1
|
Lim SYM, Pan Y, Alshagga M, Lim W, Cin K, Alshehade SA, Alshawsh M. CYP14 family in Caenorhabditis elegans: Mitochondrial function, detoxification, and lifespan. J Appl Toxicol 2024; 44:1647-1656. [PMID: 38472099 DOI: 10.1002/jat.4597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
CYP-14 members of the Caenorhabditis elegans (C. elegans) Cytochrome P450 (CYP) enzyme family, plays important roles in mitochondrial dysfunction, detoxification, lipid metabolism, defense and lifespan regulation. The review identifies CYP-14 members: cyp-14A1, cyp-14A2, cyp-14A3, cyp-14A4, cyp-14A5 and their homology with human CYP families. Despite limited studies on C. elegans cyp-14 members, the findings unraveled their complex crosstalk between mitochondrial stress, detoxification mechanisms, and lifespan regulation, emphasizing the complexity of these interconnected pathways as well as how their regulation depends on environmental cues changes including pH, nutrients, ROS and chemical stressors. The review underscores the translational relevance to human health, shedding light on potential human homologues and their implications in age-related, metabolic and respiratory diseases. Among other genes, cyp-14A2 and cyp-14A4 predominate the mitochondrial function, heat resistance, lipid metabolism, detoxification and lifespan pathways. In conclusion, these insights pave the way for future research, offering promising avenues for therapeutic interventions targeting CYP-14 activity to address age-related diseases and promote healthy aging.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
- Faculty of Business, Design and Arts, Swinburne University of Technology, Kuching, Sarawak, Malaysia
| | - Yan Pan
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mustafa Alshagga
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching, Sarawak, Malaysia
| | - Kong Cin
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Salah A Alshehade
- Faculty of Pharmacy & Bio-Medical Sciences, MAHSA University, Selangor, Malaysia
| | - Mohammed Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Lim SYM, Lim W, Peter AP, Pan Y, Alshagga M, Alshawsh MA. Caenorhabditis elegans CYP33 Family in Eicosanoid Regulation, Xenobiotic Metabolism, Nanotoxicity and Spermatogenesis. J Appl Toxicol 2024. [PMID: 39367649 DOI: 10.1002/jat.4707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
The CYP33 family in Caenorhabditis elegans is integral to processes like xenobiotic detoxification, eicosanoid regulation, nanotoxicity response and spermatogenesis. Limited research on C. elegans CYP33 suggests its functions are similar to human CYP33, indicating conserved roles in metabolism and disease. This review examines C. elegans CYP33 enzymes, especially CYP-33E1 and CYP-33E2, and their human homologues, focusing on their roles in eicosanoid biosynthesis, xenobiotic metabolism, nanotoxicity and spermatogenesis. Understanding these enzymes enhances insights into cytochrome P450 biology, metabolism and cyp-associated diseases.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
- Faculty of Business, Design and Arts, Swinburne University of Technology, Kuching, Sarawak, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching, Sarawak, Malaysia
| | - Angela Paul Peter
- School of Engineering, Faculty of Innovation and Technology, Taylor's University Lakeside Campus, Subang Jaya, Malaysia
| | - Yan Pan
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mustafa Alshagga
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
4
|
Knox J, Burns AR, Cooke B, Cammalleri SR, Kitner M, Ching J, Castelli JMP, Puumala E, Snider J, Koury E, Collins JB, Geissah S, Dowling JJ, Andersen EC, Stagljar I, Cowen LE, Lautens M, Zasada I, Roy PJ. Cyprocide selectively kills nematodes via cytochrome P450 bioactivation. Nat Commun 2024; 15:5529. [PMID: 38956039 PMCID: PMC11219838 DOI: 10.1038/s41467-024-49738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Left unchecked, plant-parasitic nematodes have the potential to devastate crops globally. Highly effective but non-selective nematicides are justifiably being phased-out, leaving farmers with limited options for managing nematode infestation. Here, we report our discovery of a 1,3,4-oxadiazole thioether scaffold called Cyprocide that selectively kills nematodes including diverse species of plant-parasitic nematodes. Cyprocide is bioactivated into a lethal reactive electrophilic metabolite by specific nematode cytochrome P450 enzymes. Cyprocide fails to kill organisms beyond nematodes, suggesting that the targeted lethality of this pro-nematicide derives from P450 substrate selectivity. Our findings demonstrate that Cyprocide is a selective nematicidal scaffold with broad-spectrum activity that holds the potential to help safeguard our global food supply.
Collapse
Affiliation(s)
- Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Andrew R Burns
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Brittany Cooke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Savina R Cammalleri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Megan Kitner
- United States Department of Agriculture - Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, USA
| | - Justin Ching
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jack M P Castelli
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jamie Snider
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Emily Koury
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - J B Collins
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Salma Geissah
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Igor Stagljar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Inga Zasada
- United States Department of Agriculture - Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, USA
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Menzel R, Zhang X, Pietrucik T, Bathelt A, Ruess L. Omega-3 PUFA and the fitness and cognition of the nematode Caenorhabditis elegans under different environmental conditions. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110925. [PMID: 38040326 DOI: 10.1016/j.cbpb.2023.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Many invertebrate species possess the metabolic ability to synthesize long-chain ω3 polyunsaturated fatty acids (PUFA) de novo. Due to their diverse effects on membrane architecture, neuroplasticity, growth and reproduction, PUFA have a high potential to positively influence the fitness of an organism. But how and when do these supposed advantages actually come into play? Other species, that are often closely related, pass natural selection without this special metabolic ability. The ω3-PUFA rich model organism Caenorhabditis elegans (Nematoda) and its mutant fat-1(wa9), lacking these PUFA, are a suitable test system. We analyzed potential impairments in reproduction and growth in a soil assay. Further, chemotaxis after aversive olfactory, associative learning and integration of a second sensory signal were assessed on agar plates. Moreover, we analyzed the phospholipid pattern of both C. elegans strains and further free-living nematodes species at different temperatures. While the phenotypic effects were rather small under standard conditions, lowering the temperature to 15 or even 10 °C or reducing the soil moisture, led to significant limitations, with the investigated parameters for neuroplasticity being most impaired. The ω3-PUFA free C. elegans mutant strain fat-1 did not adapt the fatty acid composition of its phospholipids to a decreasing temperature, while ω3-PUFA containing nematodes proportionally increased this PUFA group. In contrats, other ω3-PUFA free nematode species produced significantly more ω6-PUFA. Thus, the ability to synthesize long-chain ω3-PUFA de novo likely is fundamental for an increase in neuroplasticity and an efficient way for regulating membrane fluidity to maintain their functionality.
Collapse
Affiliation(s)
- Ralph Menzel
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany.
| | - Xuchao Zhang
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Tamara Pietrucik
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Antonia Bathelt
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
6
|
Mokoena NZ, Steyn H, Hugo A, Dix-Peek T, Dickens C, Gcilitshana OMN, Sebolai O, Albertyn J, Pohl CH. Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response. Med Microbiol Immunol 2023; 212:349-368. [PMID: 37672050 PMCID: PMC10501937 DOI: 10.1007/s00430-023-00777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.
Collapse
Affiliation(s)
- N Z Mokoena
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - H Steyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - A Hugo
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | - T Dix-Peek
- Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - C Dickens
- Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - O M N Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - O Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - J Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - C H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
7
|
You J, Chen J, Hu Y, Wang S, Wang J, Sun T, Shen Z. Identification of cytochrome P450 gene family and functional analysis of HgCYP33E1 from Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2023; 14:1219702. [PMID: 37692428 PMCID: PMC10485556 DOI: 10.3389/fpls.2023.1219702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The cytochrome P450 (CYP) genes of nematode play a crucial role in the metabolic detoxification of xenobiotics including pesticides. Heterodera glycines, also known as the soybean cyst nematode, is a sedentary endoparasite that infests plant roots, causing high annual economic losses in soybean production regions globally. In this study, we identified 36 CYP genes at a genome-wide level of the H. glycines isolate TN10 using all CYPs from Caenorhabditis elegans as queries. Subsequently, a full-length cDNA of HgCYP33E1 which was significantly up-regulated by the conventional nematicide abamectin was initially cloned from H. glycines. It presented significantly higher expressions in the second-stage juvenile (J2) compared to other parasitic stages of H. glycines. qRT-PCR analysis suggested that the expression of HgCYP33E1 was also xenobiotically induced by soybean root exudate and the metabolites of biocontrol agents. Using RNA interference (RNAi), we investigated the function of HgCYP33E1 in H. glycines parasitism and nematicide selectivity. Compared to the control and dsGFP-treated group, silencing of HgCYP33E1 did not affect the J2 behaviors and the early invasion ability, while it decreased the number of J4s in soybean roots after 18-d inoculation with the dsHgCYP33E1-treated nematodes. In addition, knockdown of HgCYP33E1 in H. glycines resulted in an increase in J2 mortality after 24-h incubation with abamectin compared to the GFP dsRNA-soaked and the control group. These findings revealed the potential role of HgCYP33E1 in the xenobiotic detoxification pathway of H. glycines. Moreover, our data also provided valuable gene information for studying the functions of the CYP family in H. glycines host adaption.
Collapse
Affiliation(s)
- Jia You
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Siru Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jianli Wang
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| | - Tao Sun
- Chongqing Customs Technology Center, Chongqing, China
| | - Zhongbao Shen
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zhou Y, Rothe M, Schunck WH, Ruess L, Menzel R. Serotonin-induced stereospecific formation and bioactivity of the eicosanoid 17,18-epoxyeicosatetraenoic acid in the regulation of pharyngeal pumping of C. elegans. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159304. [PMID: 36914111 DOI: 10.1016/j.bbalip.2023.159304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/15/2023]
Abstract
17,18-Epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant eicosanoid generated by cytochrome P450 (CYP) enzymes in C. elegans, is a potential signaling molecule in the regulation of pharyngeal pumping activity of this nematode. As a chiral molecule, 17,18-EEQ can exist in two stereoisomers, the 17(R),18(S)- and 17(S),18(R)-EEQ enantiomers. Here we tested the hypothesis that 17,18-EEQ may function as a second messenger of the feeding-promoting neurotransmitter serotonin and stimulates pharyngeal pumping and food uptake in a stereospecific manner. Serotonin treatment of wildtype worms induced a more than twofold increase of free 17,18-EEQ levels. As revealed by chiral lipidomics analysis, this increase was almost exclusively due to an enhanced release of the (R,S)-enantiomer of 17,18-EEQ. In contrast to the wildtype strain, serotonin failed to induce 17,18-EEQ formation as well as to accelerate pharyngeal pumping in mutant strains defective in the serotonin SER-7 receptor. However, the pharyngeal activity of the ser-7 mutant remained fully responsive to exogenous 17,18-EEQ administration. Short term incubations of well-fed and starved wildtype nematodes showed that both racemic 17,18-EEQ and 17(R),18(S)-EEQ were able to increase pharyngeal pumping frequency and the uptake of fluorescence-labeled microspheres, while 17(S),18(R)-EEQ and also 17,18-dihydroxyeicosatetraenoic acid (17,18-DHEQ, the hydrolysis product of 17,18-EEQ) were ineffective. Taken together, these results show that serotonin induces 17,18-EEQ formation in C. elegans via the SER-7 receptor and that both the formation of this epoxyeicosanoid and its subsequent stimulatory effect on pharyngeal activity proceed with high stereospecificity confined to the (R,S)-enantiomer.
Collapse
Affiliation(s)
- Yiwen Zhou
- Humboldt-Universität zu Berlin, Institue of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Wolf-Hagen Schunck
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institue of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany
| | - Ralph Menzel
- Humboldt-Universität zu Berlin, Institue of Biology, Ecology, Philippstr. 13, 10115 Berlin, Germany.
| |
Collapse
|
9
|
Harrington S, Pyche J, Burns AR, Spalholz T, Ryan KT, Baker RJ, Ching J, Rufener L, Lautens M, Kulke D, Vernudachi A, Zamanian M, Deuther-Conrad W, Brust P, Roy PJ. Nemacol is a small molecule inhibitor of C. elegans vesicular acetylcholine transporter with anthelmintic potential. Nat Commun 2023; 14:1816. [PMID: 37002199 PMCID: PMC10066365 DOI: 10.1038/s41467-023-37452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jacob Pyche
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tina Spalholz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Kaetlyn T Ryan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Baker
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Justin Ching
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Lucien Rufener
- INVENesis Sàrl, Route de Neuchâtel 15A, 2072, St Blaise (NE), Switzerland
| | - Mark Lautens
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Daniel Kulke
- Research Parasiticides, Bayer Animal Health GmbH, Monheim, Germany
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
- Global Innovation, Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55218, Ingelheim am Rhein, Germany
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562, Lübeck, Germany
| | - Peter J Roy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
10
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
11
|
Karengera A, Verburg I, Sterken MG, Riksen JAG, Murk AJ, Dinkla IJT. Determining Toxic Potencies of Water-Soluble Contaminants in Wastewater Influents and Effluent Using Gene Expression Profiling in C. elegans as a Bioanalytical Tool. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:284-294. [PMID: 36190544 PMCID: PMC9556352 DOI: 10.1007/s00244-022-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
With chemical analysis, it is impossible to qualify and quantify the toxic potency of especially hydrophilic bioactive contaminants. In this study, we applied the nematode C. elegans as a model organism for detecting the toxic potency of whole influent wastewater samples. Gene expression in the nematode was used as bioanalytical tool to reveal the presence, type and potency of molecular pathways induced by 24-h exposure to wastewater from a hospital (H), nursing home (N), community (C), and influent (I) and treated effluent (E) from a local wastewater treatment plant. Exposure to influent water significantly altered expression of 464 genes, while only two genes were differentially expressed in nematodes treated with effluent. This indicates a significant decrease in bioactive pollutant-load after wastewater treatment. Surface water receiving the effluent did not induce any genes in exposed nematodes. A subset of 209 genes was differentially expressed in all untreated wastewaters, including cytochromes P450 and C-type lectins related to the nematode's xenobiotic metabolism and immune response, respectively. Different subsets of genes responded to particular waste streams making them candidates to fingerprint-specific wastewater sources. This study shows that gene expression profiling in C. elegans can be used for mechanism-based identification of hydrophilic bioactive compounds and fingerprinting of specific wastewaters. More comprehensive than with chemical analysis, it can demonstrate the effective overall removal of bioactive compounds through wastewater treatment. This bioanalytical tool can also be applied in the process of identification of the bioactive compounds via a process of toxicity identification evaluation.
Collapse
Affiliation(s)
- Antoine Karengera
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Mark G. Sterken
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J. T. Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
12
|
Song M, Dong S, Zhang X, Dai Y, Zhang X, Shen Y. A moderate static magnetic field promotes C. elegans longevity through cytochrome P450s. Sci Rep 2022; 12:16108. [PMID: 36167800 PMCID: PMC9515093 DOI: 10.1038/s41598-022-20647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022] Open
Abstract
Ageing is co-regulated by genetic and environmental factors. Life on earth lives and evolves in a mild geomagnetic field. Yet, the biological effects of a moderate magnetic field on ageing and the underlying genetic mechanisms remain barely unknown. Here, we report that a moderate static magnetic field (SMF) extends the lifespan of Caenorhabditis elegans, a well-established model organism in ageing research. Consistently, the SMF-treated worms show improved motility and mitochondrial function when aged. We identified from the transcriptomic changes upon SMF treatment that the upregulation of three cytochrome P450 genes are required for SMF-induced longevity. Our findings thus reveal that proper SMF treatment could promote longevity through the well-conserved cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Mengjiao Song
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China
| | - Shiming Dong
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China
| | - Xiangfei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China.
| |
Collapse
|
13
|
Larigot L, Mansuy D, Borowski I, Coumoul X, Dairou J. Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules 2022; 12:biom12030342. [PMID: 35327534 PMCID: PMC8945457 DOI: 10.3390/biom12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Caenorhabditis elegans is an important model used for many aspects of biological research. Its genome contains 76 genes coding for cytochromes P450 (P450s), and few data about the biochemical properties of those P450s have been published so far. However, an increasing number of articles have appeared on their involvement in the metabolism of xenobiotics and endobiotics such as fatty acid derivatives and steroids. Moreover, the implication of some P450s in various biological functions of C. elegans, such as survival, dauer formation, life span, fat content, or lipid metabolism, without mention of the precise reaction catalyzed by those P450s, has been reported in several articles. This review presents the state of our knowledge about C. elegans P450s.
Collapse
Affiliation(s)
- Lucie Larigot
- Campus Saint Germain, INSERM UMR-S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Daniel Mansuy
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
| | - Ilona Borowski
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
| | - Xavier Coumoul
- Campus Saint Germain, INSERM UMR-S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France;
- Correspondence: (X.C.) or (J.D.); Tel.: +331-76-53-42-35; Fax: + 331-42-86-43-84
| | - Julien Dairou
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
- Correspondence: (X.C.) or (J.D.); Tel.: +331-76-53-42-35; Fax: + 331-42-86-43-84
| |
Collapse
|
14
|
Joshi KK, Matlack TL, Pyonteck S, Vora M, Menzel R, Rongo C. Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis. EMBO Rep 2021; 22:e51063. [PMID: 33470040 PMCID: PMC7926251 DOI: 10.15252/embr.202051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoans use protein homeostasis (proteostasis) pathways to respond to adverse physiological conditions, changing environment, and aging. The nervous system regulates proteostasis in different tissues, but the mechanism is not understood. Here, we show that Caenorhabditis elegans employs biogenic amine neurotransmitters to regulate ubiquitin proteasome system (UPS) proteostasis in epithelia. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq and mass spectrometry, we found that biogenic amines promote eicosanoid production from poly-unsaturated fats (PUFAs) by regulating expression of cytochrome P450 monooxygenases. Mutants for one of these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-6 eicosanoids is required for UPS substrate turnover, whereas accumulation of n-6 eicosanoids accelerates turnover. Our results suggest that sensory neurons secrete biogenic amines to modulate lipid signaling, which in turn activates stress response pathways to maintain UPS proteostasis.
Collapse
Affiliation(s)
- Kishore K Joshi
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Tarmie L Matlack
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Stephanie Pyonteck
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Mehul Vora
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Ralph Menzel
- Institute of Biology and EcologyHumboldt University BerlinBerlinGermany
| | - Christopher Rongo
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
15
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
16
|
Chamoli M, Goyala A, Tabrez SS, Siddiqui AA, Singh A, Antebi A, Lithgow GJ, Watts JL, Mukhopadhyay A. Polyunsaturated fatty acids and p38-MAPK link metabolic reprogramming to cytoprotective gene expression during dietary restriction. Nat Commun 2020; 11:4865. [PMID: 32978396 PMCID: PMC7519657 DOI: 10.1038/s41467-020-18690-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolic state of an organism instructs gene expression modalities, leading to changes in complex life history traits, such as longevity. Dietary restriction (DR), which positively affects health and life span across species, leads to metabolic reprogramming that enhances utilisation of fatty acids for energy generation. One direct consequence of this metabolic shift is the upregulation of cytoprotective (CyTP) genes categorized in the Gene Ontology (GO) term of "Xenobiotic Detoxification Program" (XDP). How an organism senses metabolic changes during nutritional stress to alter gene expression programs is less known. Here, using a genetic model of DR, we show that the levels of polyunsaturated fatty acids (PUFAs), especially linoleic acid (LA) and eicosapentaenoic acid (EPA), are increased following DR and these PUFAs are able to activate the CyTP genes. This activation of CyTP genes is mediated by the conserved p38 mitogen-activated protein kinase (p38-MAPK) pathway. Consequently, genes of the PUFA biosynthesis and p38-MAPK pathway are required for multiple paradigms of DR-mediated longevity, suggesting conservation of mechanism. Thus, our study shows that PUFAs and p38-MAPK pathway function downstream of DR to help communicate the metabolic state of an organism to regulate expression of CyTP genes, ensuring extended life span.
Collapse
Affiliation(s)
- Manish Chamoli
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Anita Goyala
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Syed Shamsh Tabrez
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Atif Ahmed Siddiqui
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anupama Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Adam Antebi
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, 50931, Germany
| | - Gordon J Lithgow
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Jennifer L Watts
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Verma S, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine activates TRP channels including TRP-2 in filaria, Brugia malayi. Commun Biol 2020; 3:398. [PMID: 32724078 PMCID: PMC7387335 DOI: 10.1038/s42003-020-01128-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Diethylcarbamazine is an important classic drug used for prevention and treatment of lymphatic filariasis and loiasis, diseases caused by filarial nematodes. Despite many studies, its site of action has not been established. Until now, the consensus has been that diethylcarbamazine works by activating host immune systems, not by a direct action on the parasites. Here we show that low concentrations of diethylcarbamazine have direct and rapid (<30 s) temporary spastic paralyzing effects on the parasites that lasts around 4 h, which is produced by diethylcarbamazine opening TRP channels in muscle of Brugia malayi involving TRP-2 (TRPC-like channel subunits). GON-2 and CED-11, TRPM-like channel subunits, also contributed to diethylcarbamazine responses. Opening of these TRP channels produces contraction and subsequent activation of calcium-dependent SLO-1K channels. Recovery from the temporary paralysis is consistent with inactivation of TRP channels. Our observations elucidate mechanisms for the rapid onset and short-lasting therapeutic actions of diethylcarbamazine.
Collapse
Affiliation(s)
- Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
18
|
Jung Y, Kwon S, Ham S, Lee D, Park HH, Yamaoka Y, Jeong D, Artan M, Altintas O, Park S, Hwang W, Lee Y, Son HG, An SWA, Kim EJE, Seo M, Lee SV. Caenorhabditis elegans Lipin 1 moderates the lifespan-shortening effects of dietary glucose by maintaining ω-6 polyunsaturated fatty acids. Aging Cell 2020; 19:e13150. [PMID: 32475074 PMCID: PMC7294780 DOI: 10.1111/acel.13150] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Excessive glucose causes various diseases and decreases lifespan by altering metabolic processes, but underlying mechanisms remain incompletely understood. Here, we show that Lipin 1/LPIN-1, a phosphatidic acid phosphatase and a putative transcriptional coregulator, prevents life-shortening effects of dietary glucose on Caenorhabditis elegans. We found that depletion of lpin-1 decreased overall lipid levels, despite increasing the expression of genes that promote fat synthesis and desaturation, and downregulation of lipolysis. We then showed that knockdown of lpin-1 altered the composition of various fatty acids in the opposite direction of dietary glucose. In particular, the levels of two ω-6 polyunsaturated fatty acids (PUFAs), linoleic acid and arachidonic acid, were increased by knockdown of lpin-1 but decreased by glucose feeding. Importantly, these ω-6 PUFAs attenuated the short lifespan of glucose-fed lpin-1-inhibited animals. Thus, the production of ω-6 PUFAs is crucial for protecting animals from living very short under glucose-rich conditions.
Collapse
Affiliation(s)
- Yoonji Jung
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Sujeong Kwon
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Seokjin Ham
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Dongyeop Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Hae‐Eun H. Park
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Yasuyo Yamaoka
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Dae‐Eun Jeong
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Murat Artan
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| | - Sangsoon Park
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Wooseon Hwang
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Yujin Lee
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Heehwa G. Son
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Seon Woo A. An
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Eun Ji E. Kim
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Mihwa Seo
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Seung‐Jae V. Lee
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| |
Collapse
|
19
|
Zebrafish CYP1A expression in transgenic Caenorhabditis elegans protects from exposures to benzo[a]pyrene and a complex polycyclic aromatic hydrocarbon mixture. Toxicology 2020; 440:152473. [PMID: 32360973 DOI: 10.1016/j.tox.2020.152473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental toxicants primarily produced during incomplete combustion; some are carcinogens. PAHs can be safely metabolized or, paradoxically, bioactivated via specific cytochrome P450 (CYP) enzymes to more reactive metabolites, some of which can damage DNA and proteins. Among the CYP isoforms implicated in PAH metabolism, CYP1A enzymes have been reported to both sensitize and protect from PAH toxicity. To clarify the role of CYP1A in PAH toxicity, we generated transgenic Caenorhabditis elegans that express CYP1A at a basal (but not inducible) level. Because this species does not normally express any CYP1 family enzyme, this approach permitted a test of the role of basally expressed CYP1A in PAH toxicity. We exposed C. elegans at different life stages to either the PAH benzo[a]pyrene (BaP) alone, or a real-world mixture dominated by PAHs extracted from the sediment of a highly contaminated site on the Elizabeth River (VA, USA). This site, the former Atlantic Wood Industries, was declared a Superfund site due to coal tar creosote contamination that caused very high levels (in the [mg/mL] range) of high molecular weight PAHs within the sediments. We demonstrate that CYP1A protects against BaP-induced growth delay, reproductive toxicity, and reduction of steady state ATP levels. Lack of sensitivity of a DNA repair (Nucleotide Excision Repair)-deficient strain suggested that CYP1A did not produce significant levels of DNA-reactive metabolites from BaP. The protective effects of CYP1A in Elizabeth River sediment extract (ERSE)-exposed nematodes were less pronounced than those seen in BaP-exposed nematodes; CYP1A expression protected against ERSE-induced reduction of steady-state ATP levels, but not other outcomes of exposure to sediment extracts. Overall, we find that in C. elegans, a basal level of CYP1A activity is protective against the examined PAH exposures.
Collapse
|
20
|
Liberman N, O’Brown ZK, Earl AS, Boulias K, Gerashchenko MV, Wang SY, Fritsche C, Fady PE, Dong A, Gladyshev VN, Greer EL. N6-adenosine methylation of ribosomal RNA affects lipid oxidation and stress resistance. SCIENCE ADVANCES 2020; 6:eaaz4370. [PMID: 32494643 PMCID: PMC7176415 DOI: 10.1126/sciadv.aaz4370] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/27/2020] [Indexed: 05/26/2023]
Abstract
During stress, global translation is reduced, but specific transcripts are actively translated. How stress-responsive mRNAs are selectively translated is unknown. We show that METL-5 methylates adenosine 1717 on 18S ribosomal RNA in C. elegans, enhancing selective ribosomal binding and translation of specific mRNAs. One of these mRNAs, CYP-29A3, oxidizes the omega-3 polyunsaturated fatty acid eicosapentaenoic acid to eicosanoids, key stress signaling molecules. While metl-5-deficient animals grow normally under homeostatic conditions, they are resistant to a variety of stresses. metl-5 mutant worms also show reduced bioactive lipid eicosanoids and dietary supplementation of eicosanoid products of CYP-29A3 restores stress sensitivity of metl-5 mutant worms. Thus, methylation of a specific residue of 18S rRNA by METL-5 selectively enhances translation of cyp-29A3 to increase production of eicosanoids, and blocking this pathway increases stress resistance. This study suggests that ribosome methylation can facilitate selective translation, providing another layer of regulation of the stress response.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Zach K. O’Brown
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Scott Earl
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantinos Boulias
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Maxim V. Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Colette Fritsche
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paul-Enguerrand Fady
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Anna Dong
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Mokoena NZ, Sebolai OM, Albertyn J, Pohl CH. Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans. Prostaglandins Other Lipid Mediat 2020; 148:106426. [PMID: 32032704 DOI: 10.1016/j.prostaglandins.2020.106426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit a diverse range of important biological functions in most biological systems. These PUFAs can be oxygenated via enzymatic or free radical-mediated reactions to form bioactive oxygenated lipid mediators termed oxylipins. Eicosanoids are broad class of oxylipins that are transient and locally synthesized signalling molecules, including prostaglandins, leukotrienes, lipoxins and thromboxanes, which mediate various physiological responses, such as inflammation. In addition to arachidonic acid-derived eicosanoids, current developments in lipidomic methodologies have brought attention to vast number of oxylipins produced from other PUFAs, including omega-3. Although, the molecular mechanisms of how PUFAs and oxylipins contribute to majority of the fundamental biological processes are largely unclear, a model organism Caenorhabditis elegans remains a powerful model for exploring lipid metabolism and functions of PUFAs and oxylipins. For instance, the ability of C. elegans to modify fatty acid composition with dietary supplementation and genetic manipulation enables the dissection of the roles of omega-3 and omega-6 PUFAs in many biological processes that include aging, reproduction, and neurobiology. However, much remains to be elucidated concerning the roles of oxylipins, but thus far, C. elegans is well-known for the synthesis of vast set of cytochrome (CYP) eicosanoids. These CYP eicosanoids are extremely susceptible to changes in the relative bioavailability of the different PUFAs, thus providing a better insight into complex mechanisms connecting essential dietary fatty acids to various biological processes. Therefore, this review provides an overview of the synthesis and function of PUFAs and oxylipins in mammals. It also focusses on what is known regarding the production of PUFAs and oxylipins in C. elegans and their functions.
Collapse
Affiliation(s)
- N Z Mokoena
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - O M Sebolai
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - J Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - C H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
22
|
Harlow PH, Perry SJ, Stevens AJ, Flemming AJ. Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans. Sci Rep 2018; 8:13333. [PMID: 30190484 PMCID: PMC6127299 DOI: 10.1038/s41598-018-31215-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
We investigated the metabolic capabilities of C. elegans using compounds whose metabolism has been well characterised in mammalian systems. We find that similar metabolites are produced in C. elegans as in mammals but that C. elegans is deficient in CYP1-like metabolism, as has been seen in other studies. We show that CYP-34A9, CYP-34A10 and CYP-36A1 are the principal enzymes responsible for the metabolism of tolbutamide in C. elegans. These are related to the mammalian enzymes that metabolise this compound but are not the closest homologs suggesting that sequence comparison alone will not predict functional conservation among cytochrome P450s. In mammals, metabolite production from amytryptiline and dextromethorphan is dependent on specific cytochrome P450s. However, in C. elegans we did not find evidence of similar specificity: the same metabolites were produced but in small amounts by numerous cytochrome P450s. We conclude that, while some aspects of cytochrome P450 mediated metabolism in C. elegans are similar to mammals, there are differences in the production of some metabolites and in the underlying genetics of metabolism.
Collapse
Affiliation(s)
- Philippa H Harlow
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Simon J Perry
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Alexander J Stevens
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Anthony J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| |
Collapse
|
23
|
Menzel R, Geweiler D, Sass A, Simsek D, Ruess L. Nematodes as Important Source for Omega-3 Long-Chain Fatty Acids in the Soil Food Web and the Impact in Nutrition for Higher Trophic Levels. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
24
|
Navarro-Herrera D, Aranaz P, Eder-Azanza L, Zabala M, Hurtado C, Romo-Hualde A, Martínez JA, González-Navarro CJ, Vizmanos JL. Dihomo-gamma-linolenic acid induces fat loss in C. elegans in an omega-3-independent manner by promoting peroxisomal fatty acid β-oxidation. Food Funct 2018; 9:1621-1637. [PMID: 29465730 DOI: 10.1039/c7fo01625e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bioactive compounds, including some fatty acids (FAs), can induce beneficial effects on body fat-content and metabolism. In this work, we have used C. elegans as a model to examine the effects of several FAs on body fat accumulation. Both omega-3 and omega-6 fatty acids induced a reduction of fat content in C. elegans, with linoleic, gamma-linolenic and dihomo-gamma-linolenic acids being the most effective ones. These three FAs are sequential metabolites especially in omega-6 PUFA synthesis pathway and the effects seem to be primarily due to dihomo-gamma-linolenic acid, and independent of its transformation into omega-3 or arachidonic acid. Gene expression analyses suggest that peroxisomal beta oxidation is the main mechanism involved in the observed effect. These results point out the importance of further analysis of the activity of these omega-6 FAs, due to their potential application in obesity and related diseases.
Collapse
Affiliation(s)
- David Navarro-Herrera
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Paula Aranaz
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Laura Eder-Azanza
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Zabala
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - Cristina Hurtado
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Romo-Hualde
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - J Alfredo Martínez
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain and Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain
| | - Carlos J González-Navarro
- University of Navarra, School of Pharmacy & Nutrition, Centre for Nutrition Research, Pamplona, Spain.
| | - José L Vizmanos
- University of Navarra, School of Science, Department of Biochemistry and Genetics, Pamplona, Spain. and Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
25
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
26
|
Lam SM, Wang Z, Li J, Huang X, Shui G. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival. Redox Biol 2017; 12:967-977. [PMID: 28499251 PMCID: PMC5429230 DOI: 10.1016/j.redox.2017.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022] Open
Abstract
Mechanistic basis governing the extreme longevity and developmental quiescence of dauer juvenile, a "non-ageing" developmental variant of Caenorhabditis elegans, has remained largely obscure. Using a lipidomic approach comprising multiple reaction monitoring transitions specific to distinct fatty acyl moieties, we demonstrated that in comparison to other developmental stages, the membrane phospholipids of dauer larva contain a unique enrichment of polyunsaturated fatty acids (PUFAs). Esterified PUFAs in phospholipids exhibited temporal accumulation throughout the course of dauer endurance, followed by sharp reductions prior to termination of diapause. Reductions in esterified PUFAs were accompanied by concomitant increases in unbound PUFAs, as well as their corresponding downstream oxidized derivatives (i.e. eicosanoids). Global phospholipidomics has unveiled that PUFA sequestration in membrane phospholipids denotes an essential aspect of dauer dormancy, principally via suppression of eicosanoid production; and a failure to upkeep membrane lipid homeostasis is associated with termination of dauer endurance.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
27
|
Watts JL. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids. J Clin Med 2016; 5:jcm5020019. [PMID: 26848697 PMCID: PMC4773775 DOI: 10.3390/jcm5020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023] Open
Abstract
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
28
|
Pakharukova MY, Vavilin VA, Sripa B, Laha T, Brindley PJ, Mordvinov VA. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus. PLoS Negl Trop Dis 2015; 9:e0004258. [PMID: 26625139 PMCID: PMC4666407 DOI: 10.1371/journal.pntd.0004258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
The basic metabolic cytochrome P450 (CYP) system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium) are considered by the International Agency for Research on Cancer (IARC) as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i) to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii) to assess CYP ability to metabolize xenobiotics, and (iii) to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR) in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target. The basic metabolic system CYP (cytochrome P450) is essential for biotransformation of sterols and xenobiotics, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms evolved numerous paralogues of the CYP gene. Notably, by contrast, flukes and tapeworms–the etiologic agents of major neglected tropical diseases of humanity, have only one gene. However, the role of P450 in the physiology and biochemistry of helminths is not known. This report presents the first functional study of the CYP enzyme of any of the parasitic flatworms. We focused our research on the food-borne human liver fluke, Opisthorchis felineus, an emerging source of biliary tract diseases in Russia, Kazakhstan and central Europe. Here we report that this liver fluke has evolved a highly expressed functional monooxygenase system with broad substrate specificity. Tissue localization studies and suppression of CYP mRNA by RNA interference revealed the CYP function is linked to the excretory system and possibly to metabolism and detoxification. The fluke’s monooxygenase likely is a model for orthologues of the singular CYP of parasitic flatworms at large, where it plays a critical role in the pathogen’s metabolism that contributes to worm survival and drug resistance.
Collapse
Affiliation(s)
- Mariya Y. Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Valentin A. Vavilin
- Laboratory of Pharmacokinetic and Drugs Metabolism, Institute of Molecular Biology and Biophysics, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Liver Fluke and Cholangiocarcinoma Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Viatcheslav A. Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Laboratory of Pharmacokinetic and Drugs Metabolism, Institute of Molecular Biology and Biophysics, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| |
Collapse
|
29
|
Wang L, Cui S, Ma L, Kong L, Geng X. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. INSECT MOLECULAR BIOLOGY 2015; 24:634-648. [PMID: 26387499 DOI: 10.1111/imb.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases.
Collapse
Affiliation(s)
- L Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - S Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Kong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - X Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
30
|
Zhou Y, Falck JR, Rothe M, Schunck WH, Menzel R. Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans. J Lipid Res 2015; 56:2110-23. [PMID: 26399467 PMCID: PMC4617398 DOI: 10.1194/jlr.m061887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX 75390
| | | | | | - Ralph Menzel
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
31
|
Deline M, Keller J, Rothe M, Schunck WH, Menzel R, Watts JL. Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans. Sci Rep 2015; 5:15417. [PMID: 26486965 PMCID: PMC4614016 DOI: 10.1038/srep15417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Dietary fats are not created equally, slight differences in structure lead to crucial differences in function. Muticellular organisms use polyunsaturated fatty acid as substrates to produce potent signaling molecules crucial for many physiological processes, including reproduction. Here we explored the mechanism responsible for germ cell loss induced by dietary supplementation of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) in the roundworm Caenorhabditis elegans. In this study we found that C. elegans CYP-33E2 activity produces a range of epoxy and hydroxy metabolites from dietary DGLA. Knockdown of cyp-33E2 suppressed the DGLA-induced sterility phenotype. Additionally, direct exposure of two specific DGLA-derived epoxy products, 8,9- and 14,15-epoxyeicosadienoic acids, produced germ cell abnormalities in the C. elegans gonad. We propose that sterility is mediated by the production of toxic DGLA-derived epoxides that trigger germ cell destruction. These studies are the first to establish a biological activity for a CYP-produced metabolite of DGLA.
Collapse
Affiliation(s)
- Marshall Deline
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99614-6340, USA
| | - Julia Keller
- Humboldt-Universität zu Berlin, Department of Biology, Ecology, Philippstr. 13, House 18, 10115 Berlin, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Wolf-Hagen Schunck
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Ralph Menzel
- Humboldt-Universität zu Berlin, Department of Biology, Ecology, Philippstr. 13, House 18, 10115 Berlin, Germany
| | - Jennifer L. Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99614-6340, USA
| |
Collapse
|
32
|
Imanikia S, Hylands P, Stürzenbaum SR. The double mutation of cytochrome P450's and fatty acid desaturases affect lipid regulation and longevity in C. elegans. Biochem Biophys Rep 2015; 2:172-178. [PMID: 29124160 PMCID: PMC5668661 DOI: 10.1016/j.bbrep.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/01/2022] Open
Abstract
An imbalance between energy uptake and energy expenditure can lead to obesity and increase the risk of coronary heart disease, high blood pressure, stroke, type II diabetes and some cancers. Given that key elements of the energy pathway are evolutionary conserved, invertebrate research is an attractive alternative that overcomes the many legislative, financial and experimental hurdles typical of research with higher metazoan animals. Recent studies have suggested that some members of the cytochrome P450 superfamily are involved in lipid metabolism in addition to the traditional xenobiotic activity. To investigate this notion in more detail, the present study aimed to pinpoint phenotypic, genetic and genomic-level responses of Caenorhabditis elegans using selected deletion mutants including fat-5 (a member of the Δ9 desaturases) and cyp-35A2 (a member of the cytochrome P450 family). The creation of a fat-5(tm420);cyp-35A2(gk317) mutant uncovered that the deletion of both genes resulted in a strain which is marked by an extended lifespan. Furthermore, it diminished the overall level of Nile Red positive compartments, which is indicative of a change in lipid metabolism. Comprehensive transcriptomics revealed that several genes involved in aging and lipid transport/homeostasis were modulated following the double deletion of fat-5 and cyp-35A2. Taken together, the results suggest the presence of a putative correlation between longevity and lipid regulation and given that both genes have human homologs, this finding may offer a new lead to investigate in higher organisms.
Collapse
Affiliation(s)
- Soudabeh Imanikia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Peter Hylands
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Stephen R. Stürzenbaum
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, King's College London, London, UK
- MRC-PHE Centre for Environment & Health, King's College London, London, UK
| |
Collapse
|
33
|
CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem J 2014; 464:61-71. [DOI: 10.1042/bj20140848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CYP-13A12 of the nematode Caenorhabditis elegans was characterized after heterologous expression in insect cells as a PUFA epoxygenase producing eicosanoids. These metabolites function as signalling molecules in the regulation of the O2-ON response, a rapid increase of locomotion in response to anoxia/reoxygenation.
Collapse
|
34
|
Raabe RC, Mathies LD, Davies AG, Bettinger JC. The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans. PLoS One 2014; 9:e105999. [PMID: 25162400 PMCID: PMC4146551 DOI: 10.1371/journal.pone.0105999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022] Open
Abstract
Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.
Collapse
Affiliation(s)
- Richard C. Raabe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Yuan D, Zou Q, Yu T, Song C, Huang S, Chen S, Ren Z, Xu A. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1272-84. [PMID: 24801744 DOI: 10.1016/j.bbalip.2014.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Abstract
Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qiuqiong Zou
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ting Yu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Cuikai Song
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shengfeng Huang
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shangwu Chen
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenghua Ren
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Anlong Xu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China; Beijing University of Chinese Medicine, 11 Bei San Huang Dong Road, Chao-yang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
36
|
Erkut C, Vasilj A, Boland S, Habermann B, Shevchenko A, Kurzchalia TV. Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLoS One 2013; 8:e82473. [PMID: 24324795 PMCID: PMC3853187 DOI: 10.1371/journal.pone.0082473] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/02/2013] [Indexed: 11/19/2022] Open
Abstract
Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Qiu X, Wu X, Huang L, Tian M, Ye J. Specifically expressed genes of the nematode Bursaphelenchus xylophilus involved with early interactions with pine trees. PLoS One 2013; 8:e78063. [PMID: 24155981 PMCID: PMC3796492 DOI: 10.1371/journal.pone.0078063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/16/2013] [Indexed: 01/08/2023] Open
Abstract
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD.
Collapse
Affiliation(s)
- Xiuwen Qiu
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Xiaoqin Wu
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Lin Huang
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Minqi Tian
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Jianren Ye
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Ma DK, Rothe M, Zheng S, Bhatla N, Pender CL, Menzel R, Horvitz HR. Cytochrome P450 drives a HIF-regulated behavioral response to reoxygenation by C. elegans. Science 2013; 341:554-8. [PMID: 23811225 PMCID: PMC3969381 DOI: 10.1126/science.1235753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxygen deprivation followed by reoxygenation causes pathological responses in many disorders, including ischemic stroke, heart attacks, and reperfusion injury. Key aspects of ischemia-reperfusion can be modeled by a Caenorhabditis elegans behavior, the O2-ON response, which is suppressed by hypoxic preconditioning or inactivation of the O2-sensing HIF (hypoxia-inducible factor) hydroxylase EGL-9. From a genetic screen, we found that the cytochrome P450 oxygenase CYP-13A12 acts in response to the EGL-9-HIF-1 pathway to facilitate the O2-ON response. CYP-13A12 promotes oxidation of polyunsaturated fatty acids into eicosanoids, signaling molecules that can strongly affect inflammatory pain and ischemia-reperfusion injury responses in mammals. We propose that roles of the EGL-9-HIF-1 pathway and cytochrome P450 in controlling responses to reoxygenation after anoxia are evolutionarily conserved.
Collapse
Affiliation(s)
- Dengke K. Ma
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Michael Rothe
- Lipidomix GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Shu Zheng
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Corinne L. Pender
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Ralph Menzel
- Humboldt-Universität zu Berlin, Department of Biology, Freshwater and Stress Ecology, Spaethstr. 80/81, 12437 Berlin, Germany
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Prasain JK, Hoang HD, Edmonds JW, Miller MA. Prostaglandin extraction and analysis in Caenorhabditis elegans. J Vis Exp 2013. [PMID: 23851568 PMCID: PMC3728984 DOI: 10.3791/50447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Caenorhabditis elegans is emerging as a powerful animal model to study the biology of lipids1-9. Prostaglandins are an important class of eicosanoids, which are lipid signals derived from polyunsaturated fatty acids (PUFAs)10-14. These signalling molecules are difficult to study because of their low abundance and reactive nature. The characteristic feature of prostaglandins is a cyclopentane ring structure located within the fatty acid backbone. In mammals, prostaglandins can be formed through cyclooxygenase enzyme-dependent and -independent pathways10,15. C. elegans synthesizes a wide array of prostaglandins independent of cyclooxygenases6,16,17. A large class of F-series prostaglandins has been identified, but the study of eicosanoids is at an early stage with ample room for new discoveries. Here we describe a procedure for extracting and analyzing prostaglandins and other eicosanoids. Charged lipids are extracted from mass worm cultures using a liquid-liquid extraction technique and analyzed by liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The inclusion of deuterated analogs of prostaglandins, such as PGF2 α-d4 as an internal standard is recommended for quantitative analysis. Multiple reaction monitoring or MRM can be used to quantify and compare specific prostaglandin types between wild-type and mutant animals. Collision-induced decomposition or MS/MS can be used to obtain information on important structural features. Liquid chromatography mass spectrometry (LC-MS) survey scans of a selected mass range, such as m/z 315-360 can be used to evaluate global changes in prostaglandin levels. We provide examples of all three analyses. These methods will provide researchers with a toolset for discovering novel eicosanoids and delineating their metabolic pathways.
Collapse
Affiliation(s)
- Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL, USA
| | | | | | | |
Collapse
|
40
|
Vrablik TL, Watts JL. Polyunsaturated fatty acid derived signaling in reproduction and development: insights from Caenorhabditis elegans and Drosophila melanogaster. Mol Reprod Dev 2013; 80:244-59. [PMID: 23440886 DOI: 10.1002/mrd.22167] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/13/2013] [Indexed: 12/24/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit a diverse range of critical functions in biological systems. PUFAs modulate the biophysical properties of membranes and, along with their derivatives, the eicosanoids and endocannabinoids, form a wide array potent lipid signaling molecules. Much of our early understanding of PUFAs and PUFA-derived signaling stems from work in mammals; however, technological advances have made comprehensive lipid analysis possible in small genetic models such as Caenorhabditis elegans and Drosophila melanogaster. These models have a number of advantages, such as simple anatomy and genome-wide genetic screening techniques, which can broaden our understanding of fatty-acid-derived signaling in biological systems. Here we review what is known about PUFAs, eicosanoids, and endocannabinoids in the development and reproduction of C. elegans and D. melanogaster. Fatty acid signaling appears to be fundamental for multicellular organisms, and simple invertebrates often employ functionally similar pathways. In particular, studies in C. elegans and Drosophila are providing insight into the roles of PUFAs and PUFA-derived signaling in early developmental processes, such as meiosis, fertilization, and early embryonic cleavage.
Collapse
Affiliation(s)
- Tracy L Vrablik
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520, USA
| | | |
Collapse
|
41
|
Zhang Y, Zou X, Ding Y, Wang H, Wu X, Liang B. Comparative genomics and functional study of lipid metabolic genes in Caenorhabditis elegans. BMC Genomics 2013; 14:164. [PMID: 23496871 PMCID: PMC3602672 DOI: 10.1186/1471-2164-14-164] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/06/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Animal models are indispensable to understand the lipid metabolism and lipid metabolic diseases. Over the last decade, the nematode Caenorhabditis elegans has become a popular animal model for exploring the regulation of lipid metabolism, obesity, and obese-related diseases. However, the genomic and functional conservation of lipid metabolism from C. elegans to humans remains unknown. In the present study, we systematically analyzed genes involved in lipid metabolism in the C. elegans genome using comparative genomics. RESULTS We built a database containing 471 lipid genes from the C. elegans genome, and then assigned most of lipid genes into 16 different lipid metabolic pathways that were integrated into a network. Over 70% of C. elegans lipid genes have human orthologs, with 237 of 471 C. elegans lipid genes being conserved in humans, mice, rats, and Drosophila, of which 71 genes are specifically related to human metabolic diseases. Moreover, RNA-mediated interference (RNAi) was used to disrupt the expression of 356 of 471 lipid genes with available RNAi clones. We found that 21 genes strongly affect fat storage, development, reproduction, and other visible phenotypes, 6 of which have not previously been implicated in the regulation of fat metabolism and other phenotypes. CONCLUSIONS This study provides the first systematic genomic insight into lipid metabolism in C. elegans, supporting the use of C. elegans as an increasingly prominent model in the study of metabolic diseases.
Collapse
Affiliation(s)
- Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Xiaoju Zou
- Department of Life Science and Biotechnology, Kunming University, Kunming 650214, China
| | - Yihong Ding
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Haizhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao-Chang Dong Road, Kunming, Yunnan 650223, China
| |
Collapse
|
42
|
Hoang HD, Prasain JK, Dorand D, Miller MA. A heterogeneous mixture of F-series prostaglandins promotes sperm guidance in the Caenorhabditis elegans reproductive tract. PLoS Genet 2013; 9:e1003271. [PMID: 23382703 PMCID: PMC3561059 DOI: 10.1371/journal.pgen.1003271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/10/2012] [Indexed: 11/25/2022] Open
Abstract
The mechanisms that guide motile sperm through the female reproductive tract to oocytes are not well understood. We have shown that Caenorhabditis elegans oocytes synthesize sperm guiding F-series prostaglandins from polyunsaturated fatty acid (PUFA) precursors provided in yolk lipoprotein complexes. Here we use genetics and electrospray ionization tandem mass spectrometry to partially delineate F-series prostaglandin metabolism pathways. We show that omega-6 and omega-3 PUFAs, including arachidonic and eicosapentaenoic acids, are converted into more than 10 structurally related F-series prostaglandins, which function collectively and largely redundantly to promote sperm guidance. Disruption of omega-3 PUFA synthesis triggers compensatory up-regulation of prostaglandins derived from omega-6 PUFAs. C. elegans F-series prostaglandin synthesis involves biochemical mechanisms distinct from those in mammalian cyclooxygenase-dependent pathways, yet PGF2α stereoisomers are still synthesized. A comparison of F-series prostaglandins in C. elegans and mouse tissues reveals shared features. Finally, we show that a conserved cytochrome P450 enzyme, whose human homolog is implicated in Bietti's Crystalline Dystrophy, negatively regulates prostaglandin synthesis. These results support the model that multiple cyclooxygenase-independent prostaglandins function together to promote sperm motility important for fertilization. This cyclooxygenase-independent pathway for F-series synthesis may be conserved. A fundamental question in cell and developmental biology is how motile cells find their target destinations. One of the most important cell targeting mechanisms involves the sperm and oocyte, which unite during fertilization to produce the next generation of offspring. We have been using the nematode C. elegans to delineate these mechanisms. Our prior studies have shown that oocytes secrete F-series prostaglandins that stimulate sperm motility. Prostaglandins are widespread signaling molecules derived from polyunsaturated fatty acids or PUFAs. Mammals are not capable of synthesizing PUFAs and must receive them in the diet. C. elegans was not thought to synthesize prostaglandins because the genome lacks cyclooxygenases, enzymes that catalyze the rate-limiting step in mammalian prostaglandin synthesis. Here we show that C. elegans oocytes synthesize a heterogenous mixture of structurally related F-series prostaglandins derived from different PUFA classes, including the enantiomer of PGF2α. These prostaglandins function collectively and redundantly to guide sperm to the fertilization site. Our results indicate that F-series prostaglandins can be synthesized independent of cyclooxygenase enzymes. This novel pathway may be evolutionarily conserved. Evidence is emerging that prostaglandins regulate sperm motility in the female reproductive tract of humans.
Collapse
Affiliation(s)
- Hieu D. Hoang
- Department of Cell Biology, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dixon Dorand
- Department of Cell Biology, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael A. Miller
- Department of Cell Biology, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
43
|
Webster CM, Deline ML, Watts JL. Stress response pathways protect germ cells from omega-6 polyunsaturated fatty acid-mediated toxicity in Caenorhabditis elegans. Dev Biol 2012; 373:14-25. [PMID: 23064027 DOI: 10.1016/j.ydbio.2012.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
Polyunsaturated fatty acids serve both structural and functional roles as membrane components and precursors for a number of different factors involved in inflammation and signaling. These fatty acids are required in the human diet, although excess dietary intake of omega-6 fatty polyunsaturated fatty acids may have a negative influence on human health. In the model nematode, Caenorhabditis elegans, dietary exposure to dihomo-gamma-linolenic acid (DGLA), an omega-6 fatty acid, causes the destruction of germ cells and leads to sterility. In this study we used genetic and microscopic approaches to further characterize this phenomenon. We found that strains carrying mutations in genes involved in lipid homeostasis enhanced sterility phenotypes, while mutations reducing the activity of the conserved insulin/IGF signaling pathway suppressed sterility phenotypes. Exposure to a mild heat stress prior to omega-6 fatty acid treatment led to an adaptive or hormetic response, resulting in less sterility. Mutations in skn-1 and knockdown of genes encoding phase II detoxification enzymes led to increased sterility in the presence of dietary DGLA. Thus, detoxification systems and genetic changes that increase overall stress responses protect the germ cells from destruction. Microscopic analyses revealed that dietary DGLA leads to deterioration of germ cell membranes in the proliferative and transition zones of the developing germ line. Together, these data demonstrate that specific omega-6 polyunsaturated fatty acids, or molecules derived from them, are transported to the germ line where they disrupt the rapidly expanding germ cell membranes, leading to germ cell death.
Collapse
Affiliation(s)
- Christopher M Webster
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99614-6340, USA
| | | | | |
Collapse
|
44
|
Abstract
SUMMARYAnthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.
Collapse
|
45
|
Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, Rottiers V, Habermann B, Cummins CL, Antebi A. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol 2012; 10:e1001305. [PMID: 22505847 PMCID: PMC3323522 DOI: 10.1371/journal.pbio.1001305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/02/2012] [Indexed: 01/10/2023] Open
Abstract
Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elisabeth Rass
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Yidong Shen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Veerle Rottiers
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Carolyn L. Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
46
|
Laing ST, Ivens A, Butler V, Ravikumar SP, Laing R, Woods DJ, Gilleard JS. The transcriptional response of Caenorhabditis elegans to Ivermectin exposure identifies novel genes involved in the response to reduced food intake. PLoS One 2012; 7:e31367. [PMID: 22348077 PMCID: PMC3279368 DOI: 10.1371/journal.pone.0031367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/09/2012] [Indexed: 12/02/2022] Open
Abstract
We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms.
Collapse
Affiliation(s)
- Steven T. Laing
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Al Ivens
- Fios Genomics Ltd, The Edinburgh Technology Transfer Centre, Edinburgh, Lothian, United Kingdom
| | - Victoria Butler
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sai P. Ravikumar
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roz Laing
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Debra J. Woods
- Research and Development, Pfizer Animal Health, Kalamazoo, Michigan, United States of America
| | - John S. Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
47
|
Viñuela A, Snoek LB, Riksen JAG, Kammenga JE. Gene expression modifications by temperature-toxicants interactions in Caenorhabditis elegans. PLoS One 2011; 6:e24676. [PMID: 21931806 PMCID: PMC3170376 DOI: 10.1371/journal.pone.0024676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/18/2011] [Indexed: 11/18/2022] Open
Abstract
Although organophosphorus pesticides (OP) share a common mode of action, there is increased awareness that they elicit a diverse range of gene expression responses. As yet however, there is no clear understanding of these responses and how they interact with ambient environmental conditions. In the present study, we investigated genome-wide gene expression profiles in the nematode Caenorhabditis elegans exposed to two OP, chlorpyrifos and diazinon, in single and combined treatments at different temperatures. Our results show that chlorpyrifos and diazinon induced expression of different genes and that temperature affected the response of detoxification genes to the pesticides. The analysis of transcriptional responses to a combination of chlorpyrifos and diazinon shows interactions between toxicants that affect gene expression. Furthermore, our combined analysis of the transcriptional responses to OP at different temperatures suggests that the combination of OP and high temperatures affect detoxification genes and modified the toxic levels of the pesticides.
Collapse
Affiliation(s)
- Ana Viñuela
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - L. Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
48
|
Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans. Biochem J 2011; 435:689-700. [PMID: 21309752 DOI: 10.1042/bj20101942] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caenorhabditis elegans harbours several CYP (cytochrome P450) genes that are homologous with mammalian CYP isoforms important to the production of physiologically active AA (arachidonic acid) metabolites. We tested the hypothesis that mammals and C. elegans may share similar basic mechanisms of CYP-dependent eicosanoid formation and action. We focused on CYP33E2, an isoform related to the human AA-epoxygenases CYP2C8 and CYP2J2. Co-expression of CYP33E2 with the human NADPH-CYP reductase in insect cells resulted in the reconstitution of an active microsomal mono-oxygenase system that metabolized EPA (eicosapentaenoic acid) and, with lower activity, also AA to specific sets of regioisomeric epoxy- and hydroxy-derivatives. The main products included 17,18-epoxyeicosatetraenoic acid from EPA and 19-hydroxyeicosatetraenoic acid from AA. Using nematode worms carrying a pCYP33E2::GFP reporter construct, we found that CYP33E2 is exclusively expressed in the pharynx, where it is predominantly localized in the marginal cells. RNAi (RNA interference)-mediated CYP33E2 expression silencing as well as treatments with inhibitors of mammalian AA-metabolizing CYP enzymes, significantly reduced the pharyngeal pumping frequency of adult C. elegans. These results demonstrate that EPA and AA are efficient CYP33E2 substrates and suggest that CYP-eicosanoids, influencing in mammals the contractility of cardiomyocytes and vascular smooth muscle cells, may function in C. elegans as regulators of the pharyngeal pumping activity.
Collapse
|
49
|
|
50
|
Aarnio V, Lehtonen M, Storvik M, Callaway JC, Lakso M, Wong G. Caenorhabditis Elegans Mutants Predict Regulation of Fatty Acids and Endocannabinoids by the CYP-35A Gene Family. Front Pharmacol 2011; 2:12. [PMID: 21687507 PMCID: PMC3108558 DOI: 10.3389/fphar.2011.00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/28/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cytochrome P450s (CYPs) are mono-oxygenases that metabolize endogenous compounds, such as fatty acids and lipid signaling molecules, and furthermore have a role in metabolism of xenobiotics. In order to investigate the role of CYP genes in fat metabolism at the molecular level, four Caenorhabditis elegans mutants lacking functional CYP-35A1, CYP-35A2, CYP-35A4, and CYP-35A5 were characterized. Relative amounts of fatty acids, as well as endocannabinoids, which regulate weight gain and accumulation of fats in mammals, were measured while fat contents in worms were visualized using Oil-Red-O staining. RESULTS The cyp-35A1 and cyp-35A5 mutants had a significantly lower intestinal fat content than wild-type animals, whereas cyp-35A2 and cyp-35A4 mutants appeared normal. The overall fatty acid compositions of CYP mutants did not alter dramatically, although modest but significant changes were observed. cyp-35A1 and cyp-35A5 mutants had significantly higher levels of C18:1n7 and lower C18:2n6c. All four mutants had higher relative amounts of C18:1n7 than the wild-type. In the cyp-35A5 mutant, the levels of the endocannabinoid anandamide were found to be 4.6-fold higher than in wild-type. Several fatty acid synthesis genes were over-expressed in cyp-35A1 including fat-2. Feeding oleic or elaidic triglycerides to wild-type animals demonstrated that cyp-35A1 transcriptional levels are insensitive to environmental exposure of these fats, while cyp-35A2, cyp-35A4, and cyp-35A5 were significantly down regulated. CONCLUSION These results demonstrate a dynamic role for CYP-35A subfamily members in maintaining the diversity of fatty acid profiles in C. elegans, and more generally highlight the importance of CYPs in generating both structural and signaling fatty acid functions in other organisms.
Collapse
Affiliation(s)
- Vuokko Aarnio
- Functional Genomics and Bioinformatics Laboratory, Department of Biosciences and Department of Neurobiology, A. I. Virtanen Institute, Biocenter Finland, University of Eastern Finland Kuopio, Finland
| | | | | | | | | | | |
Collapse
|