1
|
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, Allena M, Greco R, Tassorelli C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023; 24:ijms24065334. [PMID: 36982428 PMCID: PMC10049673 DOI: 10.3390/ijms24065334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Daniele Martinelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Marta Allena
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-(0382)-380255
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
2
|
Kanagasingam S, von Ruhland C, Welbury R, Chukkapalli SS, Singhrao SK. Porphyromonas gingivalis Conditioned Medium Induces Amyloidogenic Processing of the Amyloid-β Protein Precursor upon in vitro Infection of SH-SY5Y Cells. J Alzheimers Dis Rep 2022; 6:577-587. [PMID: 36275415 PMCID: PMC9535609 DOI: 10.3233/adr-220029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Cleavage of the amyloid-β protein precursor (AβPP) mediated by host secretase enzymes, releases several fragments including amyloid-β (Aβ40 and Aβ42). Objective: To determine if Porphyromonas gingivalis conditioned medium cleaved AβPP to release Aβ40 and Aβ42. Methods: The SH-SY5Y cell line was challenged, in vitro, with P. gingivalis (Pg381) conditioned medium in the presence/absence of cytokines. The cells and their supernatants were assessed for AβPP cleavage fragments by immunoblotting and transmission electron microscopy. Results: Western blotting of the cell lysates with the anti-AβPP C-terminal antibody demonstrated variable molecular weight bands corresponding to full length and fragmented AβPP in lanes treated with the following factors: Tryptic soy broth (TSB), Pg381, IL-6, Pg381 + IL-1β, and Pg381 + TNF-α. The low molecular weight bands corresponding to the C99 dimerized fragment were observed in the Pg381 and interlukin-6 (IL-6) treated groups and were significantly more intense in the presence of Pg381 with either IL-6 or TNF-α. Bands corresponding to the dimerized C83 fragment were observed with cells treated with TNF-α alone and with Pg381 combined with IL-1β or IL-6 or TNF-α. The anti-Aβ antibody detected statistically significant Aβ40 and Aβ42, levels when these two Aβ species were pooled across test samples and compared to the untreated group. Electron microscopic examination of the supernatants demonstrated insoluble Aβ40 and Aβ42. Conclusion: These observations strongly imply that AβPP is an infection responsive protein cleaved via the amyloidogenic pathway on exposure to conditioned medium and in the presence of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Christopher von Ruhland
- Electron and Light Microscopy Facility, College of Biomedical and Life Sciences, Cardiff University, Wales, UK
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | | | - Sim K. Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
3
|
Harding A, Kanagasingam S, Welbury R, Singhrao SK. Periodontitis as a Risk Factor for Alzheimer's Disease: The Experimental Journey So Far, with Hope of Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:241-260. [PMID: 35612802 DOI: 10.1007/978-3-030-96881-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontitis and Alzheimer's disease (AD) exist globally within the adult population. Given that the risk of AD incidence doubles within 10 years from the time of periodontal disease diagnosis, there is a window of opportunity for slowing down or preventing AD by risk-reduction-based intervention. Literature appraisal on the shared risk factors of these diseases suggests a shift to a healthy lifestyle would be beneficial. Generalised (chronic) periodontitis with an established dysbiotic polymicrobial aetiology affects the tooth supporting tissues with eventual tooth loss. The cause of AD remains unknown, however two neurohistopathological lesions - amyloid-beta plaques and neurofibrillary tangles, together with the clinical history, provide AD diagnosis at autopsy. Historically, prominence was given to the two hallmark lesions but now emphasis is placed on cerebral inflammation and what triggers it. Low socioeconomic status promotes poor lifestyles that compromise oral and personal hygiene along with reliance on poor dietary intake. Taken together with advancing age and a declining immune protection, these risk factors may negatively impact on periodontitis and AD. These factors also provide a tangible solution to controlling pathogenic bacteria indigenous to the oral and gastrointestinal tract microbioes in vulnerable subjects. The focus here is on Porphyromonas gingivalis, one of several important bacterial pathogens associated with both periodontitis and AD. Recent research has enabled advances in our knowledge of the armoury of P. gingivalis via reproduction of all clinical and neuropathological hallmark lesions of AD and chronic periodontal disease in vitro and in vivo experimental models, thus paving the way for better future management.
Collapse
Affiliation(s)
- Alice Harding
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK.
| |
Collapse
|
4
|
Igel E, Haller A, Wolfkiel PR, Orr-Asman M, Jaeschke A, Hui DY. Distinct pro-inflammatory properties of myeloid cell-derived apolipoprotein E2 and E4 in atherosclerosis promotion. J Biol Chem 2021; 297:101106. [PMID: 34425108 PMCID: PMC8437825 DOI: 10.1016/j.jbc.2021.101106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.
Collapse
Affiliation(s)
- Emily Igel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - April Haller
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patrick R Wolfkiel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa Orr-Asman
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
5
|
Berger M, Cooter M, Roesler AS, Chung S, Park J, Modliszewski JL, VanDusen KW, Thompson JW, Moseley A, Devinney MJ, Smani S, Hall A, Cai V, Browndyke JN, Lutz MW, Corcoran DL. APOE4 Copy Number-Dependent Proteomic Changes in the Cerebrospinal Fluid. J Alzheimers Dis 2020; 79:511-530. [PMID: 33337362 PMCID: PMC7902966 DOI: 10.3233/jad-200747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: APOE4 has been hypothesized to increase Alzheimer’s disease risk by increasing neuroinflammation, though the specific neuroinflammatory pathways involved are unclear. Objective: Characterize cerebrospinal fluid (CSF) proteomic changes related to APOE4 copy number. Methods: We analyzed targeted proteomic data from ADNI CSF samples using a linear regression model adjusting for age, sex, and APOE4 copy number, and additional linear models also adjusting for AD clinical status or for CSF Aβ, tau, or p-tau levels. False discovery rate was used to correct for multiple comparisons correction. Results: Increasing APOE4 copy number was associated with a significant decrease in a CRP peptide level across all five models (q < 0.05 for each), and with significant increases in ALDOA, CH3L1 (YKL-40), and FABPH peptide levels (q < 0.05 for each) except when controlling for AD clinical status or neurodegeneration biomarkers (i.e., CSF tau or p-tau). In all models except the one controlling for CSF Aβ levels, though not statistically significant, there was a consistent inverse direction of association between APOE4 copy number and the levels of all 24 peptides from all 8 different complement proteins measured. The odds of this happening by chance for 24 unrelated peptides would be less than 1 in 16 million. Conclusion: Increasing APOE4 copy number was associated with decreased CSF CRP levels across all models, and increased CSF ALDOA, CH3L1, and FABH levels when controlling for CSF Aβ levels. Increased APOE4 copy number may also be associated with decreased CSF complement pathway protein levels, a hypothesis for investigation in future studies.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Durham, NC, USA.,Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Alexander S Roesler
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Stacey Chung
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - John Park
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | - Keith W VanDusen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - J Will Thompson
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Arthur Moseley
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shayan Smani
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Ashley Hall
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Victor Cai
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Jeffrey N Browndyke
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Durham, NC, USA.,Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA.,Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
6
|
Rathore SS, Isravel M, Vellaisamy S, Chellappan DR, Cheepurupalli L, Raman T, Ramakrishnan J. Exploration of Antifungal and Immunomodulatory Potentials of a Furanone Derivative to Rescue Disseminated Cryptococosis in Mice. Sci Rep 2017; 7:15400. [PMID: 29133871 PMCID: PMC5684196 DOI: 10.1038/s41598-017-15500-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans infection is quite complex with both host-pathogen interaction and host immune profile determining disease progress and therapeutic outcome. Hence in the present study, the potential utility of (E)-5-benzylidenedihydrofuran-2(3 H)-one (compound-6) was explored as an effective anticryptococcal compound with immunomodulatory potential. The efficacy of compound-6 in pulmonary cryptococosis model using H99 strain was investigated. The effective dose was found to provide 100% survival, with a significant reduction of yeast burden in lungs and brain. The biodistribution analysis provided evidence for the presence of higher concentration of compound-6 in major organs including lungs and brain. In addition, compound-6 treated mice had significantly higher expression of IL-6, IL-4 and IFN-γ in lung and brain. Similarly, elevated expression of TNF-α, IL-β1 and IL-12 were observed in lungs, suggesting the protective host response against C. neoformans. The reduction and clearance of fungal load in systemic organs and mouse survival are notable results to confirm the ability of compound-6 to treat cryptococcosis. In conclusion, the low molecular weight (174 Da), lipophilicity, its ability to cross blood brain barrier, and facilitating modulation of cytokine expression are the added advantages of compound-6 to combat against disseminated cryptococosis.
Collapse
Affiliation(s)
- Sudarshan Singh Rathore
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamilnadu, 613401, India
| | - Muthukrishnan Isravel
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamilnadu, 613401, India
| | - Sridharan Vellaisamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamilnadu, 613401, India.,Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba Jammu, J&K, 181143, India
| | - David Raj Chellappan
- Central Animal Facility (CAF), School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamilnadu, 613401, India
| | - Lalitha Cheepurupalli
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamilnadu, 613401, India
| | - Thiagarajan Raman
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, 600004, India
| | - Jayapradha Ramakrishnan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamilnadu, 613401, India.
| |
Collapse
|
7
|
Singhrao SK, Chukkapalli S, Poole S, Velsko I, Crean SJ, Kesavalu L. Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE -/- mice brains. J Oral Microbiol 2017; 9:1270602. [PMID: 28326151 PMCID: PMC5328363 DOI: 10.1080/20002297.2016.1270602] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Abstract
This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sim K Singhrao
- Dementia and Neurodegeneration Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire , Preston , UK
| | - Sasanka Chukkapalli
- Department of Periodontology, University of Florida , Gainesville , FL , USA
| | - Sophie Poole
- Dementia and Neurodegeneration Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire , Preston , UK
| | - Irina Velsko
- Department of Periodontology, University of Florida , Gainesville , FL , USA
| | - St John Crean
- Dementia and Neurodegeneration Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire , Preston , UK
| | - Lakshmyya Kesavalu
- Department of Periodontology, University of Florida, Gainesville, FL, USA; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Rokad F, Moseley R, Hardy RS, Chukkapalli S, Crean S, Kesavalu L, Singhrao SK. Cerebral Oxidative Stress and Microvasculature Defects in TNF-α Expressing Transgenic and Porphyromonas gingivalis-Infected ApoE-/- Mice. J Alzheimers Dis 2017; 60:359-369. [PMID: 28800332 DOI: 10.3233/jad-170304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The polymicrobial dysbiotic subgingival biofilm microbes associated with periodontal disease appear to contribute to developing pathologies in distal body sites, including the brain. This study examined oxidative stress, in the form of increased protein carbonylation and oxidative protein damage, in the tumor necrosis factor-α (TNF-α) transgenic mouse that models inflammatory TNF-α excess during bacterial infection; and in the apolipoprotein knockout (ApoE-/-) mouse brains, following Porphyromonas gingivalis gingival monoinfection. Following 2,4-dinitrophenylhydrazine derivatization, carbonyl groups were detected in frontal lobe brain tissue lysates by immunoblotting and immunohistochemical analysis of fixed tissue sections from the frontotemporal lobe and the hippocampus. Immunoblot analysis confirmed the presence of variable carbonyl content and oxidative protein damage in all lysates, with TNF-α transgenic blots exhibiting increased protein carbonyl content, with consistently prominent bands at 25 kDa (p = 0.0001), 43 kDa, and 68 kDa, over wild-type mice. Compared to sham-infected ApoE-/- mouse blots, P. gingivalis-infected brain tissue blots demonstrated the greatest detectable protein carbonyl content overall, with numerous prominent bands at 25 kDa (p = 0.001) and 43 kDa (p = 0.0001) and an exclusive band to this group between 30-43 kDa* (p = 0.0001). In addition, marked immunostaining was detected exclusively in the microvasculature in P. gingivalis-infected hippocampal tissue sections, compared to sham-infected, wild-type, and TNF-α transgenic mice. This study revealed that the hippocampal microvascular structure of P. gingivalis-infected ApoE-/- mice possesses elevated oxidative stress levels, resulting in the associated tight junction proteins being susceptible to increased oxidative/proteolytic degradation, leading to a loss of functional integrity.
Collapse
Affiliation(s)
- Farheen Rokad
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Ryan Moseley
- Stem Cells, Wound Repair and Regeneration, School of Dentistry, Cardiff University, Cardiff, UK
| | - Rowan S Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Sasanka Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - StJohn Crean
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Sim K Singhrao
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
9
|
Shinohara M, Kanekiyo T, Yang L, Linthicum D, Shinohara M, Fu Y, Price L, Frisch-Daiello JL, Han X, Fryer JD, Bu G. APOE2 eases cognitive decline during Aging: Clinical and preclinical evaluations. Ann Neurol 2016; 79:758-774. [PMID: 26933942 DOI: 10.1002/ana.24628] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 01/12/2016] [Accepted: 02/21/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Apolipoprotein E (apoE), a major cholesterol carrier in the brain, is associated with a strong risk for Alzheimer disease. Compared to the risky APOE4 gene allele, the effects of the protective APOE2 gene allele are vastly understudied, and thus need to be further clarified. METHODS We reviewed National Alzheimer's Coordinating Center clinical records and performed preclinical experiments using human apoE-targeted replacement (apoE-TR) mice, which do not show amyloid pathology. RESULTS Clinically, the APOE2 allele was associated with less cognitive decline during aging. This effect was also seen in subjects with little amyloid pathology, or after adjusting for Alzheimer disease-related pathologies. In animal studies, aged apoE2-TR mice also exhibited preserved memory function in water maze tests. Regardless, apoE2-TR mice showed similar or greater age-related changes in synaptic loss, neuroinflammation, and oxidative stress compared to apoE3-TR or apoE4-TR mice. Interestingly, apoE concentrations in the cortex, hippocampus, plasma, and cerebrospinal fluid (CSF) were positively correlated with memory performance across apoE isoforms, where apoE2-TR mice had higher apoE levels. Moreover, apoE2-TR mice exhibited the lowest levels of cholesterol in the cortex, despite higher levels in CSF and plasma. These cholesterol levels were associated with apoE levels and memory performance across apoE isoforms. INTERPRETATION APOE2 is associated with less cognitive decline during aging. This can occur independently of age-related synaptic/neuroinflammatory changes and amyloid accumulation. Higher levels of apoE and associated cholesterol metabolism in APOE2 carriers might contribute to this protective effect. Ann Neurol 2016;79:758-774.
Collapse
Affiliation(s)
| | | | - Longyu Yang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | | | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | - Laura Price
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | - Xianlin Han
- Sanford-Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL.,Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL.,Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
10
|
The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS. Brain Sci 2016; 6:brainsci6010006. [PMID: 26901230 PMCID: PMC4810176 DOI: 10.3390/brainsci6010006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Normal brain function is highly dependent on oxygen and nutrient supply and when the demand for oxygen exceeds its supply, hypoxia is induced. Acute episodes of hypoxia may cause a depression in synaptic activity in many brain regions, whilst prolonged exposure to hypoxia leads to neuronal cell loss and death. Acute inadequate oxygen supply may cause anaerobic metabolism and increased respiration in an attempt to increase oxygen intake whilst chronic hypoxia may give rise to angiogenesis and erythropoiesis in order to promote oxygen delivery to peripheral tissues. The effects of hypoxia on neuronal tissue are exacerbated by the release of many inflammatory agents from glia and neuronal cells. Cytokines, such as TNF-α, and IL-1β are known to be released during the early stages of hypoxia, causing either local or systemic inflammation, which can result in cell death. Another growing body of evidence suggests that inflammation can result in neuroprotection, such as preconditioning to cerebral ischemia, causing ischemic tolerance. In the following review we discuss the effects of acute and chronic hypoxia and the release of pro-inflammatory cytokines on synaptic transmission and plasticity in the central nervous system. Specifically we discuss the effects of the pro-inflammatory agent TNF-α during a hypoxic event.
Collapse
|
11
|
Mahmoud AA, Yousef LM, Zaki NAE. Apolipoprotein E gene polymorphism in Egyptian acute coronary syndrome patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu G, LaDu MJ, Fardo DW, Rebeck GW, Estus S. Genetics ignite focus on microglial inflammation in Alzheimer's disease. Mol Neurodegener 2015; 10:52. [PMID: 26438529 PMCID: PMC4595327 DOI: 10.1186/s13024-015-0048-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD.
Collapse
Affiliation(s)
- Manasi Malik
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Ishita Parikh
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Jared B Vasquez
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Conor Smith
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| |
Collapse
|
13
|
Miao J, Wang F, Zheng W, Zhuang X. Association of the Apolipoprotein E polymorphism with migraine: a meta-analysis. BMC Neurol 2015; 15:138. [PMID: 26264634 PMCID: PMC4534059 DOI: 10.1186/s12883-015-0385-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/17/2015] [Indexed: 11/17/2022] Open
Abstract
Background Apolipoprotein E (ApoE) gene has been reported to be associated with migraine and tension-type headache (TTH), but the results are conflicting. This study aimed to evaluate the association of ApoE with migraine by a meta-analysis. Methods MEDLINE, ISI Web of Knowledge, The Cochrane Central Register of Controlled Trials, and EMBASE databases were searched to identify eligible studies published in English from 2000 to 2014. Data were extracted using standardized forms. The association was assessed by relative risk (RR) with 95 % confidence intervals (CIs) using a fixed or random effects model. Results Four studies, comprising 649 migraineurs, 229 TTH subjects and 975 controls, met all the criteria and were included in the meta-analysis. No significant difference was found comparing genotypic and allelic frequencies in the case of migraineurs versus controls and TTH subjects versus controls. Only when migraineurs and TTH subjects were considered as a whole group, ApoE4 was found to increase the relative risk of headache by 1.48 (95 % CI 1.16, 1.90; P = 0.002), compared to controls. Conclusions ApoE ε4 allele is not associated with migraine susceptibility, but is positively related to headache (including migraine and TTH).
Collapse
Affiliation(s)
- Jiayin Miao
- Department of Neurology, Affiliated Zhongshan Hospital of Xiamen University, 201 Hubinnan Road, Xiamen, 361004, China.
| | - Feng Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China. .,College of Computer Engineering, Jimei University, Xiamen, 361021, China.
| | - Weihong Zheng
- Department of Neurology, Affiliated Zhongshan Hospital of Xiamen University, 201 Hubinnan Road, Xiamen, 361004, China.
| | - Xiaorong Zhuang
- Department of Neurology, Affiliated Zhongshan Hospital of Xiamen University, 201 Hubinnan Road, Xiamen, 361004, China.
| |
Collapse
|
14
|
Alexander SA, Ren D, Gunn SR, Kochanek PM, Tate J, Ikonomovic M, Conley YP. Interleukin 6 and apolipoprotein E as predictors of acute brain dysfunction and survival in critical care patients. Am J Crit Care 2014; 23:49-57. [PMID: 24382617 PMCID: PMC4809634 DOI: 10.4037/ajcc2014578] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Delirium occurs in up to 80% of intensive care patients and is associated with poor outcomes. The biological cause of delirium remains elusive. OBJECTIVES To determine if delirium and recovery are associated with serum levels of interleukins and apolipoprotein E over time and with apolipoprotein E genotype. METHODS The sample consisted of 77 patients with no previous cognitive deficits who required mechanical ventilation for 24 to 96 hours. Daily serum samples were obtained for enzyme-linked immunosorbent assay measurements of interleukins 6, 8, and 10 and apolipoprotein E. DNA extracted from blood was analyzed for apolipoprotein E genotyping. The Confusion Assessment Method for the Intensive Care Unit was administered daily on days 2 through 9. RESULTS Among the 77 patients, 23% had no delirium, 46% experienced delirium, and 31% experienced coma. Additionally, 77% had delirium or coma (acute brain dysfunction), and compared with other patients, had fewer ventilator-free days (P = .03), longer stay (P = .04), higher care needs at discharge (P = .001), higher mortality (P = .02), and higher levels of interleukin 6 (P = .03), and the APOE*3/*3 apolipoprotein E genotype (P = .05). Serum levels of apolipoprotein E correlated with levels of interleukins 8 and 10. Patients with the E4 allele of apolipoprotein E had shorter duration of delirium (P = .02) and lower mortality (P = .03) than did patients without this allele. CONCLUSIONS Apolipoprotein E plays a complex role in illness response and recovery in critically ill patients. The relationship between apolipoprotein E genotype and brain dysfunction and survival is unclear.
Collapse
Affiliation(s)
- Sheila A. Alexander
- All authors are at the University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander and Dianxu Ren are assistant professors and Yvette P. Conley is an associate professor in the School of Nursing. Scott R. Gunn is an associate professor and Patrick M. Kochanek is a professor in the School of Medicine. Judith Tate is a postdoctoral fellow, Department of Psychology, and Milos Ikonomovic is a research assistant professor, Department of Neurology
| | - Dianxu Ren
- All authors are at the University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander and Dianxu Ren are assistant professors and Yvette P. Conley is an associate professor in the School of Nursing. Scott R. Gunn is an associate professor and Patrick M. Kochanek is a professor in the School of Medicine. Judith Tate is a postdoctoral fellow, Department of Psychology, and Milos Ikonomovic is a research assistant professor, Department of Neurology
| | - Scott R. Gunn
- All authors are at the University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander and Dianxu Ren are assistant professors and Yvette P. Conley is an associate professor in the School of Nursing. Scott R. Gunn is an associate professor and Patrick M. Kochanek is a professor in the School of Medicine. Judith Tate is a postdoctoral fellow, Department of Psychology, and Milos Ikonomovic is a research assistant professor, Department of Neurology
| | - Patrick M. Kochanek
- All authors are at the University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander and Dianxu Ren are assistant professors and Yvette P. Conley is an associate professor in the School of Nursing. Scott R. Gunn is an associate professor and Patrick M. Kochanek is a professor in the School of Medicine. Judith Tate is a postdoctoral fellow, Department of Psychology, and Milos Ikonomovic is a research assistant professor, Department of Neurology
| | - Judith Tate
- All authors are at the University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander and Dianxu Ren are assistant professors and Yvette P. Conley is an associate professor in the School of Nursing. Scott R. Gunn is an associate professor and Patrick M. Kochanek is a professor in the School of Medicine. Judith Tate is a postdoctoral fellow, Department of Psychology, and Milos Ikonomovic is a research assistant professor, Department of Neurology
| | - Milos Ikonomovic
- All authors are at the University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander and Dianxu Ren are assistant professors and Yvette P. Conley is an associate professor in the School of Nursing. Scott R. Gunn is an associate professor and Patrick M. Kochanek is a professor in the School of Medicine. Judith Tate is a postdoctoral fellow, Department of Psychology, and Milos Ikonomovic is a research assistant professor, Department of Neurology
| | - Yvette P. Conley
- All authors are at the University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander and Dianxu Ren are assistant professors and Yvette P. Conley is an associate professor in the School of Nursing. Scott R. Gunn is an associate professor and Patrick M. Kochanek is a professor in the School of Medicine. Judith Tate is a postdoctoral fellow, Department of Psychology, and Milos Ikonomovic is a research assistant professor, Department of Neurology
| |
Collapse
|
15
|
Khan TA, Shah T, Prieto D, Zhang W, Price J, Fowkes GR, Cooper J, Talmud PJ, Humphries SE, Sundstrom J, Hubacek JA, Ebrahim S, Lawlor DA, Ben-Shlomo Y, Abdollahi MR, Slooter AJC, Szolnoki Z, Sandhu M, Wareham N, Frikke-Schmidt R, Tybjærg-Hansen A, Fillenbaum G, Heijmans BT, Katsuya T, Gromadzka G, Singleton A, Ferrucci L, Hardy J, Worrall B, Rich SS, Matarin M, Whittaker J, Gaunt TR, Whincup P, Morris R, Deanfield J, Donald A, Davey Smith G, Kivimaki M, Kumari M, Smeeth L, Khaw KT, Nalls M, Meschia J, Sun K, Hui R, Day I, Hingorani AD, Casas JP. Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int J Epidemiol 2013; 42:475-92. [PMID: 23569189 DOI: 10.1093/ije/dyt034] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND At the APOE gene, encoding apolipoprotein E, genotypes of the ε2/ε3/ε4 alleles associated with higher LDL-cholesterol (LDL-C) levels are also associated with higher coronary risk. However, the association of APOE genotype with other cardiovascular biomarkers and risk of ischaemic stroke is less clear. We evaluated the association of APOE genotype with risk of ischaemic stroke and assessed whether the observed effect was consistent with the effects of APOE genotype on LDL-C or other lipids and biomarkers of cardiovascular risk. METHODS We conducted a systematic review of published and unpublished studies reporting on APOE genotype and ischaemic stroke. We pooled 41 studies (with a total of 9027 cases and 61,730 controls) using a Bayesian meta-analysis to calculate the odds ratios (ORs) for ischaemic stroke with APOE genotype. To better evaluate potential mechanisms for any observed effect, we also conducted a pooled analysis of primary data using 16 studies (up to 60,883 individuals) of European ancestry. We evaluated the association of APOE genotype with lipids, other circulating biomarkers of cardiovascular risk and carotid intima-media thickness (C-IMT). RESULTS The ORs for association of APOE genotypes with ischaemic stroke were: 1.09 (95% credible intervals (CrI): 0.84-1.43) for ε2/ε2; 0.85 (95% CrI: 0.78-0.92) for ε2/ε3; 1.05 (95% CrI: 0.89-1.24) for ε2/ε4; 1.05 (95% CrI: 0.99-1.12) for ε3/ε4; and 1.12 (95% CrI: 0.94-1.33) for ε4/ε4 using the ε3/ε3 genotype as the reference group. A regression analysis that investigated the effect of LDL-C (using APOE as the instrument) on ischaemic stroke showed a positive dose-response association with an OR of 1.33 (95% CrI: 1.17, 1.52) per 1 mmol/l increase in LDL-C. In the separate pooled analysis, APOE genotype was linearly and positively associated with levels of LDL-C (P-trend: 2 × 10(-152)), apolipoprotein B (P-trend: 8.7 × 10(-06)) and C-IMT (P-trend: 0.001), and negatively and linearly associated with apolipoprotein E (P-trend: 6 × 10(-26)) and HDL-C (P-trend: 1.6 × 10(-12)). Associations with lipoprotein(a), C-reactive protein and triglycerides were non-linear. CONCLUSIONS In people of European ancestry, APOE genotype showed a positive dose-response association with LDL-C, C-IMT and ischaemic stroke. However, the association of APOE ε2/ε2 genotype with ischaemic stroke requires further investigation. This cross-domain concordance supports a causal role of LDL-C on ischaemic stroke.
Collapse
Affiliation(s)
- Tauseef A Khan
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Postprandial apoE isoform and conformational changes associated with VLDL lipolysis products modulate monocyte inflammation. PLoS One 2012; 7:e50513. [PMID: 23209766 PMCID: PMC3509065 DOI: 10.1371/journal.pone.0050513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Objective Postprandial hyperlipemia, characterized by increased circulating very low-density lipoproteins (VLDL) and circulating lipopolysaccharide (LPS), has been proposed as a mechanism of vascular injury. Our goal was to examine the interactions between postprandial lipoproteins, LPS, and apoE3 and apoE4 on monocyte activation. Methods and Results We showed that apoE3 complexed to phospholipid vesicles attenuates LPS-induced THP-1 monocyte cytokine expression, while apoE4 increases expression. ELISA revealed that apoE3 binds to LPS with higher affinity than apoE4. Electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels placed on specific amino acids of apoE3 showed that LPS interferes with conformational changes normally associated with lipid binding. Specifically, compared to apoE4, apoE bearing the E3-like R112→Ser mutation displays increased self association when exposed to LPS, consistent with a stronger apoE3-LPS interaction. Additionally, lipolysis of fasting VLDL from normal human donors attenuated LPS-induced TNFα secretion from monocytes to a greater extent than postprandial VLDL, an effect partially reversed by blocking apoE. This effect was reproduced using fasting VLDL lipolysis products from e3/e3 donors, but not from e4/e4 subjects, suggesting that apoE3 on fasting VLDL prevents LPS-induced inflammation more readily than apoE4. Conclusion Postprandial apoE isoform and conformational changes associated with VLDL dramatically modulate vascular inflammation.
Collapse
|
17
|
Targeted In Situ Gene Correction of Dysfunctional APOE Alleles to Produce Atheroprotective Plasma ApoE3 Protein. Cardiol Res Pract 2012; 2012:148796. [PMID: 22645694 PMCID: PMC3356902 DOI: 10.1155/2012/148796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/30/2012] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading worldwide cause of death. Apolipoprotein E (ApoE) is a 34-kDa circulating glycoprotein, secreted by the liver and macrophages with pleiotropic antiatherogenic functions and hence a candidate to treat hypercholesterolaemia and atherosclerosis. Here, we describe atheroprotective properties of ApoE, though also potential proatherogenic actions, and the prevalence of dysfunctional isoforms, outline conventional gene transfer strategies, and then focus on gene correction therapeutics that can repair defective APOE alleles. In particular, we discuss the possibility and potential benefit of applying in combination two technical advances to repair aberrant APOE genes: (i) an engineered endonuclease to introduce a double-strand break (DSB) in exon 4, which contains the common, but dysfunctional, ε2 and ε4 alleles; (ii) an efficient and selectable template for homologous recombination (HR) repair, namely, an adeno-associated viral (AAV) vector, which harbours wild-type APOE sequence. This technology is applicable ex vivo, for example to target haematopoietic or induced pluripotent stem cells, and also for in vivo hepatic gene targeting. It is to be hoped that such emerging technology will eventually translate to patient therapy to reduce CVD risk.
Collapse
|
18
|
Zhang XM, Mao XJ, Zhang HL, Zheng XY, Pham T, Adem A, Winblad B, Mix E, Zhu J. Overexpression of apolipoprotein E4 increases kainic-acid-induced hippocampal neurodegeneration. Exp Neurol 2011; 233:323-32. [PMID: 22079154 DOI: 10.1016/j.expneurol.2011.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/06/2011] [Accepted: 10/28/2011] [Indexed: 12/25/2022]
Abstract
Apolipoprotein E (apoE) has an intricate biological function in modulating immune responses and apoE isoforms exhibit diverse effects on neurodegenerative and neuroinflammatory disorders. In the present study, we investigated the individual roles of apoE isoforms in the kainic acid (KA)-induced hippocampal neurodegeneration with focus on immune response and microglia functions. ApoE2, 3 and 4 transgenic mice as well as wild-type (WT) mice were treated with KA by intranasal route. ApoE4 overexpressing mice revealed several peculiarities as compared with other transgenic mice and WT mice, i.e. (1) they had more severe KA-induced seizures than apoE2 and 3 mice, (2) they exhibited neuron loss in hippocampus that was higher than in apoE2, 3 and WT mice, (3) KA administration resulted in higher counts of their head drops in the cross-area of elevated plus-maze, (4) they showed lower KA-induced rearing activity than apoE2 mice in the open-field test, (5) their KA-induced microglial expression of MHC-II and CD86 was elevated compared to apoE3 mice, (6) the KA-induced increase of microglial iNOS was higher than that in the other groups of mice, and (7) the TNF-α and IL-6 expression was decreased 7 days after KA application compared to untreated mice and mice treated 1 day with KA. However, the signaling pathway of NFκB or Akt seemed not to be involved in apoE-isoform dependent susceptibility to KA-induced neurotoxicity. In conclusion, over-expression of apoE4 deteriorated KA-induced hippocampal neurodegeneration in C57BL/6 mice, which might result from a higher up-regulation of microglia activation compared to apoE2 and 3 transgenic mice and WT mice.
Collapse
Affiliation(s)
- Xing-Mei Zhang
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cross-talk between apolipoprotein E and cytokines. Mediators Inflamm 2011; 2011:949072. [PMID: 21772670 PMCID: PMC3136159 DOI: 10.1155/2011/949072] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/02/2011] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein E (apoE) is a multifunctional glycosylated protein characterized by its wide tissue distribution. Despite its importance in lipid transport and atherosclerosis pathogenesis, apoE is associated with neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson disease, and autoimmune disorders such as multiple sclerosis and psoriasis. Among others, the role of apoE in modulating inflammation and oxidation is crucial in elucidating the risk factors of the above diseases since the function of apoE is closely linked with both proinflammatory and antiinflammatory cytokines. Moreover, apoE modulates inflammatory and immune responses in an isoform-dependent manner. Correspondingly, inflammatory cytokines can either upregulate or downregulate the production of apoE in various tissue types. However, studies on the interactions between apoE and cytokines occasionally yield conflicting results, highlighting the complex roles of apoE and cytokines in various disorders. The present paper summarizes the current knowledge about the cross-talk between apoE and cytokines, with emphasis on the effects of apoE on the Th1/Th2 balance.
Collapse
|
20
|
Wang M, Jia J. The interleukin-6 gene −572C/G promoter polymorphism modifies Alzheimer's risk in APOE ɛ4 carriers. Neurosci Lett 2010; 482:260-3. [DOI: 10.1016/j.neulet.2010.07.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
21
|
Apolipoprotein E inhibits toll-like receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms. Biochem J 2010; 428:47-54. [PMID: 20218969 DOI: 10.1042/bj20100016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that apoE (apolipoprotein E) expression in macrophages suppresses inflammatory responses; however, whether endogenously synthesized apoE acts intracellularly or after its secretion in suppressing macrophage inflammation remains unclear. The present study used the murine monocyte macrophage cell line RAW 264.7 to examine the influence of exogenous apoE on macrophage inflammatory responses induced by TLR (Toll-like receptor)-4 and TLR-3 agonists LPS (lipopolysaccharide) and poly(I-C) respectively. Results showed that exogenously added apoE suppressed the LPS and poly(I-C) induction of IL (interleukin)-6, IL-1beta and TNF-alpha (tumour necrosis factor-alpha) secretion by RAW 264.7 cells. The mechanism was related to apoE suppression of TLR-agonist-induced phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun. A peptide containing the tandem repeat sequence of the receptor-binding domain of apoE, apoE-(141-155)2, was similarly effective in inhibiting LPS- and poly(I-C)-induced macrophage inflammatory responses. Reductive methylation of lysine residues in apoE, which abolished its receptor-binding capability without affecting its ability to interact with HSPGs (heparin sulfate proteoglycans), inhibited the ability of apoE to suppress macrophage responses to LPS, but had no effect on apoE suppression of poly(I-C)-induced macrophage activation. The ability of apoE to suppress poly(I-C)-induced pro-inflammatory cytokine production was abolished by heparinase treatment of RAW 264.7 cells to remove cell-surface HSPGs. Taken together, these results indicate that exogenous apoE inhibits macrophage inflammatory responses to TLR-4 and TLR-3 agonists through distinct mechanisms related to receptor and HSPG binding respectively, and that these inhibitory effects converged on suppression of JNK and c-Jun activation which are necessary for macrophage activation.
Collapse
|
22
|
Ci X, Li H, Yu Q, Zhang X, Yu L, Chen N, Song Y, Deng X. Avermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa-B and mitogen-activated protein kinase activation pathway. Fundam Clin Pharmacol 2009; 23:449-55. [DOI: 10.1111/j.1472-8206.2009.00684.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Lambrinoudaki I, Kaparos G, Rizos D, Galapi F, Alexandrou A, Sergentanis TN, Creatsa M, Christodoulakos G, Kouskouni E, Botsis D. Apolipoprotein E and paraoxonase 1 polymorphisms are associated with lower serum thyroid hormones in postmenopausal women. Clin Endocrinol (Oxf) 2009; 71:284-90. [PMID: 19018779 DOI: 10.1111/j.1365-2265.2008.03476.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Autoimmune thyroiditis and overt or subclinical hypothyroidism have been associated with increased prevalence of cardiovascular disease (CVD). DESIGN Cross-sectional investigation of the association between gene polymorphisms related to CVD with thyroid function and autoimmunity. PATIENTS In total 84 healthy postmenopausal women aged 49-69 years. MEASUREMENTS FT3, FT4, anti-TPO and anti-TG were assessed in the sera of participants. The following polymorphisms were assessed from peripheral lymphocyte DNA: Apolipoprotein E E2/E3/E4, paraoxonase 1 A/B, Glycoprotein IIIa leu33pro, MTHFR ala222val, ApoBarg3500gln, plasminogen activator inhibitor 1 4G/5G, cholesterol 7-alpha hydroxylase A204C and cholesterol ester transfer protein B1/B2. RESULTS A statistically significant correlation was found between Apolipoprotein E and paraoxonase 1 polymorphisms and serum thyroid hormones: carriers of the E2 or E4 allele of the ApoE gene had lower levels of FT4 (P = 0.0005) than women with the E3/E3 genotype. Carriers of the B allele of paraoxonase 1 gene had lower levels of FT3 compared to women with the wild-type genotype (P = 0.047). A statistically significant positive association (P = 0.049) was also observed between anti-TG antibodies and the presence of the E2 allele of the Apolipoprotein E gene. CONCLUSIONS Polymorphisms of apolipoprotein E and paraoxonase 1 are associated with different levels of thyroid hormone and anti-Tg antibody levels in the study population in this pilot study. The mechanism underlying this association remains to be elucidated.
Collapse
Affiliation(s)
- Irene Lambrinoudaki
- Second Department of Obstetrics and Gynaecology, University of Athens, Aretaieio Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carmel JF, Tarnus E, Cohn JS, Bourdon E, Davignon J, Bernier L. High expression of apolipoprotein E impairs lipid storage and promotes cell proliferation in human adipocytes. J Cell Biochem 2009; 106:608-17. [PMID: 19130493 DOI: 10.1002/jcb.22037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apolipoprotein E (apoE), a key regulator of lipid metabolism, is highly produced by adipose tissue and adipocytes. However, there is little information about its role on adipocyte functions. Because apoE-deficiency in adipocytes was shown to impair adipocyte differentiation, we investigated the consequences of apoE high expression on differentiation and proliferation of a human adipocytic cell line (SW872). SW872 cells were transfected with human apoE to induce a fivefold increase in apoE production and secretion. Adipocyte differentiation and proliferation were assayed by measuring lipid content, adipogenic gene expression, cell number, cell resistance to serum deprivation, and cell division kinetics. Cultured apoE-transfected cells accumulated less triglycerides and less cholesterol than control cells. This decrease in lipid accumulation was associated with a strong downregulation of peroxisome proliferator-activated receptors gamma1 and gamma2 and stearoyl-CoA desaturase 1. The decrease in lipid accumulation was not dependent on the presence of lipids, lipoproteins, or PPAR-gamma agonists in the culture medium, nor was it observed with exogenously added apoE. Moreover, we observed that apoE-transfected cells were more resistant to death induced by serum deprivation, and that these cells underwent more cell divisions than control cells. These results bring new evidence of apoE-involvement in metabolic disorders at the adipocyte level.
Collapse
Affiliation(s)
- Jean-François Carmel
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Crawford F, Wood M, Ferguson S, Mathura V, Gupta P, Humphrey J, Mouzon B, Laporte V, Margenthaler E, O'Steen B, Hayes R, Roses A, Mullan M. Apolipoprotein E-genotype dependent hippocampal and cortical responses to traumatic brain injury. Neuroscience 2009; 159:1349-62. [DOI: 10.1016/j.neuroscience.2009.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 11/24/2022]
|
26
|
Gupta R, Kumar V, Luthra K, Banerjee B, Bhatia MS. Polymorphism in apolipoprotein E among migraineurs and tension-type headache subjects. J Headache Pain 2009; 10:115-20. [PMID: 19184578 PMCID: PMC3451647 DOI: 10.1007/s10194-008-0094-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/26/2008] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide plays an important role in the pathogenesis of migraine as well as tension-type headache. Studies suggest that the expression of molecules involved in the pathogenesis of headache, i.e., nitric oxide and interleukin, is influenced by apolipoprotein E (APOE) and is gene specific. Hence, we hypothesized that APOE polymorphism may be associated with migraine as well as tension-type headache.The study sample comprised of three groups: migraineurs, tension-type headache subjects as well as a healthy control group. A total of 50 subjects in each group were included after screening for the inclusion and exclusion criteria. None of the subjects was a blood relative of any other subject included in the present study. Their venous blood was drawn and stored at −20°C. Genomic DNA extraction was performed with a commercial kit and simple sequence-specific primer PCR was performed to assess the APOE polymorphism. Data were analyzed with the help of SPSS V11.0 for Windows. χ2 test and logistic regression analysis were run. The results of the study showed that APOE ε2 gene increases the risk of migraine as compared to the control group and the tension-type headache group (OR = 4.85; 95% CI = 1.92–12.72; P < 0.001 and OR = 2.31; 95% CI = 1.08–4.94; P = 0.01, respectively). Interestingly, APOE ε4 gene was protective against migraine as well as tension-type headache. This study shows that APOE ε2 gene increases the risk of migraine, while APOE ε4 gene is protective against migraine and tension-type headache. Further research is required to confirm the findings of the present study in a larger sample and to elucidate the role of APOE polymorphism in headache.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Psychiatry, University College of Medical Sciences, Delhi, India
| | - Vivek Kumar
- Department of Biochemistry, University College of Medical Sciences, Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Basudeb Banerjee
- Department of Biochemistry, University College of Medical Sciences, Delhi, India
| | | |
Collapse
|
27
|
Jofre-Monseny L, Minihane AM, Rimbach G. Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol Nutr Food Res 2008; 52:131-45. [PMID: 18203129 DOI: 10.1002/mnfr.200700322] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although in developing countries an apolipoprotein E4 (apoE4) genotype may offer an evolutionary advantage, as it has been shown to offer protection against certain infectious disease, in Westernised societies it is associated with increased morbidity and mortality, and represents a significant risk factor for cardiovascular disease, late-onset Alzheimer's disease and other chronic disorders. ApoE is an important modulator of many stages of lipoprotein metabolism and traditionally the increased risk was attributed to higher lipid levels in E4 carriers. However, more recent evidence demonstrates the multifunctional nature of the apoE protein and the fact that the impact of genotype on disease risk may be in large part due to an impact on oxidative status or the immunomodulatory/anti-inflammatory properties of apoE. An increasing number of studies in cell lines, targeted replacement rodents and human volunteers indicate higher oxidative stress and a more pro-inflammatory state associated with the epsilon4 allele. The impact of genotype on the antioxidant and immunomodulatory/anti-inflammatory properties of apoE is the focus of the current review. Furthermore, current information on the impact of environment (diet, exercise, smoking status, alcohol) on apoE genotype-phenotype associations are discussed with a view to identifying particular lifestyle strategies that could be adapted to counteract the 'at-risk' E4 genotype.
Collapse
Affiliation(s)
- Laia Jofre-Monseny
- Institute of Human Nutrition and Food Science, Christian Albrechts University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
28
|
Aiello AE, Nguyen HOT, Haan MN. C-reactive protein mediates the effect of apolipoprotein E on cytomegalovirus infection. J Infect Dis 2008; 197:34-41. [PMID: 18171282 DOI: 10.1086/524144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although the apolipoprotein (APOE)-epsilon4 allele has been shown to determine the outcome of several infections, its relationship with cytomegalovirus (CMV) has not been explored. We examine whether APOE determines CMV and herpes simplex virus type 1 (HSV-1) antibody levels and assess whether C-reactive protein (CRP) mediates any observed relationships. METHODS We conducted a cross-sectional analysis of a randomly selected subset (n = 1561/1789) of participants aged 60-101 in the Sacramento Area Latino Study on Aging. Blood samples were tested for APOE genotype, CRP, and immunoglobulin G antibodies to CMV and HSV-1. Multivariate logistic regression was used to examine the association between epsilon4 and CMV and HSV antibody levels. We also assessed whether CRP mediates the effects of any observed associations between epsilon4 and viral antibody levels. RESULTS CMV antibody and CRP levels varied significantly by APOE genotype. The association between CRP and CMV antibody was strengthened in the presence of epsilon4. In contrast, this effect was not observed in HSV-1. We found that APOE-epsilon4 carriers had significantly lower levels of CRP yet significantly higher levels of CMV antibodies, suggesting a mediating pathway. CONCLUSIONS APOE-epsilon4 carriers may experience immunological aberrations that lead to lower levels of CRP and correspondingly higher CMV antibody levels.
Collapse
Affiliation(s)
- Allison E Aiello
- Dept. of Epidemiology, Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, 3659 SPH Tower, 109 Observatory, Ann Arbor, MI 48109-2029, USA.
| | | | | |
Collapse
|
29
|
Andrograpanin, isolated from Andrographis paniculata, exhibits anti-inflammatory property in lipopolysaccharide-induced macrophage cells through down-regulating the p38 MAPKs signaling pathways. Int Immunopharmacol 2008; 8:951-8. [PMID: 18486905 DOI: 10.1016/j.intimp.2007.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/21/2022]
Abstract
Andrographis paniculata Nees is an official herbal medicine for treatment of infection and inflammation in China. Andrograpanin, the one of diterpene lactones in A. paniculata, is a hydrolysate from neoandrographolide in vivo and in vitro. The goal of the present study was to investigate andrograpanin which effects on over production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-12p70) and the key signaling pathways involved in lipopolysaccharide (LPS)-activated macrophage cells. The results showed that NO and all three pro-inflammatory cytokines were inhibited by andrograpanin (15-90 microM) in a dose-dependent manner. The RT-PCR and western blotting assays showed that andrograpanin inhibited productions of NO and pro-inflammatory cytokines through down-regulating iNOS and pro-inflammatory cytokines gene expression levels. Further studies suggested that down-regulation of p38 mitogen-activated protein kinase (MAPKs) signaling pathways were involved in the anti-inflammatory activities of andrograpanin. This study provided evidences that andrograpanin might be useful as a potential anti-inflammatory leading compound for inflammatory drug development.
Collapse
|
30
|
Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Döring F. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 2008; 32:179-83. [PMID: 19096114 DOI: 10.1002/biof.5520320121] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinical studies demonstrated the efficacy of Coenzyme Q10 (CoQ10) as an adjuvant therapeutic in cardiovascular diseases, mitochondrial myopathies and neurodegenerative diseases. More recently, expression profiling revealed that Coenzyme Q10 (CoQ10) influences the expression of several hundred genes. To unravel the functional connections of these genes, we performed a text mining approach using the Genomatix BiblioSphere. We identified signalling pathways of G-protein coupled receptors, JAK/STAT, and Integrin which contain a number of CoQ10 sensitive genes. Further analysis suggested that IL5, thrombin, vitronectin, vitronectin receptor, and C-reactive protein are regulated by CoQ10 via the transcription factor NFkappaB1. To test this hypothesis, we studied the effect of CoQ10 on the NFkappaB1-dependent pro-inflammatory cytokine TNF-alpha. As a model, we utilized the murine macrophage cell lines RAW264.7 transfected with human apolipoprotein E3 (apoE3, control) or pro-inflammatory apoE4. In the presence of 2.5 microM or 75 microM CoQ10 the LPS-induced TNF-alpha response was significantly reduced to 73.3 +/- 2.8% and 74.7 +/- 8.9% in apoE3 or apoE4 cells, respectively. Therefore, the in silico analysis as well as the cell culture experiments suggested that CoQ10 exerts anti-inflammatory properties via NFkappaB1-dependent gene expression.
Collapse
Affiliation(s)
- Constance Schmelzer
- Institute of Human Nutrition and Food Science, Molecular Nutrition, Christian-Albrechts-University of Kiel, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Vasto S, Candore G, Listì F, Balistreri CR, Colonna-Romano G, Malavolta M, Lio D, Nuzzo D, Mocchegiani E, Di Bona D, Caruso C. Inflammation, genes and zinc in Alzheimer's disease. ACTA ACUST UNITED AC 2007; 58:96-105. [PMID: 18190968 DOI: 10.1016/j.brainresrev.2007.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease which in Western society mainly accounts for clinical dementia. AD has been linked to inflammation and metal biological pathway. Neuro-pathological hallmarks are senile plaques, resulting from the accumulation of several proteins and an inflammatory reaction around deposits of amyloid, a fibrillar protein, Abeta, product of cleavage of a much larger protein, the beta-amyloid precursor protein (APP) and neurofibrillary tangles. Amyloid deposition, due to the accumulation of Abeta peptide, is the main pathogenetic mechanism. Inflammation clearly occurs in pathologically vulnerable regions of AD and several inflammatory factors influencing AD development, i.e. environmental factors (pro-inflammatory phenotype) and/or genetic factors (pro-inflammatory genotype) have been described. At the biochemical level metals such as zinc are known to accelerate the aggregation of the amyloid peptide and play a role in the control of inflammatory responses. In particular, zinc availability may regulate mRNA cytokine expression, so influencing inflammatory network phenotypic expression.
Collapse
Affiliation(s)
- Sonya Vasto
- Department of Pathobiology and Biomedical Methodology, University of Palermo, Corso Tukory, 211, 90134 Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|