institute for Health Sciences, Research Triangle Park, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - R S Paules
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|