1
|
Elowe CR, Stager M. Serca Uncoupling May Facilitate Cold Acclimation in Dark-Eyed Juncos (Junco hyemalis) without Regulation by Sarcolipin or Phospholamban. Integr Comp Biol 2024; 64:1836-1847. [PMID: 38650061 DOI: 10.1093/icb/icae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Homeothermic endotherms defend their body temperature in cold environments using a number of behavioral and physiological mechanisms. Maintaining a stable body temperature primarily requires heat production through shivering or non-shivering thermogenesis (NST). Although the use of NST is well established in mammalian systems, the mechanisms and extent to which NST is used in birds are poorly understood. In mammals, one well-characterized mechanism of NST is through uncoupling of Ca2+ transport from ATP hydrolysis by sarco/endoplasmic reticulum ATPase (SERCA) in the skeletal muscle, which generates heat and may contribute to Ca2+ signaling for fatigue resistance and mitochondrial biogenesis. Two small proteins-sarcolipin (SLN) and phospholamban (PLN)-are known to regulate SERCA in mammals, but recent work shows inconsistent responses of SLN to cold acclimation in birds. In this study, we measured SERCA uncoupling in the pectoralis flight muscle of control (18°C) and cold-acclimated (-8°C) dark-eyed juncos (Junco hyemalis) that exhibited suppressed SLN transcription in the cold. We measured SERCA activity and Ca2+ uptake rates for the first time in cold-acclimated birds and found greater SERCA uncoupling in the muscle of juncos in the cold. However, SERCA uncoupling was not related to SLN or PLN transcription or measures of mitochondrial biogenesis. Nonetheless, SERCA uncoupling reduced an individual's risk of hypothermia in the cold. Therefore, while SERCA uncoupling in the cold could be indicative of NST, it does not appear to be mediated by known regulatory proteins in these birds. These results prompt interesting questions about the significance of SLN and PLN in birds and the role of SERCA uncoupling in response to environmental conditions.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
| | - Maria Stager
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
| |
Collapse
|
2
|
Stokely AM, Votapka LW, Hock MT, Teitgen AE, McCammon JA, McCulloch AD, Amaro RE. NetSci: A Library for High Performance Biomolecular Simulation Network Analysis Computation. J Chem Inf Model 2024; 64:7966-7976. [PMID: 39364881 DOI: 10.1021/acs.jcim.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present the NetSci program-an open-source scientific software package designed for estimating mutual information (MI) between data sets using GPU acceleration and a k-nearest-neighbor algorithm. This approach significantly enhances calculation speed, achieving improvements of several orders of magnitude over traditional CPU-based methods, with data set size limits dictated only by available hardware. To validate NetSci, we accurately compute MI for an analytically verifiable two-dimensional Gaussian distribution and replicate the generalized correlation (GC) analysis previously conducted on the B1 domain of protein G. We also apply NetSci to molecular dynamics simulations of the Sarcoendoplasmic Reticulum Calcium-ATPase (SERCA) pump, exploring the allosteric mechanisms and pathways influenced by ATP and 2'-deoxy-ATP (dATP) binding. Our analysis reveals distinct allosteric effects induced by ATP compared to dATP, with predicted information pathways from the bound nucleotide to the calcium-binding domain differing based on the nucleotide involved. NetSci proves to be a valuable tool for estimating MI and GC in various data sets and is particularly effective for analyzing intraprotein communication and information transfer.
Collapse
Affiliation(s)
- Andrew M Stokely
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Lane W Votapka
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marcus T Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Abigail E Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
4
|
Elowe CR, Stager M, Gerson AR. Sarcolipin relates to fattening, but not sarco/endoplasmic reticulum Ca2+-ATPase uncoupling, in captive migratory gray catbirds. J Exp Biol 2024; 227:jeb246897. [PMID: 38044822 DOI: 10.1242/jeb.246897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
In order to complete their energetically demanding journeys, migratory birds undergo a suite of physiological changes to prepare for long-duration endurance flight, including hyperphagia, fat deposition, reliance on fat as a fuel source, and flight muscle hypertrophy. In mammalian muscle, SLN is a small regulatory protein which binds to sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis, increasing energy consumption, heat production, and cytosolic Ca2+ transients that signal for mitochondrial biogenesis, fatigue resistance and a shift to fatty acid oxidation. Using a photoperiod manipulation of captive gray catbirds (Dumetella carolinensis), we investigated whether SLN may play a role in coordinating the development of the migratory phenotype. In response to long-day photostimulation, catbirds demonstrated migratory restlessness and significant body fat stores, alongside higher SLN transcription while SERCA2 remained constant. SLN transcription was strongly correlated with h-FABP and PGC1α transcription, as well as fat mass. However, SLN was not significantly correlated with HOAD or CD36 transcripts or measurements of SERCA activity, SR membrane Ca2+ leak, Ca2+ uptake rates, pumping efficiency or mitochondrial biogenesis. Therefore, SLN may be involved in the process of storing fat and shifting to fat as a fuel, but the mechanism of its involvement remains unclear.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Maria Stager
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| |
Collapse
|
5
|
Aguilella M, Garciadeblás B, Fernández Pacios L, Benito B. Phylogenetic and Structure-Function Analyses of ENA ATPases: A Case Study of the ENA1 Protein from the Fungus Neurospora crassa. Int J Mol Sci 2023; 25:514. [PMID: 38203685 PMCID: PMC10779151 DOI: 10.3390/ijms25010514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
ENA transporters are a group of P-type ATPases that are characterized by actively moving Na+ or K+ out of the cell against their concentration gradient. The existence of these transporters was initially attributed to some fungi, although more recently they have also been identified in mosses, liverworts, and some protozoa. Given the current increase in the number of organisms whose genomes are completely sequenced, we set out to expand our knowledge about the existence of ENA in organisms belonging to other phylogenetic groups. For that, a hidden Markov model profile was constructed to identify homologous sequences to ENA proteins in protein databases. This analysis allowed us to identify the existence of ENA-type ATPases in the most primitive groups of fungi, as well as in other eukaryotic organisms not described so far. In addition, this study has allowed the identification of a possible new group of P-ATPases, initially proposed as ENA but which maintain phylogenetic distances with these proteins. Finally, this work has also addressed this study of the structure of ENA proteins, which remained unknown due to the lack of crystallographic data. For this purpose, a 3D structure prediction of the NcENA1 protein of the fungus Neurospora crassa was performed using AlphaFold2 software v2.3.1. From this structure, the electrostatic potential of the protein was analyzed. With all these data, the protein regions and the amino acids involved in the transport of Na+ or K+ ions across the membrane were proposed for the first time. Targeted mutagenesis of some of these residues has confirmed their relevant participation in the transport function of ENA proteins.
Collapse
Affiliation(s)
- Marcos Aguilella
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| | - Blanca Garciadeblás
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| | - Luis Fernández Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain;
| |
Collapse
|
6
|
Chen X, Soria-Carrera H, Zozulia O, Boekhoven J. Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle. Chem Sci 2023; 14:12653-12660. [PMID: 38020366 PMCID: PMC10646924 DOI: 10.1039/d3sc04281b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
In biology, cells regulate the function of molecules using catalytic reaction cycles that convert reagents with high chemical potential (fuel) to waste molecules. Inspired by biology, synthetic analogs of such chemical reaction cycles have been devised, and a widely used catalytic reaction cycle uses carboxylates as catalysts to accelerate the hydration of carbodiimides. The cycle is versatile and easy to use, so it is widely applied to regulate motors, pumps, self-assembly, and phase separation. However, the cycle suffers from side reactions, especially the formation of N-acylurea. In catalytic reaction cycles, side reactions are disastrous as they decrease the fuel's efficiency and, more importantly, destroy the molecular machinery or assembling molecules. Therefore, this work tested how to suppress N-acylurea by screening precursor concentration, its structure, carbodiimide structure, additives, temperature, and pH. It turned out that the combination of low temperature, low pH, and 10% pyridine as a fraction of the fuel could significantly suppress the N-acylurea side product and keep the reaction cycle highly effective to regulate successful assembly. We anticipate that our work will provide guidelines for using carbodiimide-fueled reaction cycles to regulate molecular function and how to choose optimal conditions.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Héctor Soria-Carrera
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Oleksii Zozulia
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| |
Collapse
|
7
|
Chen X, Kriebisch BAK, Bergmann AM, Boekhoven J. Design rules for reciprocal coupling in chemically fueled assembly. Chem Sci 2023; 14:10176-10183. [PMID: 37772095 PMCID: PMC10530897 DOI: 10.1039/d3sc02062b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Biology regulates the function and assembly of proteins through non-equilibrium reaction cycles. Reciprocally, the assembly of proteins can influence the reaction rates of these cycles. Such reciprocal coupling between assembly and reaction cycle is a prerequisite for behavior like dynamic instabilities, treadmilling, pattern formation, and oscillations between morphologies. While assemblies regulated by chemical reaction cycles gained traction, the concept of reciprocal coupling is under-explored. In this work, we provide two molecular design strategies to tweak the degree of reciprocal coupling between the assembly and reaction cycle. The strategies involve spacing the chemically active site away from the assembly or burying it into the assembly. We envision that design strategies facilitate the creation of reciprocally coupled and, by extension, dynamic supramolecular materials in the future.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Brigitte A K Kriebisch
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| |
Collapse
|
8
|
Hock MT, Teitgen AE, McCabe KJ, Hirakis SP, Huber GA, Regnier M, Amaro RE, McCammon JA, McCulloch AD. Multiscale computational modeling of the effects of 2'-deoxy-ATP on cardiac muscle calcium handling. JOURNAL OF APPLIED PHYSICS 2023; 134:074905. [PMID: 37601331 PMCID: PMC10435275 DOI: 10.1063/5.0157935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
2'-Deoxy-ATP (dATP), a naturally occurring near analog of ATP, is a well-documented myosin activator that has been shown to increase contractile force, improve pump function, and enhance lusitropy in the heart. Calcium transients in cardiomyocytes with elevated levels of dATP show faster calcium decay compared with cardiomyocytes with basal levels of dATP, but the mechanisms behind this are unknown. Here, we design and utilize a multiscale computational modeling framework to test the hypothesis that dATP acts on the sarcoendoplasmic reticulum calcium-ATPase (SERCA) pump to accelerate calcium re-uptake into the sarcoplasmic reticulum during cardiac relaxation. Gaussian accelerated molecular dynamics simulations of human cardiac SERCA2A in the E1 apo, ATP-bound and dATP-bound states showed that dATP forms more stable contacts in the nucleotide binding pocket of SERCA and leads to increased closure of cytosolic domains. These structural changes ultimately lead to changes in calcium binding, which we assessed using Brownian dynamics simulations. We found that dATP increases calcium association rate constants to SERCA and that dATP binds to apo SERCA more rapidly than ATP. Using a compartmental ordinary differential equation model of human cardiomyocyte excitation-contraction coupling, we found that these increased association rate constants contributed to the accelerated rates of calcium transient decay observed experimentally. This study provides clear mechanistic evidence of enhancements in cardiac SERCA2A pump function due to interactions with dATP.
Collapse
Affiliation(s)
- Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Resesarch Laboratory, Oslo 0164, Norway
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98109, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
9
|
Kanai R, Vilsen B, Cornelius F, Toyoshima C. Crystal structures of Na + ,K + -ATPase reveal the mechanism that converts the K + -bound form to Na + -bound form and opens and closes the cytoplasmic gate. FEBS Lett 2023; 597:1957-1976. [PMID: 37357620 DOI: 10.1002/1873-3468.14689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Na+ ,K+ -ATPase (NKA) plays a pivotal role in establishing electrochemical gradients for Na+ and K+ across the cell membrane by alternating between the E1 (showing high affinity for Na+ and low affinity for K+ ) and E2 (low affinity to Na+ and high affinity to K+ ) forms. Presented here are two crystal structures of NKA in E1·Mg2+ and E1·3Na+ states at 2.9 and 2.8 Å resolution, respectively. These two E1 structures fill a gap in our description of the NKA reaction cycle based on the atomic structures. We describe how NKA converts the K+ -bound E2·2K+ form to an E1 (E1·Mg2+ ) form, which allows high-affinity Na+ binding, eventually closing the cytoplasmic gate (in E1 ~ P·ADP·3Na+ ) after binding three Na+ , while keeping the extracellular ion pathway sealed. We now understand previously unknown functional roles for several parts of NKA and that NKA uses even the lipid bilayer for gating the ion pathway.
Collapse
Affiliation(s)
- Ryuta Kanai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Denmark
| | | | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
10
|
Chen X, Würbser MA, Boekhoven J. Chemically Fueled Supramolecular Materials. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:416-426. [PMID: 37256081 PMCID: PMC10226104 DOI: 10.1021/accountsmr.2c00244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/10/2023] [Indexed: 06/01/2023]
Abstract
In biology, the function of many molecules is regulated through nonequilibrium chemical reaction cycles. The prototypical example is the phosphorylation of an amino acid in an enzyme which induces a functional change, e.g., it folds or unfolds, assembles or disassembles, or binds a substrate. Such phosphorylation does not occur spontaneously but requires a phosphorylating agent with high chemical potential (for example, adenosine triphosphate (ATP)) to be converted into a molecule with lower chemical potential (adenosine diphosphate (ADP)). When this energy is used to regulate an assembly, we speak of chemically fueled assemblies; i.e., the molecule with high potential, the fuel, is used to regulate a self-assembly process. For example, the binding of guanosine triphosphate (GTP) to tubulin induces self-assembly. The bound GTP is hydrolyzed to guanosine diphosphate (GDP) upon assembly, which induces tubulin disassembly. The result is a dynamic assembly endowed with unique characteristics, such as time-dependent behavior and the ability to self-heal. These intriguing, unique properties have inspired supramolecular chemists to create similar chemically fueled molecular assemblies from the bottom up. While examples have been designed, they remain scarce partly because chemically fueled reaction cycles are rare and often complex. Thus, we recently developed a carbodiimide-driven reaction cycle that is versatile and easy to use, quantitatively understood, and does not suffer from side reactions. In the reaction cycle, a carboxylate precursor reacts with a carbodiimide to form an activated species like an anhydride or ester. The activated state reacts with water and thereby reverts to its precursor state; i.e., the activated state is deactivated. Effectively, the precursor catalyzes carbodiimides' conversion into waste and forms a transient activated state. We designed building blocks to regulate a range of assemblies and supramolecular materials at the expense of carbodiimide fuel. The simplicity and versatility of the reaction cycles have democratized and popularized the field of chemically fueled assemblies. In this Account, we describe what we have "learned" on our way. We introduce the field exemplified by biological nonequilibrium self-assembly. We describe the design of the carbodiimide-driven reaction cycle. Using examples from our group and others, we offer design rules for the building block's structure and strategies to create the desired morphology or supramolecular materials. The discussed morphologies include fibers, colloids, crystals, and oil- and coacervate-based droplets. We then demonstrate how these assemblies form supramolecular materials with unique material properties like the ability to self-heal. Besides, we discuss the concept of reciprocal coupling in which the assembly exerts feedback on its reaction cycle and we also offer examples of such feedback mechanisms. Finally, we close the Account with a discussion and an outlook on this field. This Account aims to provide our fundamental understanding and facilitate further progress toward conceptually new supramolecular materials.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Michaela A. Würbser
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Job Boekhoven
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| |
Collapse
|
11
|
Chen Z, Watanabe S, Hashida H, Inoue M, Daigaku Y, Kikkawa M, Inaba K. Cryo-EM structures of human SPCA1a reveal the mechanism of Ca 2+/Mn 2+ transport into the Golgi apparatus. SCIENCE ADVANCES 2023; 9:eadd9742. [PMID: 36867705 PMCID: PMC9984183 DOI: 10.1126/sciadv.add9742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/27/2023] [Indexed: 06/02/2023]
Abstract
Secretory pathway Ca2+/Mn2+ ATPase 1 (SPCA1) actively transports cytosolic Ca2+ and Mn2+ into the Golgi lumen, playing a crucial role in cellular calcium and manganese homeostasis. Detrimental mutations of the ATP2C1 gene encoding SPCA1 cause Hailey-Hailey disease. Here, using nanobody/megabody technologies, we determined cryo-electron microscopy structures of human SPCA1a in the ATP and Ca2+/Mn2+-bound (E1-ATP) state and the metal-free phosphorylated (E2P) state at 3.1- to 3.3-Å resolutions. The structures revealed that Ca2+ and Mn2+ share the same metal ion-binding pocket with similar but notably different coordination geometries in the transmembrane domain, corresponding to the second Ca2+-binding site in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). In the E1-ATP to E2P transition, SPCA1a undergoes similar domain rearrangements to those of SERCA. Meanwhile, SPCA1a shows larger conformational and positional flexibility of the second and sixth transmembrane helices, possibly explaining its wider metal ion specificity. These structural findings illuminate the unique mechanisms of SPCA1a-mediated Ca2+/Mn2+ transport.
Collapse
Affiliation(s)
- Zhenghao Chen
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hironori Hashida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasukazu Daigaku
- Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
12
|
Zádor E. The Meeting of Micropeptides with Major Ca 2+ Pumps in Inner Membranes-Consideration of a New Player, SERCA1b. MEMBRANES 2023; 13:274. [PMID: 36984661 PMCID: PMC10058886 DOI: 10.3390/membranes13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Calcium is a major signalling bivalent cation within the cell. Compartmentalization is essential for regulation of calcium mediated processes. A number of players contribute to intracellular handling of calcium, among them are the sarco/endoplasmic reticulum calcium ATP-ases (SERCAs). These molecules function in the membrane of ER/SR pumping Ca2+ from cytoplasm into the lumen of the internal store. Removal of calcium from the cytoplasm is essential for signalling and for relaxation of skeletal muscle and heart. There are three genes and over a dozen isoforms of SERCA in mammals. These can be potentially influenced by small membrane peptides, also called regulins. The discovery of micropeptides has increased in recent years, mostly because of the small ORFs found in long RNAs, annotated formerly as noncoding (lncRNAs). Several excellent works have analysed the mechanism of interaction of micropeptides with each other and with the best known SERCA1a (fast muscle) and SERCA2a (heart, slow muscle) isoforms. However, the array of tissue and developmental expressions of these potential regulators raises the question of interaction with other SERCAs. For example, the most abundant calcium pump in neonatal and regenerating skeletal muscle, SERCA1b has never been looked at with scrutiny to determine whether it is influenced by micropeptides. Further details might be interesting on the interaction of these peptides with the less studied SERCA1b isoform.
Collapse
Affiliation(s)
- Ernő Zádor
- Institute of Biochemistry, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| |
Collapse
|
13
|
Guo Y, Zhang Y, Yan R, Huang B, Ye F, Wu L, Chi X, Shi Y, Zhou Q. Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states. Nat Commun 2022; 13:3957. [PMID: 35803952 PMCID: PMC9270386 DOI: 10.1038/s41467-022-31602-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Sodium-Potassium Pump (Na+/K+-ATPase, NKA) is an ion pump that generates an electrochemical gradient of sodium and potassium ions across the plasma membrane by hydrolyzing ATP. During each Post-Albers cycle, NKA exchanges three cytoplasmic sodium ions for two extracellular potassium ions through alternating changes between the E1 and E2 states. Hitherto, several steps remained unknown during the complete working cycle of NKA. Here, we report cryo-electron microscopy (cryo-EM) structures of recombinant human NKA (hNKA) in three distinct states at 2.7–3.2 Å resolution, representing the E1·3Na and E1·3Na·ATP states with cytosolic gates open and the basic E2·[2K] state, respectively. This work provides the insights into the cytoplasmic Na+ entrance pathway and the mechanism of cytoplasmic gate closure coupled with ATP hydrolysis, filling crucial gaps in the structural elucidation of the Post-Albers cycle of NKA. Sodium-Potassium Pump (Na+/K+-ATPase, NKA) generates an electrochemical gradient of sodium and potassium ions across the plasma membrane by hydrolyzing ATP. Here, the authors report structures of human NKA providing insight into the cytoplasmic Na+ entrance and the cytoplasmic gate closure coupled to ATP hydrolysis.
Collapse
Affiliation(s)
- Yingying Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanyuan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Renhong Yan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bangdong Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Fangfei Ye
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Liushu Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ximin Chi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yi Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Qiang Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China. .,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
14
|
Kanai R, Cornelius F, Vilsen B, Toyoshima C. Cryo-electron microscopy of Na + ,K + -ATPase reveals how the extracellular gate locks in the E2·2K + state. FEBS Lett 2022; 596:2513-2524. [PMID: 35747985 DOI: 10.1002/1873-3468.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Na+ ,K+ -ATPase (NKA) is one of the most important members of the P-type ion-translocating ATPases and plays a pivotal role in establishing electrochemical gradients for Na+ and K+ across the cell membrane. Presented here is a 3.3 Å resolution structure of NKA in the E2·2K+ state solved by cryo-electron microscopy. It is a stable state with two occluded K+ after transferring three Na+ into the extracellular medium and releasing inorganic phosphate bound to the cytoplasmic P domain. We describe how the extracellular ion pathway wide open in the E2P state becomes closed and locked in E2·2K+ , linked to events at the phosphorylation site more than 50 Å away. We also show, though at low resolution, how ATP binding to NKA in E2·2K+ relaxes the gating machinery and thereby accelerates the transition into the next step, that is, the release of K+ into the cytoplasm, more than 100 times.
Collapse
Affiliation(s)
- Ryuta Kanai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| |
Collapse
|
15
|
Bitter RM, Oh S, Deng Z, Rahman S, Hite RK, Yuan P. Structure of the Wilson disease copper transporter ATP7B. SCIENCE ADVANCES 2022; 8:eabl5508. [PMID: 35245129 PMCID: PMC8896786 DOI: 10.1126/sciadv.abl5508] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 05/31/2023]
Abstract
ATP7A and ATP7B, two homologous copper-transporting P1B-type ATPases, play crucial roles in cellular copper homeostasis, and mutations cause Menkes and Wilson diseases, respectively. ATP7A/B contains a P-type ATPase core consisting of a membrane transport domain and three cytoplasmic domains, the A, P, and N domains, and a unique amino terminus comprising six consecutive metal-binding domains. Here, we present a cryo-electron microscopy structure of frog ATP7B in a copper-free state. Interacting with both the A and P domains, the metal-binding domains are poised to exert copper-dependent regulation of ATP hydrolysis coupled to transmembrane copper transport. A ring of negatively charged residues lines the cytoplasmic copper entrance that is presumably gated by a conserved basic residue sitting at the center. Within the membrane, a network of copper-coordinating ligands delineates a stepwise copper transport pathway. This work provides the first glimpse into the structure and function of ATP7 proteins and facilitates understanding of disease mechanisms and development of rational therapies.
Collapse
Affiliation(s)
- Ryan M. Bitter
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - SeCheol Oh
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suhaila Rahman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Reddy UV, Weber DK, Wang S, Larsen EK, Gopinath T, De Simone A, Robia S, Veglia G. A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca 2+-ATPase. Structure 2022; 30:360-370.e6. [PMID: 34875216 PMCID: PMC8897251 DOI: 10.1016/j.str.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
SERCA is a P-type ATPase embedded in the sarcoplasmic reticulum and plays a central role in muscle relaxation. SERCA's function is regulated by single-pass membrane proteins called regulins. Unlike other regulins, dwarf open reading frame (DWORF) expressed in cardiac muscle has a unique activating effect. Here, we determine the structure and topology of DWORF in lipid bilayers using a combination of oriented sample solid-state NMR spectroscopy and replica-averaged orientationally restrained molecular dynamics. We found that DWORF's structural topology consists of a dynamic N-terminal domain, an amphipathic juxtamembrane helix that crosses the lipid groups at an angle of 64°, and a transmembrane C-terminal helix with an angle of 32°. A kink induced by Pro15, unique to DWORF, separates the two helical domains. A single Pro15Ala mutant significantly decreases the kink and eliminates DWORF's activating effect on SERCA. Overall, our findings directly link DWORF's structural topology to its activating effect on SERCA.
Collapse
Affiliation(s)
- U. Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK,Department of Pharmacy, University of Naples “Federico II”, Naples, 80131, Italy
| | - Seth Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Sordi G, Goti A, Young HS, Palchetti I, Tadini‐Buoninsegni F. Stimulation of Ca 2+ -ATPase Transport Activity by a Small-Molecule Drug. ChemMedChem 2021; 16:3293-3299. [PMID: 34297466 PMCID: PMC8571031 DOI: 10.1002/cmdc.202100350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Indexed: 11/11/2022]
Abstract
The sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) hydrolyzes ATP to transport Ca2+ from the cytoplasm to the sarcoplasmic reticulum (SR) lumen, thereby inducing muscle relaxation. Dysfunctional SERCA has been related to various diseases. The identification of small-molecule drugs that can activate SERCA may offer a therapeutic approach to treat pathologies connected with SERCA malfunction. Herein, we propose a method to study the mechanism of interaction between SERCA and novel SERCA activators, i. e. CDN1163, using a solid supported membrane (SSM) biosensing approach. Native SR vesicles or reconstituted proteoliposomes containing SERCA were adsorbed on the SSM and activated by ATP concentration jumps. We observed that CDN1163 reversibly interacts with SERCA and enhances ATP-dependent Ca2+ translocation. The concentration dependence of the CDN1163 effect provided an EC50 =6.0±0.3 μM. CDN1163 was shown to act directly on SERCA and to exert its stimulatory effect under physiological Ca2+ concentrations. These results suggest that CDN1163 interaction with SERCA can promote a protein conformational state that favors Ca2+ release into the SR lumen.
Collapse
Affiliation(s)
- Giacomo Sordi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 3–1350019Sesto FiorentinoItaly
- Present address: PQE Group50066 ReggelloFlorenceItaly
| | - Andrea Goti
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 3–1350019Sesto FiorentinoItaly
| | - Howard S. Young
- Department of BiochemistryUniversity of AlbertaEdmonton, AlbertaT6G 2H7Canada
| | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 3–1350019Sesto FiorentinoItaly
| | | |
Collapse
|
18
|
Structural and energetic analysis of metastable intermediate states in the E1P-E2P transition of Ca 2+-ATPase. Proc Natl Acad Sci U S A 2021; 118:2105507118. [PMID: 34593638 PMCID: PMC8501872 DOI: 10.1073/pnas.2105507118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/05/2023] Open
Abstract
Ion pumps (or P-type ATPases) are membrane proteins, which transport ions through biological membranes against a concentration gradient, a function essential for many biological processes, such as muscle contraction, neurotransmission, and metabolism. Molecular mechanisms underlying active ion transport by ion pumps have been investigated by biochemical experiments and high-resolution structure analyses. Here, the transition of sarcoplasmic reticulum Ca2+-ATPase upon dissociation of Ca2+ is investigated using atomistic molecular dynamics simulations. We find intermediate structures along the pathway are stabilized by transient interactions between A- and P-domains as well as lipid molecules in the transmembrane helices. Sarcoplasmic reticulum (SR) Ca2+-ATPase transports two Ca2+ ions from the cytoplasm to the SR lumen against a large concentration gradient. X-ray crystallography has revealed the atomic structures of the protein before and after the dissociation of Ca2+, while biochemical studies have suggested the existence of intermediate states in the transition between E1P⋅ADP⋅2Ca2+ and E2P. Here, we explore the pathway and free energy profile of the transition using atomistic molecular dynamics simulations with the mean-force string method and umbrella sampling. The simulations suggest that a series of structural changes accompany the ordered dissociation of ADP, the A-domain rotation, and the rearrangement of the transmembrane (TM) helices. The luminal gate then opens to release Ca2+ ions toward the SR lumen. Intermediate structures on the pathway are stabilized by transient sidechain interactions between the A- and P-domains. Lipid molecules between TM helices play a key role in the stabilization. Free energy profiles of the transition assuming different protonation states suggest rapid exchanges between Ca2+ ions and protons when the Ca2+ ions are released toward the SR lumen.
Collapse
|
19
|
Abeyrathna N, Abeyrathna S, Morgan MT, Fahrni CJ, Meloni G. Transmembrane Cu(I) P-type ATPase pumps are electrogenic uniporters. Dalton Trans 2021; 49:16082-16094. [PMID: 32469032 DOI: 10.1039/d0dt01380c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cu(i) P-type ATPases are transmembrane primary active ion pumps that catalyze the extrusion of copper ions across cellular membranes. Their activity is critical in controlling copper levels in all kingdoms of life. Biochemical and structural characterization established the structural framework by which Cu-pumps perform their function. However, the details of the overall mechanism of transport (uniporter vs. cotransporter) and electrogenicity still remain elusive. In this work, we developed a platform to reconstitute the model Cu(i)-pump from E. coli (EcCopA) in artificial lipid bilayer small unilamellar vesicles (SUVs) to quantitatively characterize the metal substrate, putative counter-ions and charge translocation. By encapsulating in the liposome lumen fluorescence detector probes (CTAP-3, pyranine and oxonol VI) responsive to diverse stimuli (Cu(i), pH and membrane potential), we correlated substrate, secondary-ion translocation and charge movement events in EcCopA proteoliposomes. This platform centered on multiple fluorescence reporters allowed study of the mechanism and translocation kinetic parameters in real-time for wild-type EcCopA and inactive mutants. The maximal initial Cu(i) transport rate of 165 nmol Cu(i) mg-1 min-1 and KM, Cu(I) = 0.15 ± 0.07 μM was determined with this analysis. We reveal that Cu(i) pumps are primary-active uniporters and electrogenic. The Cu(i) translocation cycle does not require proton counter-transport resulting in electrogenic generation of transmembrane potential upon translocation of one Cu(i) per ATP hydrolysis cycle. Thus, mechanistic differences between Cu(i) pumps and other better characterized P-type ATPases are discussed. The platform opens the venue to study translocation events and mechanisms of transport in other transition metal P-type ATPase pumps.
Collapse
Affiliation(s)
- Nisansala Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | | | | | | |
Collapse
|
20
|
Kulik M, Mori T, Sugita Y. Multi-Scale Flexible Fitting of Proteins to Cryo-EM Density Maps at Medium Resolution. Front Mol Biosci 2021; 8:631854. [PMID: 33842541 PMCID: PMC8025875 DOI: 10.3389/fmolb.2021.631854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Structure determination using cryo-electron microscopy (cryo-EM) medium-resolution density maps is often facilitated by flexible fitting. Avoiding overfitting, adjusting force constants driving the structure to the density map, and emulating complex conformational transitions are major concerns in the fitting. To address them, we develop a new method based on a three-step multi-scale protocol. First, flexible fitting molecular dynamics (MD) simulations with coarse-grained structure-based force field and replica-exchange scheme between different force constants replicas are performed. Second, fitted Cα atom positions guide the all-atom structure in targeted MD. Finally, the all-atom flexible fitting refinement in implicit solvent adjusts the positions of the side chains in the density map. Final models obtained via the multi-scale protocol are significantly better resolved and more reliable in comparison with long all-atom flexible fitting simulations. The protocol is useful for multi-domain systems with intricate structural transitions as it preserves the secondary structure of single domains.
Collapse
Affiliation(s)
- Marta Kulik
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Japan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Japan.,RIKEN Center for Computational Science, Kobe, Japan.,RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
21
|
Xin JW, Chai ZX, Zhang CF, Yang YM, Zhang Q, Zhu Y, Cao HW, YangJi C, Zhong JC, Ji QM. Comparative Analysis of Skeleton Muscle Proteome Profile between Yak and Cattle Provides Insight into High-Altitude Adaptation. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164617666200127151931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Mechanisms underlying yak adaptation to high-altitude environments have
been investigated at the levels of morphology, anatomy, physiology, genome and transcriptome, but
have not been explored at the proteome level.
Objective:
The protein profiles were compared between yak and cattle to explore molecular mechanisms
underlying yak adaptation to high altitude conditions.
Methods:
In the present study, an antibody microarray chip was developed, which included 6,500
mouse monoclonal antibodies. Immunoprecipitation and mass spectrometry were performed on 12
selected antibodies which showed that the chip was highly specific. Using this chip, muscle tissue proteome
was compared between yak and cattle, and 12 significantly Differentially Expressed Proteins (DEPs)
between yak and cattle were identified. Their expression levels were validated using Western blot.
Results:
ompared with cattle, higher levels of Rieske Iron-Sulfur Protein (RISP), Cytochrome C oxidase
subunit 4 isoform 1, mitochondrial (COX4I1), ATP synthase F1 subunit beta (ATP5F1B), Sarcoplasmic/
Endoplasmic Reticulum Calcium ATPase1 (SERCA1) and Adenosine Monophosphate Deaminase1
(AMPD1) in yak might improve oxygen utilization and energy metabolism. Pyruvate Dehydrogenase
protein X component (PDHX) and Acetyltransferase component of pyruvate dehydrogenase
complex (DLAT) showed higher expression levels and L-lactate dehydrogenase A chain (LDHA)
showed lower expression level in yak, which might help yak reduce the accumulation of lactic acid. In
addition, higher expression levels of Filamin C (FLNC) and low levels of AHNAK and Four and a half
LIM domains 1 (FHL1) in yak might reduce the risks of pulmonary arteries vasoconstriction, remodeling
and hypertension.
Conclusion:
Overall, the present study reported the differences in protein profile between yak and cattle,
which might be helpful to further understand molecular mechanisms underlying yak adaptation to
high altitude environments.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Yu-Mei Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Cidan YangJi
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| |
Collapse
|
22
|
Rinaldi DE, Ontiveros MQ, Saffioti NA, Vigil MA, Mangialavori IC, Rossi RC, Rossi JP, Espelt MV, Ferreira-Gomes MS. Epigallocatechin 3-gallate inhibits the plasma membrane Ca 2+-ATPase: effects on calcium homeostasis. Heliyon 2021; 7:e06337. [PMID: 33681501 PMCID: PMC7930289 DOI: 10.1016/j.heliyon.2021.e06337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Flavonoids are natural compounds responsible for the health benefits of green tea. Some of the flavonoids present in green tea are catechins, among which are: epigallocatechin, epicatechin-3-gallate, epicatechin, catechin and epigallocatechin-3-gallate (EGCG). The latter was found to induce apoptosis, reduce reactive oxygen species, in some conditions though in others it acts as an oxidizing agent, induce cell cycle arrest, and inhibit carcinogenesis. EGCG also was found to be involved in calcium (Ca2+) homeostasis in excitable and in non-excitable cells. In this study, we investigate the effect of catechins on plasma membrane Ca2+-ATPase (PMCA), which is one of the main mechanisms that extrude Ca2+ out of the cell. Our studies comprised experiments on the isolated PMCA and on cells overexpressing the pump. Among catechins that inhibited PMCA activity, the most potent inhibitor was EGCG. EGCG inhibited PMCA activity in a reversible way favoring E1P conformation. EGCG inhibition also occurred in the presence of calmodulin, the main pump activator. Finally, the effect of EGCG on PMCA activity was studied in human embryonic kidney cells (HEK293T) that transiently overexpress hPMCA4. Results show that EGCG inhibited PMCA activity in HEK293T cells, suggesting that the effects observed on isolated PMCA occur in living cells.
Collapse
Affiliation(s)
| | | | - Nicolas A. Saffioti
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Maximiliano A. Vigil
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Irene C. Mangialavori
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Rolando C. Rossi
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Juan P. Rossi
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - María V. Espelt
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Mariela S. Ferreira-Gomes
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|
23
|
Tadini-Buoninsegni F. Protein Adsorption on Solid Supported Membranes: Monitoring the Transport Activity of P-Type ATPases. Molecules 2020; 25:molecules25184167. [PMID: 32933017 PMCID: PMC7570688 DOI: 10.3390/molecules25184167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
P-type ATPases are a large family of membrane transporters that are found in all forms of life. These enzymes couple ATP hydrolysis to the transport of various ions or phospholipids across cellular membranes, thereby generating and maintaining crucial electrochemical potential gradients. P-type ATPases have been studied by a variety of methods that have provided a wealth of information about the structure, function, and regulation of this class of enzymes. Among the many techniques used to investigate P-type ATPases, the electrical method based on solid supported membranes (SSM) was employed to investigate the transport mechanism of various ion pumps. In particular, the SSM method allows the direct measurement of charge movements generated by the ATPase following adsorption of the membrane-bound enzyme on the SSM surface and chemical activation by a substrate concentration jump. This kind of measurement was useful to identify electrogenic partial reactions and localize ion translocation in the reaction cycle of the membrane transporter. In the present review, we discuss how the SSM method has contributed to investigate some key features of the transport mechanism of P-type ATPases, with a special focus on sarcoplasmic reticulum Ca2+-ATPase, mammalian Cu+-ATPases (ATP7A and ATP7B), and phospholipid flippase ATP8A2.
Collapse
|
24
|
Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM. Cell Rep 2020; 32:108208. [DOI: 10.1016/j.celrep.2020.108208] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
|
25
|
What ATP binding does to the Ca 2+ pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca 2. Proc Natl Acad Sci U S A 2020; 117:18448-18458. [PMID: 32675243 DOI: 10.1073/pnas.2006027117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, most Ca2+-ATPase (SERCA) molecules bind ATP before binding the Ca2+ transported. SERCA has a high affinity for ATP even in the absence of Ca2+, and ATP accelerates Ca2+ binding at pH values lower than 7, where SERCA is in the E2 state with low-affinity Ca2+-binding sites. Here we describe the crystal structure of SERCA2a, the isoform predominant in cardiac muscle, in the E2·ATP state at 3.0-Å resolution. In the crystal structure, the arrangement of the cytoplasmic domains is distinctly different from that in canonical E2. The A-domain now takes an E1 position, and the N-domain occupies exactly the same position as that in the E1·ATP·2Ca2+ state relative to the P-domain. As a result, ATP is properly delivered to the phosphorylation site. Yet phosphoryl transfer never takes place without the filling of the two transmembrane Ca2+-binding sites. The present crystal structure explains what ATP binding itself does to SERCA and how nonproductive phosphorylation is prevented in E2.
Collapse
|
26
|
Matsunaga Y, Sugita Y. Use of single-molecule time-series data for refining conformational dynamics in molecular simulations. Curr Opin Struct Biol 2020; 61:153-159. [DOI: 10.1016/j.sbi.2019.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
|
27
|
ANS Interacts with the Ca 2+-ATPase Nucleotide Binding Site. J Fluoresc 2020; 30:483-496. [PMID: 32146650 DOI: 10.1007/s10895-020-02518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
The binding of 8-anilino-1-naphthalene sulfonate (ANS) to the nucleotide binding domain (N-domain) of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) was studied. Molecular docking predicted two ANS binding modes (BMI and BMII) in the nucleotide binding site. The molecular interaction was confirmed as the fluorescence intensity of ANS was dramatically increased when in the presence of an engineered recombinant N-domain. Molecular dynamics simulation showed BMI (which occupies the ATP binding site) as the mode that is stable in solution. The above was confirmed by the absence of ANS fluorescence in the presence of a fluorescein isothiocyanate (FITC)-labeled N-domain. Further, the labeling of the N-domain with FITC was hindered by the presence of ANS, i.e., ANS was bound to the ATP binding site. Importantly, ANS displayed a higher affinity than ATP. In addition, ANS binding led to quenching the N-domain intrinsic fluorescence displaying a FRET pattern, which suggested the existence of a Trp-ANS FRET couple. Nonetheless, the chemical modification of the sole Trp residue with N-bromosuccinimide (NBS) discarded the existence of FRET and instead indicated structural rearrangements in the nucleotide binding site during ANS binding. Finally, Ca2+-ATPase kinetics in the presence of ANS showed a partial mixed-type inhibition. The Dixon plot showed the ANS-Ca2+-ATPase complex as catalytically active, hence supporting the existence of a functional dimeric Ca2+-ATPase in sarcoplasmic reticulum vesicles. ANS may be used as a molecular platform for the development of more effective inhibitors of Ca2+-ATPase and appears to be a new fluorescent probe for the nucleotide binding site. Graphical Abstract Molecular docking of ANS to the nucleotide binding site of Ca2+-ATPase. ANS fluorescence increase reveals molecular interaction.
Collapse
|
28
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
29
|
Miller SG, Hafen PS, Brault JJ. Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy. Int J Mol Sci 2019; 21:E88. [PMID: 31877712 PMCID: PMC6981514 DOI: 10.3390/ijms21010088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022] Open
Abstract
Adenine nucleotides (AdNs: ATP, ADP, AMP) are essential biological compounds that facilitate many necessary cellular processes by providing chemical energy, mediating intracellular signaling, and regulating protein metabolism and solubilization. A dramatic reduction in total AdNs is observed in atrophic skeletal muscle across numerous disease states and conditions, such as cancer, diabetes, chronic kidney disease, heart failure, COPD, sepsis, muscular dystrophy, denervation, disuse, and sarcopenia. The reduced AdNs in atrophic skeletal muscle are accompanied by increased expression/activities of AdN degrading enzymes and the accumulation of degradation products (IMP, hypoxanthine, xanthine, uric acid), suggesting that the lower AdN content is largely the result of increased nucleotide degradation. Furthermore, this characteristic decrease of AdNs suggests that increased nucleotide degradation contributes to the general pathophysiology of skeletal muscle atrophy. In view of the numerous energetic, and non-energetic, roles of AdNs in skeletal muscle, investigations into the physiological consequences of AdN degradation may provide valuable insight into the mechanisms of muscle atrophy.
Collapse
Affiliation(s)
| | | | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Department of Anatomy, Cell Biology & Physiology, 635 Barnhill Dr., Van Nuys Medical Science Bldg. 5035, Indianapolis, IN 46202, USA; (S.G.M.); (P.S.H.)
| |
Collapse
|
30
|
Gamu D, Juracic ES, Hall KJ, Tupling AR. The sarcoplasmic reticulum and SERCA: a nexus for muscular adaptive thermogenesis. Appl Physiol Nutr Metab 2019; 45:1-10. [PMID: 31116956 DOI: 10.1139/apnm-2019-0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We are currently facing an "obesity epidemic" worldwide. Promoting inefficient metabolism in muscle represents a potential treatment for obesity and its complications. Sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA) pumps in muscle are responsible for maintaining low cytosolic Ca2+ concentration through the ATP-dependent pumping of Ca2+ from the cytosol into the SR lumen. SERCA activity has the potential to be a critical regulator of body mass and adiposity given that it is estimated to contribute upwards of 20% of daily energy expenditure. More interestingly, this fraction can be modified physiologically in the face of stressors, such as ambient temperature and diet, through its physical interaction with several regulators known to inhibit Ca2+ uptake and muscle function. In this review, we discuss advances in our understanding of Ca2+-cycling thermogenesis within skeletal muscle, focusing on SERCA and its protein regulators, which were thought previously to only modulate muscular contractility. Novelty ATP consumption by SERCA pumps comprises a large proportion of resting energy expenditure in muscle and is dynamically regulated through interactions with small SERCA regulatory proteins. SERCA efficiency correlates significantly with resting metabolism, such that individuals with a higher resting metabolic rate have less energetically efficient SERCA Ca2+ pumping in muscle (i.e., lower coupling ratio). Futile Ca2+ cycling is a versatile heat generating mechanism utilized by both skeletal muscle and beige fat.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Emma Sara Juracic
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Karlee J Hall
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
31
|
Zhang XC, Zhang H. P-type ATPases use a domain-association mechanism to couple ATP hydrolysis to conformational change. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-0087-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
32
|
Abstract
Of all the macromolecular assemblies of life, the least understood is the biomembrane. This is especially true in regard to its atomic structure. Ideas on biomembranes, developed in the last 200 years, culminated in the fluid mosaic model of the membrane. In this essay, I provide a historical outline of how we arrived at our current understanding of biomembranes and the models we use to describe them. A selection of direct experimental findings on the nano-scale structure of biomembranes is taken up to discuss their physical nature, and special emphasis is put on the surprising insights that arise from atomic scale descriptions.
Collapse
|
33
|
Weber DK, Bader T, Larsen EK, Wang S, Gopinath T, Distefano M, Veglia G. Cysteine-ethylation of tissue-extracted membrane proteins as a tool to detect conformational states by solid-state NMR spectroscopy. Methods Enzymol 2019; 621:281-304. [PMID: 31128784 DOI: 10.1016/bs.mie.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Solid-state NMR (ssNMR) is an ideal tool to study structure and dynamics of membrane proteins in their native lipid environment. In principle, ssNMR has no size limitations. However, this feature is rarely exploited as large membrane proteins display severe resonance overlap. In addition, dismal yields from recombinant bacterial expression systems limit severely spectroscopic characterization of membrane proteins. For very large mammalian membrane proteins, extraction from the original organism remains the most viable approach. In this case, NMR-observable nuclei must be introduced post-translationally, but the approaches developed so far are rather scarce. Here, we detail the synthesis and engineering of a reactive 13C-ethylmethanethiosulfonate (13C-EMTS) reagent for the post-translational alkylation of cysteine sidechains of a 110kDa sarcoplasmic reticulum Ca2+-ATPase (SERCA) extracted from rabbit skeletal muscle tissue. When reconstituted into liposomes, it is possible to resolve the resonances of the engineered ethyl groups by magic-angle spinning (MAS) 2D [13C,13C]-DARR experiments. Notably, the ethyl-group modification does not perturb the function of SERCA, yielding well-resolved 13C-13C fingerprints that are used to image its structural states in the catalytic cycle and filtering out overwhelming naturally-abundant 13C nuclei signals arising from the enzyme and lipids. We anticipate that this approach will be used together with 19F NMR to monitor conformational transitions of enzymes and proteins that are difficult to express recombinantly.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Taysir Bader
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Erik K Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Mark Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
34
|
Mikkelsen SA, Mogensen LS, Vilsen B, Molday RS, Vestergaard AL, Andersen JP. Asparagine 905 of the mammalian phospholipid flippase ATP8A2 is essential for lipid substrate-induced activation of ATP8A2 dephosphorylation. J Biol Chem 2019; 294:5970-5979. [PMID: 30760526 DOI: 10.1074/jbc.ra118.007240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Indexed: 01/11/2023] Open
Abstract
The P-type ATPase protein family includes, in addition to ion pumps such as Ca2+-ATPase and Na+,K+-ATPase, also phospholipid flippases that transfer phospholipids between membrane leaflets. P-type ATPase ion pumps translocate their substrates occluded between helices in the center of the transmembrane part of the protein. The large size of the lipid substrate has stimulated speculation that flippases use a different transport mechanism. Information on the functional importance of the most centrally located helices M5 and M6 in the transmembrane domain of flippases has, however, been sparse. Using mutagenesis, we examined the entire M5-M6 region of the mammalian flippase ATP8A2 to elucidate its possible function in the lipid transport mechanism. This mutational screen yielded an informative map assigning important roles in the interaction with the lipid substrate to only a few M5-M6 residues. The M6 asparagine Asn-905 stood out as being essential for the lipid substrate-induced dephosphorylation. The mutants N905A/D/E/H/L/Q/R all displayed very low activities and a dramatic insensitivity to the lipid substrate. Strikingly, Asn-905 aligns with key ion-binding residues of P-type ATPase ion pumps, and N905D was recently identified as one of the mutations causing the neurological disorder cerebellar ataxia, mental retardation, and disequilibrium (CAMRQ) syndrome. Moreover, the effects of substitutions to the adjacent residue Val-906 (i.e. V906A/E/F/L/Q/S) suggest that the lipid substrate approaches Val-906 during the translocation. These results favor a flippase mechanism with strong resemblance to the ion pumps, despite a location of the translocation pathway in the periphery of the transmembrane part of the flippase protein.
Collapse
Affiliation(s)
- Stine A Mikkelsen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Louise S Mogensen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bente Vilsen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Anna L Vestergaard
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jens Peter Andersen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
35
|
Omori K, Datta T, Amano Y, Machida M. Effects of different types of extracellular polysaccharides isolated from cyanobacterial blooms on the colony formation of unicellular Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3741-3750. [PMID: 30539395 DOI: 10.1007/s11356-018-3892-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
In this study, two types of extracellular polysaccharides (EPS), namely, mixed EPS (MX-EPS) and tightly bound EPS (TB-EPS), were extracted from cyanobacterial blooms using different methods. To evaluate their compositional differences, elemental composition, FTIR, and TG/DTA profile were measured for both EPS samples. Following that, unicellular Microcystis aeruginosa was cultured in a medium containing EPS, Ca2+ ion, and Mg2+ ion, and the effect of each type of EPS on the colony formation of M. aeruginosa was examined. Results showed that TB-EPS had more carboxy groups than MX-EPS, and that the TB-EPS medium contained Ca2+ and Mg2+ ions. These cations were not detected in the MX-EPS medium. During the colony formation experiment, colonies were observed when Ca2+ and Mg2+ ions were present at 250 mg/L concentration each. In addition, colony density increased when TB-EPS was added, compared to that of MX-EPS. Colonies were also observed in the medium containing only TB-EPS (100 mg/L), indicating that M. aeruginosa can form colonies using Ca2+ ion present in TB-EPS. During the MX-EPS extraction, Ca2+ ion chelated with EDTA was removed during ethanol precipitation. Therefore, the extraction protocol followed for TB-EPS was better than that of MX-EPS for maintaining Ca2+ ions, and thereby maintaining an EPS composition that enables for colony formation.
Collapse
Affiliation(s)
- Ken Omori
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Tania Datta
- Center for the Management, Utilization and Protection of Water Resources, Tennessee Technological University, 1 William L Jones Dr, Cookeville, TN, 38505, USA
| | - Yoshimasa Amano
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
- Safety and Health Organization, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Motoi Machida
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Safety and Health Organization, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
36
|
Faraj SE, Centeno M, Rossi RC, Montes MR. A kinetic comparison between E2P and the E2P-like state induced by a beryllium fluoride complex in the Na,K-ATPase. Interactions with Rb+. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:355-365. [DOI: 10.1016/j.bbamem.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
37
|
Barros F, Pardo LA, Domínguez P, Sierra LM, de la Peña P. New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Int J Mol Sci 2019; 20:ijms20020248. [PMID: 30634573 PMCID: PMC6359393 DOI: 10.3390/ijms20020248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-dependent potassium channels (Kv channels) are crucial regulators of cell excitability that participate in a range of physiological and pathophysiological processes. These channels are molecular machines that display a mechanism (known as gating) for opening and closing a gate located in a pore domain (PD). In Kv channels, this mechanism is triggered and controlled by changes in the magnitude of the transmembrane voltage sensed by a voltage-sensing domain (VSD). In this review, we consider several aspects of the VSD–PD coupling in Kv channels, and in some relatives, that share a common general structure characterized by a single square-shaped ion conduction pore in the center, surrounded by four VSDs located at the periphery. We compile some recent advances in the knowledge of their architecture, based in cryo-electron microscopy (cryo-EM) data for high-resolution determination of their structure, plus some new functional data obtained with channel variants in which the covalent continuity between the VSD and PD modules has been interrupted. These advances and new data bring about some reconsiderations about the use of exclusively a classical electromechanical lever model of VSD–PD coupling by some Kv channels, and open a view of the Kv-type channels as allosteric machines in which gating may be dynamically influenced by some long-range interactional/allosteric mechanisms.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| | - Luis A Pardo
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
| | - Pedro Domínguez
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| | - Luisa Maria Sierra
- Departamento de Biología Funcional (Area de Genética), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Pilar de la Peña
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus de El Cristo, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
38
|
Oliver SR, Anderson KJ, Hunstiger MM, Andrews MT. Turning down the heat: Down-regulation of sarcolipin in a hibernating mammal. Neurosci Lett 2018; 696:13-19. [PMID: 30528880 DOI: 10.1016/j.neulet.2018.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/01/2023]
Abstract
Hibernation in mammals is a whole-body phenotype that involves profound reductions in oxygen consumption, metabolic reactions, core body temperature, neural activity and heart rate. An important aspect of mammalian hibernation is the ability to reverse this state of hypothermic torpor by rewarming and subsequent arousal. Brown adipose tissue (BAT) and skeletal muscle shivering have been characterized as the predominant driving forces for thermogenesis during arousal. Conversely, the thermogenic contribution of these organs needs to be minimized as hibernating mammals enter torpor. Because skeletal muscle accounts for approximately 40% of the dry mass of the typical mammalian body, we aim to broaden the spotlight to include the importance of down-regulating skeletal muscle non-shivering thermogenesis during hibernation to allow for whole-body cooling and long-term maintenance of a depressed core body temperature when the animal is in torpor. This minireview will briefly describe the current understanding of thermoregulation in hibernating mammals and present new preliminary data on the importance of skeletal muscle and the micro-peptide sarcolipin as a major thermogenic target.
Collapse
Affiliation(s)
- S Ryan Oliver
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN 55812, USA.
| | - Moriah M Hunstiger
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - Matthew T Andrews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
39
|
Tadini-Buoninsegni F, Sordi G, Smeazzetto S, Natile G, Arnesano F. Effect of cisplatin on the transport activity of P II-type ATPases. Metallomics 2018. [PMID: 28636017 DOI: 10.1039/c7mt00100b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cisplatin (cis-diamminedichlorido-Pt(ii)) is extensively used as a chemotherapeutic agent against various types of tumors. However, cisplatin administration causes serious side effects, including nephrotoxicity, ototoxicity and neurotoxicity. It has been shown that cisplatin can interact with P-type ATPases, e.g., Cu+-ATPases (ATP7A and ATP7B) and Na+,K+-ATPase. Cisplatin-induced inhibition of Na+,K+-ATPase has been related to the nephrotoxic effect of the drug. To investigate the inhibitory effects of cisplatin on the pumping activity of PII-type ATPases, electrical measurements were performed on sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Na+,K+-ATPase embedded in vesicles/membrane fragments adsorbed on a solid-supported membrane. We found that cisplatin inhibits SERCA and Na+,K+-ATPase only when administered without a physiological reducing agent (GSH); in contrast, inhibition was also observed in the case of Cu+-ATPases in the presence of 1 mM GSH. Our results indicate that cisplatin is a much stronger inhibitor of SERCA (with an IC50 value of 1.3 μM) than of Na+,K+-ATPase (with an IC50 value of 11.1 μM); moreover, cisplatin inhibition of Na+,K+-ATPase is reversible, whereas it is irreversible in the case of SERCA. In the absence of a physiological substrate, while Cu+-ATPases are able to translocate cisplatin, SERCA and Na+,K+-ATPase do not perform ATP-dependent cisplatin displacement.
Collapse
|
40
|
Tadini-Buoninsegni F, Smeazzetto S, Gualdani R, Moncelli MR. Drug Interactions With the Ca 2+-ATPase From Sarco(Endo)Plasmic Reticulum (SERCA). Front Mol Biosci 2018; 5:36. [PMID: 29696147 PMCID: PMC5904271 DOI: 10.3389/fmolb.2018.00036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is an intracellular membrane transporter that utilizes the free energy provided by ATP hydrolysis for active transport of Ca2+ ions from the cytoplasm to the lumen of sarco(endo)plasmic reticulum. SERCA plays a fundamental role for cell calcium homeostasis and signaling in muscle cells and also in cells of other tissues. Because of its prominent role in many physiological processes, SERCA dysfunction is associated to diseases displaying various degrees of severity. SERCA transport activity can be inhibited by a variety of compounds with different chemical structures. Specific SERCA inhibitors were identified which have been instrumental in studies of the SERCA catalytic and transport mechanism. It has been proposed that SERCA inhibition may represent a novel therapeutic strategy to cure certain diseases by targeting SERCA activity in pathogens, parasites and cancer cells. Recently, novel small molecules have been developed that are able to stimulate SERCA activity. Such SERCA activators may also offer an innovative and promising therapeutic approach to treat diseases, such as heart failure, diabetes and metabolic disorders. In the present review the effects of pharmacologically relevant compounds on SERCA transport activity are presented. In particular, we will discuss the interaction of SERCA with specific inhibitors and activators that are potential therapeutic agents for different diseases.
Collapse
Affiliation(s)
| | - Serena Smeazzetto
- Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Maria Rosa Moncelli
- Department of Chemistry "Ugo Schiff," University of Florence, Florence, Italy
| |
Collapse
|
41
|
Pedersen JT, Kanashova T, Dittmar G, Palmgren M. Isolation of native plasma membrane H +-ATPase (Pma1p) in both the active and basal activation states. FEBS Open Bio 2018; 8:774-783. [PMID: 29744292 PMCID: PMC5929935 DOI: 10.1002/2211-5463.12413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
The yeast plasma membrane H+‐ATPase Pma1p is a P‐type ATPase that energizes the yeast plasma membrane. Pma1p exists in two activation states: an autoinhibited basal state and an activated state. Here we show that functional and stable Pma1p can be purified in native form and reconstituted in artificial liposomes without altering its activation state. Acetylated tubulin has previously been reported to maintain Pma1p in the basal state but, as this protein was absent from the purified preparations, it cannot be an essential component of the autoinhibitory mechanism. Purification of and reconstitution of native Pma1p in both activation states opens up for a direct comparison of the transport properties of these states, which allowed us to confirm that the basal state has a low coupling ratio between ATP hydrolysis and protons pumped, whereas the activated state has a high coupling ratio. The ability to prepare native Pma1p in both activation states will facilitate further structural and biochemical studies examining the mechanism by which plasma membrane H+‐ATPases are autoinhibited.
Collapse
Affiliation(s)
- Jesper Torbøl Pedersen
- Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark.,Present address: Institute of Environmental Medicine (IMM) Karolinska Institutet Stockholm Sweden
| | - Tamara Kanashova
- Mass Spectrometry Core Unit Max Delbrück Center for Molecular Medicine Berlin Germany
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit Max Delbrück Center for Molecular Medicine Berlin Germany.,Proteome and Genome Research Laboratory Luxembourg Institute of Health Strassen Luxembourg
| | - Michael Palmgren
- Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| |
Collapse
|
42
|
Functional role of highly conserved residues of the N-terminal tail and first transmembrane segment of a P4-ATPase. Biochem J 2018; 475:887-899. [DOI: 10.1042/bcj20170749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/17/2022]
Abstract
The P4 family of P-type ATPases (P4-ATPases) plays an important role in maintaining phospholipid asymmetry in eukaryotic cell membranes. Leishmania miltefosine transporter (LMT) is a plasma membrane (PM) P4-ATPase that catalyses translocation into the parasite of the leishmanicidal drug miltefosine as well as phosphatidylcholine and phosphatidylethanolamine analogues. In the present study, we analysed the role, in LMT, of a series of highly conserved amino acids previously undescribed in the N-terminal region of P4-ATPases. Seven residues were identified and, according to an LMT structural model, five were located in the cytosolic N-terminal tail (Asn58, Ile60, Lys64, Tyr65 and Phe70) and the other two (Pro72 and Phe79) in the first transmembrane segment (TM1). Alanine-scanning mutagenesis analysis showed that N58A, Y65A and F79A mutations caused a considerable reduction in the LMT translocase activity. These mutations did not affect protein expression levels. We generated additional mutations in these three residues to assess the influence of the conservation degree on LMT translocase activity. Some of these mutations reduced expression levels without affecting the interaction between LMT and its CDC50 subunit, LRos3. Conserved and non-conserved mutations in the invariant residue Asn58 drastically reduced the translocase activity. Consequently, Asn58 may be necessary to achieve optimal catalytic LMT activity as previously described for the potentially equivalent Asn39 of the sarco/endoplasmic reticulum Ca2+-ATPase isoform 1a (SERCA1a). Additionally, conservation of a hydrophobic residue at position 79 is crucial for LMT stability.
Collapse
|
43
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
44
|
Meraviglia V, Bocchi L, Sacchetto R, Florio MC, Motta BM, Corti C, Weichenberger CX, Savi M, D'Elia Y, Rosato-Siri MD, Suffredini S, Piubelli C, Pompilio G, Pramstaller PP, Domingues FS, Stilli D, Rossini A. HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca 2+-ATPase Activity in Cardiac Myocytes. Int J Mol Sci 2018; 19:ijms19020419. [PMID: 29385061 PMCID: PMC5855641 DOI: 10.3390/ijms19020419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.
Collapse
Affiliation(s)
- Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (Padova), Italy.
| | - Maria Cristina Florio
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Benedetta M Motta
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Christian X Weichenberger
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Yuri D'Elia
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Marcelo D Rosato-Siri
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Silvia Suffredini
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Chiara Piubelli
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Francisco S Domingues
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| |
Collapse
|
45
|
Mikkelsen SA, Vangheluwe P, Andersen JP. A Darier disease mutation relieves kinetic constraints imposed by the tail of sarco(endo)plasmic reticulum Ca 2+-ATPase 2b. J Biol Chem 2018; 293:3880-3889. [PMID: 29363575 DOI: 10.1074/jbc.ra117.000941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/19/2018] [Indexed: 11/06/2022] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2b isoform possesses an extended C terminus (SERCA2b tail) forming an 11th transmembrane (TM) helix, which slows conformational changes of the Ca2+-pump reaction cycle. Here, we report that a Darier disease (DD) mutation of SERCA2b that changes a glutamate to a lysine in the cytoplasmic loop between TM8 and TM9 (E917K) relieves these kinetic constraints. We analyzed the effects of this mutation on the overall reaction and the individual partial reactions of the Ca2+ pump compared with the corresponding mutations of the SERCA2a and SERCA1a isoforms, lacking the SERCA2b tail. In addition to a reduced affinity for Ca2+, caused by the mutation in all three isoforms examined, we observed a unique enhancing effect on the turnover rates of ATPase activity and Ca2+ transport for the SERCA2b E917K mutation. This relief of kinetic constraints contrasted with inhibitory effects observed for the corresponding SERCA2a and SERCA1a (E918K) mutations. These observations indicated that the E917K/E918K mutations affect the rate-limiting conformational change in isoform-specific ways and that the SERCA2b mutation perturbs the interactions of TM11 with other SERCA2b regions. Mutational analysis of an arginine in TM7 that interacts with the glutamate in SERCA1a crystal structures suggested that in wildtype SERCA2b, the corresponding arginine (Arg-835) may be involved in mediating the conformational restriction by TM11. Moreover, the E917K mutation may disturb TM11 through the cytoplasmic loop between TM10 and TM11. In conclusion, our findings have identified structural elements of importance for the kinetic constraints imposed by TM11.
Collapse
Affiliation(s)
- Stine A Mikkelsen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark and
| | - Peter Vangheluwe
- the Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jens Peter Andersen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark and
| |
Collapse
|
46
|
Franzini-Armstrong C. The relationship between form and function throughout the history of excitation-contraction coupling. J Gen Physiol 2018; 150:189-210. [PMID: 29317466 PMCID: PMC5806676 DOI: 10.1085/jgp.201711889] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Franzini-Armstrong reviews the development of the excitation–contraction coupling field over time. The concept of excitation–contraction coupling is almost as old as Journal of General Physiology. It was understood as early as the 1940s that a series of stereotyped events is responsible for the rapid contraction response of muscle fibers to an initial electrical event at the surface. These early developments, now lost in what seems to be the far past for most young investigators, have provided an endless source of experimental approaches. In this Milestone in Physiology, I describe in detail the experiments and concepts that introduced and established the field of excitation–contraction coupling in skeletal muscle. More recent advances are presented in an abbreviated form, as readers are likely to be familiar with recent work in the field.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
47
|
Omori K, Sato M, Amano Y, Machida M. Induction of Colony Formation of Microcystis aeruginosa by Controlling Extracellular Polysaccharides and Metal Cation Concentrations. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ken Omori
- Graduate School of Engineering, Chiba University
| | | | - Yoshimasa Amano
- Graduate School of Engineering, Chiba University
- Safety and Health Organization, Chiba University
| | - Motoi Machida
- Graduate School of Engineering, Chiba University
- Safety and Health Organization, Chiba University
| |
Collapse
|
48
|
Abstract
The calcium pump (a.k.a. Ca2+-ATPase or SERCA) is a membrane transport protein ubiquitously found in the endoplasmic reticulum (ER) of all eukaryotic cells. As a calcium transporter, SERCA maintains the low cytosolic calcium level that enables a vast array of signaling pathways and physiological processes (e.g. synaptic transmission, muscle contraction, fertilization). In muscle cells, SERCA promotes relaxation by pumping calcium ions from the cytosol into the lumen of the sarcoplasmic reticulum (SR), the main storage compartment for intracellular calcium. X-ray crystallographic studies have provided an extensive understanding of the intermediate states that SERCA populates as it progresses through the calcium transport cycle. Historically, SERCA is also known to be regulated by small transmembrane peptides, phospholamban (PLN) and sarcolipin (SLN). PLN is expressed in cardiac muscle, whereas SLN predominates in skeletal and atrial muscle. These two regulatory subunits play critical roles in cardiac contractility. While our understanding of these regulatory mechanisms are still developing, SERCA and PLN are one of the best understood examples of peptide-transporter regulatory interactions. Nonetheless, SERCA appeared to have only two regulatory subunits, while the related sodium pump (a.k.a. Na+, K+-ATPase) has at least nine small transmembrane peptides that provide tissue specific regulation. The last few years have seen a renaissance in our understanding of SERCA regulatory subunits. First, structures of the SERCA-SLN and SERCA-PLN complexes revealed molecular details of their interactions. Second, an array of micropeptides concealed within long non-coding RNAs have been identified as new SERCA regulators. This chapter will describe our current understanding of SERCA structure, function, and regulation.
Collapse
|
49
|
Crystal structures of the TRIC trimeric intracellular cation channel orthologues. Cell Res 2017; 26:1288-1301. [PMID: 27909292 PMCID: PMC5143425 DOI: 10.1038/cr.2016.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca2+ signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting pore within each subunit, and that the trimer formation contributes to the stability of the protein. The symmetrically related TM2 and TM5 helices are kinked at the conserved glycine clusters, and these kinks are important for the channel activity. Furthermore, the kinks of the TM2 and TM5 helices generate lateral fenestrations at each subunit interface. Unexpectedly, these lateral fenestrations are occupied with lipid molecules. This study provides the structural and functional framework for the molecular mechanism of this ion channel superfamily.
Collapse
|
50
|
Cornelius F, Tsunekawa N, Toyoshima C. Distinct pH dependencies of Na +/K + selectivity at the two faces of Na,K-ATPase. J Biol Chem 2017; 293:2195-2205. [PMID: 29247005 DOI: 10.1074/jbc.ra117.000700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
The sodium pump (Na,K-ATPase) in animal cells is vital for actively maintaining ATP hydrolysis-powered Na+ and K+ electrochemical gradients across the cell membrane. These ion gradients drive co- and countertransport and are critical for establishing the membrane potential. It has been an enigma how Na,K-ATPase discriminates between Na+ and K+, despite the pumped ion on each side being at a lower concentration than the other ion. Recent crystal structures of analogs of the intermediate conformations E2·Pi·2K+ and Na+-bound E1∼P·ADP suggest that the dimensions of the respective binding sites in Na,K-ATPase are crucial in determining its selectivity. Here, we found that the selectivity at each membrane face is pH-dependent and that this dependence is unique for each face. Most notable was a strong increase in the specific affinity for K+ at the extracellular face (i.e. E2 conformation) as the pH is lowered from 7.5 to 5. We also observed a smaller increase in affinity for K+ on the cytoplasmic side (E1 conformation), which reduced the selectivity for Na+ Theoretical analysis of the pKa values of ion-coordinating acidic amino acid residues suggested that the face-specific pH dependences and Na+/K+ selectivities may arise from the protonation or ionization of key residues. The increase in K+ selectivity at low pH on the cytoplasmic face, for instance, appeared to be associated with Asp808 protonation. We conclude that changes in the ionization state of coordinating residues in Na,K-ATPase could contribute to altering face-specific ion selectivity.
Collapse
Affiliation(s)
- Flemming Cornelius
- From the Department of Biomedicine, University of Aarhus, Ole Worms Allé 6, 8000 Aarhus C, Denmark and
| | - Naoki Tsunekawa
- the Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032
| | - Chikashi Toyoshima
- the Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032
| |
Collapse
|